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Every unsolvable A term has a decoration

René DAVID

Laboratoire de Mathématiques. Université de Savoie F 73376 Le Bourget du Lac.
email : david@Quniv-savoie.fr

Abstract. I give a proof of the conjecture stated in [2] by R.Kerth :
Every unsolvable A term has a decoration.

1 Introduction

In this paper I give a proof of the conjecture stated in [2] by R. Kerth : Every
unsolvable A term has a decoration.

Let ¢ be unsolvable. Denote by t; the term obtained from ¢ after £ many
steps of head reduction and by (d @) the term d applied to the sequence @
of arguments. If ¢ reduces to ¢/, say that a subterm d’ of ¢’ is a descendent (cf.
definition 9) of a subterm d of ¢ if it is a "copy” of d.

A sequence (di)ren of A terms is a decoration for (the computation of) ¢ if
there is a strictly increasing function f from N to N such that for every k :

Loty = Y(dk u) for some finite (non empty) sequence uy of A terms.
2. dj, is solvable and dy1 is a descendent of some element of uy.

Comments, notations and examples

1. The definition of a decoration given above is exactly the one of [2] but, in
fact, the hypothesis ”d;, is solvable” is useless since it is a consequence of the
other hypothesis (cf the corollary 2 )

2. Leté=Xdz(zx), =Xz, B=XAf (f(bbf)) andY = (B B). Y is the
Turing fixed point operator.

3. Let t = (6 6). Then the constant sequence (¢) is a decoration for ¢ since ¢
reduces by head reduction to ¢’ = (§ §) and the first 6 in ¢’ is a descendent
of the second 6 in t.

4. Let t = (B B I). Then the constant sequence (B) is a decoration for ¢ since
t reduces to itself (in 3 steps) and the first occurrence of B in this reduct is
a descendent of the second occurence of B in ?.

5. Let wy = Axyz (z z y), wa = Axyz (y (x (2 z))),R = (wy I wg) and
wg = (wo R). Then,

— ¢t = (w2 RIwy)— (R w;s) (in 4 steps)
— (Rw3) — (w3 I we) =1t (in 3 steps)
— (ws T wg) - (wg R T wy) =1t (in 7 steps)



It is easy to check that ws,ws and R are solvable and that the descendent
condition is satisfied. Thus the sequence [wa, R, ws, we, R, ws, ws,...]isa
decoration for ¢. Note that ¢’ is equal to ¢ but ¢ is written as wo applied to 3
arguments whereas ¢’ is written as ws applied to 2 arguments and thus the
R in ¥ is not seen as an argument of the head term.

6. Other examples can be found in [1].

The motivation (see [2]) of this conjecture is the following : A model of A
calculus is said to be sensible if all the unsolvable terms are equal in this model.
It is not easy, in general, to check whether a given model of A calculus is sensible
or not. In [1] , [3] R Kerth built an uncountable number of graph models with
different equational theories but he was unable to prove they were sensible,
because the usual argument of reducibility did not work in his models. He was
able to show that his models had no critical sequences (a semantical notion he
introduced) and he showed that a graph model without critical sequences is
sensible ... if his conjecture is true.

Thus, the constructions in [1] , [3] and the present paper show that there
are uncountably many sensible distinct equational theories of continuous models
(and similarly for the stable and strongly stable semantics).

Acknowledgements Rainer Kerth has read very carefully the first versions
of this paper and suggested many improvements. Thanks, Rainer.

2 The idea of the proof

R. Kerth defines a decoration only for the head reduction of unsolvable terms, i.e.
terms whose Bohm tree is L. I define below a decoration for the computation (by
left reduction) of any branch of a term ¢. A branch in ¢ is either an infinite branch
of its Bshm tree or a finite one finishing with |, i.e. a branch in ¢ corresponds
to an infinite computation. I prove a more general result (The computation of
any branch in any A term admits a decoration. cf. Theorem 1) but this general
notion of decoration is necessary for the proof of even the restricted case. The
idea of the proof is the following.

1) Let a be a branch of ¢ and b be a branch of a subterm w of ¢. I say that b is
(t,a) useful if, intuitively (see the definition 10) the computation of the branch
a of t 7uses” all the nodes of addresses b [ i (¢ < lg(b)) of the Boshm tree of . I
first show that (cf the proposition 5) if a branch b of w is (¢, a) useful and there is
a decoration for (u,b), then there is a decoration for (¢, a). This is the reason for
which it is necessary to extend the notion of decoration to solvable terms. The
decoration of an unsolvable term ¢ may ”come from” a decoration of a solvable
subterm u of t.

2) Let t = (ury ... 7,) and @ be a branch in ¢. Say that a is created by the
application of u to rq ... r,, if neither in » nor in any r; there is a branch that is
(t,a) useful. T also show (this is the key point of the proof, see the proposition
6) that if the branch a in ¢ = (u ry ... r,) is created by the application of u to
r{ ... Ty, then t reduces to some ¢’ = T(rl 81 ... 8m) for some sy ... 8, and



- the occurrence of r; in ¢’ is a descendent of the one in ¢.

- the branch a in t’ still is created by the application of r; to s ... s,,.

Actually the proposition 6 is a bit more complicated because we have to deal
with possible substitutions of the free variables.

3) The theorem 1 is then proved by induction on the complexity of ¢. If ¢ is in
head normal form the result follows immediately from the induction hypothesis.
Otherwise £ = X (ury ... 7p) for some p > 1. If the branch a is not created by
the application of u to 1 ... ry,, i.e. either in u or in some 7; there is a branch
that is (¢,a) useful, the result follows from the induction hypothesis and the
first point above. Otherwise, we get a decoration by using repeatedly the second
point above.

