
HAL Id: hal-00384689
https://hal.science/hal-00384689

Submitted on 15 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the asymptotic behaviour of primitive recursive
algorithms

René David

To cite this version:
René David. On the asymptotic behaviour of primitive recursive algorithms. Theoretical Computer
Science, 2001, 266, pp.159-193. �hal-00384689�

https://hal.science/hal-00384689
https://hal.archives-ouvertes.fr

On the asymptotic behaviour of primitive recursivealgorithmsRen�e DAVID�AbstractThis paper develops a new semantics (the trace of a computation) that isused to study intensional properties of primitive recursive algorithms. It givesa new proof of the \ultimate obstination theorem\ of L.Colson and extendsit to the case when mutual recursion is permitted. The ultimate obstinationtheorem fails when other data types (e.g. lists) are used. I de�ne anotherproperty (the backtracking property) of the same nature but which is weakerthan the obstinate obstination. This property is proved for every primitiverecursive algorithm using any kind of data types.Keywords primitive recursive de�nitions, intensionality, complexity.1 IntroductionIn [3], [7] the denotational semantics of lazy integers is used to prove intensionalproperties of primitive recursive algorithms. L.Colson proves the ultimate obsti-nation theorem and T.Coquand gives a constructive proof of it. An importantconsequence of the ultimate obstination theorem is that the inf of two integerscannot be computed, by a primitive recursive algorithm, neither in the desired way(i.e. by decrementing alternatively the two arguments), nor in the desired timecomplexity (i.e. O(inf)) .I develop here a new semantics to study the intensional behaviour of algorithms.The intuition is the following. Let N be the domain of lazy integers. An element eof N can be seen as a partial function that �lls some accessible cells (in the senseof [2]) with the constructors S and 0: For example in e0 = S(0) the accessible cellsare the ones denoted by their address 0 and 1. The �rst one is �lled with S and thesecond with 0: In e1 = S2(?) the accessible cells are the ones denoted 0; 1; 2. Thecells 0 and 1 are �lled with S and the third one is un�lled (see �gure 1).e0 = cell number 0 1constructor S 0 and e1 = cell number 0 1 2constructor S S�g. 1The set of traces is de�ned as follows. Let W be the set of (�nite or in�nite)words on the alphabet fxn = n � 0; x is a letterg. A trace is a pair (e; �) wheree 2 N and � is a labelling, i.e. a function from the accessible cells of e to W (seeexamples in �gure 2).�Laboratoire de Math�ematiques. Campus Scienti�que. 73376 Le Bourget du Lac Cedex. emaildavid@univ-savoie.fr 1

To each primitive recursive de�nition f we associate a function [[f]] from tracesto traces which "codes" the way f gets its result : The fact that the token xi occursin �(n) intuitively means that the cell i of the element named x has been used toget e(n):An example is given in �gure 2 : De�ne add as usual by add(0;m) = m andadd(Sn;m) = S add(n;m):- The trace t2 means that to get S the algorithm has used the cell 0 of t0 andto get 0 the algorithm has used �rst the cell 1 of t0 and next the cell 0 of t1.- The trace t3 means that to get S the algorithm has used �rst the cell 0 of t1and next the cell 0 of t0 and to get 0 the algorithm has used the cell 1 of t0:t0 = cell number 0 1constructor S 0labelling x0 x1 t1 = cell number 0constructor 0labelling y0t2 = [[add]](t0; t1) = cell number 0 1constructor S 0labelling x0 x1 y0t3 = [[add]](t1; t0) = cell number 0 1constructor S 0labelling y0 x0 x1�g. 2This is easily generalized to any data type. In this case, the cells are no moregiven by integers but by their addresses (i.e. lists of integers) in the tree representingan element of the data type. This notion of trace is related to the sequentialalgorithms introduced by Berry and Curien ([2] or [1], chapter 14) as follows. In theirterminology, a sequential algorithm is a tree. Each branch of this tree correspondsto the computation of the algorithm on particular arguments, that is exactly (witha slight variation on the syntax and the terminology) what I call a trace.The main advantages of this approach are the following :(1) There is a notion of modularity (see theorem 34): If e is an element of N ,let e[x] be the trace (e; �) where �(n) = xn for each n. Then, for t = (e; �0); [[f]](t)is obtained by substituting xi with �0(i) in [[f]](e[x]):(2) A single in�nite trace contains the information about each �nite computation(see proposition 36). This will be extensively used in the forthcoming papers [8] and[11].(3) This notion allows to introduce new properties of computations : The back-tracking property (see below) cannot be expressed in the usual semantics.(4) I believe it also makes the proofs easier and, at least, closer to the intuition.In particular, the extension of Coquand's constructive result to the case wheremutual recursion is allowed would probably be impossible without the notion oftrace.Say that a trace (e; �) is ultimately obstinate if, in the word obtained by con-catenating the words �(n); there is at most one letter which occurs with unboundedindexes. The intuitive meaning is that, if the trace represents an in�nite computa-tion, at most one argument may be used entirely. The ultimate obstination theoremfollows immediately from the fact (see theorem 13) that, if t1; :::; tn are ultimatelyobstinate, then so is [[f]](t1; :::; tn): The main argument in its proof is that, whenthe �rst S in an in�nite sequence of S is removed, we get the same sequence. This is2

