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ëì-CALCULUS AND BÖHM’S THEOREM

RENÉ DAVID AND WALTER PY

Abstract. The ëì-calculus is an extension of the ë-calculus that has been introduced by M Parigot to

give an algorithmic content to classical proofs. We show that Böhm’s theorem fails in this calculus.

§1. Introduction. The ëì-calculus (its typed and untyped versions) has been
introduced by M. Parigot in [6]. Its typed version is an extension of the typed
ë-calculus intended to give an algorithmic content to classical proofs.
The main computational rules are â (the usual one of the ë-calculus) and ì. This
new rule corresponds (cf. [9]), in the typed version, to the elimination of a logical
cut related to the classical rule : If Γ, α : ¬A ` M : ⊥ , then Γ ` ìα.M : A.
Two other rules ñ and è (that look like, for the ì-variables, the ç-rule) also are
introduced. In [6], Parigot proved that the (untyped) ëì-calculus with the rules
â, ì, ñ and è satisfies the Church Rosser property. He also proved ([8]) that every
typed term is strongly normalizing.
This paper is concerned with Böhm’s theorem. This theorem, in the ë-calculus,
says that if two normal closed terms are computationally equivalent (i.e., when
applied to any sequence of arguments the first one is solvable iff the second one
also is solvable), then they are ç-equivalent. We thus also have to consider the ç-
rule. However in the ëì-calculus, the âçìñè-reduction has not the Church-Rosser’s
property, because of the following critical pair.

ëx. (ìα.M x) −−−−→
ì

ëx.ìα.M [x/∗α]




y

ç

ìα.M

In order to be able to state an equivalent form of Böhm’s theorem we have to
restore the confluence. We thus consider another reduction (called the í-reduction)
which is an ç-expansion followed by a ì-reduction : ìα.M →í ëx.ìα.M [x/∗α]
stands for ìα.M →çexp ëx.(ìα.M x) →ì ëx.ìα.M [x/∗α]. This reduction,

which corresponds exactly to the reduction defined by Prawitz ([9] Chap.ĨII, § 1,
Theorem I), has also been considered by Parigot ([6]) but only in the typed version.
It is proved in [10] that the âçíìñè-reduction satisfies the Church-Rosser’s property.
In the presence of í, Parigot’s ì-reduction is no longer needed. Indeed, any ì-
reductionmaybe simulated by a í-reduction immediately followedby aâ-reduction.
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2 RENÉ DAVID AND WALTER PY

Since a í-reduction can always be made in front of a ì-abstraction, there are no
normal terms. However it is also proved in [10] that every âì-normal term can be
reduced to a term in a canonical normal form and thus Böhm’s theorem couldmake
sense. Also note that, in the simply typed case, the notion of í-normal form makes
sense since the complexity of the type of the ì-variable involved in a í-reduction
decreases after each step : ìα¬(a→b).M →í ëx

a.ìα¬b .M [x/∗α].
The main result of this paper is that Böhm’s theorem fails in the ëì-calculus : We
can find two closed terms in canonical normal form that are not âçíìñè-equivalent
but are operationally equivalent, i.e., they cannot be distinguished by any (not only
applicative) context.
We also give a very elementary proof of the following fact : two terms are compu-
tationally equivalent iff they are operationally equivalent. This result is sometimes
called the operational extensionality or the context lemma. Note that the termi-
nology itself (computational equivalence, operational equivalence, ...) sometimes
depends on the author. Some references may be found in [1]. Finally note that, in
the ë-calculus, this result is an immediate consequence of ... Böhm’s theorem and,
as far as we know, the only known proof was by using Böhm’s theorem.

Warning The proofs of confluence are not reproduced here because they are long
and technical (the reader canfind them in [10]).However this paper is self contained :
The confluence properties are not used in the proofs of the main results. They are
only used to give a sense to these results. In section 3 we thus only recall these
properties and give the main problems occurring in their proofs. In section 4 we
prove the failure of Böhm’s theorem and the equivalence between the computational
and the operational equivalence.

§2. The ëì-calculus. The set T of ëì-terms is given by the following grammar :

T = x | ëx. T | (T T ) | ìα.[â] T

where x ranges over a setVë of ë-variables andα, â rangeover a setVì ofì-variables
(disjoint from Vë). Note that in [6], [10] the application was denoted as in [4] by
(u)v. We adopt here the usual notation (u v).
The reduction rules are the following.

