N

N

On the asymptotic behaviour of primitive recursive
algorithms
René David

» To cite this version:

René David. On the asymptotic behaviour of primitive recursive algorithms. Theoretical Computer
Science, 2001, 266, pp.159-193. hal-00384689

HAL Id: hal-00384689
https://hal.science/hal-00384689
Submitted on 15 May 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00384689
https://hal.archives-ouvertes.fr

On the asymptotic behaviour of primitive recursive
algorithms

René DAVID*

Abstract

This paper develops a new semantics (the trace of a computation) that is
used to study intensional properties of primitive recursive algorithms. It gives
a new proof of the “ultimate obstination theorem“ of L.Colson and extends
it to the case when mutual recursion is permitted. The ultimate obstination
theorem fails when other data types (e.g. lists) are used. I define another
property (the backtracking property) of the same nature but which is weaker
than the obstinate obstination. This property is proved for every primitive
recursive algorithm using any kind of data types.

Keywords primitive recursive definitions, intensionality, complexity.
1 Introduction

In [3], [7] the denotational semantics of lazy integers is used to prove intensional
properties of primitive recursive algorithms. L.Colson proves the ultimate obsti-
nation theorem and T.Coquand gives a constructive proof of it. An important
consequence of the ultimate obstination theorem is that the inf of two integers
cannot be computed, by a primitive recursive algorithm, neither in the desired way
(i.e. by decrementing alternatively the two arguments), nor in the desired time
complexity (i.e. O(inf)) .

I develop here a new semantics to study the intensional behaviour of algorithms.
The intuition is the following. Let A/ be the domain of lazy integers. An element e
of NV can be seen as a partial function that fills some accessible cells (in the sense
of [2]) with the constructors S and 0. For example in eg = S(0) the accessible cells
are the ones denoted by their address 0 and 1. The first one is filled with S and the
second with 0. In e; = S?(L) the accessible cells are the ones denoted 0, 1,2. The
cells 0 and 1 are filled with S and the third one is unfilled (see figure 1).

cell number | 0 | 1 q _ | cell number | 0 | 1 | 2
constructor | S | 0 and € =1 onstructor S| S

€y =

fig. 1

The set of traces is defined as follows. Let W be the set of (finite or infinite)
words on the alphabet {z, / n > 0, x is a letter}. A trace is a pair (e, A) where
e € N and X is a labelling, i.e. a function from the accessible cells of e to W (see
examples in figure 2).

*Laboratoire de Mathématiques. Campus Scientifique. 73376 Le Bourget du Lac Cedex. email
david@univ-savoie.fr

To each primitive recursive definition f we associate a function [[f]] from traces
to traces which ”codes” the way f gets its result : The fact that the token x; occurs
in A(n) intuitively means that the cell 7 of the element named z has been used to
get e(n).

An example is given in figure 2 : Define add as usual by add(0,m) = m and
add(Sn,m) = S add(n,m).

- The trace t2 means that to get S the algorithm has used the cell 0 of ¢ty and
to get 0 the algorithm has used first the cell 1 of ¢y and next the cell O of ¢;.

- The trace t3 means that to get S the algorithm has used first the cell 0 of ¢;
and next the cell 0 of tp and to get 0 the algorithm has used the cell 1 of #g.

cell number | 0 1 cell number | 0
to =| constructor | S 0 | t; =| constructor | 0
labelling o | T labelling Yo

cell number | 0 1

ty = [[add]](to,t1) =| constructor | S 0
labelling xo | T1 Yo

cell number 0 1
ts = [[add]](t1,t0) =| constructor S
labelling | yo xo | =1

fig. 2

This is easily generalized to any data type. In this case, the cells are no more
given by integers but by their addresses (i.e. lists of integers) in the tree representing
an element of the data type. This notion of trace is related to the sequential
algorithms introduced by Berry and Curien ([2] or [1], chapter 14) as follows. In their
terminology, a sequential algorithm is a tree. Each branch of this tree corresponds
to the computation of the algorithm on particular arguments, that is exactly (with
a slight variation on the syntax and the terminology) what I call a trace.

The main advantages of this approach are the following :

(1) There is a notion of modularity (see theorem 34): If e is an element of N,
let e[z] be the trace (e, A) where A(n) = z,, for each n. Then, for t = (e, \), [[f]](¥)
is obtained by substituting x; with X' (¢) in [[f]](e[z]).

(2) A single infinite trace contains the information about each finite computation
(see proposition 36). This will be extensively used in the forthcoming papers [8] and
[11].

(3) This notion allows to introduce new properties of computations : The back-
tracking property (see below) cannot be expressed in the usual semantics.

(4) T believe it also makes the proofs easier and, at least, closer to the intuition.
In particular, the extension of Coquand’s constructive result to the case where
mutual recursion is allowed would probably be impossible without the notion of
trace.

Say that a trace (e, A) is ultimately obstinate if, in the word obtained by con-
catenating the words A(n), there is at most one letter which occurs with unbounded
indexes. The intuitive meaning is that, if the trace represents an infinite computa-
tion, at most one argument may be used entirely. The ultimate obstination theorem
follows immediately from the fact (see theorem 13) that, if 1, ..., ¢,, are ultimately
obstinate, then so is [[f]](¢1, ..., t»). The main argument in its proof is that, when
the first S in an infinite sequence of S is removed, we get the same sequence. This is

of course no more true e.g. for infinite sequences of booleans and thus, the theorem
fails when other data types may be used.

Say that the letter = backtracks in the word w if, for n large enough, z,, occurs
infinitely many times in w. This intuively means that the argument denoted by
z may not be ”garbage-collected” in the computation represented by w. Say that
a trace t has the backtracking property if the following holds for any branch b in
t (a branch in ¢ is the usual notion on the underlying element) : let w be the
word obtained by concatenating the words along b. There is at most one letter x
such that : x occurs with unbounded indexes and x does not backtrack . When
t represents the computation of an algorithm, this intuitively means that, in the
computation of the branch b of the result, at most one argument can be memorized
(recall that being ultimately obstinate means at most one argument can be used).
I prove (see theorem 16) that if ¢, ..., ¢, have the backtracking property, then so
does [[f1](t1, vy tn)-

The ultimate obstination theorem is a result about intensionality but it has a
consequence in terms of complexity. I believe this is a kind of chance. I introduced
(and proved) the backtracking property because it was thought that such a property
would give O(inf?) as a lower bound for the time complexity of the inf function but
it does not : see the algorithm given in [9]. I thus have no application of this result
in terms of complexity (see section 6 for a discussion about this point). However
the notion of trace allows to prove some other results. In a forthcoming paper ([8])
I will extend Coquand’s constructive result to the case when mutual recursion is
allowed. In another paper, in preparation with Valarcher ([11]), we will use the
traces to answer open questions in his thesis ([19]).

Warning A primitive recursive definition becomes an algorithm only when a
strategy of reduction is given. Even if the strategy does not appear explicitly in
this paper, it is hidden in the definition of [[f]] (see proposition 9) and corresponds
to call by name. [13], [14] show that, in call by value, the inf function cannot
be computed in time O(inf) even when lists or mutual recursion is allowed. Note
that, in this case, the problems are, at least intuitively, much easier since, when an
argument is used, the computation time is, by definition of call by value, at least
the value of this argument.

The paper is organized as follows : The section 2 gives the main definitions
and results of the paper. In section 3, I prove the main properties of traces, in
particular theorem 34 about substitutions. The section 4 and 5 give the proofs of
the preservation of the ultimate obstination (as well as its consequences in terms
of complexity) and of the backtracking property. The section 6 gives some open
questions.

Acknowledgement This paper has a very long story. Many people helped me to
transform a very rough draft into this final version. Thanks to all of them and, in
particular, T Coquand, C Berline, P L Curien and the anonymous referees.

2 Definitions

2.1 Primitive recursive algorithms

Notations A data type is given by a list of typed constructors. Let ¢f: Dy X ... X
D,, — D be a constructor of D (n is called the arity of ¢f). Then :

1. The D; are either D or previously defined data types.
2. If Dj = D, then j is called a recursive argument of cf.

3. cf is recursive if D; = D for some j.

4.

¢f is terminal if n = 0.

Note that, in order to be non-empty, a data type must have at least one non-
recursive constructor.

Examples

1.

The data type of integers is given by N ={0: N, S: N — N}. 0 is terminal
and S is recursive.

The data type of lists of type N is given by L = {nil : L, cons : N x L — L}.
cons has a recursive and a non-recursive argument.

The data type of sequences of 0 and 1 is given by D = {nil : D, s : D —
D, sy : D — D}.

Definition 1 1. The sets of n-ary typed pre (primitive recursive combinators)

are defined, as usual, as the least sets containing the projections, the construc-
tors and which are closed under composition and primitive recursion.

Primitive recursion is defined as follows (I will assume, without loss of gen-
erality, that the recursion always is on the first argument of the prc). There
is one equation for each constructor cf of the data type of the first argument.
Assume cf has p arguments and (for simplicity of notation), the recursive ar-
guments of c¢f are {j / 1 < j < m}. Note that p or m may be 0. Then, the
recursive equation for cf is (h is a previously defined prc associated to cf) :

f(cf(mla "'7331))7 ?) = h(f(xla 7)7 "'7f($m7 ?)73317 "'7331)7 ?)

Examples

1.

2.

The addition is defined, as usual, by : add(0,n) = n and add(Sm,n) =
S add(m,n).

The sum of the elements of a list of integers is defined by : sum(nil) = 0 and
sum(cons(n,l)) = add(n, sum(l)).

3. The number of 0 in a list of 0 and 1 is defined by : nb(nil) = 0, nb(so(l)) =

S nb(l), nb(s1(1)) = nb(l).

Remark

In the section 3 we will also allow the definition of k functions by mutual re-
cursion (for an arbitrary k). For example : even(0) = true and odd(0) = false.
even(Sz) = odd(z) and odd(Sz) = even(z).

2.2 The trace

In the rest of the paper I will adopt the following conventions (words, traces, ... are
defined in this section) :

| symbols | range over || symbols | range over |
1,7, k,m,n,p, q integers u, v, w words
e elements of a data type r,s,t,p,o,T traces
x,y,2, X letters 9. h pre
a,b,c,d,a, B addresses or addressing branches

Definition 2 1. An address is a finite list of positive integers. The empty list

is denoted by €.

2. If a,a’ are addresses, a < a' means that a is an initial segment of a'.

3. lg(a) represents the length of a and thus, if lg(a) = n, a may be written as
[a(0), ..., a(n —1)].

4. If a is a (finite or infinite) list of integers of length at least m, a T m is the
prefic of length m of a, i.e. atm = [a(0), ..., a(m —1)].

5. If a is an address and p an integer, a+p denotes the list obtained by concate-

nating p at the end of a.

Comment and examples
An address corresponds to a cell in [2]. [0,1] +3 = [0,1, 3]

Definition 3 Let D be a data type.