3 Definitions

Definition 1. 1. Let A be the set of finite or infinite lists of elements of N* =
N — {0}. A finite list is called an address.

2. Let a, a’ be in A. a < a’ means that o is an initial segment of a’. For i
<lg(a), a | i denotes the restriction of a to its first i elements.

3. The list a with i added al the beginning (resp at the end) will be denoted by
[i 2 a] (resp [a :: i]). The empty list is denoted by nil.

To be able to prove results on substitutions I need some extension of A. This
is closely related (and a bit more general) to the directed A calculus introduced
in [4].

Definition 2. 1. A denotes the set of A terms.
2. The set A" of terms is defined by the following grammar :
A=V ]1l]|cla,0)]| Aa A | (A A)
where
(a) V is the set of variables
(b) a substitution is a function from V to A’ that is the identity except for a
finite set (called its domain) of variables.
(c) for every address a and every substitution, c(a,o) is a constant.
3. A Bohm function is a partial function f: A~ {1} U{(E,z,p) / ECV,FE
finite, © € V,p € N} which satisfies :
(a) f(nil) is defined.
(b) f(la ::i]) is defined iff f(a) = (E, x, p) and i < p.

(c) If f(a) = (B, 3, p), f(a) = (B', ', p’) and a £ @’ then E 1 B = 0.
Notations, conventions and comments

— I adopt the Barendregt convention that variables are always named in such
a way that there is no undesired capture and no confusion between different
names.

— X denotes a sequence (possibly empty) of abstractions and (¢t 7) represents
the term ¢ applied to a sequence (possibly empty) of arguments.



— ¢(a, o) represents the subterm (at the address a, in the environment given
by o) of the Bshm tree of some term u that will be substituted later on.

— A Bohm function codes a Bshm tree in the following way : f(a) = ({z1, ...,
Zpt,x,p) (resp L) means that the node at the address a in the Bshm tree
coded by f is Azy.. Az (2 t1...t,) for some terms ¢4, ..., t, (resp L ).

Definition 3. Let o, o' be substitutions and t be in A’.

1. The free variables of t are defined by the usual rules and
— L has no free variables
— 1z is a free variable of c(a, o) iff x is a free variable of o(y) for some y
in the domain of o.
2. The substitution o(t) is defined by the usual rules and
— o(c(a, 7)) = c(a,0 0T) for every T and a.
—o(l)=1.

Lemma 1. Every term in A’ can be uniquely written as N (R 7) where R is
either a variable or L or (Ax u v) or ¢(a, o).

Proof. By induction on the term.

Definition 4. 1. Let t = X (Rry ...7rqg) bein A and f be a Béhm function.
One step of f-reduction of t is defined as follows :
— If R =z then t is in f-head normal form and t has no f-reduct.
- IfR=1
o Ift = 1 then t is in f-head normal form and t has no f-reduct.
e otherwise, the f-reduct of t is 1.
— If R = (Ax u v) then the f-reduct of t is By (o(u) rq ... rq) where o(z) =
v,
- IfR= C(CL, U)
o If fla) = ({x1, ...,z }, z, p) then the f-reduct of t is
By Aty Az (07(2) (Ja1],07) oo e[a = pl, o) rigr o Tg)
where j =Min(k, q), o' =7 o0 and T is defined by T(x;) = r; for 1
<i <j.
o If fla) = L, then the f-reduct of t is L.
o If f(a) is not defined the f-reduct of t is not defined.

2.t —y5t' (respt —f t') means that t’ is the f-reduct of t (resp t’ is obtained
from t by some, possibly zero, steps of [-reductions).

Comments and conventions

— An example of f-reduction is given after the definition 10.

— If t is in A the f-reduction is the ordinary head reduction (f is never used
and thus can be anything).

—If tis in A’ and f "represents” the term u (see the definition 8) the f-
reduction ”corresponds” to the (ordinary) head reduction of ¢’ where



e ¢’ is the term ¢ where the constants ¢(a, o) have been replaced by the
subterm of the Boshm tree of v at the address a in the environment o.

e "corresponds” means that the reduction is the same except that the part
of the computation of ' that ”comes from” the computation of the node
at the address a in the Bohm tree of u has been forgotten and is given
by the ”oracle” f.

— T allow f(a) to be undefined in the definition of the f-reduction of ¢ because
I made no restrictions in the definition of A’. However the typical situation
where the f-reduction is used is the following. Let ¢t = (u 7 ) be in A, f
"represents” u and ¢’ = (c(nil, Id) 7). In this case the f-reduction will
clearly always be defined.

— Similarly, if ¢ "comes from” a A term, since I only do head reductions the
composition ¢’ = 7o ¢ (in the case R = ¢(a, o)) in fact is a concatenation
of substitutions (cf the definition 12 and the lemma 8) but I must allow also
composition when I know nothing on ¢.

— When ¢ is in A, I will not write the symbol f. For example I will write ¢t —
' instead of ¢ — ¢’ and similarly for all the definitions in this section. For
example hn f(t) instead of hnf(f,t) in the next definition.

— The letters a,b,c,... are reserved for elements of A, the letters f,g,... for
Bshm functions and the letters r,s,t, ... for terms in A’. This will avoid
possible confusions.

Definition 5. hnf(f,t) (the f-head normal form of t) is defined by

1. — If some step of the f-reduction of t is undefined, then hnf(f,t) is not
defined.
— Ift —5 t' for some term t’ in f-head normal form and t’ # L, then
hnf(f,t) =1t . In this case t is said to be f-solvable.
— If the f-reduction of t does not terminate or ift —¢ L , then hnf(f,t) =
L. In this case t is said to be f-unsolvable.

