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Normalization without reducibilityRen�e DAVID�AbstractIn [8], general results (due to Coppo, Dezani and Veneri [5], [6]) re-lating properties of pure � terms and their typability in some systemswith conjunctive types D
 and D are proved in a uniform way by usingthe reducibility method. This paper gives a very short proof of the sameresults (actually, one of them is a bit stronger) using purely arithmeticalmethods.MSC : 03B40, 03F05Keywords : �-calculus, normalization1 IntroductionIn [8], Gallier presents a uniform approach for proving general results relatingproperties of pure � terms and their typability in some systems with conjunctivetypes D
 and D, due to Coppo, Dezani and Venneri ([5],[6]). Gallier's approachuses the reducibility method. The results are not new but the accent is puton the uniformity of the various proofs. Other proofs of similar results canalso be found in [1], [15] or [11]. Bucciarelli & al show in [4] that the strongnormalization of system D can be easily derived from the one of the simplytyped �-calculus.I give here another proof of the same results as in [8] (cf theorem 6). Ac-tually the point 4 of theorem 6 is stronger (and this result is new) than thecorresponding one in [8] : For an unsolvable term, I give a precise relation be-tween the arity of its type and the number (up to reduction) of its leading �abstractions.This proof does not use reducibility and is purely syntactic. The main ideais given at the beginning of section 3.2. It is also completely uniform, very shortand (at least in my mind) ... elegant. I also believe that this proof should helpto better understand the relations between pure �-terms and the systems D andD
: Note that a very elementary and short (i.e. a half page) proof of the strongnormalization of the system D can be "extracted " from this paper. It uses onlythe part of lemma 18 concerned with SN and the (trivial) lemma 12.�Ren�e David. Laboratoire de Maths. Campus Scienti�que. F-73376 Le Bourget du Lac.email david@univ-savoie.fr 1



It is known that, for fundamental reasons, the technique used below cannotbe extended to, for example, the system F . I do not know neither how to extendit to, for example, G�odel's system T nor if, for some reason, no extension shouldexist.Acknowledgments The proof of the part (1) of theorem 6 is a very sim-pli�ed version of the proof given by R Matthes in an informal talk in the LogicMeeting in Oberwolfach (January 1998) after which I had helpful discussionswith him. Thanks to K Nour for helpful comments and to the anonymous refereewho did a very careful reading of the paper and pointed out many imprecisions.2 The theoremI assume the basic notions on pure and typed � calculus are known. They canbe found in any text book on the subject (for example : [10], [2], [9]). For thesake of completeness I recall some notations and the de�nitions concerning thesystems D and D
:t! t0 (resp t� t0) means that t reduces to t0 by one step (resp some steps,possibly 0) of � reductions.Every � term can be uniquely written as ~� (R ~u) where ~� is a (possiblyempty) sequence of abstractions, R is either a redex (called the head redex ) or avariable (in this case the term is said to be in head normal form and the variableis the head variable) and ~u is a (possibly empty) sequence of arguments.The head reduction consists in reducing the head redex. The left reductionconsists in reducing the head redex (if there is one) or (inductively) in doingthe left reduction