1. An element e of D is a partial function from a prefiz closed set of addresses
(denoted by dom(e)) satisfying the following conditions :

(a) If € € dom(e) then e(e) is a constructor of D.
(b) If a+p € dom(e), e(a) = ¢f and ¢f : Dy x ... x D!, = D' then1 <p<mn

and e(a + p) is a constructor of D,, .

2. Let e be an element of D and a be an address. Define the accessibility of a in
e by the following rules :

(a) € is accessible in e.
(b) a+ p is accessible in e iff a € dom(e) and 1 < p < arity(e(a)).

3. Let e be an element of D. Denote by Acc(e) the set of addresses that are
accessible in e.

4. An element e is finite iff dom(e) is finite.

5. Let e, e’ be elements of D. e < €' means : dom(e) C dom(e') and for all
a € dom(e), e(a) = €'(a).

6. An address a is mazimal in an element e if a € Acc(e) and no proper extension
of a is in dom(e).

Comment and examples

1. It is easy to see that D is a domain.

2. Usually, an element of a data type is a finite tree whose nodes are filled with
constructors. Here an element again is a tree but :

e the tree may have infinite branches. Infinite branches may be seen as
“streams ‘.

e its leaves may be unfilled.

a € dom(e) and ¢f = e(a) means that the cell of address a is filled with the
constructor ¢f. An unfilled cell a (i.e. a € Acc(e) — dom(e)) corresponds to
a lack of information for the content of the cell. The correspondence with,
in particular, [2] is the following : I call here accessible (respectively unfilled)
what they call enabled (respectively accessible).

3. a is maximal in e if it is accessible in e and either « is unfilled in e or it is
filled with a terminal constructor.

4. In the data type of integers the elements are the following (I will write : 1° = ¢
and 1¥ =[1, ..., 1]).
W—/
(3
e S™(0) stands for : {(1%,S) /0<i<n}uU{(1%,0)}.

e S"(L) stands for : {(1¢,S) / 0 <i < n}. Note that here the address 1"
is accessible.

e S¥ stands for : {(1%,5) /0 <i}.

5. In the data type of lists of type N, the lists e = [0,1], e1 = [0,0,...] (the
infinite list) and e; = cons(0, L), are given in figure 3. In e, the address [2]
is accessible but [2] ¢ dom(ez) and is, as usual, labelled by L .

accessible addresses corresponding constructors
€ 2] 2,2] | cons | cons | nil |
€o 1] | [2,1] 0 S
[2,1,1] 0
. € 2 |.-] 2,52 | .. cons | cons | ... | cons
YT T2 2,0 | 0 0 [..] o
e [[2]] cons | |
- 1 0
fig. 3

Definition 4 1. Let ¥ = {z, / x is a letter and a is an address}. The elements
of ¥ are called tokens.

2. A word is a finite (possibly empty) or infinite sequence of tokens. The set of
words is thus W = X* U X¥. The empty word is denoted by ().

3. Let u,u’ be words. u < u' means that v is a prefix of v’ and u 1 p denotes,
for p < lg(u), the prefix of u of length p.

4. u+ u' is the result of concatenating u' at the end of u. When u is infinite,
this is just u again. More generally, if (ur) is a (finite or infinite) sequence
of words ug + uy + ... will be denoted by > uy.

Abbreviation In this paper, when x corresponds to an element of IV, I will write
x; instead of zq:.

Definition 5 1. A trace over the data type D is a pair (e, \) where e is an
element of D and X\ is a labelling function A : Acc(e) — W such that : Va €
dom(e), A(a) € X*.

2. A trace (e, \) is finite if e is finite and all labels are finite, i.e. rge(\) C L*.

3. The ordering on traces is given by : (e,A) < (e/,\) iff e < € and Va €
Acc(e) AM(a) < N(a) and Ya € dom(e) A(a) = N (a).

4. The set of traces over D is denoted by T(D). A trace is a trace over some data
type. The set of traces is denoted by T.

5. The set of finite traces over D is denoted by Tr(D). The set of finite traces is
denoted by TY.

6. Let e be an element of D and x be a letter. The trace (e, \) where M\(a) = x4
for all a € Acc(e) will be denoted as e[x]. A trace as e[x] is called an element
named .

7. Let t = (e, \) be a trace. e is called the value of ¢t and is denoted by Val(t). A
is called the labelling of t and is denoted by lab(t).

Comment and notations

1. The labelling of a cell intuitively codes the part of the computation that has
been made to get the content of this cell. This computation has to be finite if
the constructor is eventually found (i.e. if the cell is filled). Otherwise it may
be infinite.

2. Let t = (e, \) be a trace. By extending the function e for a € Acc(e) —dom(e)
by e(a) = L one may consider that a trace is a tree whose nodes are labelled
by a pair : the first element is either a constructor or L and the second element
is a word. A trace ¢ has thus one of the two shapes.

(a) A single accessible address (the empty sequence) which is unfilled and
labelled with the word w € W. This will be denoted as : t = (L, w).

(b) A tree whose root is (¢,w), where ¢ is an n-ary constructor, w € X*
and each of the n branches is another tree. This will be denoted as :

t = ((¢,w) t1,..., tp). This case has a degenerate situation when ¢ is
terminal. Then, the only accessible address is ¢ and we simply write :
t = (c,w).

3. The named elements of N are (since the tree has only one branch, I do not
write the ”(” and ”)”) :

S™M0)[z] = (S, 20)(S, x1)...(S, £pn—1)(0, xy,).
S™(L)[z] = (S,20)(S,z1)...(S, xpn—1)(L,)
S¥[z] = (S,20)(S,z1)...(S, Zp)...
4. Let t = (e, \) be a trace. Acc(t) will denote Acc(e).
5. We often will have to ”choose fresh letters” and for that it could be useful to
ensure that the alphabet (i.e. the set of letters occurring in the tokens) of a

trace is finite. Since this introduces only inessential problems, I will not care
here about this.

Proposition 6 T'(D) with its ordering forms a domain. In particular :

1. Every trace is a least upper bound (denoted by Sup) of an increasing sequence
of finite traces.

2. Every increasing sequence has a Sup.

Proof. Immediate. m

A primitive recursive definition f induces a function on the domain associated to
the corresponding data type. The proposition 9 shows that it also induces a function

(denoted by [[f]]) on the corresponding traces. It is the study of this function that
will allow to understand the intensional behaviour of f.

Definition 7 Let t = (e, \) be a trace and w be a finite word. w + t is the trace

A) be a
(e, N') defined by : N(e) =w+ Ae) and N (a) = X(a) for a #e¢.

Comment and examples
w + t is obtained by prepending w to the word at the root of ¢t. yo + S(0)[z] =
(S, 90 o) (0, 1)

Definition 8 Let f be a function from T™ to T.

1. fis increasing if for all t; <t, f(t1, ..., tx) < f(8h, s).

2. fis continuous if it is increasing and preserves the Sup of increasing sequences.

Proposition 9 Every prc f from Dy X ... X Dy, to D induces (in a unique way) a
continuous function (denoted by [[f]]) from T (D) x ...xT(D,,) to T(D) such that :

o If f is the i-th projection then [[f]](t1, ..., tn) =t
o If fis the n-ary constructor cf then [[f]](t1, ..., tn) = ((cf,0) t1, ..., tn)

o If f=g(he, ..., hi) then [[fl](tx, ..., tn) = [[g]l(r1, -.o7%)
where 7; = [[h;]](t1, ..., tn)

e If fis defined by recursion then [[f]|(t, 3") =

- (L,w) if t = (L,w).
[

—w + [[M](T1, ooy Tms 71y ey Tp, &) if t = ((cfw) 11, oy TpY, T} =
[f](rj, 8) and the recursive equation concerning the constructor cf is

flef@ryoymy), T) = h(Ff (@1, T, oor [(@rny T)5 T1y ey Tpy T)-

Proof. First note that, when f is defined by recursion, the case t = (¢, w) is
a degenerate special instance of the second clause. [[f]] is defined by induction on
f. The only non-trivial case is when f is defined by recursion. It is clear that the
desired property defines [[f]] (by induction on the size of Val(t)) on Ty x T"~* and
that (on Ty x T™71) [[f]] is continuous. Otherwise, define [[f]](t, 8") as follows :
Let (1) be an increasing sequence of finite traces such that ¢ = Sup 7. Since the
sequence [[f]](rx,) is increasing we may define [[f]](¢, 5") as Sup [[f]](7k, 5)- It
is easy to check, because [[f]] is increasing on Ty x T™~!, that this definition does
not depend on the chosen sequence and that [[f]] satisfies the desired properties.
The uniqueness for T (and thus, by continuity, for T') is clear. m

Examples

([add]](S(0)[], S°[y]) = wo + [[S]]([[add]]((0, 21), 5*[y]))
= o+ (5,0) [[add]]((0, 1), 5“[y])
= (5,20) [[add]]((0,21), S*[y])

(S, o) (z1 + S“[y])
(S, w0) (S,7190) (S, 1) (S, z)"'
o + (S, 0) [[add]])((0, 1), S*(L)[y])
= (S,%0) (z1 + S*(L)[y])

(S,w0) (S, 190) (S;y1) (L,9y2)
Yo + (S,0) [[add]]((S,y1) (L,y2),S(0)[z]
= (S,v0) y1 + (S, 0)[[add]]((L,y2), S(0)[])
= (S,90) (S;y1) (L,92)

L ([add]))(S(0)[z], S*(L)[y])

([add]}(S*(L)[y], S(0)[x])

2. The "usual” algorithm for the function inf is defined by :
pred(0) = 0 and pred(Sn) = n.
dif (0,m) = m and dif (Sn,m) = pred(dif (n,m))
test(0,p, q) = p and test(Sn,p,q) =q
inf (n,m) = test(dif (n,m), m,n)
Claim [[inf]](S*[2], S¥[y]) = (J—:kz>:0$k)-

Proof. The following facts are easily verified :
- [[pred]](L,w) = (L, w). [[pred]](0,w) = (0,w). [[pred]]((S,w)) = w +¢
- [dif J((L, w), ') = (L, w). [[difJ((0,w),t") = w + ¢ [dif J((S,w) t,t') =
w + [[pred]|([[dif](t,1"))
- [[dif1](S™(L)[z], S¥[y]) = (L, > xp) (immediate induction)
k<n
- [[dif 1)(5*[x], S*[y]) = (l,k;)xk) (by continuity)
- [N(S2 [, S4I]) = [itestll (L, X we), 2L, S¥Ty]) = (L, ¥ wp)-
k>0 k>0

3. Colson introduces (see [4]) an algorithm, called inf_with_lists, to compute the
inf of two integers in time inf(n,m)?. This algorithm is defined as follows :
incr(nil) = nil and incr(cons(n,l)) = cons(Sn,incr(l)).
L(0) = nil and L(Sn) = cons(0,incr(L(n)).
v(n,m,p,q) = test(dif (m,n),p,q)
h(nil,m) = 0 and h(cons(n,l),m) =v(n,m,S h(l,m),0)
inf _with lists(n,m) = h(L(n), m)
Claim [[inf -with lists]](S“[z], S“[y]) = (L, > wy) where wy, =z + > ;.

k>0 i<k

Proof. Let a; = [2,...,2] and b;p = [2,...,2,1,...,1]. The result follows easily
from the following fz;cts.