Definition 6. Let a be an address, t be in A’ and f be a Béhm function

1. a is f-accessible in t is defined by
— nil is f-accessible in t
— [i 2 1] 1s f-accessible in t iff hnf(f, t) = T(:z: by ty),1 <i<mnandl is
f-accessible in t;
2. Let a be f-accessible int. hnf(f,t,a) is defined by
— hnf(f t,nil) = hnf(f,t).
— hnf(f,t,[i = 1)) = hnf(f,t;, 1) where hnf(f,t) = X (x t1... )
3. Let a be f-accessible in t. adr(f,t,a) is defined by
— adr(f,t,nil) = t.
— adr(f,t,[i = 1]) = adr(f,t;, 1) where hnf(f,t) = T(Qj tee tn)

Comments In the following ¢ is assumed to be in A.



— a is accessible in ¢ iff the Boshm tree of ¢ (denoted by BT(t)) has a node at

the address a.

— hnf(t, a) is the X term we get at the address @ when the computation of the

node at this address in BT(t) is terminated.

— adr(t,a) is the X\ term we get at the beginning of the computation of the

node at this address in BT(t).

Definition 7. Let a be in A, t be in A’ and f be a Béhm function.

1.

a is an f-branch in t iff
— Vi <lg(a) a i is f-accessible in t.
— if a is finite, then hnf(f,t,a) = L

2. Assume a is an f- branch int and k be in N. Res(f,t,a,k) and Br(f,t,a,k)

are defined by
— Res(f,t,a,0) =t and Br(f,t,a,0) =a
— If Res(f,t,a,k) is not an f-head normal form then Res(f,t,a,k+1) =
the f- reduct of Res(f,t,a,k) and Br(f,t,a,k+1)= Br(f,t,a,k)
— If Res(f,t,a,k) = 7(33 ty...tp) anda =[i = 1] then Res(f,t,a,k+1) =
t; and Br(f,t,a,k+1)=1
— Otherwise Res(f,t,a, k) and Br(f,t,a,k) are undefined.

3. t = ot means that ' = Res(f, t, a, k) for some k.

Comments and examples In the following ¢ is assumed to be in A.

1.

2.

Res(t, a, k) is the term we get after k many steps in the computation of the
branch a of BT(t).

If ¢/ = Res(t,a,k) then o/ = Br(t,a,k) is the branch of ¢’ that has to be
computed to finish the computation of the branch a of t. Thus, if ¢t —, t/
and t/ =4 t” then t —, t7.

Let ¢ be in A. If ¢ is unsolvable, then nil is the only accessible address (and
the only branch) in ¢.

Let t = (I Az (x (66))). Then hnf(t,nil) = Az (x (6 6)), adr(t,[1]) = (6 6)
and hnf(t,[1]) = L. The only branch of ¢ is [1].

hanf(Y,nil) = Af (f (BB f)). hnf(Y,[1,1,...,1])) = (f (B B f)). The only
branch of Y is 1°° =[1, 1, ...].

Let w = Azyz (2 (y (x 2 y)) 2) and t = (w w).

- hnf(t,nil) = Ayz (2 (y (w wy)) 2),

- hnf(t,[1]) = ( (wwy)),

- hnf(t,[2]) =

S hnf(H[11) = Axi( 1 (y (wwy)) =)

- a is accessible in t iff = [1,1,...,1] or a = [1,1,...,1,2]. The only branch

of tis 1°°,

Definition 8. Let u be in A’ and g be a Béhm function.

1.

¥(g,u) is the Béhm function [ defined as follows



— f(a) is defined iff a is g-accessible in u.
— fla) = {z1, .., =}z, p) iff hnf(g,u,a) = Azq ... Aag (x 61 ... tp) for
some terms t1, ..., 1y
- f(a’) =1 Zﬁhnf(g,u,a) =1
2. Let t be in A'. t[g,u] is the term obtained by replacing in t the occurrences
of c(a, o) by o(adr(g,u,a)) for every a and .

Comment and example

— Most of the time the previous definition will be used with » in A and thus
t[g,u] also is in A and g is useless. In this case the function ¢ describes the
nodes of BT (u). Remember (cf. the conventions after the definition 4) that,
in this case, we "forget” the argument g i.e. we write 1)(u) and t[u]. However
the more general definition is necessary to prove that (see the proposition 2)
”to be useful” is a transitive notion.

— Let f =¢(Y). Since Y — Az (2 (z (z ... we have f(nil) = ({z},z,1) and
(1,1, 1) = (0,2, 1)

Definition 9. Let t be in A,

1. The notion of subterm of t is defined as usual, with the following additional
rule. u is a (strict) subterm of c(a, o) if u is a subterm of o(x) for some x.
2. Let f be a Béhm function, b be f-accessible in t andt —y4 t'.

— A subterm u’ of t’ is a residue of a subterm u of t if it is a "copy by
B-reduction” of u where, possibly, the free variables have been substituted.
u’ is a descendent of u if it is a residue of u and the free variables have
not been substituted.
— The subterm u' = c(a’,0') of t’is an immediate successor of the subterm
u= cla,o) of t if
t >yt = T(C(aﬂ') T) =ty = )7(7'/(37) e([a == 1],7) ... e([a =
7))
u’ is a residue of some element of the sequence ¢([a :: 1],7') ... ¢([a =
pl,7') ints
the occurrence of ¢(a,T) inty is a residue of u.
3. The successor relation (between terms as c(a,0)) is the transitive closure of
the immediate successor relation.