of course no more true e.g. for in�nite sequences of booleans and thus, the theoremfails when other data types may be used.Say that the letter x backtracks in the word w if, for n large enough, xn occursin�nitely many times in w. This intuively means that the argument denoted byx may not be "garbage-collected" in the computation represented by w. Say thata trace t has the backtracking property if the following holds for any branch b int (a branch in t is the usual notion on the underlying element) : let w be theword obtained by concatenating the words along b: There is at most one letter xsuch that : x occurs with unbounded indexes and x does not backtrack . Whent represents the computation of an algorithm, this intuitively means that, in thecomputation of the branch b of the result, at most one argument can be memorized(recall that being ultimately obstinate means at most one argument can be used).I prove (see theorem 16) that if t1; :::; tn have the backtracking property, then sodoes [[f]](t1; :::; tn):The ultimate obstination theorem is a result about intensionality but it has aconsequence in terms of complexity. I believe this is a kind of chance. I introduced(and proved) the backtracking property because it was thought that such a propertywould give O(inf 2) as a lower bound for the time complexity of the inf function butit does not : see the algorithm given in [9]. I thus have no application of this resultin terms of complexity (see section 6 for a discussion about this point). Howeverthe notion of trace allows to prove some other results. In a forthcoming paper ([8])I will extend Coquand's constructive result to the case when mutual recursion isallowed. In another paper, in preparation with Valarcher ([11]), we will use thetraces to answer open questions in his thesis ([19]).Warning A primitive recursive de�nition becomes an algorithm only when astrategy of reduction is given. Even if the strategy does not appear explicitly inthis paper, it is hidden in the de�nition of [[f]] (see proposition 9) and correspondsto call by name. [13], [14] show that, in call by value, the inf function cannotbe computed in time O(inf) even when lists or mutual recursion is allowed. Notethat, in this case, the problems are, at least intuitively, much easier since, when anargument is used, the computation time is, by de�nition of call by value, at leastthe value of this argument.The paper is organized as follows : The section 2 gives the main de�nitionsand results of the paper. In section 3, I prove the main properties of traces, inparticular theorem 34 about substitutions. The section 4 and 5 give the proofs ofthe preservation of the ultimate obstination (as well as its consequences in termsof complexity) and of the backtracking property. The section 6 gives some openquestions.Acknowledgement This paper has a very long story. Many people helped me totransform a very rough draft into this �nal version. Thanks to all of them and, inparticular, T Coquand, C Berline, P L Curien and the anonymous referees.2 De�nitions2.1 Primitive recursive algorithmsNotations A data type is given by a list of typed constructors. Let cf : D1 � :::�Dn ! D be a constructor of D (n is called the arity of cf). Then :1. The Dj are either D or previously de�ned data types.2. If Dj = D, then j is called a recursive argument of cf.3. cf is recursive if Dj = D for some j.3