L(5™(0)) =[0,5(0), ..., $™(0)].

L(S™(0)[z]) = (L(S™(0), An) where A\, (a;) = ; for i < n and \y(b;p) = 0
for i <mn and p <.

4. I introduced another algorithm Good_inf (see [9]), also using lists, that com-
putes the inf of two integers in time O(inf). This algorithm satisfies :

[[Good_inf]](S¥[z], S*[y]) = (L, kgowk) where wy, =z, + -gkxi + '<22:kyi

Definition 10 Let t = (e, \) be a trace.

1. An addressing branch for t is a mazimal path through the tree representing t,
i.e. it is either a mazimal address in t or a function a from N to N* (the set
of positive integers) such that for every m, a tm € dom(e).

2. Let a be an addressing branch for t. Br(t,a) is the word built by concatenating
the labels along the path, i.e. Br(t,a) = Y, Ma71k).
k<ig(a)

3. A branch in t is a word of the form Br(t,a) for some addressing branch a.

Examples

1. A trace over N has only one branch. For example the branch of S¥[z] is) xy.
k>0

2. Let t be the list [0, 50,5S50,....]. The branches of t[z] are :

e For each k, the branch wy, corresponding to the k-th element of the list :
Wg = Y, &q, + > b, , Where a; = [2,2,...,2] and b ; = [2,2,...,2,1,..., 1]
i<k i<k —_— Hk,_/ N

i i

e The branch corresponding to the list itself : w = Y x,,
i>0

In the proofs of theorem 13 and 16, I will need the following notion of limit.

Definition 11 1. Let (wy,) be a sequence of words. I will write w = Lim (w,)
if the following holds : ¥p Ang Yn > no w T p = wy, T p.

2. Let (t,) be a sequence of traces. I will write t = Lim (t,,) if :
(a) For each n, Val(t,) = Val(t).
(b) For each branch b of t, Lim(Br(t,,b)) = Br(t,b).
Remark

1. Note that, for the limit of traces, the first condition is very strong and, in
particular, t = Sup t,, does not imply ¢t = Lim(t,) : the second condition is
satisfied but the first one is not. It would be easy to define a weaker notion
of limit to ensure that ¢ = Sup t,, implies t = Lim(t,,) but I don’t need it in
this paper.

2. In the definition of the limit of a sequence of traces, the convergence actually
is uniform with respect to the branches : ng depends only on p and does not
depend on the chosen branch. This simply comes from the fact that, for a
given length, ¢ has only a finite number of nodes.

2.3 The ultimate obstination

In this subsection I am only concerned with the data type N. Recall I write z;
instead of z:.

Definition 12 1. Let t be a trace. A letter x is unbounded (respectively bounded)
in t if {j / xj occurs in the branch of t} is infinite (respectively finite).
2. A trace over N is ultimately obstinate if it has at most one unbounded letter.

Examples

Every named element over N is ultimately obstinate but (L, Y xj yi) is not.
k>0

Theorem 13 Let f be a prc and tq,..., t, be ultimately obstinate traces. Then
[[fN(t1, ..., tn) also is ultimately obstinate.

Corollary 14 1. Let f be a prc and ty, ..., t,, be named elements. Then [[f]](t1,

vy tn) is ultimately obstinate.

2. There is no prc f such that [[f]](S¥[z], S“[y]) = (L,w+ > xp yr) where w
k>n
is a finite word.

The clause (2) of the corollary means that there is no way to make a computation
which wltimately alternates between two arguments.

10

2.4 The backtracking property

In this subsection we come back to the general case with all possible data types. The
ultimate obstination intuitively means that, in a computation, at most one infinite
argument may be used entirely. The backtracking property intuitively means that,
among the infinite branches of all the arguments at most one may be memorized.

Definition 15 1. Let w be a word, a be a function from N to N* and z be a
letter.

e 1 is a-unbounded (respectively a-bounded) in w if {n | xqrn occurs in w}
is infinite (respectively finite).

e 1 is a-backtracking (abbreviated as a-BT) in w if for every n large enough,
Zatn occurs infinitely many times in w.

e (z,a) is a BT-counterexample for w if x is a-unbounded but not a-BT in
w.

e w has the backtracking property (abbreviated as BTP) if there is at most
one BT-counterezample for w.

2. Let t be a trace. t has the BTP if every branch in t has the BTP.
Comment and examples

1. z is unbounded in the sense of the definition 12 is the particular case of being
a-unbounded with a = 1¢.

2. Every named element has the BTP.

In the examples 3 and 4 below, I again write z,, instead of z1x.

3. Let w = Y 2t yx - Then, w has not the BTP because (z,1¥) and (y, 1¥) are
k>0
BT-counterexamples.

4. Let w =) wy where wy, = x Yo y1..- Yr - Then, w has the BTP because
£>0
(z,1%) is the only BT-counterexample.

5. Let w = Y x,, mp, where a = 1¥ and b, = 2¥ (w could be a computation
k>0
using as argument e[z] where e is the list [S“,0,0,...,0,...]. Note that e has
two infinite branches). Since (z,1%) and (z,2%) are BT-counterexamples, w
has not the BTP .

Theorem 16 Let f be a prc and ty,..., t, be traces that have the BTP. Then
[[f1](t1, ..., tn) has the BTP.

Corollary 17 1. Let f be a prc and ty, ..., t, be named elements. Then [[f]](t1,

wety ty) has the BTP.
2. There is no pre such that [[f]1](S“[z], (S¥“[y]) = (L, w + >z yi) where w is

k>n
a finite word.

11

3 Some useful properties of traces

In this section, I prove that various properties of traces are preserved by [[f]] for
every prc f. This is used in sections 4 and 5. I also prove the following key property
(see theorem 34) : To compute [[f]]() it is enough to compute [[f]](e[z]) where z
is a fresh letter and e = Val(t) and then substitute in the result each z, by A(a)
where A is the labelling function of ¢. This implies, in particular, that, in the proofs
of theorems 13 and 16, we may assume that the arguments are named elements.

3.1 Finiteness

Proposition 18 Let f be a prc and ty, ..., t, be finite traces. Then [[f]](t1, ..., tn)
also is finite.

Proof. By an immediate induction on f and, when f is defined by recursion,
by induction on the first argument. m

3.2 Restrictions

The notion of restriction as defined below plays somehow the role of sequentiality
index of [3].

Definition 19 1. Let w be a word. w | x, = w if T, does not occur in w and
otherwise w' + x, where w' is the longest prefiz of w that does not contain an
occurrence of x,.

2. Let t be a trace. t | x, is defined by : (L,w) |z, = (L,w | z,).
((c,w) t1.-tn) wo = (L,w | my) if xo occurs in w and otherwise {(c,w) t1 |
Zay -y ln J/ $a>‘

Comment and examples

1. w | z, is the word obtained by truncating w after the first occurrence (if any)
of 4. t | x, is the trace obtained by truncating each branch at the first node
where x, occurs.

2. S¥[x] L xp = S™(L)[x].

Lemma 20 1. Let w be a word and t be a trace. Then (w+t) | z, = (L,w | z,)
if o occurs in w and w+ (t | x,) otherwise.

2. Let (tx) be an increasing sequence of traces. Then Sup (tg) | xo = Sup (t |
Zq)-

Proof. Immediate. m

Proposition 21 Let f be a pre, x be a letter, a be an address and ty, ..., t, be traces.

Then [[f]](tla"'a tn) Lo = [[.f]](tl $Ta, ooy tn era)

Proof. By induction on f. The only non-trivial case is when f is defined by
recursion. For the simplicity of notations let ¢ be the first argument and 5 be the
sequence of parameters.

1. When Val(t) is finite, the result is proved by induction on Val(t). For ¢ =
(L, w) the result is clear. Otherwise it follows immediately from the induction
hypothesis and lemma 20 (1).

12

2. Otherwise, the result follows by continuity (use the lemma 20 (2)) : Let (rg)
be an increasing sequence of finite traces such that ¢ = Sup ri. Then :

(At L za, 5 L2a) [[F1(Sup(ri) L T, F | 7a)

]
%(’I“k, ?) { xa)

3.3 Regularity

The regularity intuitively means that, in a computation, a cell may not be accessed
before the previous cells have been accessed.

Definition 22 1. Let w be a word. A letter x is regular in w if for all addresses
a < a' such that x4 occurs in w, T, also occurs in w and the first occurrence
of xq is earlier than the first occurrence of x4 .

2. Let t be a trace. A letter is regular in t if it is reqular in each branch of t.

3. A word w (respectively a trace t) is regular if every letter is regular in w
(respectively in t).

Comment and examples

e Regularity is called safety in [2].

e 7 is regular in e[z] for every element e. x is not regular neither in x; #. nor
m e x[l,l] .

Proposition 23 A letter z is regular in a trace t iff it is regular in each finite
approzximation of t, i.e. in each finite t' < t.

Proof. Immediate. m
Proposition 24 Let f be a prc and ty, ..., t, be traces.

1. Assume that a letter x is reqular in each of the t;, then x also is regular in

2. Assume that each of the t; is regular, then [[f]](t1, ..., tn) also is regular.

Proof. (2) follows immediately from (1) which is proved by induction on f. By
proposition 23 and the continuity of [[f]], it is enough to prove the result for finite
traces. The only non-trivial case is when f is defined by recursion. For the simplicity
of notations let ¢ be the first argument and 5 be the sequence of parameters. The
result is proved by induction on the size of Val(t).

If t = (L,w) the result is clear. Otherwise, let t = ((c,w) r1...7,). [[f]](t,) =
w+ [[MN1, 35 oo [Py 7,715 -y Tp, 5). We cannot use immediately the
induction hypothesis because x is not necessarily regular in rq, ..., r,,. For example
S¥[z] = ((S,z0) 1) and z is not regular in r; = ((S,z1) ...). We thus have to
change the name of x and make a "lift” on the addresses to make the r; regular.
Let y, z be fresh letters. Get &' from & by replacing =, by y, for each a.

For j € [1, ..., m], get r} from r; in the following way : Assume z, occurs in
r; and lg(a) > ¢ where ¢ is the largest number such that x44+4 occurs in w, then
replace x, by 2z, where a’ = [a(g), ..., a(lg(a) — 1)].

13

It is clear that y and z are regular in ', r{,....r" . By induction hypoth-

R
esis (since Val(r;) < Val(t)) y and z are regular in t; = [[f]](r;,?’) for j €
[1, ..., m]. Thus, by induction hypothesis, z, y and z are regular in [[h]](¢}, ..., t,,,
T1,...,Tp,). It is then easy to check (by replacing the letters the other way round,
i.e. by replacing y, by 7, and z, by) that z is regular in [[f]](¢,).