Remark A more "formal” definition of these notions (that are intuitively very
clear) is rather tedious. For more details see [2]. Tt is clear that the notion of
descendent given above is exactly the one in [2]. In particular, if ¢t = (d @) —»,
(d 77) and d' is a residue of some element of the sequence @ then it is also a
descendent of this element.

Definition 10. Let t, u be in A and assume that t = D(o(u)) for some context
D and some substitution o. Let t’ = D(c(nil, o)) and f = ¢(u). Let a be a branch
mn L.



1. Let b be an address accesszble in u. bis (1, a) useful if, for some k, v and
o, Res(f,t',a,k) = X (c(b,0) 7).

2. Let b be a branch in u. b is (1, a) useful if there is a sequence < k;, oy,
V] >icigp) such that, for every i, Res(f,t' a,k;) = By (c(b ]| t,05) T7)
; moreover the occurrence of ¢(b | i+ 1,0441) in Res(f,t',a,ki11) is an
immediate successor of the occurrence of ¢(b | i,0;) in Res(f,t',a,k;).

Remarks and examples

— A context is a A term (not a A’ term !) with some holes. As usual, in a
substitution in a context some variables may be captured.

— It will be shown (see the proposition 1) that, with the notations of the
previous definition, a is an f-branch in ¢ and thus the definition makes
sense.

— Most often, either o is the identity (i.e. u is a subterm of t) or D is an

applicative context (i.e. t = (o(u) 7)) but it is not always the case (see the
proposition 6) and T thus need this general definition. In fact both cases are
essentially the same since it is not difficult to prove the following fact.
Let t = D(u) for some context D and a be a branch in ¢. Assume that the
address nil in u is (¢,a) useful, then ¢ —, Y(o(u) 77) for some o which
is the identity except on the free variables of u that are captured by the
context D.

— Let t = (Y I). t is unsolvable and thus nil is a branch in ¢. 1°° is a branch
in Y. It is easy to check that 1°° is (¢, nél) useful.

— Note that a term ¢ may have many subterms each of them has a branch that
is (t,a) useful. For example, let t = (Y7 F) (Y2 F) where Y; =Y, =Y and
F = AfAg (g f). The following reduction shows that the branch 1°° in Y;
(and similarly for Y3) is (¢, nil) useful.

Let f = ¢(Y) and ¢ = (¢(nil,Id) F (Y F)). Remember that f(nil) =
({z},z,1) and f([l,l,...,l]) (#,2,1). The f-reduction of ' is given by
(where (x) = F) : ' (F e([1],0) (Y F)) > (Y F c([1],0)) >
(F (Y F) c([1],0)) = (c([1].0) (Y F)) = (F c([1,1],0) (Y F)) —

— Also note that, for an infinite branch b, being (t, a) useful is stronger that
simply asking that for every ¢,b | ¢ is (¢, a) useful. Let ¢t = (Y7 H Y5 0) where
Vi=Yo=Y, H=2Afnp (unp(fn(sp)) uv=>Apa(nF (pF A\ a)),
F=Xey (yz), 0 =y yand s = Anfx (f (n [ x)). For every k, the
address 1* is (¢, nil) useful both in Y, and Y;. The branch 1%° of Y] is (¢, nil)
useful but the branch 1°° of Y5 is not. The reason is the following : u is a
term (given by Maurey) such that (u n p a) — a for every Church integers
n > p. Since Y may be seen as an ”infinite” Church integer, (v Y k a) — a
for every k and this computation ”uses” the address 1¥of Y. It follows that,
letting G = (Y1 H),t = (GY20) > (GYs 1) » (GY32) — ... It is easy to
see that, in this computation, the node at the address 1%+ of Y7 that is used
for the reduction (G Y2 k) — (G Y2 k + 1) satisfies the descendent condition
whereas, since the occurrence of Y2 in (G Y3 k+ 1) is a "new” one, the node
at the address 1711 of Y5 that is used in this reduction does not satisfy the
condition.



Definition 11. Let t be in A, a be a branch of t and (d,) a sequence of A
terms. (dy) is a decoration for (t,a) if there is a strictly increasing sequence
(k) of integers and a sequence (T,) such that for everyn >0

1. Res(t,a,kn) = X (dn 777)
2. dpy1 is the descendent of an element of 7,
3. d,, is solvable.

Theorem 1. Let t be in A and a be a branch in t. Then (t, a) has o decoration.

Corollary 1. Every unsolvable X term has a decoration in the sense of [2].

4 Proof of the theorem

4.1 Some lemmas on the f-reduction and usefulness

In this section I prove essentially two things : The notion of computation and
the notion of usefulness are ”transitive”. Moreover in both cases the notion of
descendence is preserved by this transitivity.

The first one (mainly the lemma 7) means that a computation (by left
reduction) can be ”partitioned” in the following way : Let u be a subterm
of t. Get t' by replacing in ¢ the subterm w by its Bohm tree. The compu-
tation of a branch a of ¢ is the same as the computation of the branch «
of t where, when a node of BT (u) appears in head position, the computa-
tion of this node is ”inserted”. There is a (non essential) technical difficulty
showed in the following example : Assume v — Az u; — Az (z v) then
(ur) = Az u r) = wfz := 7] - (r v[z := r]) and the order is not ex-
actly the same as (ur) - Az uy r) = (Az (z v) r) = (r v[z := r]). This is why
we have to use big steps of head reduction.

The second one is given by the proposition 2.

Lemma 2. Let t, t’ be in A, [ be a Bohm function and a be f-accessible in t.
Assume t — ¢ t'. Then, for some o’ < a, t —¢q adr(f,t,a’) —5 t"

Proof. Immediate from the definition.
Lemma 3. Let v, v’ be in A" and f be a Bohm function. Assume that v —¢ v'.