(ëx.M N)→â M [x := N ]

ëx.(M x)→ç M (if x is not free inM )

(ìα.M N)→ì ìα.M [N/
∗α]

ìα.M →í ëx.ìα.M [x/
∗α]

[â]ìα.M →ñ M [â/α]

ìα.[α]M →è M (if α is not free inM )

The substitutions are defined in the following table (where ó is x := N, ô isN/∗α,
ñ is â/α and ä 6= α). Note that ì is a binding operator and that substitutions are
thus done with the usual rules, in particular the renaming of bound variables to
avoid the capture of free variables.
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M M [ó] M [ô] M [ñ]
x N x x
y y y y
ëy.O ëy.O[ó] ëy.O[ô] ëy.O[ñ]
(O P) (O[ó] P[ó]) (O[ô] P[ô]) (O[ñ] P[ñ])
ìã.O ìã.O[ó] ìã.O[ô] ìã.O[ñ]
[α]O [α]O[ó] [α](O[ô] N) [â]O[ñ]
[ä]O [ä]O[ó] [ä]O[ô] [ä]O[ñ]

§3. Confluence properties of the ëì-calculus. In this section we give the main
confluence results of the calculus. As mentioned before the proofs can be found in
[10]. It is important to note that, in the ñ-reduction, â is a free variable and thus ëì
is not a combinatory reduction system in the sense of Klop ([3]). Thus, standard
methods cannot be used.

Notation 3.1. (M →âìíçñè N) (respectively M →∗

âìíçñè N) means that M re-

duces to N by one step (respectively some steps, possibly 0) of either a â or ì or í
or ç or ñ or è reduction. The reduction→∗

âìíçñè is also called the âìíçñè-reduction.
Similarly, for example, forM →∗

âì N .

Theorem 3.2. The âìñè-reduction satisfies the Church-Rosser property.

The proof given in [6] was not completely correct. It uses the method of parallel
reductions of Tait and Martin-Löf. But this method does not work in this context
for the following reason. Denote by =⇒ the parallel reduction.M =⇒M ′ does not
implyM [N/∗α] =⇒ M ′[N/∗α]. For exampleM = [α]ìâ.O =⇒ñ O[α/â] = M ′

butM [N/∗α] reduces toM ′[N/∗α] in two steps :

M [N/∗α] = [α](ìâ.O[N/∗α] N )
=⇒ì [α]ìâ.O[N/∗α][N/∗â]
=⇒ñ O[N/∗α][N/∗â][α/â]
= M ′[N/∗α]

The proof given in [10] uses an extension of the method of Tait and Martin-Löf
due to Aczel (see [3] or [2]).

Theorem 3.3. The âçìíñè-reduction satisfies the Church-Rosser property over ì-
closed terms.

Note that this result is false for open terms. For example the following diagram
(where I = ëy. y) cannot be closed because the ì-variable â is free.

[â] ëx. (ìα.I x) −−−−→
ç

[â] ìα. I −−−−→
ñ

I




y

ì

[â] ëx.ìα.I

Even the extended parallel-reduction method mentioned before does not work
because the following critical pair occurs between í and ñ.
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[â]ìα.M −−−−→
ñ

M [â/α]




y

í

[â]ëx.ìα.M [x/∗α]

The ñ-redex [â]ìα.M is hidden in [â]ëx.ìα.M [x/∗α]. It is possible to close the
diagram only if â is a bounded variable. For example, in the following diagram,

ìâ.[â]ìα.M −−−−→
ñ

ìâ.M [â/α]




y

í





y

í

ìâ.[â]ëx.ìα.M [x/∗α] −−−−→
í

◦ −−−−→
â

◦ −−−−→
ñ

ëy.ìâ.M [â/α][y/∗â]

we close by the reduction :
ìâ.[â]ëx.ìα.M [x/∗α] →í ëy.ìâ.[â](ëx.ìα.M [x/∗α][y/∗â] y)

→â ëy.ìâ.[â]ìα.M [x/∗α][y/∗â][x := y]
→ñ ëy.ìâ.M [x/∗α][y/∗â][x := y][â/α]
= ëy.ìâ.M [â/α][y/∗â]

The main problems (that make the proof difficult) are the following :

- a ñ-redex [â]ìα may be hidden by many ë.
- the í-reductions that are necessary to make this redex ”visible” are non local,
since they are done in front of the ìâ and this may occur far from the ñ-redex.
- to close a critical pair between í and ñ a â-reduction is necessary and thus the
reduction rules cannot be separated.

Notation 3.4. ~ë (respectively
−→
ëì) represents an arbitrary sequence of ë abstraction

(respectively of ë abstractions and prefixes as ìα.[â])

Definition 3.5. A ëì-term is in canonical normal form if :

1. M is âçìñè-normal.

2. M = ~ë.(y N1...Nk ) orM = ~ë ìã.[â] (y N1...Nk).
3. The Ni are in canonical normal form.

The point 2 in this definition means thatM begins with some ë and, at most one,
ìα[â].