Note that the induction hypothesis has been used with a simultaneous substi-
tution of several letters and the proposition is stated ... only for one letter. The

general case is of course the same but the notations would be more complicated. m

3.4 Compatibility

When t represents a computation, x is compatible with s means that ¢ may be seen
as a computation using an argument e[xz] where e = Val(s), i.e. the "use” of z in ¢
is compatible with e. The intuition for the clause (3) in the definition below is the
following : if an address a is unfilled in s (this means a lack of information) and the
information at this address is needed in a computation (this means that x, occurs),
then the computation has to stop.

Definition 25 Let s, t be traces. A letter x is compatible with s in t if

1. x is regular in t.
2. If ©, occurs in t (i.e. x, occurs in some branch of t), then a € Acc(s).
3. If a is unfilled in s, thent =1t | x,.

Comment and examples

1. Note that z is compatible with s in ¢ iff the following conditions are satisfied
for every branch w = Br(t,b) :

e z is regular in w

e If z, occurs in w, then a € Acc(s).

e If z, occurs in w then b is finite (and thus b € Acc(t)), unfilled in ¢ and
x, occurs only in w as the final token of A(b) (where A = lab(t)).

2. Let t = (e,). Then x is compatible with ¢ in e[z].

3. Let t = (1, > zx). Then =z compatible with (S“,A) in ¢ but = is not com-
k>0
patible with (S™(0), A) in ¢ for any n.

4. x is not compatible with s = (0,) in ¢ = (L, . x[1)) because [1] ¢ Acc(s). z
is not compatible with s = (S(L),A) neither in ¢ = (0, 2. x[)) nor in ¢’ = (L
, L0 T[1] .7,'[1]) because t # t | xp) and t' £t | xp)-

Proposition 26 Let e be an element, A1 and Ay be labelling functions for e. A
letter x is compatible with (e, A1) in t iff x is compatible with (e, A2) in t.

Proof. Immediate. m

Proposition 27 1. x is compatible with s in t iff © is compatible with s in every
finite approximation of t.

2. Let (tr,), (sr) be increasing sequences of traces. Lett = Sup t and s = Sup sy.
Assume that, for each k, z is compatible with sy in t,. Then x is compatible
with s in t.

14

Proof. (1) is immediate. (2) Let w = Br(t,b) be a branch in t and b, =
Sup{b' /b < band b € Acc(tr)}. It is clear that by is an addressing branch in #
and w = Sup wy, where wy = Br(ty,br). The regularity of each letter in w follows
immediately. Assume z, occurs in w. Then, for some k, it occurs in wy. Thus a is
accessible in s, and then in s. Assume that a is unfilled in s. Then, for some ko, a
is unfilled in sy, for each k > kg. Since z is compatible with s in tg, tr = tp L x4 .
Thus, by lemma 20, t =1t] z,. m

Proposition 28 Assume x is compatible with s in each of the ty, ..., t, and fis a
pre. Then x is compatible with s in [[f]](t1, ..., tn).

Proof. By induction on f. The only non-trivial case is when f is defined by
recursion. For the simplicity of notations let ¢ be the first argument and 7’ be the
sequence of parameters. The regularity of « has been proved in proposition 24. The
other conditions are proved as follows.

1. Assume first ¢ is finite. The clauses (2) and (3) in definition 25 are proved by
induction on Val(t).

For t = (L, w), this is clear. Otherwise, assume ¢t = ((¢,w) r1,...,7p). Then

(71t 7) = w + (RN, 2 s [N, Py 1157,).

e Assume x, occurs in w. Since z is compatible with s in ¢, clearly a €
Acc(s). The cell @ may not be unfilled in s, because otherwise clause
(3) in definition 25 (for the compatibility of z with s in ¢) would imply
t=(L,w).

e Otherwise the result follows immediately from the induction hypothesis
and proposition 21.

2. Otherwise, the result follows from proposition 27 and the continuity of [[f]]. m

Corollary 29 For each i, x* is compatible with e;[z?] in [f]](e1][z!], ..., en[z"])-

3.5 Substitutions

The notion of composition is crucial when functions are studied but, usually, only
the results are, in some sense, composed. The notion of traces allows to compose
also the computations. The precise meaning of this is given in theorem 34 which,
as already mentionned, is the key point of this section. It needs the notion of
substitutions.

Definition 30 Let t be a trace, (s;) = (e, \i) be a sequence of traces and (z') be a
sequence of distinct letters. Assume that, for each i, x* is compatible with s; in t.
Then t[x' := s;/i = 1,...,n] is the trace obtained by simultaneously replacing each
(%) o by Xi(a) in all the words \(c) for ¢ € Acc(t).

Comment and examples

1. Note that, to be able to make substitutions, the clause (2) in the definition of
compatibility would be enough but, since in the sections 4 and 5, I will make
substitutions only when the other clauses are also satisfied I consider only this
restrictive situation.

2. I may define in the same way w[z’ := s;/i = 1,...,n] if w is a branch of a
trace.

3. Let t = (e, A). Then t = e[z][z :=t].

15

Proposition 31 Let x be compatible with s in t.
1. Val(t[z := s]) = Val(t).

2. b is an addressing branch for t iff b is an addressing branch for t[z = s].
Moreover Br(t[z := s],b) = Br(t,b)[z := 5]

Proof. Immediate. m

Proposition 32 Let (i), (si) be increasing sequence of traces. Let t = Sup ty,
and s = Sup si. Assume that, for each k, x is compatible with s in ty. Then
tlx == s] = Sup tx[z := sg].

Proof. Remember that, by proposition 27, x is compatible with s in ¢. Assume
a € Acc(ty,). I must prove that A\y,.—g(a) = Sup{Ay,s:i=s,)(@) / k > ko}. It is
clearly enough to prove that, for k > ko, if z, occurs in A, (a) and z;, is not the
final token in A, (a), then A, (b) = As(b). The cell bis filled in s because otherwise,
since z is compatible with s, in ¢y, 2, would be the final token in Ay, (a) and thus
the result follows from the definition of the ordering on traces. m

Proposition 33 Let r, s, t be traces. Assume x is compatible with s in t. Then
1. If y is regular both in t and s, then y is regular in t[x := s].
2. If y is compatible with r both in t and s, then y is compatible with r in t[z := s].

Proof.

(1) Let ¢’ = t[z := s]. Let b be an addressing branch for ¢, u = Br(¢,b) and
u' = Br(t',b). Let a < ¢ and assume y, occurs in u’. When the least occurrence of
Yo comes from u the result is clear. Otherwise, it comes from the substitution of
some z, by A(a’) where A\ = lab(s). Since y is regular in s, y, occurs in A(b') for
some b’ < a'. Since z is regular in u, xp occurs in u before z, and so y, occurs in
u' before y..

(2) The regularity of y is proved in (1). Assume y, occurs in ¢'. Then it comes
either from ¢ or from the substitution of some z.. Since y is compatible with r
both in s and ¢, a is accessible in s. Assume finally that a is unfilled in r. Thus,
t=t]y, and s = s | y,. By proposition 32 and lemma 20 it is enough to prove
that ¢’ =t' | y, for finite ¢. This is proved by induction on Val(t).

e t =(L,w). Then t' = (L, w[z := 9]).

— Assume y, does not occur in w[z := s]. The result is clear.

— Assume the least occurrence of y, in w[z := s] comes from w. Since
t=1]yq, w=wly, and the result follows.

— Assume the least occurrence of y, in w[z := s] comes from the substi-
tution of x, by As(b). Since y is compatible with r in s, b is unfilled in
s. Since x is compatible with s in t,w = w | xp and again the result
follows.

o t = ((c,w) t1, ..., t). Then t' = ((c,w[z := s]) ti[x := 5], ..., tu[z = s]).
Claim : y, does not occur in w[z := s]. Proof : Since t = t | y,, yo does
not occur in w. Let b be an address and assume z;, occurs in w. Then y, does
not occur in Ag(b) : Otherwise, since y is compatible with r in s, b would be
unfilled in s. Since x is compatible with s in ¢, this contradicts the fact that
¢ is filled in t. End of proof.

Thus t' | yo = ((c,w[z := 3s]) t1[z := 5] | Ya, .-y tu[z := s] | ya). The result
follows then from the induction hypothesis. m

16

Theorem 34 Let f be a pre, t1, ..., t, be traces and, for each i, let r; be the named
element (with the fresh name x') such that Val(t;) = Val(r;). Then x' is compatible

11uith t;]m N1, oy o) and [fll(t1, .oy tn) = [f](r1, -, ro)[@t =t /i =

Proof. The compatibility comes from corollary 29. The second point is proved
by induction on f. The only non-trivial case is when f is defined by recursion.
When Val(t) is finite, this is done by an immediate induction on its size. Otherwise,
this follows by continuity (cf. proposition 32). m

3.6 Some other results

The results in this subsection are not used in sections 4 and 5 and may be skipped.
For the same reason, I do not give a proof of propositions 38, 40 and 41. These
proofs are very similar to the ones in the previous subsections.

Proposition 36 is the basic tool in [11] to study the intensional properties of
algorithms. Propositions 38 and 40 show that other properties of traces can be
considered.

3.6.1 Intensionality

In the next definition and proposition I assume that the type of f and g are N* =+ N
but they may use other auxiliary data types in their definition.

Definition 35 The prc f and g are (strongly) intensionally equivalent iff
[(FS™ (L[], ..y S™(L)[2%]) = [[g]l(S™ (L)[2'], .., S™(L)[z*]) for every se-

quence ny, ..., ng of integers and distinct letters x*, ...,z

Proposition 36 The prc f and g are (strongly) intensionally equivalent iff
[(F(S“[at], ..., S@[a*]) = [[g](S“[2"], ..., S¥[2*]).

Proof. (if) This follows from the fact that S¥[z] | z, = S™(L)[z] and propo-
sition 21. (only if) This follows from the fact that S“[z] = Sup S™(L)[z] and the
continuity of [[f]] and [[g]]. m

3.6.2 Normal traces

The “useful“ traces (i.e. the image by some prc of named elements) have additional
properties. Here are two examples :

e Let t = (e, A). For a € Acc(e) — dom(e), the word A(a) is non-empty. This
means that, if the algorithm cannot find the content of the node a in e, this
is only because of a lack of information on some input and thus A(a) must
contain some z, where b is an unfilled cell in some argument.

e A computation may not be infinite if, intuitively speaking, it does not examine
”from time to time” some cells.

The next definition formalizes these properties and proposition 38 states the
desired result.

Definition 37 Let T* be the set of normal traces t = (e,), i.e. such that for all
addresses a:

1. If a is unfilled in t, then A(a) is non-empty.

17

2. If a is an infinite addressing branch for t, then there are infinitely many places
along a at which the word is non-empty, i.e. the set {n / A(a T n) is non-
empty} is infinite.