4. cf is terminal if n = 0.Note that, in order to be non-empty, a data type must have at least one non-recursive constructor.Examples1. The data type of integers is given by N = f0 : N; S : N ! Ng. 0 is terminaland S is recursive.2. The data type of lists of type N is given by L = fnil : L; cons : N �L! Lg.cons has a recursive and a non-recursive argument.3. The data type of sequences of 0 and 1 is given by D = fnil : D; s0 : D !D; s1 : D ! Dg.De�nition 1 1. The sets of n-ary typed prc (primitive recursive combinators)are de�ned, as usual, as the least sets containing the projections, the construc-tors and which are closed under composition and primitive recursion.2. Primitive recursion is de�ned as follows (I will assume, without loss of gen-erality, that the recursion always is on the �rst argument of the prc). Thereis one equation for each constructor cf of the data type of the �rst argument.Assume cf has p arguments and (for simplicity of notation), the recursive ar-guments of cf are fj = 1 � j � mg. Note that p or m may be 0. Then, therecursive equation for cf is (h is a previously de�ned prc associated to cf) :f(cf (x1; :::; xp);�!y) = h(f(x1;�!y); :::; f(xm;�!y); x1; :::; xp;�!y):Examples1. The addition is de�ned, as usual, by : add(0; n) = n and add(Sm; n) =S add(m;n):2. The sum of the elements of a list of integers is de�ned by : sum(nil) = 0 andsum(cons(n; l)) = add(n; sum(l)):3. The number of 0 in a list of 0 and 1 is de�ned by : nb(nil) = 0; nb(s0(l)) =S nb(l); nb(s1(l)) = nb(l):RemarkIn the section 3 we will also allow the de�nition of k functions by mutual re-cursion (for an arbitrary k). For example : even(0) = true and odd(0) = false:even(Sx) = odd(x) and odd(Sx) = even(x):2.2 The traceIn the rest of the paper I will adopt the following conventions (words, traces, ... arede�ned in this section) :symbols range over symbols range overi; j; k;m; n; p; q integers u; v; w wordse elements of a data type r; s; t; �; �; � tracesx; y; z;X letters f; g; h prca; b; c; d; �; � addresses or addressing branchesDe�nition 2 1. An address is a �nite list of positive integers. The empty listis denoted by ". 4

2. If a; a0 are addresses, a � a0 means that a is an initial segment of a0.3. lg(a) represents the length of a and thus, if lg(a) = n; a may be written as[a(0); :::; a(n� 1)]:4. If a is a (�nite or in�nite) list of integers of length at least m, a " m is thepre�x of length m of a, i.e. a " m = [a(0); :::; a(m� 1)]:5. If a is an address and p an integer, a+ p denotes the list obtained by concate-nating p at the end of a.Comment and examplesAn address corresponds to a cell in [2]. [0; 1] + 3 = [0; 1; 3]De�nition 3 Let D be a data type.1. An element e of D is a partial function from a pre�x closed set of addresses(denoted by dom(e)) satisfying the following conditions :(a) If " 2 dom(e) then e(") is a constructor of D:(b) If a+ p 2 dom(e); e(a) = cf and cf : D01� :::�D0n ! D0 then 1 � p � nand e(a+ p) is a constructor of D0p .2. Let e be an element of D and a be an address. De�ne the accessibility of a ine by the following rules :(a) " is accessible in e.(b) a+ p is accessible in e i� a 2 dom(e) and 1 � p � arity(e(a)).3. Let e be an element of D. Denote by Acc(e) the set of addresses that areaccessible in e.4. An element e is �nite i� dom(e) is �nite.5. Let e; e0 be elements of D. e � e0 means : dom(e) � dom(e0) and for alla 2 dom(e); e(a) = e0(a):6. An address a is maximal in an element e if a 2 Acc(e) and no proper extensionof a is in dom(e).Comment and examples1. It is easy to see that D is a domain.2. Usually, an element of a data type is a �nite tree whose nodes are �lled withconstructors. Here an element again is a tree but :� the tree may have in�nite branches. In�nite branches may be seen as\streams\.� its leaves may be un�lled.a 2 dom(e) and cf = e(a) means that the cell of address a is �lled with theconstructor cf : An un�lled cell a (i.e. a 2 Acc(e) � dom(e)) corresponds toa lack of information for the content of the cell. The correspondence with,in particular, [2] is the following : I call here accessible (respectively un�lled)what they call enabled (respectively accessible).5

3. a is maximal in e if it is accessible in e and either a is un�lled in e or it is�lled with a terminal constructor.4. In the data type of integers the elements are the following (I will write : 10 = "and 1i = [1; :::; 1]| {z }i).� Sn(0) stands for : f(1i; S) = 0 � i < ng [f(1n; 0)g:� Sn(?) stands for : f(1i; S) = 0 � i < ng: Note that here the address 1nis accessible.� S! stands for : f(1i; S) = 0 � ig:5. In the data type of lists of type N; the lists e0 = [0; 1], e1 = [0; 0; :::] (thein�nite list) and e2 = cons(0;?); are given in �gure 3. In e2 the address [2]is accessible but [2] =2 dom(e2) and is, as usual, labelled by ? :accessible addresses corresponding constructorse0 " [2] [2; 2][1] [2; 1][2; 1; 1] cons cons nil0 S0e1 " [2] ::: [2; :::; 2] :::[1] [2; 1] ::: [2; :::; 2; 1] ::: cons cons ::: cons :::0 0 ::: 0 :::e2 " [2][1] cons0�g. 3De�nition 4 1. Let � = fxa = x is a letter and a is an addressg. The elementsof � are called tokens.2. A word is a �nite (possibly empty) or in�nite sequence of tokens. The set ofwords is thus W = �� [�!: The empty word is denoted by ;:3. Let u; u0 be words. u � u0 means that u is a pre�x of u0 and u " p denotes,for p � lg(u); the pre�x of u of length p:4. u + u0 is the result of concatenating u0 at the end of u. When u is in�nite,this is just u again. More generally, if (uk) is a (�nite or in�nite) sequenceof words u0 + u1 + ::: will be denoted by Puk:Abbreviation In this paper, when x corresponds to an element of N; I will writexi instead of x1i :De�nition 5 1. A trace over the data type D is a pair (e; �) where e is anelement of D and � is a labelling function � : Acc(e) ! W such that : 8a 2dom(e); �(a) 2 ��:2. A trace (e; �) is �nite if e is �nite and all labels are �nite, i.e. rge(�) � ��:3. The ordering on traces is given by : (e; �) � (e0; �0) i� e � e0 and 8a 2Acc(e) �(a) � �0(a) and 8a 2 dom(e) �(a) = �0(a):6