1. Let o be a substitution. Then o(v) —y o(v').

2. Let 7 be a sequence of terms and assume v’ does not begin with X. Then
(vT) = (V)
Moreover in both cases the length of the f-reduction remains the same.

Proof. Note that the more general case, where v’ begins with A, is treated in
the lemma 5. The proof is by induction on the length of the reduction and case
analysis. Use the fact that o(u[z := v]) = o(u)[z := o(v)].

Lemma 4. Let t be in A’ and f be a Béhm function such that t is f~unsolvable.



1. Let o be a substitution. Then o(t) is f-unsolvable.
2. Let 7 be a sequence of terms. Then (t T ) is frunsolvable. Moreover (t 7)

has no reduct of the form Y(n T) where r; is a descendent of an element
of TV

Proof. 1. This follows immediately from the lemma 3.

2. If t does not reduce to a term beginning with A this follows immediately
from the lemma 3. Otherwise let 7 = (r1 ... ) and ¢ be the least step
where X appears. Then (by the lemma 3) (t 7 ) —f (t/ 7) = (Ax t; 7°) =
(o(t1) ra ... rp) where o(z) = r1. The result follows by the lemma 3 and by
repeating, if necessary, the same argument.

Corollary 2. Let t be in A, a be a branch of t, (d,) be a sequence of \ terms,
(ky) be a strictly increasing sequence of integers and (7 ,,) be a sequence of finite
sequences of A terms. Assume that for every n >0

1. Res(t,a,kn) = X (dp 7))
2. dpy1 is the descendent of an element of 7,

Then (dy,) is a decoration for (t,a).
Proof. The fact that d,, is solvable follows immediately from the lemma 4.

Lemma 5. Let v, r1, ..., rp be in A, 0 be a substitution and f be a Béhm

function. Assume that v —; Ary.. Az, (u T). Then (o0(v) 71 ... 7p) —f
—

ACjq1... g (0'(w) o' (t) rj41 ... 7p) where §j = Min(k, p), 0’ =To0 and T is

given by T(x;) =1 for1 <i < j .

Proof. By induction on k. The case k£ = 0 is given by the lemma 3. Assume
kE > 1. Look at the least step in the reduction v —¢ v’ where v/ begins with

A, say v = Ax; v;. Then, we have the following sequence of f-reductions

(o) rioorp) =y Az o(vr) rol ) —p o (o1(v) re o Tp)
—

A1 .. Az (0'(u) o'(t) rj41 ... 7p) where 01 = T oo and 7 is given by :

7(x1) = r1. The first —¢ is given by the lemma 3 and the last — is given by
the induction hypothesis.

Lemma 6. Let t, u be in A', g be a Bohm function and f = (g, u). Assume t
=X (Rry...7p) and t’ is the f-reduct of t. Then

1. if R = =z, then i[g, u] is in g-head normal form.
2. if R = (Ax v w) or L, then the g-reduct of tfg, u] is t’[g, u/.
3. if R = ¢(a,0)

— If f(a) = L, then tfg, u] is not g-solvable.

- Iff(a) = ({Ih ey xk}7 Z, Q) then t/g: u/ g t’/é], u]

Proof. (1) and ( 2) are clear. (3.1) follows from the lemma 4 and (3.2) follows
from the lemma 5.



Lemma 7. Let ¢, u be in A, g be a Béhm function, f = {¥(g,u) and a be J-
accessible in t. Assume t g U7 = )T(>R S) and R = either x or (Az v w) or
c(b,o) and f(b) # L. Then, tlg, u] =44 t'[g, ul. Moreover, let d’ be a subterm
of t’ that is a residue (resp a descendent) of a subterm d of t. Then d’[g, u] is a
residue (resp a descendent) of the corresponding subterm dfg, u/.

Proof. By induction on the length of the reduction of ¢. For a = nil this follows
from the lemma 6. If @ = [¢ :: b], then ¢ — T(ax t1 ... tp). By the lemma 6,
tlg, u] —4 7(:1: tilg,u] ... tnlg,u]) —4a tilg, u] and the result follows easily by
induction on the length of a.

Proposition 1. Let t, u be in A, g be a Béhim function and f = ¢(g,u). Let a
be in A. Then a is an f-branch in t iff a is a g-branch in tfg, u/.

Proof. It follows immediately from the lemma 6 that ¢ has an f-head normal form
iff t[g, u] has a g-head normal form. Moreover if hn f(f,t,nil) = Axq... Axg (z ty...
tp) then hnf(g,t(g, u], nil) = Az1... Axg (@ t1]g,u] ... tp[g,u]). The result follows
eagily.

Definition 12. Let o, o’ be substitutions. 7 = o () o’ if for every variable =

— ifo(x) # x then 7(x) = o(x) and o' (x) = x
— if o'(z) # x then 7(x) = o'(z) and o(x) = x
— otherwise T(z) = x

Definition 13. Let u be in A. Define, for a accessible in u, FV(u, a) by :

— FV(u, nil) = ¢
— FV{(u, [a :: i]) = Fo(u, a) U{zy ... 1} where hnf(u, a) = Azq ... g (x 7)

Lemma 8. 1. Lett = (o(u) T) bein A, t’ = (c(nil, o) T"), b be accessible in
t, f=v(u), t" —»5p t" and c(a, T) be a subterm of t”. Then T =0 o’ for
some ¢’ whose domain is included in FV(u,a). Moreover, for every variable
y in the domain of T, for every a’ >a and every x in FV(u, a’) - FV{u, a),
x is not free in 7(y).