Comment and examples

Note that a trace may have infinitely many cells a such that A(a) = 0. For
example, define double by : double(0) = 0 and double(Sx) = SSdouble(x). It is
easy to check that [[double]](S¥[z]) = (S,20)(S,0)(S, z1)(S, 0)(S,z2)(S,0)

Proposition 38 Let f be a prc and t1, ..., t, be in T*. Then, [[f]](t1,..., tn) € T*.

3.6.3 Index of sequentiality

Using the traces, there is no need to express the sequentiality in the usual way, since
the trace itself codes, in some sense, the sequentiality. This can however be done.

Definition 39 Let f be a prc and tj; = (ej, \;) be normal traces. Assume the address
a is unfilled in (e, \) = [[f]](t1, ..., tn) and A(a) is finite. A pair (i, b) is an index
of sequentiality of (e, \) at the address a if

1. b is unfilled in t;.
2. The final token of A(a) is the final token of A;(D).

3. For all sequences of normal traces t; = (e}, \}) such that, for each j, t; > t;
and letting (e', X') = [[f]](¢], -, t)) -

(a) Assume X;(b) > X;(b). Then X(a) > A(a).
(b) Assume Xj(b) = A;(b). Then X' (a) = A(a).

Proposition 40 Let f be a prc and ty,..., t, be in T*. Assume a is unfilled in
(e, N) = [[f1I(t1, -, tn) and A(a) is finite. Then, there is an index of sequentiality
for (e, \) at the address a.

3.6.4 A stronger notion of continuity

The next proposition shows that [[f]] is continuous in a stronger sense than pre-
serving the Sup : it also preserves the limit.

Proposition 41 Let f be a prc and (tL), ..., (t¥) be sequences of traces. Assume
that Lim(t}) = tifor i = 1, ..., k. Then Lim([[f]](t}, ..., t5)) = [[fII(t}, ..., t*).

4 The ultimate obstination theorem

This section is devoted to the proof of theorem 13 and its consequences in terms of
complexity (theorems 48 and 49). Recall that the only data type to be used is N
and that, in this case, x: is written for simplicity x;. Also recall that a trace t over
N has only one branch that I denote by Br(t).

In this section I allow the use of mutual recursion in the definition of a pre.
The extension of the definitions and the properties given in section 2 and 3 are
immediate.

The proof of theorem 13 is by induction on f. The only non-trivial case is when
f is defined by recursion. The idea is the following : Let r = S“[z] = ((S, zo) 1)
and t = [[f]](r, @) = zo + [[h]](r1,t1, &) where t; = [[f]](r1,). Let s = xp +
[[h]](r1,ely], @) where e = Val(t;). By theorem 34, t = s[y := #;]. Since r; is the
same as r where z is lifted (i.e. x; is replaced by x;41), 1 is the same as ¢t where z

18

is lifted. By the induction hypothesis s is ultimately obstinate. The difficult case is
when the (unique) unbounded letter in s is y. Since the other letters are used in ¢
and ¢, in the same way, it is not difficult to show that the only possibly unbounded
letter is x. Proposition 45 makes this argument precise.

4.1 Some preliminary results

Propositions 43 and 44 show that the ultimate obstination is preserved by substi-
tution.

Definition 42 Let ¢ be a trace.

1. t finishes with the letter x if the final token (if any) of Br(t) is some wy.

2. t(x + k) is the trace obtained from t by replacing, in the labelling of t, x; by
Zj+k for each j.

Comment and examples

Let t = S¥[z], then t = ((S, zo) t(x+1)). Note that, for all traces, Val(t(z+n)) =
Val(t).

Proposition 43 Let t and s be traces and z be a letter. Assume that :

1. x is compatible with s in t.
2. x is bounded in t and t does not finish with w.

3. tis ultimately obstinate.

Then t[z := s| also is ultimately obstinate.

Proof. Since z is bounded in ¢, the tokens introduced by the substitution come
from the finite set of words {As(c) / @, occurs in Br(t)}. But As(c) may be infinite
only if ¢ is unfilled in s. Since z is compatible with s and ¢ does not finish with z,
if . occurs in Br(t), ¢ may not be unfilled in s and thus A4(c) is finite. Thus, the
substitution introduces only a finite set of new tokens. m

Proposition 44 Let t, s be traces and z be a letter. Assume that :

1. x is compatible with s in t.

2. s and t are ultimately obstinate.

then t[z := s] also is ultimately obstinate.

Proof. By case analysis.

- Br(t) is finite and does not finish with z : By proposition 43.

- t finishes with & and Br(t[z := s]) is infinite : There is a final segment of Br(s)
which is a final segment of Br(t[x := s]) and the result follows from the fact that s
is ultimately obstinate.

- z is unbounded in ¢ : The other letters are bounded in ¢. So, the unbounded
letters in [z := s] come from s and thus there is at most one such letter since s is
ultimately obstinate.

- Otherwise : By proposition 43. m

Proposition 45 Let t, s be traces, z, y be letters and n be an integer. Assume that :

1. y does not occur in t.

19

2. y is compatible with t in s and t = s[y := t{x + n)].

3. the first token in Br(s) is xo.

Define the sequence (s;) by : so = s, si11 = si[y :=s(x +n(i + 1))]. Then
1. t = Lim (s;).

2. Assume moreover that s is ultimately obstinate. Then t also is ultimately ob-
stinate.

Proof. Since t = s[y := t(x + n)], by proposition 31, Val(t) = Val(s) and thus,
by proposition 26, the compatibility of y with ¢ and s are equivalent. Similarly, since
Val(t(z +n)) = Val(t) and Val(s(z + n)) = Val(s), the compatibility of y with ¢
and t(z + n) (respectively with s(z + n)) are equivalent.

Claim 1 For all i, Val(s;) = Val(s) = Val(t). The letter y is compatible with
s(x +n(i+ 1)) and ¢ in s;. In particular, the sequence (s;) is well-defined.

Proof By induction on i. Use proposition 33.
Claim 2 For all i, t = s;[y := t(z + n(i + 1))].

Proof By induction on ¢. The case ¢ = 0 is trivial . The case ¢ + 1 is given
below (where p = n(i + 1)).

siv1ly :==t{z +p+n)] sily = s(x + p)]ly :=t{x + p+n)]
= sily:=s(z+p)y = t{x +p+n)]] (%)
= sily = s(z +p)ly = t{x +n)(z + p)]|
= sily := sly = t(x + n)(z + p)]
= sy :=t{x +p)]
= ¢

(*) because the only occurrences of y in s;[y := s{z+p)] are coming from s(z+p).
Claim 3 The first token of Br(s{z + j)) is z;.

Proof Immediate.

Claim 4 For all i, k, if y does not occur in Br(s;) 1 k then Br(s;) 1k = Br(t) 1 k.
Proof Immediate from claim 2. Recall that w 1 k is the prefix of w of length p.

Proof of (1). By the claim 4, I have to prove that for each k, y does not occur
in Br(s;) 1 k for i large enough. This is done by an easy induction on k : since y
is regular in s; (because y is compatible with s;), the first occurrence of yo in s; is
substituted (to get s;y1) by an initial segment of s(z + n(i + 1)), i.e. a word whose
first token is @y (j41)-

Proof of (2).

- Assume every letter z # x,y is bounded in s. Let m be a bound for z in s. It
is easy to check, by induction on i, that z is also bounded by m in each s; and thus
also in t. Thus, the only letter that may be unbounded in ¢ is x.

- Assume some letter z # z,y is unbounded in s. Since s is ultimately obstinate,
y is bounded in s and (since it follows from the assumption that s is infinite) s does
not finish with y. The result follows then from proposition 43. m

20

4.2 Proof of theorem 13

By induction on f. The only non-trivial case is when f is defined by recursion.
By theorem 34 and proposition 44, I may assume that the arguments are named
elements. Let r be the recursive argument and & be the sequence of parameters.
For finite r, the result is easily proved by induction on its size. Assume then that
r = S¥[z] and let r; = r{z + 9).

For a better understanding, I first give the proof when mutual recursion is not
allowed and then, the general case.

(1) Assume the recursive equation for f is f(Sn, ™) = h(n, f(n,), 7). Then
t=[[fll(r, @) = zo +[[R]](r1, [[)(r1, T), T). Let s = o +[[1]](r1, e[y], T") where
e = Val([[f]](r1, 7)) and y is a fresh letter. Then, by theorem 34, t = s[y :=
[f]](r1, @)]- Clearly [[f]](r1, o) = t{x + 1) and thus t = s[y := t(z + 1)]. By
the induction hypothesis s is ultimately obstinate. The result follows then from
proposition 45.

(2) Assume fi,..., fr are defined by mutual recursion and f;(Sn,) = h;(n,
fitn, M), ..., fe(n,), m). Let v; = e;[z7] where e; = Val([[f;]](r1, 7)) and 2z
is a fresh letter. Let 7; = mo + [[hy]](r1, ¥, @) and t; = [[f;]](r, 7). By the
induction hypothesis, the 7; are ultimately obstinate. By theorem 34, t; = 7; [20:=
[[fill(r1,) /i =1, ..., k]. By proposition 43, the only cases where it is not clear
that ¢; is ultimately obstinate are those where 7; is infinite and the only unbounded
letter is one of the 2%, or when it is finite and it finishes by some z!. In such a case
say that f; recursively calls f;.

We have to prove that ¢; is ultimately obstinate.

(2.1) Assume first that f) recursively calls fi. Let p1 = 7 [2¢ := [[fi]](r1,) /i # 1].

Claim 5 p; is ultimately obstinate.

Proof Since f; recursively calls f; either 7y is infinite and then 22, ..., z* are

bounded in 74 or 7 is finite and does not finish with 22, ..., z*. In both cases the
result follows from proposition 43. (End of proof of claim 5)
Since t; = p1[z! := t1(z + 1)] the result follows from proposition 45.

(2.2) Assume f; recursively calls, say fo. Let p; = 1i[2' = [[fi]l(r1,) / i #
2]. By the same argument as in claim 5, p; is ultimately obstinate. Since t; =
p1[z® := t2(x + 1)] it is enough (by theorem 34 and proposition 44) to show that
to is ultimately obstinate. When f> recursively calls f,, the same argument as in (
2.1) gives the result. Otherwise, by repeating the argument, we get a cycle, say of
length n : f; recursively calls fa, ..., that recursively calls f,,, that recursively calls
fi1. The following claim finishes the proof.

Claim 6 For each j = 1, ..., n there is a trace s; using only the letters x, z/
and the letters in & such that the hypotheses of proposition 45 are satisfied with
t=[[fj]l(r, @), s =s; and y = 27.

Proof For the simplicity of notations, I assume that n = 2.