4. The set of traces over D is denoted by T(D). A trace is a trace over some datatype. The set of traces is denoted by T.5. The set of �nite traces over D is denoted by Tf (D). The set of �nite traces isdenoted by Tf .6. Let e be an element of D and x be a letter. The trace (e; �) where �(a) = xafor all a 2 Acc(e) will be denoted as e[x]. A trace as e[x] is called an elementnamed x.7. Let t = (e; �) be a trace. e is called the value of t and is denoted by V al(t): �is called the labelling of t and is denoted by lab(t):Comment and notations1. The labelling of a cell intuitively codes the part of the computation that hasbeen made to get the content of this cell. This computation has to be �nite ifthe constructor is eventually found (i.e. if the cell is �lled). Otherwise it maybe in�nite.2. Let t = (e; �) be a trace. By extending the function e for a 2 Acc(e)�dom(e)by e(a) = ? one may consider that a trace is a tree whose nodes are labelledby a pair : the �rst element is either a constructor or? and the second elementis a word. A trace t has thus one of the two shapes.(a) A single accessible address (the empty sequence) which is un�lled andlabelled with the word w 2 W: This will be denoted as : t = (?; w):(b) A tree whose root is (c; w); where c is an n-ary constructor, w 2 ��and each of the n branches is another tree. This will be denoted as :t = h(c; w) t1; :::; tni: This case has a degenerate situation when c isterminal. Then, the only accessible address is " and we simply write :t = (c; w):3. The named elements of N are (since the tree has only one branch, I do notwrite the "h" and "i") :Sn(0)[x] = (S; x0)(S; x1):::(S; xn�1)(0; xn).Sn(?)[x] = (S; x0)(S; x1):::(S; xn�1)(?; xn)S![x] = (S; x0)(S; x1):::(S; xn):::4. Let t = (e; �) be a trace. Acc(t) will denote Acc(e).5. We often will have to "choose fresh letters" and for that it could be useful toensure that the alphabet (i.e. the set of letters occurring in the tokens) of atrace is �nite. Since this introduces only inessential problems, I will not carehere about this.Proposition 6 T (D) with its ordering forms a domain. In particular :1. Every trace is a least upper bound (denoted by Sup) of an increasing sequenceof �nite traces.2. Every increasing sequence has a Sup.Proof. Immediate.A primitive recursive de�nition f induces a function on the domain associated tothe corresponding data type. The proposition 9 shows that it also induces a function(denoted by [[f]]) on the corresponding traces. It is the study of this function thatwill allow to understand the intensional behaviour of f:7