2. Similarly for t = D(o(u)) with T = o ) 0" O 0’ where the domain of 07 is
included in the set of variables captured by the context D.

3. Moreover if c(a’, 7') is a descendent of c(a, T) then 7/ = 7 & u for some p
whose domain is included in FV(u, a’) - FV{u, a)

Proof. This comes immediately from the fact that we are doing head reduction
(and of course the renaming rule to avoid capture). More precisely, this is proved
by induction on the length of the reduction t’ —; t” by a simple case analysis.

Lemma 9. Let t = (o(u) 7) be in A, b be a branch in t and f = ¥(u). Let t’
= (c(nil, o) 7).



1. Assume t” —yp by (c(a,T) §) and u —, adr(u,a) — Axy... Az (d ) —

ALY e AZg oo AZggy (d 17) and d’ is the descendent of an element of ¥’.
Then t = A'(u(d) p(V) @) = X (' (d) p/ (V) W) and 1/ (d) = (')
is a descendent of the corresponding element of u(70).
2. Similarly assume that :
— t' =y by (cla,7) 8) =5 N (c(a, 1) ?) for somea < o andc(a’, ")
is a successor of ca, T).
— U —>g adr(u,a) — Y(d T =g adr(u,a’) — Y(d/ 17) and d’ is the
descendent of an element of v

Then t —y, X (u(d) p(0") @)~ N (/(d') (V") @) and p/(d') = p(d') is
a descendent of the corresponding element of u(70).

— —
Proof. 1. By thelemma 8, 7 = 0(Doy. By thelemma 7, £ —; A (T(adr(u a)) slu])
and, by the lemma 5, X (r(adr(u,a)) s[u]) = X (u(d) () W) — N (1/(d
,u/(?) ?) where p1 = o’ o7 (resp ¢/ = 0” o) and the domain of ¢’ (resp ¢”)
is included in {z ... 2%} (resp {1 ... Txgyx}). By the lemma 8, p =7 ¢ o’
and f = 7@ 0 . Since d’ is the descendent of an element of @ the variables
ZTpy1 - Thyi do not appear in d’ and p(d') = @/ (d').

2. Similarly t =, X (u(d) p(T) W) =4 N (@' (d) @/ (V') @) where p = 760",
¢ = p @ o”and the domain of ¢” is included in FV(u,d’) — FV(u, a)
Since d’ is the descendent of an element of @, d’ has no free variables in
FV(u,a’) — FV(u,a) and thus p/(d') = p(d').

Proposition 2. Let t, u, v be in A, a (resp b, ¢) be a branch in t (resp in u, v).
Assume that b is (t, o) useful and ¢ is (u, b) useful. Then c is (t, o) useful.

Proof. Let t = D(o(u)), u = E(7(v)). Let t' = D(e(nil, o)), v = E(c(nil, 7)).
Let FF = D(o(F)). Then t = F(o o 7(v)). Let t7 = F(c(m'l,a o7)). I only
prove t” —»g 4 7(0(0 I j,7;) 75) for every j < lg(c), where g = ¢(v) . I should
prove a bit more, namely that the corresponding c(c [ j, 7;) are in the immediate
successor relation (see the definition 10). This is rather tedious to write but this
follows immediately from the proof.

Let f = ¢(u) and d = ¢ | j. Since ¢ is (u,b) useful, v/ —,p Y(C(d, ')
7). Thus, by the lemma 2, v —,; adr(g,u’,b) —, T(c(d, 7') 7) for some
b < b. Since bis (¢, a) useful, t' —; , T(C(b/, o) §). Clearly t” = ¢'[g,v']. Thus,
by the lemmas 7 and 5 , t7 =, Y(U'(adr(u', b') S) =g Y(C(d, ) 7)

Proposition 3. Let t = (o(u) 7) be in A and b be a branch in t. Let a be a
branch in u that is (t, b) useful. Assume that Res(u, a, k) = Y(ul 7). Then,

— For some j and some T, Res(t, b, j) = Y(T(ul) T(v7) W).
— Let ¢ be a branch in uy that is (Res(u, a, k), Br(u, a, k)) useful. Then c is
(Res(t, b, j), Br(t, b, j)) useful.



Proof. By thelemma 2, u —, adr(u,a;) — T(ul 7)) =u'. Lett! = (c(nil, o), T)
and f = ¥(u). Since a is (¢,b) useful t/ —;, Y(C(al,al) 57). Thus t —
N(oiladr(u,a1)) §) = A (T(u1) 7(v7) W) = Res(t,b,j) = t". Let o/ =
Br(u,a,k) and V” = Br(t,b,j). Since a is (¢,b) useful, it is clear that a’ is
(t”,b") useful and since ¢ is (v/,a’) useful, by the proposition 2, ¢ is (¢7,b”)
useful.

4.2 The key results

The propositions 5 and 6 give the key points mentioned in the section 2. Intu-
itively the proposition 6 gives the next step of the decoration and the proposition
7 is the technical result that allows to iterate the construction.

Proposition 4. Let u be in A. Assume that u is unsolvable and (dy) is a deco-
ration for (u, nil).

1. Let o be a substitution. Then (o(dy)) is a decoration for (o(u),nil).
2. Let t = (u T) . Then there is a sequence (01) of substitutions such that
(or(dy)) is a decoration for (t,nil).

Proof. The first case is trivial since, by the lemma 3, if u — «’ then o(u) — o(u/).
For the second case let p be the length of 7. If p = 0, this is trivial. Assume
p > 1. 1M, for every k, Res(u,nil, k) does not begin with A the result follows from
the lemma 3. Otherwise, let k& be the least integer such that Res(u,nil k) =
Az u/. Since (dy) is a decoration for (u,nil), let (k,) be the sequence such that
Res(u,nil, kn) = X (dn ).