of the arguments of the head variable. A (�nite or in�nite)reduction t0 ! t1 ! ::: is a quasi head (resp quasi left) reduction if for everyj the reduction ti ! ti+1 is a head reduction (resp a left reduction) for somei � j.cxty(t) represents the complexity of t, i.e. the number of symbols occurringin t. If ~u is a sequence of terms and N is a set, ~u 2 N means that every elementof the sequence ~u is in N .There are two ways of presenting the conjunctive types. (For a history ofthe di�erent formulations, see [14])� The �rst one (see [3]) is the following : The types are constructed froma set of base types and the unde�ned type !, using the type constructors! and \: The typing rules of the system D
 are the following :(ax) �; x : A ` x : A and � ` t : !(!i) If �; x : A ` t : B then � ` �x t : A! B(!e) If � ` u : A! B and � ` v : A then � ` (u v) : B(\i) If � ` t : A and � ` t : B then � ` t : A \ B(\e) If � ` t : A \ B then � ` t : A and � ` t : BThe system D is obtained by restricting the system D
 to !-free types (i.e.types where ! does not occur) and by deleting the axiom � ` t : !:2



� The previous way of presenting D
 causes some problem because (A !B \ C) is less convenient than (A! B) \ ( A! C):The second way (see [5], [6]) is thus the following : We restrict the set oftypes by forbidding \ after ! : More precisely, the set T of types and theset S (of regular types) are de�ned by the following grammars (where Vis the set of base types) :S = V j ! j T ! S and T = S j S \ TThe typing rules are the same as in the �rst presentation but the typesoccurring in the rules must be in T , i.e. in the rules A 2 T and B 2 S.The following result shows that the two presentations are essentially thesame.De�nition 1 The translation � from D
 into T is de�ned by :� For a 2 V [ f!g; a� = a.� (A \ B)� = A� \ B�.� (A! B)� = T(A� ! Bi) where B� = TBi and, for every i; Bi 2 S :Proposition 2 1. If � `T t : A; then � `D
 t : A:2. If � `D
 t : A then �� `T t : A�:Proof. Immediate, by induction on the length of the typing derivation.Notations� I will use the second presentation which is, for my purpose, more conve-nient. Every type mentionned in the rest of this paper is thus assumed tobe in T . In particular, � ` t : A means that A and the types in � are inT and that t has type A in the context �:� If � = fx1 : A1; :::; xn : Ang and � = fx1 : B1; :::; xn : Bng the contextfx1 : A1 \B1; :::; xn : An \ Bng will be denoted by � \� .De�nition 3 1. t 2 SN i� t is strongly normalizing.2. t 2 WN i� t is weakly normalizing.3. t 2 HN i� t is solvable (i.e. t reduces to a head normal form).4. For k � 1;(a) t 2 Hk if t begins with k many �:(b) t 2WHNk i� either t 2 HN or t reduces to a term in Hk.De�nition 4 Let A be a regular type. 3



1. A 2WD if it is !-free.2. A 2 HD if it is non trivial i.e. A = A1 ! ::: ! An ! a for some a 2 Vand n � 0.3. For k � 1; A 2 WHDk i� A 2 HD or A has the form A1 ! :::! Ak !!:ExamplesLet o be a base type. Then : (o ! o) 2 WD: (! ! o) 2 HD � WD:(o! o! !) 2WHD2 �HD:De�nition 5 1. t 2 ST i� t is typable in D:2. t 2 WT i� � ` t : A for some A 2 WD and some � such that the typesin � are conjunctions of types in WD:3. t 2 HT i� � ` t : A for some � 2 T and A 2 HD:4. For k � 1; t 2 WHTk i� � ` t : A for some � 2 T and A 2 WHDk:Examples and comments1. It is easy to check that the previous de�nitions (ST; WT and HT ) cor-respond to the ones in [8]. For example, t 2 HT i� t is typable in (theoriginal) D