Since 7 is ultimately obstinate and f; recursively calls f», z* is bounded in 7y
and 71 does not finish with z!. Similarly for 5. Let p; = 71[21 := t1(z + 1)] and
p2 = 1[2? := t2(x +1)]. Then, 2% does not occur in p; and t; = py[2? := ta{x + 1)],
ty = po[z! := t1(x + 1)]. By proposition 43, p; and p, are ultimately obstinate. Let
51 = p1[2? = po(w + 1)] and sy = po[z! := pi{x + 1)]. It is clear that : s; and so
are ultimately obstinate (by proposition 44), the first token of s; is g, 2% does not
occur in t; , z' does not occur in s, 22 does not occur in s;, z* is compatible with
t; in s; (by proposition 33). Thus, it remains to show that t; = s1[2! 1= t;(z + 2)]
(the proof is similar for t5).

1

21

sizt =t (x +2)] = pi[2? = po 1)][,21 =ty (z + 2)]

P12 = pa D[z" =t (z +2)]] (%)
= p[z® =l = tl(fv + D)(z + 1)]

p1[z® = ta(x + 1)] because ta = p2(z! := t1(x + 1)]
= 4

(*) because 2! does not occur in p;. m

4.3 Complexity results

Definition 46 Let f be a prc. The computation time of f is the function defined
by : time(ny,...,ng) = Llg(Br([[f]](S™ (0)[z], ..., S™ (0)[z*]))) where z*, ...,z* are
distinct letters.

In [3] the computation time of f is defined as the number of reductions in call by
name strategy. It is not difficult to check that the time defined here is smaller than
the one in [3]. This is due to the fact that I only count the reductions corresponding
to redexes where the symbols S and 0 “come from“ the named arguments and not
those where these symbols are created by previous reductions. For example, assume
add is defined by : add(0,y) = y,add(Sz,y) = S add(z,y) and double is defined
by : double(0) = 0, double(Sz) = SSdouble(x). Let f(z,y) = add(double(z),y). It
is easy to check that the time function for f, as defined in [3], is (approximately)
time(n, p) = 2n + p whereas lg(Br([[f]}(S"(0)[z], S*(0)[y]))) = n + p.

However, to prove the complexity result for the inf function, [3] shows that the
time complexity is at least ... the time I defined here and thus, even though my
result seems to be stronger than Colson’s result, it is actually the same.

In order to prove theorems 48 and 49, I first need the following proposition. It
essentially says that if a cell is not used in the computation of f(e) and e and e’
coincide on the path up to this address then [[f]](e[z]) = [[f]](e'[z])-

Proposition 47 Let f be a pre, r = e[z],s = €'[z] and T bea sequence of elements
of N with names distinct from z. Assume j is accessible both in e and e¢'. Then

L0 T by = (NS (L)1a], T)
2. Assume x; does not occur in [[f]](r, T). Then (1] (r, T) = [[F11(s, T)

3. Assume zj O does not occur in Br([[f]](r, _t))) 1 p. Then Br([[f]](r, _t))) Tp=
Br([[f])(s,) 1 p.

Proof.

1. This follows immediately from proposition 21 and the fact that r | z; =

Sj(L)[a:].
zj = (IS (L)), T) = [IfllGs 4 2, F) =

p = {Br([fl(r,) L ;} tp = {Br([fl)(s, T)) 4 &;} 1

Theorem 48 There is no prc (even using mutual recursion) that computes the inf
of two integers in time a function of this inf. In particular there is no prc computing
the inf function in time O(inf).

Proof. Otherwise, assume f is a prc computing the inf function in time ¢(inf).
Let t = [[f]](S¥[z],S“[y]) and w be the branch of ¢. The letters z and y can-
not both be bounded in w : Otherwise, by proposition 47, for m,n large enough

22

[[f1(S™(0)[x], S™(0)[y]) = t and thus, f(S™(0),S™(0)) = Val(t). Hence f does not
compute the inf function.

Thus, by theorem 13, there is exactly one unbounded letter, say z, in w. Let n be
a bound for the indexes of y in w. Then (by proposition 47) [[f]](S¥[z], S™(0)[y]) =
t. Let m = maz{p(n), n}. Assume that the first occurrence of z,,+; is the p-th
token of w (since z is unbounded and regular in w, #p,+1 does occur in w). By
proposition 47, w 1 p — 1 = Br([[f]](S™(0)[z], S™(0)[y])) T p — 1. But the number
of tokens in w 1 p — 1 is at least m + 1 because « is regular in ¢ and thus xg, ..., T,
occur in w 1 p — 1. Thus the number of tokens in Br([[f]](S™(0)[z], S™(0)[y]))
is at least m + 1 and the time to compute f(S™(0),S™(0)) is larger than m, a
contradiction. m

Theorem 48 corresponds to a computation where the rewriting strategy is call
by name. The result remains true for any strategy, as the next theorem states (this
result also is in [3]).

Theorem 49 Let f be a prc computing the function inf. Let ¢ be any function.
Then, there are integers n and m such that the number of reductions made to get
the normal form of f(S™(0),S™(0)) (no matter which strategy is used) is larger
than ¢(inf(n,m)).

I only give a sketch of the proof. A complete proof would need a formaliza-
tion of the rewriting rules on terms, i.e. prc applied to arguments of the form
S™(0) or S™(L) and the fact that this rewriting satisfies the Church-Rosser prop-
erty. The idea of the proof is the following : The definition of [[f]] in proposition 9
has been made in correspondence with call by name strategy. It is possible to do
the same thing for any other strategy (call {f} the corresponding function) and to
show that the properties (in particular the preservation of regularity) of {f} are the
same as those of [[f]]. By using the same argument as in the proof of theorem 48,
the only additional point is the following : If z; occurs in [[f]](S™(0)[z], S™(0)[y])
then z; also occurs in {f}(S™(0)[z],S™(0)[y]). This is proved as follows. As-
sume x; occurs in [[f]](S™(0)[z], S™(0)[y]). By proposition 47 (since S™(0)[z] |
z; = S7(L)[z]), the final token in [[f]](S7(L)[z], S™(0)[y]) is z; and thus the nor-
mal form of f(S7(L),S"(0)) is S*(L) for some k. Assume z; does not occur in
{7}(S™(O)[z), S™(O)[y). Then {£}(5"(0)[z], S™(O)[y]) = {£}(S7(L[], S™(O)[y])
and the normal form of f(S7(L),S™(0)) should be S?(0) for some p. This contra-
dicts the Church-Rosser property. m

5 The backtracking property

This section is devoted to the proof of theorem 16.

5.1 The idea of the proof

The intuition is the following. It is basically, at least at the beginning, the same
as the proof of theorem 13. Let r = S“[z] and s = S¥[z]. I want to prove that
p = [[f]](r,s) has the BTP. Let r; be the subtree of r at the address i, i.e. r; =
(S,20) Tis1) = (S,2)(S, Big1) o

p = poly' = [[f]l(r1,s)] where pg = o + [[R]](r1,t1,5) and ¢; is the named
element with fresh name y' and value [[f]](r1,s). Repeat the same thing with
[(Fl(r1,8) = paly? = [[f])(r2;5)], - . We get p = pp_ay™ := [[f]](rn,s)] where
Pn_1 = po[y' := p1[y? := ...]...]. By the induction hypothesis p, has the BTP and
thus it remains to analyze the behaviour of the BTP with respect to the fact that
p = Sup py.

23

When the only data type was IV, the situation was very simple for two reasons.
(1) In N, a tree has only one branch and thus there is exactly one recursive call
(in the example above [[f]](r1, s)). In the general case the number of recursive calls
is variable and depends on the node of the tree. (2) In N, the recursive calls are
similar : [[f]](r1,s) = [[f]](r,s){z + 1). In the general case, there is, a priori, no
relations between successive recursive calls.

However, when all the data types are allowed, we can do basically the same
things and get p = pp[Y := the recursive calls at depth n in r]. By the induction
hypothesis p,, has the BTP. It remains then to analyze how the BTP is propagated
or created in p = Sup p,. This is the role of next subsection. The main point is
the following : If the letter z is unbounded in p and bounded in each p,, then it
must be backtracking in p. This is basically because the unboundedness comes from
always new copies of s and, since z is regular in p, if z; occurs and comes from a
new copy of s then all the z; for &' < k also occur and are new.

5.2 Some preliminary results

In this subsection I examine the behaviour of the backtracking with respect to sub-
stitution. Proposition 53 gives the main cases where backtracking is propagated by
substitution. Proposition 55 shows how a backtracking is created by a substitution
and 56 shows that the backtracking property is preserved by substitution.

We will have to use traces which are not regular. This problem, which already
arises in section 3 (see the proof of proposition 24), requires a more complete treat-
ment and a slight extension of regularity is needed.

Definition 50 Let t be a trace.

1. Let b be an address. A letter x is b-regular in a branch w of t if for all addresses
b<a<d,ifry occurs in w, then z, also occurs in w and the first occurrence
of x, is earlier than the first occurrence of x4 .

2. x is b-regular in t if it is b-reqular in each branch of t.

3. t is quasi-reqular if, for each letter x, each branch w of t and each function a
from N to N* there is an n such that x is a 1 n-reqular in w.

Comment and examples

1. z is regular in ¢ iff it is e-regular in t. Note that, if x is b-regular in ¢ and
b' > b, then z also is b’-regular in ¢.

2. Let e be an element of a data type and a € Acc(e). Let e,[z] be the subtree
of e[z] whose root is at the address a in e[z]. Then, if a # €, = is not regular
in ey[z] but it is a-regular.

3. We will have to do (see definition 59) simultaneous substitutions of a-regular
traces (for non-fixed a). This is the reason of the use of quasi-regularity.

4. If, for n > ng, z4tp does not occur in a branch w, then z is clearly a 1 ng-
regular in w. Thus, being quasi-regular is a condition only for the functions
a such that x is a-unbounded in w.

Proposition 51 1. Ifty, ..., t, are b-regular, then [[f]|(t1, ..., tn) is b-regular.

2. Assume x is compatible with s in t and y is b-reqular both in s and t. Then y
is b-regular in t[x = s].

Proof. As in section 3. m

24

Proposition 52 Let w be a word.

1. If z is a-BT in a subword w' of w (i.e. w' is obtained from w by deleting

some, possibly infinitely many, tokens), then z is a-BT in w.

2. w has the BTP iff there is a final segment of w that has the BTP.
Proof. Immediate. m

Proposition 53 Let r, t be traces such that x is compatible with r in t. Let w be
a branch in t, a be an addressing branch for r and c¢ be a function from N to N*.
Assume that :

1. FEither z is a-unbounded in w and y is ¢-BT in Br(r,a)

2. Orzis a-BT in w and y is c-unbounded in Br(r,a).

Then y is ¢-BT in wlz :=r].
Proof.

1. Since z is regular and a-unbounded in w, Br(r,a) is a subword of w[z := r]
and the result follows.

2. Since z is a-BT in w, for each n large enough, the word \.(a 1 n) occurs
infinitely many times in w[z := r| and the result follows from the fact that y
is ccunbounded in Br(r,a). =

Definition 54 Let w be a word and d be a finite or infinite sequence of positive
integers. I say that w calls (x,d) if either x is d-unbounded in w or the last token
of w is some Tgpy.