Assume first that kg > k. Then (by the lemma 3) (u7) - (Az v 7) —
(o(u') 72 .. rp) where o(z) = 1. Repeating the same argument with (o(u') r2 7p)
yields the result.

Assume that kg < k. Let ng be the largest integer such that &,, < k. Then
(by the lemma 3) for n < ng Res(t,nil, k,) = (d, 7V, 7). Res(t,nil,ky,,) -
Az 7) = (o) ro ... 1) where o(x ) = ry. Since (dy, ) p>n, 18 a decoration for
(W, nil), (o(dn))n>n, 1S & decoration for (o(u’), nil). Since dy, 11 is a descendent
of an element of v,,, « is not free in d,,,+1. Repeating the same argument with
((o(w') 7o ... 7p) ,mil) yields the result.

Proposition 5. Let t, u be in A and b (resp a) be a branch in t (resp u). Assume
a is (1, b) useful and let (dy) be a decoration for (u, a). Then there is a sequence
(0k) of substitutions such that (o (dy)) is a decoration for (t, b).

Proof. - If a is infinite, the sequence (o) is easily constructed by using the
lemma 9.

- If a is finite the sequence (o}) is easily constructed by using the lemma 9
for the finite part of the branch and the proposition 4 for its last node.

Proposition 6. Lett = (ury ... 1,) be a X term and a be a branch in t. Assume
there is no branch neither in u nor in any r; that is (t, o) useful. Then there is
<1, k, wy, v > such that, letting ' = Res(t, a, k) and d = Br(t, a, k) :



— ¢ =N (v(uy) @) for some T,

— up = (r; 81 ... $m) and v(r;) =r; is a descendent of its occurrence in t.
— For1 <j <m, s; has no branch that is (¥, o ) useful

— uy has a branch that is (¥, d' ) useful.

Comments  The intuition of the proof is the following : Since there is no
useful branch in u the set of useful nodes in BT '(u) is (by Konig’s lemma) finite.
Assume, for example, that t = (Azdy (z s1 s2) 1 r2). Then t — (ry s} sb). If
there is no useful branch neither in s} nor in s we are done. Otherwise there
is such a useful branch in, say, s}. Thus ¢ — T(s'1 w) for some wW. By the
lemmas of the section 4.1 it is mainly enough to prove the result for s{. But
t' = (AxAy s1 m1 r2) — §) and the cardinality of the set of useful nodes of ¢’ is
smaller than the one of ¢. We get the result by repeating the previous argument.

Before giving the proof I give an example of the difficult case (the case 2.b
in the proof). This is the example 4.3.6 in [1]. Let w = Azyz (y (z (z z))),
R=Xz (21 w)andt=(wRIw).tis unsolvable. w, R, I are normal and so
they do not have a branch that is (¢, nél) useful. t — (I (R (w R))) — (R (w R)).
We cannot choose the step (I (R (w R))) and the argument I as the first element
of the decoration for ¢ since the unsolvability is already created (and "used”) in
(R (w R)). We will choose the next step (R (w R)) and the argument R because,
at this step, the unsolvability is not yet created since R and (w R) are solvable.
Thus, here, the solution is : &k = 4,u; = (R (w R)), ¢ = 1,v = Id and @ is
empty.

Proof. Let E = {b / bis an address accessible in u, that is (¢, a) useful}. Note
that for b in E, hnf(u,b) # 1 because otherwise b would be a branch in u that
is (t,a) useful.

I define a procedure to construct the desired < ¢, k,uy, v > and a branch in u.
This procedure halts (and I thus get the result) because otherwise this means we
always are in the case (1) below and this procedure has constructed an infinite
branch in « that is (¢,a) useful and this is a contradiction. Note that T cannot
use the fact that F is finite (and prove the result by induction on the cardinality
of E). Intuitively this is actually the argument used but we cannot formalize it
in this way. If F is infinite, by Konig’s lemma, there is an infinite branch b such
that for every ¢, b | i € E but (see the example after the definition 10) this does
not imply that b is (¢,a) useful.

nil clearly is in E. Let hnf(u,nil) = A1 ... 2 (z w1 ... wp), Jo = Min(k,n)

and o is given by o(z;) = r; for j < jo. It is clear that jo > 1 because otherwise
t reduces to T(ax w 7 ) and then u or some r; would have a branch that is
(t,a) useful.
1) Assume first that @ ¢ {x1 ... z;}. Then t — Az 41 ... o (@ o(wr) ... o(wp)
Tjo+1 --- Tn) and thus a # nil . Let a = [i :: []. If ¢ > p, there is a branch in r;
that is (¢,a) useful and this contradicts the hypothesis. Thus ¢ < p. Let v/ =
Azy ... zj, w;. Then t —, o(w;) and (v 71 ... rp) = o(w;). The first node of
the branch constructed by the procedure is ¢. Repeat the procedure (to get the
other nodes) with (v’ r{ ... 7,).



2) Assume that z = ;. Then t — Az o1 .. 2% (5 o(wy) .. o(wp) Tjg41-- Tn)-

a) Assume first that for 1 < ¢ < p, o(w,) has no branch that is (¢,a)
useful. Then < i, jo,u1,Id > where uy = (r; o(w1) ... o(wp) 75, ... rn) clearly
satisfies the conclusion of the proposition.

b) Assume that, for some 1 < ¢ < p, o(w,) has a branch that is (¢, a) useful.