De�nition 7 Let t = (e; �) be a trace and w be a �nite word. w + t is the trace(e; �0) de�ned by : �0(") = w + �(") and �0(a) = �(a) for a 6= ":Comment and examplesw+ t is obtained by prepending w to the word at the root of t. y0 + S(0)[x] =(S; y0 x0) (0; x1)De�nition 8 Let f be a function from Tn to T:1. f is increasing if for all tj � t0j , f(t1; :::; tk) � f(t01; :::; t0k):2. f is continuous if it is increasing and preserves the Sup of increasing sequences.Proposition 9 Every prc f from D1 � ::: �Dn to D induces (in a unique way) acontinuous function (denoted by [[f]]) from T (D1)� :::�T (Dn) to T (D) such that :� If f is the i-th projection then [[f]](t1; :::; tn) = ti� If f is the n-ary constructor cf then [[f]](t1; :::; tn) = h(cf; ;) t1; :::; tni� If f = g(h1; :::; hk) then [[f]](t1; :::; tn) = [[g]](r1; :::; rk)where rj = [[hj]](t1; :::; tn)� If f is de�ned by recursion then [[f]](t;�!s) ={ (?; w) if t = (?; w):{ w + [[h]](�1; :::; �m; r1; :::; rp;�!s) if t = h(cf; w) r1; :::; rpi, �j =[[f]](rj ;�!s) and the recursive equation concerning the constructor cf isf(cf(x1; :::; xp);�!y) = h(f(x1;�!y); :::; f(xm;�!y); x1; :::; xp;�!y):Proof. First note that, when f is de�ned by recursion, the case t = (c; w) isa degenerate special instance of the second clause. [[f]] is de�ned by induction onf . The only non-trivial case is when f is de�ned by recursion. It is clear that thedesired property de�nes [[f]] (by induction on the size of V al(t)) on Tf �Tn�1 andthat (on Tf � Tn�1) [[f]] is continuous. Otherwise, de�ne [[f]](t;�!s) as follows :Let (�k) be an increasing sequence of �nite traces such that t = Sup �k. Since thesequence [[f]](�k ;�!s) is increasing we may de�ne [[f]](t;�!s) as Sup [[f]](�k;�!s). Itis easy to check, because [[f]] is increasing on Tf � Tn�1, that this de�nition doesnot depend on the chosen sequence and that [[f]] satis�es the desired properties.The uniqueness for Tf (and thus, by continuity, for T) is clear.Examples
1. [[add]](S(0)[x]; S! [y]) = x0 + [[S]]([[add]]((0; x1); S![y]))= x0 + (S; ;) [[add]]((0; x1); S![y])= (S; x0) [[add]]((0; x1); S![y])= (S; x0) (x1 + S![y])= (S; x0) (S; x1y0) (S; y1) (S; y2) � � �[[add]](S(0)[x]; S2(?)[y]) = x0 + (S; ;) [[add]]((0; x1); S2(?)[y])= (S; x0) (x1 + S2(?)[y])= (S; x0) (S; x1y0) (S; y1) (?; y2)[[add]](S2(?)[y]; S(0)[x]) = y0 + (S; ;) [[add]]((S; y1) (?; y2); S(0)[x])= (S; y0) y1 + (S; ;)[[add]]((?; y2); S(0)[x])= (S; y0) (S; y1) (?; y2)8

2. The "usual" algorithm for the function inf is de�ned by :pred(0) = 0 and pred(Sn) = n:dif (0;m) = m and dif (Sn;m) = pred(dif (n;m))test(0; p; q) = p and test(Sn; p; q) = qinf (n;m) = test(dif (n;m);m; n)Claim [[inf]](S! [x]; S![y]) = (?; Pk�0xk).Proof. The following facts are easily veri�ed :- [[pred]](?; w) = (?; w): [[pred]](0; w) = (0; w): [[pred]]((S;w) t) = w + t- [[dif]]((?; w); t0) = (?; w): [[dif]]((0; w); t0) = w + t0: [[dif]]((S;w) t; t0) =w + [[pred]]([[dif]](t; t0))- [[dif]](Sn(?)[x]; Sw[y]) = (?; Pk�nxk) (immediate induction)- [[dif]](S![x]; Sw[y]) = (?; Pk�0xk) (by continuity)- [[inf]](S![x]; S! [y]) = [[test]]((?; Pk�0wk); S![x]; Sw[y]) = (?; Pk�0wk):3. Colson introduces (see [4]) an algorithm, called inf with lists, to compute theinf of two integers in time inf (n;m)2. This algorithm is de�ned as follows :incr(nil) = nil and incr(cons(n; l)) = cons(Sn; incr(l)):L(0) = nil and L(Sn) = cons(0; incr(L(n)):v(n;m; p; q) = test(dif (m;n); p; q)h(nil;m) = 0 and h(cons(n; l);m) = v(n;m; S h(l;m); 0)inf with lists(n;m) = h(L(n);m)Claim [[inf with lists]](S![x]; S![y]) = (?; Pk�0wk) where wk = xk + Pi�kyi:Proof. Let ai = [2; :::; 2]| {z }i and bi;p = [2; :::; 2| {z }i ; 1; :::; 1| {z }p]: The result follows easilyfrom the following facts.L(Sn(0)) = [0; S(0); :::; Sn(0)].L(Sn(0)[x]) = (L(Sn(0); �n) where �n(ai) = xi for i � n and �n(bi;p) = ;for i � n and p � i:4. I introduced another algorithm Good inf (see [9]), also using lists, that com-putes the inf of two integers in time O(inf). This algorithm satis�es :[[Good inf]](S![x]; S![y]) = (?; Pk�0wk) where wk = xk + Pi�2kxi + Pi�2kyiDe�nition 10 Let t = (e; �) be a trace.1. An addressing branch for t is a maximal path through the tree representing t,i.e. it is either a maximal address in t or a function a from N to N* (the setof positive integers) such that for every m, a " m 2 dom(e).2. Let a be an addressing branch for t. Br(t,a) is the word built by concatenatingthe labels along the path, i.e. Br(t; a) = Pk�lg(a)�(a " k):3. A branch in t is a word of the form Br(t,a) for some addressing branch a.9