 with a non trivial type (in the sense of [8]).2. Note that, in 3 and 4, there is no condition on �: It is easy to check that2 (resp. 3) means that the closure of t is typable (in the empty context)of a type in WD (resp. HD).3. Let t = ((�x:y) (Æ Æ)) where Æ = �x: (x x). Since y : o ` t : o (where x isgiven the type !), t 2WT .4. Let t = �x: (x (Æ Æ)): Since ` t : (! ! o) ! o, t 2 HT:5. Let t = �x: (Æ Æ): Since ` t : o! !; t 2WHT1:The following theorem is the main result of the paper.Theorem 6 Let t be a term.1. t 2 SN i� t 2 ST:2. t 2 WN i� t 2 WT i� the left reduction of t terminates i� every quasileft reduction of t terminates.3. t 2 HN i� t 2 HT i� the head reduction of t terminates i� every quasihead reduction of t terminates.4. For k � 1; t 2 WHNk i� t 2WHTk i�, by head reduction, t reduces to aterm either in head normal form or in Hk i�, by any quasi head reduction,t reduces to a term either in head normal form or in Hk.4



3 Proof of theorem 63.1 The standardisation resultsSome implications to be proved are immediate consequences of the standardiza-tion theorem. I recall here only the main de�nition and the theorem. Elemen-tary (and very short) proofs can be found in [7], [12]. The following de�nitionis not the usual one (for example, the one in [2]). It can be found in [12] (or,implicitly, in [7]). It is, of course, equivalent to the usual one and the proof ofthis equivalence is immediate.De�nition 7 The standard reduction �st is de�ned by the following rules :� If u�st u0; then �x u�st �x u0.� If, for all i; ui �st u0i then (x u1 :::un)�st (x u01 :::u0n).� If (a[x := b] ~c)�st t0 then ((�x:a) b ~c)�st t0� If a �st a0; b �st b0 and for every i, ci �st c0i then ((�x:a) b ~c) �st((�x:a0) b0 ~c0).Lemma 8 Assume t�st t0:� If t0 is normal, then t reduces, by left reduction, to t0:� If t0 is in head normal form, then t reduces, by head reduction, to a termin head normal form.� If t0 2 Hk, then t reduces, by head reduction, to a term in Hk.Proof. Immediate.The following result is known as the standardization theorem.Theorem 9 Let t be a term. If t� t0; then t�st t0:Corollary 10 1. t 2WN i� the left reduction of t terminates i� every quasileft reduction of t terminates.2. t 2 HN i� the head reduction of t terminates i� every quasi head reductionof t terminates.3. For k � 1; t 2 WHNk i�, by head reduction, t reduces to a term eitherin head normal form or in Hk i�, by any quasi head reduction, t reducesto a term either in head normal form or in Hk.
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Proof. In each case, denote by (a) (resp. (b); (c)) the �rst (resp. second,third) property. In each case, (b) ) (a) and (c) ) (b) are trivial. I only givethe proofs of (a) ) (b) and (b) ) (c) in the third case. The other cases aresimilar.(a) ) (b) : It is enough to prove that, if t reduces to a term in Hk, thent reduces, by head reduction, to a term in Hk: The result follows immediatelyfrom theorem 9 and lemma 8.(b) ) (c) : The result is proved by induction (simultaneously for all k) on(lg(t); cxty(t)) where lg(t) is the length of the head reduction of t to t0 whereeither t0 is in head normal form or t0 2 Hk.If t = �x u (because of the result is proved simultaneously for all k) ort = (x �!u ) the result is clear. Assume t = ((�x:a) b �!c ) does not satisfy theconclusion. Then its in�nite quasi head reduction is : t � ((�x:a1) b1 �!c1 ) !