Claim

There is b in E and j < jo such that hnf(u,b) = Y(azj $1 ... 81) and
o(hnf(u,b)) has o branch that is (t,a) useful but no o(s,,) has such a branch.
Proof

Note that adr(u,[q]) = w,. By the hypothesis, [¢] is in E. Let hnf(u,[q]) =
T(y s1 ... §1). If y = z; and no o(s,,) has a branch that is (¢, a) useful, b = [¢]
satisfies the conclusion of the claim. Otherwise some o(s,,) has a branch that
is (t,a) useful. (Proof : If y = x; this is clear. If y ¢ {x1 ... zx}, o(hnf(u,
[q])) = T(y o(s1) ... 0(s;)) and this is again clear since a branch in o(hnf(u, [q]))
is a branch in some o(s,,)). We may repeat the argument with b = [¢ :: m]. If

the claim fails we get in this way an infinite branch in w« that is (¢,a) useful.
(Q.E.D. of the claim)

Let (b, j) be given by the claim. Let ¢’ = (¢(nil, Id) ry ... ) and f = ¢(u). ¢/
—ra Y(c(b, 7) W) for some T = 0 @ ¢’ and thus t —, Y(T(adr(u, b)) ). By
the lemmas 5 and 8, there is a substitution 7/ such that _)\)(T(adr(u, b)) W) —
T(,u(:z:j) u(s) v) = Res(t,a, k) where p = 77 = o ® o’ @© 7 . Then,
< j,k,uy, o’ & v > satisfies the conclusion of the proposition, where u; =

(rjo(s)) =0((x; s1 ... s1)).

Proposition 7. Let (dyn)n>0 (Tesp. (Un)n>0, (Un)n>1, 1€SP. (Gn)n>0, TESP.
(0n)n>1) be a sequence of A terms (resp. be sequences of finite sequences of A
terms, resp. be a sequence of elements of A, resp. be a sequence of substitution).
Assume that for every n > 0

— &, = (d, @,) and a, is a branch in t,.
v ,

— For some ky, Res(ty, an,kn) = A (Onp1(tng1) Tnp1) and anyq is (Res(t,
A, kn), Britn, an, kn)) useful.

— dpa1 15 the descendent of an element of the sequence U,

- Un+1(dn+1) - dn+1~
Then, there is an increasing sequence (1,) of substitutions such that the
sequence (T,(dy)) is a decoration for (ty, ag).

Proof. 1 construct (by induction on n) a sequence < jy,,7n, by, T, > such that
:rg = tg,jo = 0,79 = Id,by = ag and, for n > 1, r, = Res(rg,bg,jn) =
N (Tn(tn) @)),bn = Br(ro,b0, jn), Tn(dn) = Tn_1(dn) and ay, is (r,, b,) useful.
It is clear that the sequence (1,,) satisfies the conclusion.

tn —a, V(Un_t'_l(tn_lrl) Unti). Since a,, is (rp,by) useful and by the propo-
sition 3, ry, —p, 75, = T(Tn (Tn(Ont+1(tns1)) To(Untdi)) wy) for some 7, and
W,



Clearly r/, — N (Tnt1(tnt1) Wnt1) = Res(rg, ag, jn+1) for some w,11 where
Tntl = Tn © Ont1 D iy, and the domain of p,, is included in the variables in Tn
Since d,, 1 is the descendent of an element of u,;, d,,11 is not affected by p,, .
Since, by the hypothesis, 0yni1(dnt1) = dny1, we have 7,41 (dny1) = Tn(dnt1).
Finally, again by the proposition 3, a,+1 i8 (7nt1, bpt1) useful.

4.3 End of the proof of the theorem

Let £ be a A term and a be branch in ¢. The existence of a decoration is proved
by induction on the complexity of ¢.

—Ift=Xxwuort=(z7) the result follows immediately from the induction
hypothesis.

— Ift = (ury... 7,) and there is, either in « or in some r;, a branch that is (¢, a)
useful. For example, say b is such a branch in u. By the induction hypothesis
there is a decoration of (u,b) and by the proposition 5 there is a decoration
for (t,a).

— Otherwise t = (u r1... r,) and there is no branch neither in u nor in any r;
that is (¢, a) useful. Let ag = a,dg = u, ug =1 ... T, tg = (do ©3) and vy
be the empty sequence. By the proposition 6 there is < 4, kg,t1,0 > such
that, letting ¢’ = Res(tg, ag, ko) and a’ = Br(tg, ag, ko) :

ot = X (o(t1) o), t1 = (5 81 ... Sm),0(r;) = r; for some terms
81 ... 8y, U7 and some substitution o.

e For 1 < j <m, s; has no branch that is (¢/,a’) useful

e {1 has a branch a; that is (¢, a’) useful.

Let dy = r; and & = $1 ... S». No s; has a branch that is (t1,a1) useful
since, otherwise, by the proposition 2 such a branch would be (¥, a’) useful. We
may again use the proposition 6 with ¢£; and the branch a;. By repeating the
same argument we get sequences satisfying the hypothesis of the proposition 7
and thus a decoration for t.

References

1. R. Kerth ”"Isomorphisme et équivalence équationnelle entre modéles du X\ calcul”
Ph.D. thesis Université Paris 7, 1995.

2. R. Kerth ”"The interpretation of Unsolvable A Terms in Models of Untyped A Cal-
culus”. To appear in the JSL

3. R. Kerth "On the Construction of Stable Models of Untyped A Calculus”. To appear
in TCS

4. R. David & K. Nour ”Storage operators and directed A calculus”. JSL 60, n°4,
1054-1086, 1995.