Theorem 3.6. LetM be a ì-closed âì-normal term. There is a term N such that
M →∗

âìíçñè N andN is in canonical normal form.

Note that again this result is only true for ì-closed terms. Also note that the
term N is not unique. For example : ëx. ìα. [α] (x ìâ.[α] x) and ëxëy. ìα.[α]
(x ìâ.[α] (x y) y) both are in canonical normal form but are í-equivalent. See
section 5 about this problem.

Definition 3.7. M is âçìíñè-solvable (respectively âì-solvable) if M →∗

âçìíñè

M ′ (respectively M →∗

âì M
′) where M ′ is in head âì-normal form, i.e., M ′ =

−→
ëì (x ~N) for some sequence ~N .

Note that the prefix
−→
ëì in a head âì-normal form may contain è and ñ-redexes.
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The following theorems show that, somehow, the main rules of the calculus are
â and ì.

Theorem 3.8. ç, ñ and è can be postponed, i.e., ifM →∗

âìíçñè M
′ there are terms

N , P, Q such thatM →∗

âìí N →ç P →∗

ñ Q →∗

è M
′.

Theorem 3.9. A term t is âì-solvable iff it is âçìíñè-solvable.

Definition 3.10. 1. Every term can be uniquely written as
−→
ëì (R −→u ) where

R is either a âì-redex (called the head redex) or a variable (called the head
variable).

2. The head reduction consists in reducing, at each step, the head redex. M �M ′

(respectivelyM �+ M ′) means thatM reduces toM ′ by some steps (possibly
0) (respectively at least one step) of head reduction.

The following lemma (which is an easy extension of the same result in the ë-
calculus) is often used in the next section.

Lemma 3.11. 1. M is solvable iff the head reduction ofM terminates in a term
in head âì-normal form.

2. IfM �M ′ thenM [x := N ] �M ′[x := N ].
3. IfM [x := N ] is solvable, thenM is solvable.

§4. Böhm’s theorem fails in the ëì-calculus.

Definition 4.1. 1. A context is a term with some holes (a hole is denoted by []).
An applicative context is a context of the form ([] N1...Nk ) where the Ni have
no holes.

2. Two closed termsM andM ′ are operationally equivalent (respectively compu-
tationally equivalent) if for every closed context (respectively applicative closed
context) C , C [M ] is solvable iff C [M ′] is solvable. This will be denoted by
M ∼M ′ (respectivelyM ∼a M

′ )

Note that, by theorem 3.9 and lemma 3.11,M ∼M ′ iff (C [M ] reduces by head
reduction to a term in head âì-normal form iff C [M ′] reduces by head reduction
to a term in head âì-normal form.
Theorem 4.4 below, which is the main result of this paper, shows that Böhm’s
theorem fails in the ëì-calculus. Note that it is easy to check that the termW is
typeable (in the extension to classical logic of ë→) and thus the cause of failure is
not the untypability. We first prove that the computational equivalence is included
in the operational one.
We first need the following definition.

Definition 4.2. Let C be a context and M be a closed term such that C [M ] is
solvable. Denotes by ΦM (C ) the number of times M comes in head position during
the head reduction of C [M ]. More precisely, ΦM (C ) is defined by induction on the
length of the head reduction of C [M ] as follows :

• If the head variable of C is not [] or if C �
−→
ëì [], then ΦM (C ) = 0.

• Otherwise C �
−→
ëì ([]

−→
A ) for some non-empty sequence

−→
A . Then ΦM (C ) =

1 + ΦM (D) where D is the head âì-normal form of (M
−→
A ).

Remark Note that ΦM is well defined since, by the lemma 3.11, C is solvable.
Moreover, sinceM is closed, its head âì-normal form begins with a ë or a ì and
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thus C [M ] �+
−→
ëì D[M ] and the reduction of D[M ] is shorter than the one of

C [M ].

Theorem 4.3. Let M and M’ be closed ëì-terms. IfM ∼a M
′ thenM ∼M ′.

Proof. We prove that if C [M ] is solvable, then so is C [M ′] by induction on
ΦM (C ).

• If the head variable ofC is not [] or ifC �
−→
ëì[], the result follows immediately

from lemma 3.11 .
• Otherwise : C �

−→
ëì([]

−→
A ). Let D be the head âì-normal form of (M

−→
A ).