Examples1. A trace overN has only one branch. For example the branch of S![x] is Pk�0xk:2. Let t be the list [0; S0; SS0; ::::]. The branches of t[x] are :� For each k, the branch wk corresponding to the k-th element of the list :wk = Pi�kxai +Pi�kxbk;i where ai = [2; 2; :::; 2]| {z }i and bk;i = [2; 2; :::; 2| {z }k ; 1; :::; 1| {z }i]� The branch corresponding to the list itself : w = Pi�0xaiIn the proofs of theorem 13 and 16, I will need the following notion of limit.De�nition 11 1. Let (wn) be a sequence of words. I will write w = Lim (wn)if the following holds : 8p 9n0 8n � n0 w " p = wn " p:2. Let (tn) be a sequence of traces. I will write t = Lim (tn) if :(a) For each n; V al(tn) = V al(t):(b) For each branch b of t; Lim(Br(tn; b)) = Br(t; b):Remark1. Note that, for the limit of traces, the �rst condition is very strong and, inparticular, t = Sup tn does not imply t = Lim(tn) : the second condition issatis�ed but the �rst one is not. It would be easy to de�ne a weaker notionof limit to ensure that t = Sup tn implies t = Lim(tn) but I don't need it inthis paper.2. In the de�nition of the limit of a sequence of traces, the convergence actuallyis uniform with respect to the branches : n0 depends only on p and does notdepend on the chosen branch. This simply comes from the fact that, for agiven length, t has only a �nite number of nodes.2.3 The ultimate obstinationIn this subsection I am only concerned with the data type N . Recall I write xiinstead of x1i :De�nition 12 1. Let t be a trace. A letter x is unbounded (respectively bounded)in t if fj = xj occurs in the branch of tg is in�nite (respectively �nite).2. A trace over N is ultimately obstinate if it has at most one unbounded letter.ExamplesEvery named element over N is ultimately obstinate but (?; Pk�0xk yk) is not.Theorem 13 Let f be a prc and t1; :::; tn be ultimately obstinate traces. Then[[f]](t1; :::; tn) also is ultimately obstinate.Corollary 14 1. Let f be a prc and t1; :::; tn be named elements. Then [[f]](t1;:::; tn) is ultimately obstinate.2. There is no prc f such that [[f]](S![x]; S![y]) = (?; w + Pk�nxk yk) where wis a �nite word.The clause (2) of the corollary means that there is no way to make a computationwhich ultimately alternates between two arguments.10

2.4 The backtracking propertyIn this subsection we come back to the general case with all possible data types. Theultimate obstination intuitively means that, in a computation, at most one in�niteargument may be used entirely. The backtracking property intuitively means that,among the in�nite branches of all the arguments at most one may be memorized.De�nition 15 1. Let w be a word, a be a function from N to N* and x be aletter.� x is a-unbounded (respectively a-bounded) in w if fn = xa"n occurs in wgis in�nite (respectively �nite).� x is a-backtracking (abbreviated as a-BT) in w if for every n large enough,xa"n occurs in�nitely many times in w.� (x,a) is a BT-counterexample for w if x is a-unbounded but not a-BT inw.� w has the backtracking property (abbreviated as BTP) if there is at mostone BT-counterexample for w.2. Let t be a trace. t has the BTP if every branch in t has the BTP.Comment and examples1. x is unbounded in the sense of the de�nition 12 is the particular case of beinga-unbounded with a = 1!:2. Every named element has the BTP.In the examples 3 and 4 below, I again write xn instead of x1n :3. Let w = Pk�0xk yk . Then, w has not the BTP because (x; 1!) and (y; 1!) areBT-counterexamples.4. Let w = Pk�0wk where wk = xk y0 y1::: yk . Then, w has the BTP because(x; 1!) is the only BT-counterexample.5. Let w = Pk�0xak xbk where ak = 1k and bk = 2k (w could be a computationusing as argument e[x] where e is the list [S!; 0; 0; :::; 0; :::]: Note that e hastwo in�nite branches). Since (x; 1!) and (x; 2!) are BT-counterexamples, whas not the BTP .Theorem 16 Let f be a prc and t1; :::; tn be traces that have the BTP. Then[[f]](t1; :::; tn) has the BTP.Corollary 17 1. Let f be a prc and t1; :::; tn be named elements. Then [[f]](t1;:::; tn) has the BTP.2. There is no prc such that [[f]](S![x]; (S! [y]) = (?; w + Pk�nxk yk) where w isa �nite word.
11

