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Normalization without reducibility

René DAVID*

Abstract

In [8], general results (due to Coppo, Dezani and Veneri [5], [6]) re-
lating properties of pure A terms and their typability in some systems
with conjunctive types D) and D are proved in a uniform way by using
the reducibility method. This paper gives a very short proof of the same
results (actually, one of them is a bit stronger) using purely arithmetical
methods.

MSC : 03B40, 03F05

Keywords : A-calculus, normalization

1 Introduction

In [8], Gallier presents a uniform approach for proving general results relating
properties of pure A terms and their typability in some systems with conjunctive
types DQ and D, due to Coppo, Dezani and Venneri ([5],[6]). Gallier’s approach
uses the reducibility method. The results are not new but the accent is put
on the uniformity of the various proofs. Other proofs of similar results can
also be found in [1], [15] or [11]. Bucciarelli & al show in [4] that the strong
normalization of system D can be easily derived from the one of the simply
typed A-calculus.

I give here another proof of the same results as in [8] (cf theorem 6). Ac-
tually the point 4 of theorem 6 is stronger (and this result is new) than the
corresponding one in [8] : For an unsolvable term, I give a precise relation be-
tween the arity of its type and the number (up to reduction) of its leading A
abstractions.

This proof does not use reducibility and is purely syntactic. The main idea
is given at the beginning of section 3.2. It is also completely uniform, very short
and (at least in my mind) ... elegant. I also believe that this proof should help
to better understand the relations between pure A-terms and the systems D and
DX). Note that a very elementary and short (i.e. a half page) proof of the strong
normalization of the system D can be "extracted ” from this paper. It uses only
the part of lemma 18 concerned with SN and the (trivial) lemma 12.
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It is known that, for fundamental reasons, the technique used below cannot
be extended to, for example, the system F'. I do not know neither how to extend
it to, for example, G6del’s system 7" nor if, for some reason, no extension should
exist.

Acknowledgments The proof of the part (1) of theorem 6 is a very sim-
plified version of the proof given by R Matthes in an informal talk in the Logic
Meeting in Oberwolfach (January 1998) after which I had helpful discussions
with him. Thanks to K Nour for helpful comments and to the anonymous referee
who did a very careful reading of the paper and pointed out many imprecisions.

2 The theorem

I assume the basic notions on pure and typed A calculus are known. They can
be found in any text book on the subject (for example : [10], [2], [9]). For the
sake of completeness I recall some notations and the definitions concerning the
systems D and Df).

t — t' (resp t — t') means that ¢ reduces to ' by one step (resp some steps,
possibly 0) of 3 reductions.

Every A term can be uniquely written as X (R i) where X isa (possibly
empty) sequence of abstractions, R is either a redex (called the head redex) or a
variable (in this case the term is said to be in head normal form and the variable
is the head variable) and @ is a (possibly empty) sequence of arguments.

The head reduction consists in reducing the head redex. The left reduction
consists in reducing the head redex (if there is one) or (inductively) in doing
the left reduction of the arguments of the head variable. A (finite or infinite)
reduction to — t; — ... is a quasi head (resp quasi left) reduction if for every
Jj the reduction ¢; — ¢;+1 is a head reduction (resp a left reduction) for some
i> .

czty(t) represents the complexity of ¢, i.e. the number of symbols occurring
in ¢t. If ¢ is a sequence of terms and IV is a set, @ € N means that every element
of the sequence % is in V.

There are two ways of presenting the conjunctive types. (For a history of
the different formulations, see [14])

e The first one (see [3]) is the following : The types are constructed from
a set, of base types and the undefined type w, using the type constructors
— and N. The typing rules of the system D) are the following :

(ax) Nz:AFz:Aand'Ht:w

(=) Ifl,z:AFt:Bthen ')Az t: A— B

(=) Ifl'tru:A—>BandT'Fv:AthenT'F (uv): B
(M) Ifl'Ft:Aand'FH¢:BthenI'Ft: ANB
(Ne) Ifl'Ft:AnBthenT'Ft: Aand'+-¢: B

The system D is obtained by restricting the system D) to w-free types (i.e.
types where w does not occur) and by deleting the axiom I' ¢ : w.



e The previous way of presenting D) causes some problem because (A —
BN () is less convenient than (A — B)N( A — C).