Then D[M ] is solvable and ΦM (D) < ΦM (C ). By the induction hypoth-
esis D[M ′] is solvable and thus (M

−→
A [M ′]) is solvable. Since M ∼a M

′,

(M ′
−→
A [M ′]) also is solvable and, sinceC [M ′] �

−→
ëì(M ′

−→
A [M ′]),we are done.

a

Theorem 4.4. Let 0 = ëaëb.b, 1 = ëaëb.a and U0 = ìä.[α]0. Let W =
ëx.ìα.[α](xìâ.[α](xU0y)U0),W0 =W [y := 0] andW1 =W [y := 1]. Then

1. W0 andW1are closed terms in canonical normal form.
2. W0 andW1 are not âìíçñè-equivalent.
3. W0 ∼W1.

Proof. 1. and 2. are trivial. By theorem 4.3 it is enough to show that if A is a
term and

−→
B is a sequence of terms such that (W0 A

−→
B ) is solvable, then (W1 A

−→
B )

also is solvable. Let C = (W A
−→
B ). Since (W0 A

−→
B ) = C [y := 0] it follows

from lemma 3.11 that C is solvable. It is enough to show that the head variable of
C cannot be y.
C � ìα.[α] (A Z U

−→
B )whereZ = ìâ.[α] (A U y

−→
B ) andU = ìä.[α] (0

−→
B ).

Let C1 = (A z u
−→
B ) where z and u are fresh variables. Letó be the substitution

[z := Z, u := U ] and ô be the substitution [z := U, u := y]. Note that Z =
ìâ.[α] C1[ô] and that the free ë-variables of C1 are z and u.
Since C � ìα.[α] C1[ó], by lemma 3.11, C1 is solvable.

1. If the head variable of C1 is bounded the result is clear.
2. If the head variable of C1 is u. Then, for some

−→
ëì and some sequence ~D of

arguments C � ìα.[α]
−→
ëì (U ~D[ó]). Since U = ìä.[α] (0

−→
B ) and ä does

not appear in (0
−→
B ), C � ìα.[α]

−→
ëì U . Since y does not appear in U , the

result follows.
3. If the head variable of C1 is z. Then, for some

−→
ëì and some sequence ~D of

arguments C � ìα.[α]
−→
ëì (Z ~D[ó]). Since Z = ìâ.[α] (A U y

−→
B ) and â

does not appear in (A U y
−→
B ), C � ìα.[α]

−→
ëì Z = ìα.[α]

−→
ëì ìâ.[α] C1[ô].

Thus C �
−→
K (z ~D)[ô] =

−→
K (U ~D[ô]) where

−→
K = ìα.[α]

−→
ëì ìâ.[α]

−→
ëì1

and
−→
ëì1 is a renaming (to avoid capture) of

−→
ëì. The result follows then in the

same way as in the previous case.

a

§5. Conclusion. The intuitive meaning of Böhm’s theorem in the ë-calculus is
that, by giving to a term the appropriate arguments, we may put any node of its
Böhm tree in head position. The first arguments are used to go to the first node of
the path, the next arguments are used to go to the next node and so on ... to the
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specified node. The term W given in section 4 shows that we cannot do the same
thing in the ëì-calculus : We showed that the variable y does not come in head
position. The main reason is that, in a term as (ìα M ~N ), the whole stack ~N of
arguments is given to the sub-terms [α]P ofM .
It is also important to note that, in the ë-calculus, the arguments depend only on
the path to the specified node and not on the other nodes. In our counter-example
for the ëì-calculus, we have not only use the path to y but also the other nodes in
W since we extensively used the fact that (ìâ.M

−→
A ) � ìâ.M when â is not free in

M .

Some open questions.

1. Is it possible to recover Böhm’s theorem by giving other reduction rules? By
defining an equivalence relation (that does not necessarily come from other
reduction rules) on the ëì-terms in canonical normal forms?

2. The canonical normal form is not unique but distinct forms of the same term
look like ç-equivalent. Is it possible to get the unicity by giving other reduction
rules?

3. It seems that the termsìα.M where [α] does not occur inM play an important
role. Is it possible to identify all these terms to get such relations? Can we learn
something from semantics? In a semantic model where⊥would be interpreted
as the initial object of some category this would be the case.

In [5], K. Nour introduces new rules to the ëì-calculus and he gets a calculus
satisfying the following properties : Strong normalization, subject reduction and
existence of a parallel or in the typed calculus. The calculus does not satisfy the
Church-Rosser property but in the usual data types (integers, booleans, lists of
integers, ...) the unicity of representation is preserved.
This calculus could be a good candidate to answer the previous questions since,
in this calculus, the termW given in section 4 reduces to ëx.0, but the meaning of
Böhm’s theorem in a calculus that is not confluent is unclear.
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