3 Some useful properties of tracesIn this section, I prove that various properties of traces are preserved by [[f]] forevery prc f: This is used in sections 4 and 5. I also prove the following key property(see theorem 34) : To compute [[f]](t) it is enough to compute [[f]](e[x]) where xis a fresh letter and e = V al(t) and then substitute in the result each xa by �(a)where � is the labelling function of t: This implies, in particular, that, in the proofsof theorems 13 and 16, we may assume that the arguments are named elements.3.1 FinitenessProposition 18 Let f be a prc and t1; :::; tn be �nite traces. Then [[f]](t1; :::; tn)also is �nite.Proof. By an immediate induction on f and, when f is de�ned by recursion,by induction on the �rst argument.3.2 RestrictionsThe notion of restriction as de�ned below plays somehow the role of sequentialityindex of [3].De�nition 19 1. Let w be a word. w # xa = w if xa does not occur in w andotherwise w0 +xa where w0 is the longest pre�x of w that does not contain anoccurrence of xa:2. Let t be a trace. t # xa is de�ned by : (?; w) # xa = (?; w # xa).h(c; w) t1:::tni # xa = (?; w # xa) if xa occurs in w and otherwise h(c; w) t1 #xa; :::; tn # xai:Comment and examples1. w # xa is the word obtained by truncating w after the �rst occurrence (if any)of xa: t # xa is the trace obtained by truncating each branch at the �rst nodewhere xa occurs.2. S![x] # xn = Sn(?)[x]:Lemma 20 1. Let w be a word and t be a trace. Then (w+ t) # xa = (?; w # xa)if xa occurs in w and w + (t # xa) otherwise.2. Let (tk) be an increasing sequence of traces. Then Sup (tk) # xa = Sup (tk #xa):Proof. Immediate.Proposition 21 Let f be a prc, x be a letter, a be an address and t1; :::; tn be traces.Then [[f]](t1; :::; tn) # xa = [[f]](t1 # xa; :::; tn # xa)Proof. By induction on f . The only non-trivial case is when f is de�ned byrecursion. For the simplicity of notations let t be the �rst argument and �!s be thesequence of parameters.1. When V al(t) is �nite, the result is proved by induction on V al(t): For t =(?; w) the result is clear. Otherwise it follows immediately from the inductionhypothesis and lemma 20 (1). 12

2. Otherwise, the result follows by continuity (use the lemma 20 (2)) : Let (rk)be an increasing sequence of �nite traces such that t = Sup rk : Then :[[f]](t # xa; �!s # xa) = [[f]](Sup(rk) # xa; �!s # xa)= [[f]](Sup(rk # xa); �!s # xa)= Sup([[f]](rk # xa; �!s # xa))= Sup([[f]](rk; �!s) # xa)= Sup([[f]](rk; �!s)) # xa)= [[f]](t;�!s) # xa:3.3 RegularityThe regularity intuitively means that, in a computation, a cell may not be accessedbefore the previous cells have been accessed.De�nition 22 1. Let w be a word. A letter x is regular in w if for all addressesa � a0 such that xa0 occurs in w, xa also occurs in w and the �rst occurrenceof xa is earlier than the �rst occurrence of xa0 :2. Let t be a trace. A letter is regular in t if it is regular in each branch of t.3. A word w (respectively a trace t) is regular if every letter is regular in w(respectively in t).Comment and examples� Regularity is called safety in [2].� x is regular in e[x] for every element e. x is not regular neither in x[1] x" norin x" x[1;1]:Proposition 23 A letter x is regular in a trace t i� it is regular in each �niteapproximation of t, i.e. in each �nite t0 � t.Proof. Immediate.Proposition 24 Let f be a prc and t1; :::; tn be traces.1. Assume that a letter x is regular in each of the ti, then x also is regular in[[f]](t1; :::; tn).2. Assume that each of the ti is regular, then [[f]](t1; :::; tn) also is regular.Proof. (2) follows immediately from (1) which is proved by induction on f . Byproposition 23 and the continuity of [[f]], it is enough to prove the result for �nitetraces. The only non-trivial case is when f is de�ned by recursion. For the simplicityof notations let t be the �rst argument and �!s be the sequence of parameters. Theresult is proved by induction on the size of V al(t).If t = (?; w) the result is clear. Otherwise, let t = h(c; w) r1:::rpi. [[f]](t;�!s) =w+ [[h]]([[f]](r1;�!s); :::; [[f]](rm;�!s); r1; :::; rp;�!s): We cannot use immediately theinduction hypothesis because x is not necessarily regular in r1; :::; rm: For exampleS![x] = h(S; x0) r1i and x is not regular in r1 = h(S; x1) :::i: We thus have tochange the name of x and make a "lift" on the addresses to make the ri regular.Let y; z be fresh letters. Get �!s 0 from �!s by replacing xa by ya for each a:For j 2 [1; :::; m], get r0j from rj in the following way : Assume xa occurs inrj and lg(a) > q where q is the largest number such that xa"q occurs in w, thenreplace xa by za0 where a0 = [a(q); :::; a(lg(a)� 1)].13