Remark Note that, if = is d-unbounded in w, then w is infinite. Also note that,
if w calls (z,d) and w is infinite, then x is d-unbounded in w. This will be used
without mention in the rest of the paper.

Proposition 55 Let r, t be traces such that © is compatible with r in t. Let w
be a branch in t, ¢ be a function from N to N* such that y is reqular in w and
¢ 1 m-regular in r. Assume that :

1. y is c-bounded in w.
2. (y,c) is a BT-counterexample in w[x :=r].

Then there is an addressing branch d for r such that w calls (z, d) and y is
c-unbounded in Br(r,d).

Proof. This is proved in the following way : I assume, toward a contradiction,
that for each addressing branch d for r such that w calls (z,d), y is c-bounded in
Br(r,d) and I show that y is ¢-BT in w[z := r]. Note that this result thus gives a
condition to create a backtracking with a substitution.

Let A\ = lab(r). Denote by w(E), for a set E of addresses, the result of the
substitution in w of xp by A(b) for each b € E. Denote by E,, for an address a,
the set of addresses b such that b < a or b > a. Let w{a} = w(E,). In particular,
w{e} = wlz :=r]. It is easy to check that, for each address a, y is ¢ T m-regular in

wi{a}.
Claim 1 There is an infinite addressing branch d for r such that, for each n, y is
c-unbounded in w{d 1 n} and x4y, occurs in w.

25

Proof d(n) is defined by recursion on n, preserving the desired conditions. Note
that y is c-unbounded in w{e} and z. occurs in w (otherwise, by the regularity of
z in w, w = wlz := r| and this contradicts the hypothesis). Assume b =d 1 n is
defined.

- bis filled in r : otherwise (because x is compatible with r) 2, would occur only
as the final token of w and thus w calls (z,b). By the hypothesis, y is ¢-bounded in
A(b) and, since x, is the final token of w, also in w{b}. A contradiction.

- b is not filled in r with a terminal constructor : otherwise, for each a < b, A(a)
is finite and again y would be c-bounded in w{b}.

Thus bis filled in 7 with a non-terminal constructor cf of arity p. Ey = 1<L1J<p Eyy;

and y is c-unbounded in w{b}. Thus, for some 1 < i < p, zp4; occurs in w and y is
c-unbounded in w{b+i}. d(n) = i satisfies the desired conditions. (End of proof of
claim 1)

Since w calls (z,d), let ng > m be such that, if y.+n occurs in w or in Br(r,d),
then n < ng. The next claim finishes the proof.

Claim 2 For each n > nyg, yctn occurs infinitely many times in wz := r].

Proof Let p be an integer and 1 > ng. We must check that there is an occurrence of
Yetn in wlz := 7] after the p-th token. Let nq1 be such that each token in w[z := 7] 1 p
comes either from w or from the substitution of some z, by A(a) and lg(a) < n;.
Since y is c-unbounded and ¢ 1 n-regular in w{d 1 n1}, yetn occurs in w{d 1 n,}.
Since n > nyg, an occurrence of yetpn, in w{d 1 n1} does not come neither from w nor
from d. Then, by the defintion of w{d 1 n;}, it must come from the substitution
of some z, for a > d T ny. Thus, by the definition of n;, this occurrence of yctp,
appears in w[z := 7] after the p-th token. m

Proposition 56 Let r, t be traces such that z is compatible with r in t. Let w =
Br(t,b) be a branch in t. Assume that :

1. tis reqular and r is quasi-reqular.

2. r and w have the BTP.
Then w[x := r| has the BTP.

Proof. Let A\ = lab(r). By case analysis.

1. w is finite and its last token is not some z, : wlz := r] also is finite and thus
has the BTP.

2. The last token of w is z, and w[z := r] is infinite : Then, A(a) is a final
segment of w[z := r]. The cell a is unfilled in r (since otherwise A(a) is finite
and thus wlz := r] is finite). Thus, a is an addressing branch for r. Since the
branch Br(r,a) has the BTP, by using proposition 52 (2) twice, A(a) has the
BTP and w[z :=r] also has the BTP.

3. wis infinite : Assume (y,a) # (z,¢) are BT-counterexamples for wz := r]. By
proposition 55, either y is a-unbounded in w or, for some addressing branch
d in 7, y is a-unbounded in Br(r,d) and x is d-unbounded in w. Similarly for
(z,¢). There are thus 4 cases to look at.

e y is a-unbounded in w and z is c-unbounded in w : This is impossible
because, since w has the BTP, y would be a-BT (or z would be ¢-BT) in
w and thus, by proposition 52 (1), in w[z :=r].

26

e y is a-unbounded in w and, for some addressing branch d for r, z is ¢-
unbounded in Br(r,d) and x is d-unbounded in w : Since w has the BTP,
either y is a-BT in w and thus in w[z := r] (and this is a contradiction)
or z is d-BT in w and thus, by proposition 53, z is ¢-BT in w[z :=r] and
this is again a contradiction.

e the symmetrical case for (y,a) and (z,c).

e For some addressing branches d and d’ for r, z is d and d'-unbounded in
w, y is a-unbounded in Br(r,d) and z is c-unbounded in Br(r,d’).

— Assume d = d'. Since Br(r,d) has the BTP, y is a-BT (or z is ¢-
BT) in Br(r,d)) and thus, by proposition 53, y would be a-BT (or
z would be ¢-BT) in w[z :=r]. A contradiction.

— Assume d # d'. Since w has the BTP, is d-BT (or d'-BT) in w and
thus, by the proposition 53, y is a-BT (or z is ¢-BT) in w[z :=1r]. A
contradiction. m

5.3 Proof of theorem 16

By induction on f. The only non-trivial case is when f is defined by recursion.
Let r be the recursive argument and @ be the sequence of the other arguments.
By theorem 34 and proposition 56, I may assume that & are named elements and
r = e[z]. Let p = [[f]](r, @) and denote by y € & the fact that y is the name of
some element in & i.e. some o; is e;[y].

Definition 57 For a € Acc(e), let v, be the trace obtained by restricting r to the
subtree at address a and s, = [[f]](rq, T).

Example Let r = S¥[z], then r, = (S, 2,)(S, Tpt1) .-

Definition 58 The sets A and A, of addresses, the families (74)aca of traces,
(ha)aca of pre, (ta)aca of named elements and (X%)qca~ of letters are defined, by
induction on lg(a), in the following way :

1. e € A.

2. Fora € A, assume the recursive equation concerning the constructor cf = e(a)

is : f(cf(zla "'7Zpa)7 7) = h/a(f(zla 7)7 "'7f(zma.7 7)7217 s Zpay 7) Note
that h,, m, and p, depend on the constructor e(a).

3. Forae A :

ea+jeAiff 1<j<m,.

o Forj=1,..,mg, let toy; be the element with fresh name X9 such that
Val(terj) = Val(satj)-

o Let 7, be the trace : x4 + [[ha]](tat1, s tatma > Tatls o Tatpa, O)-
4. Let A,, denote the set {a € A /lg(a) =n}.
Comment and examples
1. By proposition 9, the clause 2. implies that s, = 4 + [[Ra]](Sat1s) Satmas
Tatls o Tatpas O)-

2. In the previous definition A* represents A—{e}, i.e. t. and X¢ are not defined
. and not used. Note that in clause 2, m, may be 0 and that, in this case,
no extension of a is in A.

27

3. A represents the set of recursice calls in f(e). Note that, for a € A, the argu-
ments numbered from 1 to m, in h, are recursive arguments of the constructor
e(a) and thus have the same type as e (the notion of recursive argument has
been given in the notations at the beginning of section 2.1) but m, may be
less than the number of recursive arguments of e(a).

4. Define A (the data type of sequences of elements of {0,1}) by : A = {nil : A,

so: A = A, sy : A - A}. Let e be the infinite sequence [0,1,0,1, ...]. If
f satisfies : f(so(l)) = S f(I) and f(s1(I)) = f(I) (e.g. if f computes the
number of 0 in a list), then A = {n / n > 0} and, for a of even (respectively
odd) length, h, is the successor (respectively the identity) function.

5. Define D (the data type of binary trees whose leaves are labelled by integers)
by: D={Lof : N— D, Toof : DxD — D}. Let e be the complete and
infinite binary tree, i.e. Acc(e) is the set of finite lists of elements of {1,2}
and for each a, e(a) = T_of.

o If f satisfies : f(T-of (e1,e2)) = add(f(e1), f(e2)) (e.g. if f computes
the sumn of the leaves of the tree), then A = Acc(e) and for each a € A, h,
= add and m, = 2.

o If f satisfies : f(T_-of (e1,e2)) = f(e1) (e.g. if f computes the value
of the leftmost leaf in the tree), then A = {1™ / n > 0} and, for each
a € A, h, is the identity function and m, = 1 (where as T_of has two
recursive arguments).

6. Note that if A is finite the fact that p has the BTP follows immediately from
the induction hypothesis (by a trivial induction on Card(A)). Also note that
A, is finite for each n.

7. If A is infinite, A has, by Konig’s lemma, an infinite branch d and d is an
addressing branch for . The reader might think that (z,d) is the only possible
BT-counterexample for p. Even if this intuition is mainly correct, the situation
is much more complicated ... simply because d may be not used in p, i.e. x
may be d-bounded in a branch of p.

Definition 59 The sequence (py,) of traces is defined by : Let po = Te. pp+1 =
pu[X® =7, [a € Apqa].

Remark The fact that the sequence (p;,) is well defined follows easily from propo-
sition 33 and the lemma 60 below.

Lemma 60 Leta € A, and y € &. Then :

1. The letter y is reqular in 17,. The letter x is a-reqular in 1,. The traces 1,
and s, are quasi-reqular.

2. X® is compatible with 7, and sq in py.

Proof. Immediate. m

Lemma 61 For each n, p, has the BTP and p = pp[X® := 8, / a € Apt1].

Proof. By the induction hypothesis, 7, has the BTP. The first point is proved
by induction on n (use proposition 56). The second is immediate (use theorem
34).m

28

Lemma 62 p = Lim (p,).

Proof. Let b be an addressing branch in p. By lemma 61, it is enough to show
that, for each p, Br(p,,b) 1 p has, for n large enough, no occurrences of some X®.
This is done by an immediate induction on p, using the fact that the first symbol
of s, is x,. This point has been more detailed in the proof of proposition 45. m

Lemma 63 Let « be an addressing branch in p. Let w = Br(p,a) and w, =
Br(pp,).

1. Assume a € Apy1 and o' > a. Each occurrence of xq in w comes from
a .—
wp[X® 1= sg).

2. Assume a ¢ A, lg(a) =n+ 1 and o' > a. Each occurrence of x4 in w comes
from w,.

Proof. By lemma 61, w = wp[X° :=s. [¢ € Apt1].