(a1[x := b1] �!c1 ) � ::: : Thus the reduction (a[x := b] �!c )� (a1[x := b1] �!c1 ) �::: also is quasi head and (since lg((a[x := b] �!c )) < lg(t)) this contradicts theinduction hypothesis.Another consequence is the following grammar characterization of the classesconsidered in de�nition 3.Theorem 11 The classes considered in de�nition 3 are given by the followinggrammars.SN = (x SN ... SN) j �x:SN j ((�x:a) b �!c ) where b; (a[x := b] �!c ) 2 SN .WN = (x WN ... WN) j �x WN j ((�x:a) b �!c ) where (a[x := b] �!c ) 2 WN .HN = (x � ... �) j �x HN j ((�x:a) b �!c ) where (a[x := b] �!c ) 2 HN .WHNk = (x � ... �) j �x:WHNk�1 (if k > 1) and �x:� (if k = 1) j((�x:a) b �!c ) where (a[x := b] �!c ) 2 WHNkProof. For SN , the only non trivial thing is : If b; (a[x := b] �!c ) 2 SN thent = ((�x:a) b �!c ) 2 SN: This follows immediately from lemma 12 (1) below.This (unusual) formulation of the lemma is helpful for the next section.The other results are immediate consequences of corollary 10.Lemma 12 1. Assume a; b;�!c 2 SN and t = (a b �!c ) =2 SN . Then, forsome a1, a � �x a1 and (a1[x := b] �!c ) =2 SN .2. �x t 2 SN i� t 2 SN:3. (x t1::: tn) 2 SN i� t1; :::; tn 2 SN:Proof.(1) Since a; b;�!c 2 SN , the in�nite reduction of t looks like : t� ((�x a1) b1�!c1 ) ! (a1[x := b1] �!c1 ) � : : : The result immediately follows from the factthat (a1[x := b] �!c )� (a1[x := b1] �!c1 ).(2) and (3) are immediate. 6



3.2 Typability implies normalisationThis section is the real novelty. I prove :Theorem 13 1. ST � SN:2. WT �WN:3. HT � HN4. For k � 1, WHTk �WHNk.The idea of the proof is the following.To prove the strong normalization in D; I prove a substitution lemma (seelemma 18) : If t and u are typed strongly normalizing terms, then t[x := u] alsois strongly normalizing. This is proved by induction on a triple : �rst the typeof u; then the length of the longest reduction of t and �nally the complexity oft: The theorem follows immediately, by induction on the complexity of terms,since (u v) = (x v)[x := u] where x is a fresh variable.To prove the other results (onWN;HN;WHNk), I de�ne a set N1 of triples(�; t; A) where � is a typing context, t is a term and A is a type. This set is,intuitively, a weak version of typed strongly normalizing terms. The key pointis another substitution lemma which is a weak version of the one for SN andwhich is proved in a very similar way. The results easily follow from the factthat if � ` t : A; then (�; t; A) 2 N1 and this is an immediate consequence ofthe substitution lemma. Note that one unique substitution lemma is enough todeal with all these systems.The following proposition should help to understand the de�nition of N1and the relation between the two substitution lemmas.Proposition 14 SN is characterized by the following rules. Let t = ~� (R ~c)where R is either a redex or a variable.1. If R = ((�x:a) b): Let R0 be the reduct of R:� If x appears in a and ~� (R0 ~c) 2 SN , then t 2 SN:� Otherwise, if b 2 SN and ~� (R0 ~c) 2 SN , then t 2 SN2. If R = x and, for each i; ci 2 SN , then t 2 SN:Proof. Immediate. yDe�nition 15 The set N1 of triples (�; t; A) (where � is a typing context, t isa term and A is a type) is de�ned by the following rules :1. If, for each j; (�; t; Aj) 2 N1 and Aj 2 S, then (�; t;TAj) 2 N1 :In the other rules, I assume A = A1 ! ::: ! An ! a (where a isa variable or !) i.e. A 2 S and t = �x1:::�xp (R �!u ) where R is either aredex or a variable. 7