The second way (see [5], [6]) is thus the following : We restrict the set of
types by forbidding N after — . More precisely, the set 7" of types and the
set S (of regular types) are defined by the following grammars (where V
is the set of base types) :

S=V]w|T=-SandT=S5|5SNT

The typing rules are the same as in the first presentation but the types
occurring in the rules must be in T, i.e. in the rules A € T and B € S.

The following result shows that the two presentations are essentially the
same.

Definition 1 The translation * from DQ into T is defined by :

e Forac VU{w}, a* =a.

e (ANB)* = A*N B*.

e (A— B)* =\(A* = B;) where B* =\ B; and, for every i, B; € S .
Proposition 2 1. IfTFpt: A then T Fpg t: A.

2. IfTkpot: AthenT* Fpt: A*.

Proof. Immediate, by induction on the length of the typing derivation. m

Notations

e I will use the second presentation which is, for my purpose, more conve-
nient. Every type mentionned in the rest of this paper is thus assumed to
be in T'. In particular, I' - ¢ : A means that A and the types in I" are in
T and that ¢ has type A in the context I'.

o fI'={zy: Ay, ..., zp: Ay} and A = {x; : By, ..., zp : By} the context
{z1: A1 N By, ..., &, : A, N By} will be denoted by T NA .

Definition 3 1. t € SN iff t is strongly normalizing.
2. te WN iff t is weakly normalizing.
3. t € HN iff t is solvable (i.e. t reduces to a head normal form).
4. Fork>1,

(a) t € Hy, if t begins with k many A.
(b) t € WHNy, iff either t € HN or t reduces to a term in Hy,.

Definition 4 Let A be a regular type.



1. Ae WD if it is w-free.

2. A€ HD if it is non trivial i.e. A= A; — ... = A, — a for somea €V
and n > 0.

3. Fork>1, Ae WHDy, iff A€ HD or A has the form A; — ... > Ay —
w.

Examples
Let o be a base type. Then : (0 = 0) € WD.(w — 0) € HD — WD.
(0o—>0—w)eWHDs — HD.

Definition 5 1. t € ST iff t is typable in D.

2.teWT iff THt: A for some A € WD and some I’ such that the types
in T' are conjunctions of types in W D.

3 te HT iff THt: A forsomel €T and A € HD.
4. Fork>1,te WHTy iff T+Ht: A for somel' €T and A € WHD,.
Examples and comments

1. It is easy to check that the previous definitions (ST, WT and HT) cor-
respond to the ones in [8]. For example, ¢t € HT iff ¢ is typable in (the
original) DQ with a non trivial type (in the sense of [8]).

2. Note that, in 3 and 4, there is no condition on I'. It is easy to check that
2 (resp. 3) means that the closure of ¢ is typable (in the empty context)
of a type in WD (resp. HD).

3. Let t = (Az.y) (0 0)) where § = A\z. (z x). Since y : ot : 0 (where x is
given the type w), t € WT.

4. Let t = Az. (x (0 9)). Since F¢: (w—0) = o,t € HT.

5. Let t = A\x. (6 §). Since Ft: 0> w,t € WHT;.

The following theorem is the main result of the paper.
Theorem 6 Let t be a term.

1. te SN iff t € ST.

2.t € WN iff t € WT iff the left reduction of t terminates iff every quasi
left reduction of t terminates.

3.t € HN iff t € HT iff the head reduction of t terminates iff every quasi
head reduction of t terminates.

4. Fork>1,te WHN, iff t € WHT}, iff, by head reduction, t reduces to a
term either in head normal form or in Hy, iff, by any quasi head reduction,
t reduces to a term either in head normal form or in Hy.



3 Proof of theorem 6

3.1 The standardisation results

Some implications to be proved are immediate consequences of the standardiza-
tion theorem. I recall here only the main definition and the theorem. Elemen-
tary (and very short) proofs can be found in [7], [12]. The following definition
is not the usual one (for example, the one in [2]). It can be found in [12] (or,
implicitly, in [7]). It is, of course, equivalent to the usual one and the proof of
this equivalence is immediate.

Definition 7 The standard reduction — 4 is defined by the following rules :

o Ifu—»gu', then \v u — 4 Az u'.
o If, for all i, u; - ul then (T ur ...up) g (T Ul ..u)).
o If (ax :=b] ©) > t' then (Ax.a) bE) g t

o Ifa »g a',b —»5 U and for every i, ¢; g ¢} then (Az.a) b ¢) —

(Az.a) b ).
Lemma 8 Assumet —4 t'.

o Ift' is normal, then t reduces, by left reduction, to t'.

o Ift' is in head normal form, then t reduces, by head reduction, to a term
in head normal form.

e Ift' € Hy, then t reduces, by head reduction, to a term in Hy.