1. Assume z, comes from the substitution of X¢ by s. for ¢ # a. Then o’ > ¢,
and this is a contradiction since a’ > a, ¢ # a and lg(a) = lg(c).

2. Assume z, comes from the substitution of X€¢ by s. for some c € A,,;;. Then
a' > ¢, and this is a contradiction since a' > a, ¢ # a and lg(a) =lg(c). m

Lemma 64 Let o be an addressing branch in p and c be a function from N to
N*. Assume y € @ is c-bounded in each w, = Br(p,,a)and c-unbounded in
w = Br(p,a). Then vy is ¢-BT in w.

Proof. Let k be an integer. I show that y.q; occurs infinitely many times
in w. Let p be an integer. Since, by lemma 62, w = Sup w, let n be such that
w T p=wyTp. Let kg > k be such that if y.4pr occurs in wy,, then k' < ky. Since
y is c-unbounded in w, there is a k' > kg such that y. + y» occurs in w. Let m be
the least such that y. 4+ & occurs in wy,. Since wy, = wp_1[X* =7, [/ a € Ap),
Ye + 1 comes from the substitution of some (X%)g by Ar, (d). By the definition of
ko, m > n. By the regularity of X* in wy,—; and the regularity of y in 7,, yctx also
has an occurrence in w,, (and thus in w) coming from the substitution in wy,,—1 of
some (X)4. This occurrence of y.4 cannot be in w 1 p. m

End of the proof the theorem

Let « be an addressing branch for p. Let w = Br(p,«) and, for each n, w, =
Br(pp,). Assume w has not the BTP and (y,c¢) # (z,b) be BT-counterexamples
for w. I show, by examining the different cases, that this is impossible.

1. y,z € @ : By lemma 64, for some n, y must be c-unbounded and z be b-
unbounded in w,. Since w, has the BTP, y is, for example, ¢-BT in w,, and
thus in w. A contradiction.

2. z=xand y € @ : By lemma 64, y is c-unbounded in some w,,. Since w,, has
the BTP, z must be b-bounded in w,,. Let 3 =b 1 (n + 1).

e 3¢ A: By lemma 63, for p > n+ 1, if zpyp occurs in w, it comes from
w,,. A contradiction.

e 5 € A: By lemma 63, for p > n+ 1, if 3, occurs in w, it comes from
wn[X? := s3] and thus, z is b-unbounded in sg.

29

— {a / (X?), occurs in w, } is finite : The word w,, is infinite (because
y is c-unbounded in it) and thus (because X” is compatible with
sg) each Az(a) substituting (X?), is finite. Since x is b-bounded in
w, and only finitely many distinct finite words are substituted, z is
b-bounded in w,[X” := sg]. A contradiction.

—{a / (X?), occurs in wy} is infinite : Since X” is regular in w,,
this set is a finitely branching tree. Thus, by Konig’s lemma, it has
an infinite branch d. Since w,, has the BTP, since (y,c) is a BT-
counterexample in w,, and X? is d-unbounded in w,,, X? is d-BT in
w,, and, by proposition 53, is »-BT in w,[X” := s3] and thus in
w. A contradiction.

3. y =2z = : Let ng be the least such that b(ng) # c(no).

e For some m, bt m ¢ A and ¢t m ¢ A: By lemma 63, for each p > m,
an occurrence of xprp, (respectively xctp) in w, comes from wy,. Thus, ©
is both b and c-unbounded in w,,. This is a contradiction since w,, has
the BTP.

e Foreachn,btn € Aandctnée A: Let v = wp,, m1 = ng + 1,
b = b1t n and ¢ = ¢ T n;. Note that z cannot be both b and c-
unbounded in v : Otherwise, since v has the BTP, x would be either b
or ¢-BT in v and thus in w. A contradiction. Thus z is, say, b-bounded

in v.

By lemma 63, for p > nq, each occurrence of zpy, (respectively z.1p)
in w comes from v[X? := s,] (respectively in v[X¢ := s.]. Thus (z,b)
(respectively (x,c)) is a BT-counterexample in v[X? := s3] (respectively
in U[XCI = Ser].

— x is c-unbounded in v : Then v is infinite and, since = is not ¢-BT
in w, it is not ¢-BT in v. By proposition 55, there is an address-
ing branch d for sy such that X" is d-unbounded in v and z is
b-unbounded in Br(sy,d). Since v has the BTP and is not ¢-BT
in v, X" is d-BT in v and thus, by proposition 53, x is b-BT in
v[X? := sy] and thus in w. A contradiction.

— xis c-bounded in v : By proposition 55, there is an addressing branch
d for sy (respectively d' for s.) such that v calls (X®,d) (respec-
tively v calls (X', d’)). Since a word cannot finish by two distinct
tokens and, if it is finite, a letter cannot be unbounded, the only pos-
sible caseis : X" is d-unbounded in v, z is b-unbounded in Br(sy,d),
X¢ is d’-unbounded in v, z is c-unbounded in Br(s.,d'). This is
impossible : Since (X", d) # (X¢,d') and v has the BTP, X" for
example would be d-BT in v and thus, by proposition 53, x would
be b-BT in v[X" := s,/] and thus in w. A contradiction.

e For each n, ¢ T n € A and for some n; > ng, b t ny ¢ A: Let v =
Wpy,M2 = n1 + 1 and ¢ = ¢ 1 ny. By lemma 63, for each p > n,, each
occurrence of 4, in w, comes from v, and thus z is b-unbounded in v.

— z is c-unbounded in v : Since v has the BTP = would be b or ¢-BT
in v and thus in w. A contradiction.

— z is ¢-bounded in v : Since # is c-unbounded in v[X¢ := s.], by
proposition 55, there is an addressing branch d for s, such that X ¢
is d-unbounded in v and z is c-unbounded in Br(s.,d). Since v
has the BTP and z is not b-BT in v, X< is d-BT in v and thus,
by proposition 53, z is ¢-BT in U[XCI = So| and thus in w. A
contradiction. m

30

6 Conclusion

The trace is a mathematical representation of the intuitive notion of ”the way an
algorithm uses its arguments”. The intuitive meaning of the main results of this
paper is the following :

- The ultimate obstination : A primitive recursive algorithm (even using mutual
recursion) cannot use alternatively its arguments.

- The backtracking property : A primitive recursive algorithm (even using any
kind of first order data types) cannot alternate without backtracking.

The first property has a consequence in terms of complexity and, though I have
no such consequences for the second, the notion of trace and the backtracking
property are useful tools to study the behaviour of primitive recursive algorithms
(see the forthcoming papers [8] and [11]) because the trace contains a very rich
information on the computation. However (at least until now) this information is
somehow under-used : In the ultimate obstination we essentially only look at the
least occurrence of a token. In the backtracking property we consider a bit more :
how many times a token appears.

1) Are there other intensional properties of algorithms that can be captured
by the notion of trace, i.e. are there other intensional properties for which we can
prove the analog of theorems 16 and 13 7

2) Valarcher conjectures that there is no pre computing the inf function both
in the good time (i.e. O(inf)) and in the good way (ie. f(S™(L),S™(L) =
Sef(mm) (1)), A much finer analysis (i.e. defining a stronger notion of trace with
more information) will probably be necessary.

I give below some questions (in terms of complexity) that could be solved by
using this kind of technique.

3) The term given in [9] computes the inf in time O(inf) but it is not really a
good algorithm because it does not use its arguments in real time. A definition of
real time could be the following. A prc f computes a function (e.g. from N2 to
N) in real time if there is a constant ¢ such that : for each integer 4, the length
of the subword of Br([[f]](S¥[z], S“[y])) between the i-th and the (i + 1)-th least
occurrence of x; and ;41 is less than ¢ and similarly for y. It is easy to see that
the term given in [9] has not a real time computation. I conjecture that there is no
prc computing the inf function in real time.

4) Let f be a prc and tq, ..., t, be named elements. The ultimate obstination
theorem says that, if the only data type to be used is N and [[f]](¢1, ..., t,) is infinite,
there is a leading argument : the (unique) unbounded one. The experience seems to
show that, even if f uses other data types there is such a leading argument, i.e. an
argument that can be somehow distinguished. Is it possible to define a property of
[[fN(t1, ..., tp) distinguishing a unique argument ? This property is certainly not :
being unbounded and not backtracking. Theorem 16 says that such an element, if
it exists, is necessarily unique but it is easy to find examples where there is no such
element.

References

[1] R. Amadio and PL. Curien. Domains and Lambda Calculi. Cambridge Uni-
versity Press, 1998.

[2] G. Berry and P.-L. Curien. Sequential algorithms on concrete data structures.
Theoretical Computer Science, 20 : 265-321, 1982.

31

[3]

[4]

[5]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

L. Colson. About primitive recursive algorithms. Theoretical Computer Sci-
ence, 83 : 57-69, 1991.

L. Colson. Représentation intentionnelle d’algorithmes dans les systemes fonc-
tionnels : Une étude de cas. Thése de doctorat, Université Paris 7, 1991.

L. Colson. A unary representation result for system T. Annals of Mathematics
and Artificial Intelligence, 16 : 385-403, 1996.

L. Colson. A unary representation result for system T. Mejanne le Clap Act
special issue of Theoretical Computer Science, 1996.

T. Coquand. Une preuve directe du théoreme d’ultime obstination. Comptes
Rendus de I’Académie des Sciences, 314, Srie I, 489-492, 1992.

R. David. Decidability results for primitive recursive algorithms. In prepara-
tion.

R. David. Un algorithme primitif récursif pour la fonction inf. Comptes Rendus
de I’Académie des Sciences, 317 (Série I) 899-902, 1993.

R. David. The inf function in the system F. Theoretical Computer Science,
135 : 423-431, 1994.

R. David and P. Valarcher. Traces of some primitive recursive schemata. In
preparation.

M. Hotzel Escardo. On lazy natural numbers with applications. SIGACT
News, 24(1), 1993.

D. Fredholm. Intensional aspects of function definitions. PhD Thesis and TCS
152 1-66, 1995.

D. Fredholm. Computing minimum with primitive recursion over lists. Theo-
retical Computer Science, 163 269-276, 1996.

J.-L. Krivine. Un algorithme non typable dans le systeme F. Comptes Rendus
de l’Académie des Sciences, 304(5), 1987.

R. Peter. Recursive Functions. Academic Press, 1968.

H. Rogers. Theory of recursive functions and effective computability. MIT
Press, 1988.

P. Valarcher. A complete characterization of intensional behaviours of primitive
recursive algorithms. Rapport de Recherche du LIR 96.11 (To appear in TCS),
1996.

P. Valarcher. Contribution a l’étude du comportement intentionnel des algo-
rithmes : le cas de la récursion primitive. Thése de doctorat, Université Paris
7, 1996.

P. Valarcher. Intensionality vs extensionality and primitive recursion. ASIAN
Computing Science Conference - LNCS, 1179, 1996.

J.E. Vuillemin. Proof techniques for recursive programs. PhD thesis, Standford,
1973.

32