2. If a = ! and p � n then (�; t; A) 2 N1:Otherwise :3. If R = x: Assume that, for 1 � i � k, (�; ui; Bi) 2 N1 and� � ` x : B1 ! :::! Bk ! Ap+1 ! :::! An ! a� � ` xj : Aj for 1 � j � pthen (�; t; A) 2 N1:4. If R is a redex and (�; t0; A) 2 N1 (where t0 is the head reduct of t), then(�; t; A) 2 N1:De�nition 16 1. For t 2 SN; l0(t) denotes the length of the longest reduc-tion of t:2. For (�; t; A) 2 N1; l1(�; t; A) denotes the number of rules used to prove(cf. de�nition 15) that (�; t; A) 2 N1:Examples and comments1. Let I = �x x: Then, l = l1(;; (I I); (o! o) \ !) = 4:� By rule 1, l = 1+ l1(;; (I I); o! o) + l1(;; (I I); !)� By rule 4, l1(;; (I I); o! o) = 1 + l1(;; I; o! o)� By rule 3, l1(;; I; o! o) = 1� By rule 2, l1(;; (I I); !) = 12. It can be proved (this is sometimes called the fundamental lemma of maxi-mality) that l0(t) is equal to the number of rules used to prove (cf. proposi-tion 14) that t 2 SN: This observation better shows the similarity betweenthe two cases of lemma 18. Since I will not use this result I don't prove it.3. It is clear that, if t reduces to t0 by left reduction, then l1(�; t0; A) �l1(�; t; A) and the unequality is strict except if the last rule used is 2. Thiswill be used without mention.Lemma 17 1. If (�; t; A) 2 N1 then either t is solvable or A = A1 ! ::: !An ! ! and t reduces, by head reduction, to a term in Hn.2. (� [ fx : Ag; u; B) 2 N1 i� (�; �x u;A! B) 2 N1:3. Assume � ` x : A1 ! ::: Ak ! B:(a) If, for all i; (�; ui; Ai) 2 N1, then (�; (x u1::: uk); B) 2 N1:(b) If (�; (x u1::: uk); B) 2 N1 and B 6= ! then (�; ui; Ai) 2 N1 for all i:4. Let R be a redex and R0 be its reduct. If (�; (R0 ~u); A) 2 N1, then(�; (R ~u); A) 2 N1. 8



Proof.- 1 and 2 are proved by induction on l1(�; t; A) and case analysis. I examineonly the most signi�cant case : case 2 (if). Let �x u = t 2 N1: Assume the lastrule used is 2. Thus, � ` t : A1 ! ::: ! An ! !, t = �x�x1:::�xp (R �!v ) andp + 1 � n: It follows that �; x : A1 ` u = �x1:::�xp (R �!v ) : B = A2 ! ::: !An ! ! and p � n� 1. Thus (� [ fx : A1g; u; B) 2 N1:- 3 (a) is immediate. (b) : The last rule is not 4. Since B 6= !, the last rule isnot 2. Then it is 1 or 3 and the result follows.- 4 is trivial.Lemma 18 (substitution lemma) 1. Assume t; u 2 SN\ST: Then t[x :=u] 2 SN:2. Assume (� [ fx : Bg; t; A) 2 N1 and (�; u; B) 2 N1: Then (�; t[x :=u]; A) 2 N1:Proof. The proofs are done by induction on (type(u); l(t); cxty(t)) wherel = l0 or l1 according to the result we are proving. For (2), I may assume (by rule1) that A 2 S and that A 6= ! (otherwise there is nothing to prove). To simplifynotations, I will write t 2 N1 (and similarly l1(t)) instead of (�; t; A) 2 N1 ifthe intended context and type is clear.� If t = �y v. The result follows from the induction hypothesis and lemma12 (2) or 17 (2).� If t = (y v1 ::: vn) for y 6= x. The result follows from the inductionhypothesis and lemma 12 (3) or 17 (3).� If t = ((�y:b) c �!d ): By theorem 11 or 17 (4) it is enough to show that(b[x := u][y := c[x := u]] �!d [x := u]) = t0[x := u] 2 N where t0 = (b[y :=c] �!d ) and N = SN or N1 according to the result we are proving. Butl(t0) < l(t) and the result follows from the induction hypothesis.� If t = (x b �!c ): Let b1 = b[x := u] and ~d = ~c[x := u] .1. For SN . By the induction hypothesis, b1; ~d 2 SN: By lemma 12(1) it is enough to show that if u � �y u1 then t1 = (u1[y := b1] ~d)2 SN: By the induction hypothesis and because type(b1) < type(u),u1[y := b1] 2 SN and thus, by the induction hypothesis and becauset1 = (z �!d ) [z := u1[y := b1]] and type(u1) < type(u), t1 2 SN .2. For N1. Let ~c = c1 ::: cp and � ` t : A: Then � ` x : B ! C1 !:::! Cp ! A: By lemma 17 (3) b;~c 2 N1 and thus, by the inductionhypothesis, b1; ~d 2 N1:{ If A = A1 ! ::: ! An ! ! and u reduces (by head reduction)to ~� u1 where the length of ~� is at least n + p + 1 the result isclear. 9