Proof. Immediate. m

The following result is known as the standardization theorem.
Theorem 9 Let t be a term. If t — t', thent -4 t'.

Corollary 10 1. t € WN iff the left reduction of t terminates iff every quasi
left reduction of t terminates.

2. t € HN iff the head reduction of t terminates iff every quasi head reduction
of t terminates.

3. For k> 1,t € WHNy, iff, by head reduction, t reduces to a term either
in head normal form or in Hy iff, by any quasi head reduction, t reduces
to a term either in head normal form or in Hy.



Proof. In each case, denote by (a) (resp. (b),(c)) the first (resp. second,
third) property. In each case, (b) = (a) and (¢) = (b) are trivial. I only give
the proofs of (a) = (b) and (b) = (c) in the third case. The other cases are
similar.

(a) = (b) : It is enough to prove that, if ¢ reduces to a term in Hy, then
t reduces, by head reduction, to a term in Hj. The result follows immediately
from theorem 9 and lemma 8.

(b) = (¢) : The result is proved by induction (simultaneously for all k) on
(lg(t), cxty(t)) where lg(t) is the length of the head reduction of ¢ to ¢’ where
either ¢ is in head normal form or t' € Hy,.

If t = Az u (because of the result is proved simultaneously for all k) or
t = (x W) the result is clear. Assume t = ((Az.a) b ) does not satisfy the
conclusion. Then its infinite quasi head reduction is : ¢t — ((Az.a;) by &) —
(a1[z := b1] &) — ... . Thus the reduction (a[z := b] @) — (a1[r := b1] &7) —
.. also is quasi head and (since lg((a[z := b] ©)) < lg(t)) this contradicts the
induction hypothesis. m

Another consequence is the following grammar characterization of the classes
considered in definition 3.

Theorem 11 The classes considered in definition 3 are given by the following
grammars.

SN =(x SN ... SN) | A\z.SN | ((A\z.a) b @) where b, (a]z :=
WN =(xWN ... WN) | \x WN | (Az.a) b @) where (a[ =
HN =(x A ... A) | \x HN | ((Av.a) b @) where (alx : ] )6

WHN, = (& A ... A) | e WHNy_, (if & > 1) and A (if =1)|
((A\z.a) b ) where (a[z :=b] @) € WHN;,

b] @) € SN.
b]?*)eWN

Proof. For SN, the only non trivial thing is : If b, (a[z := b] @) € SN then
t = ((Az.a) b @) € SN. This follows immediately from lemma 12 (1) below.
This (unusual) formulation of the lemma is helpful for the next section.

The other results are immediate consequences of corollary 10. m

Lemma 12 1. Assume a,b, ¢ € SN andt = (a b @) ¢ SN. Then, for
some a;, a — Az a; and (a[z :=b] @) ¢ SN.

2. dxte SN ifft € SN.
3. (ZL“ tl... tn) S SN Zﬁ tl,...,tn S SN.

Proof.
(1) Since a,b, @ € SN, the infinite reduction of ¢ looks like : t — ((Az ay) by
o) = (ay]r = bl] ¢) — ... The result immediately follows from the fact

that (a1[z :=b] @) — (ai[z := b1] &7).
(2) and (3) are immediate. m



3.2 Typability implies normalisation

This section is the real novelty. I prove :
Theorem 13 1. ST CSN.

2. WTI CWN.

3. HIT CHN

4. For k> 1, WHT;, C WHNj.

The idea of the proof is the following.

To prove the strong normalization in D, I prove a substitution lemma (see
lemma 18) : If ¢ and u are typed strongly normalizing terms, then t[z := u] also
is strongly normalizing. This is proved by induction on a triple : first the type
of u, then the length of the longest reduction of ¢ and finally the complexity of
t. The theorem follows immediately, by induction on the complexity of terms,
since (u v) = (z v)[x := u] where z is a fresh variable.

To prove the other results (on WN, HN, W HNy,), I define a set Ny of triples
(T',t, A) where I is a typing context, ¢ is a term and A is a type. This set is,
intuitively, a weak version of typed strongly normalizing terms. The key point
is another substitution lemma which is a weak version of the one for SN and
which is proved in a very similar way. The results easily follow from the fact
that if T'F ¢ : A, then (T',¢,A) € N; and this is an immediate consequence of
the substitution lemma. Note that one unique substitution lemma is enough to
deal with all these systems.