{ Otherwise (by lemma 17 (1)) u is solvable. If the head normalform of u does not begin with � the result follows immediatelyfrom lemma 17 (3). Otherwise u reduces (by head reduction)to �y u1: It is enough to show that t1 = (u1[y := b1] ~d) =(z �!d ) [z := u1[y := b1]] 2 N1: By lemma 17 (3) (z �!d ) 2 N1:Since type(u1) < type(u) it is enough, by the induction hypoth-esis, to show that u1[y := b1] 2 N1: This follows from the induc-tion hypothesis and the fact that : b1 2 N1 and, by lemma 17(2) u1 2 N1 and type(b1) < type(u):Corollary 19 1. ST � SN:2. If � ` t : A; then (�; t; A) 2 N1:Proof. By induction on the derivation. The only non trivial case is t =(u v) = (x v)[x := u]: The result follows from the induction hypothesis andlemma 18.End of the proof of theorem 6Assume t 2 WT (resp.HT; WHTk). By corollary 19, (�; t; A) 2 N1 for some�; A: The result is proved by induction on (l1(�; t; A); cxty(t)). Let t = ~� (R ~u)where R is a redex or a variable.- If R is a variable. For HN and WHNk the result is clear. Otherwise wehave to show that ~u 2 WN: Since t 2 WT; type(R) 2 WD thus ~u 2 WT . Bythe induction hypothesis ~u 2 WN:- If R is a redex. It is enough to show that t0 2 WHNk (where t0 is thehead reduct of t). This follows immediately from the induction hypothesis (sincel1(�; t0; A) < l1(�; t; A)).3.3 Normalisation implies typabilityIn this section I proveTheorem 20 1. SN � ST:2. WN �WT:3. HN � HT:4. For k � 1, WHNk �WHTk:Proof. By induction on (l(t); cxty(t)) where l(t) is l0(t) if t 2 SN and thelength of the left reduction of t to its normal form if t 2 WN (resp. its headnormal form if t 2 HN , resp. a term in Hk if t 2WHNk �HN and k � 1).1. If t = �x u: This follows immediately from the induction hypothesis.2. If t = (x v1 ::: vn): 10



(a) For SN and WN : By the induction hypothesis, for every j; x :Aj ;�j ` vj : Bj : Then x : TAj \ (B1; :::; Bn ! o); T�j ` t : o:(b) For HN and WHNk (k � 1) : The vi are given the type ! and x isgiven the type ! ! :::! !| {z }n ! o3. If t = ((�x:a) b �!c ): By the induction hypothesis, (a[x := b] �!c ) 2 ST(resp. WT; HT; WHTk)(a) If x occurs in a: Let A1 ::: An be the types of the occurrences of bin the typing of (a[x := b] �!c ): Then t is typable by giving to x andb the type A1 \ ::: \ An:(b) Otherwise� For SN : By the induction hypothesis b is typable of type B andthen t is typable by giving to x the type B:� For WN; HN and WHNk : t is typable by giving to x and bthe type !:References[1] R. Amadio, P.L. Curien. Domains and Lambda-Calculi. Cambridge Univer-sity Press, 1998.[2] H. P. Barendregt. The Lambda Calculus, its syntax and semantics. NorthHolland 1984.[3] H.P. Barendregt, M. Coppo, M. Dezani-Ciancaglini.A Filter Lambda Modeland the Completeness of Type Assignment. J. Symbolic Logic 48, 1983,931{940.[4] A. Bucciarelli, S. De Lorenzis, A. Piperno, I Salvo. Some ComputationalProperties of Intersection Types. LICS 1999.[5] M. Coppo, M. Dezani. A new type assignment for �-terms. Archive forMathematical Logic 19 (1978) 139-156.[6] M. Coppo, M. Dezani, B. Venneri. Functional characters of solvable terms.Z. Math. Log. Grund. Math 27 (1981) 45-58.[7] R. David. Une preuve simple de r�esultats classiques en � calcul. C. R. Acad.Sci. Paris, S�erie I, 1401-1406, 1995[8] J. Gallier. Typing untyped �-terms, or reducibility strikes again. Annals ofpure and applied logic 91 (1998) 231-270.[9] G. Huet. Initiation au �-calcul. Techn. Report. Universit�e Paris 7. 199111
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