The following proposition should help to understand the definition of Ny
and the relation between the two substitution lemmas.

Proposition 14 SN is characterized by the following rules. Lett = X (R Q)
where R is either a redex or a variable.

1. If R = ((Ax.a) b). Let R' be the reduct of R.

o If x appears in a and X (R' ) € SN, thent € SN.
o Otherwise, if b € SN and X (R' ) € SN, thent € SN

2. If R=x and, for each i,c; € SN, thent € SN.
Proof. Immediate. my

Definition 15 The set Ny of triples (I',t, A) (where I is a typing context, t is
a term and A is a type) is defined by the following rules :

1. If, for each j, (I',t,A;) € N1 and A; € S, then (I',t,(A4;) € N1 .

In the other rules, I assume A = A; — ... > A, — a (where a is
a variable or w) i.e. A€ S and t = \zy..\z, (R W) where R is either a
redex or a variable.



2. Ifa=w and p > n then (T,t, A) € N;.

Otherwise :
3. If R = x. Assume that, for 1 <i <k, (T,u;, B;) € N1 and

el'Fu:Bi = ... =B, =241 —..2> A4, —a
e 'Fuj:A;for1<j<p
then (I',t, A) € N;.

4. If R is a redex and (T',t', A) € Ny (where t' is the head reduct of t), then
(T,t,A) € Ny.

Definition 16 1. Fort € SN, ly(t) denotes the length of the longest reduc-
tion of t.

2. For (T',t,A) € Ny, I1(T,t, A) denotes the number of rules used to prove
(cf- definition 15) that (T, t, A) € Ny.

Examples and comments

1. Let I = Az z. Then, I =1,(0,(I I),(0 — o) Nw) = 4.

Byrule 1,1 =1+ 1;(0,(I I),0 = o) + 11 (0, (I I),w)
By rule 4, 11 (0, (I I),0 =+ 0) =1+ 11(0,I,0— o)
By rule 3, 11 (0, 1,0 = 0) = 1

By rule 2, 1 (0,(I I),w) =1

2. It can be proved (this is sometimes called the fundamental lemma of maxi-
mality) that lo(t) is equal to the number of rules used to prove (cf. proposi-
tion 14) that ¢ € SN. This observation better shows the similarity between
the two cases of lemma 18. Since I will not use this result I don’t prove it.

3. It is clear that, if ¢ reduces to t' by left reduction, then I (T,¢', A) <
I1(T,t, A) and the unequality is strict except if the last rule used is 2. This
will be used without mention.

Lemma 17 1. If (T',t, A) € N; then either t is solvable or A = A; — ... —
A, = w and t reduces, by head reduction, to a term in H,.

2. TU{z:A},u,B) e N, iff T, \z u,A — B) € Ny.
3. Assumel'Fx: A — ... Ay — B.
(a) If, for all i, (T,u;, A;) € Ny, then (T, (z uy... ug), B) € Ny.
(b) If (T, (x u1... ug), B) € Ny and B # w then (T, u;, A;) € Ny for all i.

4. Let R be a redex and R' be its reduct. If (T,(R' @),A) € N, then
(T, (R @),A) € Ny.



Proof.
- 1 and 2 are proved by induction on /i (T',t, A) and case analysis. I examine
only the most significant case : case 2 (if). Let Az u =t € N;. Assume the last
rule used is 2. Thus, 't : 41 — ... = Ay = w, t = Az Az1... 2, (R ) and
p+1>n. It follows that ',z : A F w = Az1..Azp, (R V) :B= A4 — ... -
Ap, »wand p>n—1. Thus (TU{z: A1}, u,B) € N.
- 3 (a) is immediate. (b) : The last rule is not 4. Since B # w, the last rule is
not 2. Then it is 1 or 3 and the result follows.
-4 is trivial. m

Lemma 18 (substitution lemma) 1. Assumet,u € SNNST. Then t[z :=
u] € SN.

2. Assume (' U{x : B}, t,A) € Ny and (T',u,B) € Ny. Then (T, t[z :=
U],A) € Nl.

Proof. The proofs are done by induction on (type(u),(t),cxty(t)) where
I =y or Iy according to the result we are proving. For (2), I may assume (by rule
1) that A € S and that A # w (otherwise there is nothing to prove). To simplify
notations, I will write ¢ € N; (and similarly [, (¢)) instead of (I',¢, A) € Ny if
the intended context and type is clear.

e If t = Ay v. The result follows from the induction hypothesis and lemma
12 (2) or 17 (2).

e Ift = (y vy ... v,) for y # z. The result follows from the induction
hypothesis and lemma 12 (3) or 17 (3).

o If t = ((Ay.b) ¢ 7) By theorem 11 or 17 (4) it is enough to show that
(b[z := u]ly = clz = u] 7[:6 i=u]) =t'[x :=u] € N wheret' = (bly :=
q] 7) and N = SN or N; according to the result we are proving. But
I(t") < I(t) and the result follows from the induction hypothesis.

e Ift=(xb?). Let by = bz :=u] and d = Tz :=u] .

1. For SN. By the induction hypothesis, b;,d € SN. By lemma 12
(1) it is enough to show that if u — Ay uy then t; = (uy]y := b1] d)
€ SN. By the induction hypothesis and because type(b;) < type(u),
uily := b1] € SN and thus, by the induction hypothesis and because
ty = (2 7) [z := ui[y := b1]] and type(u;) < type(u), t; € SN.

2. For Ni. Let ¢ = ¢y ...cpand 't : A . Then'F o : B - Cy —
... > Cp — A. By lemma 17 (3) b,¢ € N; and thus, by the induction

hypothesis, b, de N;.

—IfA=A — .. > A, = w and u reduces (by head reduction)

to X u; where the length of X is at least n + p + 1 the result is
clear.



— Otherwise (by lemma 17 (1)) u is solvable. If the head normal
form of u does not begin with A the result follows immediately
from lemma 17 (3). Otherwise u reduces (by head reduction)

to Ay ui. It is enough to show that t; = (ui[y := b] d) =

(z jy) [z := uily := b1]] € N;. By lemma 17 (3) (2 7) € N;.

Since type(u1) < type(u) it is enough, by the induction hypoth-

esis, to show that u;[y := b1] € N;y. This follows from the induc-

tion hypothesis and the fact that : b; € N; and, by lemma 17

(2) u1 € Ny and type(by) < type(u). m

Corollary 19 1. ST CSN.
2.If THt: A, then (T',t,A) € N;.

Proof. By induction on the derivation. The only non trivial case is t =
(v v) = (z v)[z := u]. The result follows from the induction hypothesis and
lemma 18. m

End of the proof of theorem 6

Assume t € WT (resp. HT, W HT},). By corollary 19, (T', ¢, A) € N; for some

-

I, A. The result is proved by induction on (11 (T, ¢, A), cxty(t)). Let t = X (R @)
where R is a redex or a variable.

- If R is a variable. For HN and W H N}, the result is clear. Otherwise we
have to show that @ € WN. Since t € WT, type(R) € WD thus & € WT. By
the induction hypothesis @ € WN.

- If R is a redex. It is enough to show that t' € WHN}, (where ¢’ is the
head reduct of ). This follows immediately from the induction hypothesis (since
l (F, ', A) <l (F, t, A)) |
3.3 Normalisation implies typability

In this section I prove
Theorem 20 1. SN C ST.
2. WN CWT.
3. HN C HT.
4. Fork>1, WHN, C WHT.

Proof. By induction on (I(t), cxty(t)) where [(t) is lp(t) if t € SN and the
length of the left reduction of ¢ to its normal form if ¢ € WN (resp. its head
normal form if t € HN, resp. a term in Hy, if t € WHN, —HN and k > 1).

1. If t = Az u. This follows immediately from the induction hypothesis.
2. Ift = (z vg ... ).

10



(a) For SN and WN: By the induction hypothesis, for every j, z :
Aj,Fj Fwv; : Bj. Then z : ﬂAJ N (By,..., B, — 0), ﬂFJ Ft:o.
(b) For HN and WHNy, (k > 1) : The v; are given the type w and z is
given the type w — ... 2w — o0
—_—

3. If t = ((Az.a) b @). By the induction hypothesis, (a[z := b] @) € ST
(resp. WT, HT, WHT},)

(a) If x occurs in a. Let A; ... A,, be the types of the occurrences of b
in the typing of (a[z := b] ). Then t is typable by giving to = and
b the type 41 N... N A,.

(b) Otherwise

e For SN : By the induction hypothesis b is typable of type B and
then t is typable by giving to = the type B.

e For WN, HN and WHNy, : t is typable by giving to « and b
the type w. m
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