It is clear that y and z are regular in �!s 0, r01; :::; r0m. By induction hypoth-esis (since V al(rj) < V al(t)) y and z are regular in t0j = [[f]](r0j ;�!s 0) for j 2[1; :::; m]: Thus, by induction hypothesis; x; y and z are regular in [[h]](t01; :::; t0m;r1; :::; rp;�!s): It is then easy to check (by replacing the letters the other way round,i.e. by replacing ya by xa and za0 by xa) that x is regular in [[f]](t;�!s):Note that the induction hypothesis has been used with a simultaneous substi-tution of several letters and the proposition is stated ... only for one letter. Thegeneral case is of course the same but the notations would be more complicated.3.4 CompatibilityWhen t represents a computation, x is compatible with s means that t may be seenas a computation using an argument e[x] where e = V al(s); i.e. the "use" of x in tis compatible with e: The intuition for the clause (3) in the de�nition below is thefollowing : if an address a is un�lled in s (this means a lack of information) and theinformation at this address is needed in a computation (this means that xa occurs),then the computation has to stop.De�nition 25 Let s, t be traces. A letter x is compatible with s in t if1. x is regular in t.2. If xa occurs in t (i.e. xa occurs in some branch of t), then a 2 Acc(s).3. If a is un�lled in s, then t = t # xa.Comment and examples1. Note that x is compatible with s in t i� the following conditions are satis�edfor every branch w = Br(t; b) :� x is regular in w� If xa occurs in w, then a 2 Acc(s).� If xa occurs in w then b is �nite (and thus b 2 Acc(t)), un�lled in t andxa occurs only in w as the �nal token of �(b) (where � = lab(t)).2. Let t = (e; �): Then x is compatible with t in e[x]:3. Let t = (?; Pk�0xk): Then x compatible with (S!; �) in t but x is not com-patible with (Sn(0); �) in t for any n:4. x is not compatible with s = (0; �) in t = (?; x" x[1]) because [1] =2 Acc(s): xis not compatible with s = (S(?); �) neither in t = (0; x" x[1]) nor in t0 = (?; x0 x[1] x[1]) because t 6= t # x[1] and t0 6= t0 # x[1].Proposition 26 Let e be an element, �1 and �2 be labelling functions for e. Aletter x is compatible with (e; �1) in t i� x is compatible with (e; �2) in t.Proof. Immediate.Proposition 27 1. x is compatible with s in t i� x is compatible with s in every�nite approximation of t.2. Let (tk); (sk) be increasing sequences of traces. Let t = Sup tk and s = Sup sk.Assume that, for each k, x is compatible with sk in tk. Then x is compatiblewith s in t. 14

Proof. (1) is immediate. (2) Let w = Br(t; b) be a branch in t and bk =Supfb0 = b0 � b and b0 2 Acc(tk)g: It is clear that bk is an addressing branch in tkand w = Sup wk where wk = Br(tk ; bk). The regularity of each letter in w followsimmediately. Assume xa occurs in w: Then, for some k; it occurs in wk . Thus a isaccessible in sk and then in s. Assume that a is un�lled in s. Then, for some k0; ais un�lled in sk for each k � k0. Since x is compatible with sk in tk, tk = tk # xa :Thus, by lemma 20, t = t # xa:Proposition 28 Assume x is compatible with s in each of the t1; :::; tn and f is aprc. Then x is compatible with s in [[f]](t1; :::; tn):Proof. By induction on f: The only non-trivial case is when f is de�ned byrecursion. For the simplicity of notations let t be the �rst argument and �!� be thesequence of parameters. The regularity of x has been proved in proposition 24. Theother conditions are proved as follows.1. Assume �rst t is �nite. The clauses (2) and (3) in de�nition 25 are proved byinduction on V al(t):For t = (?; w); this is clear. Otherwise, assume t = h(c; w) r1; :::; rpi: Then[[f]](t;�!�) = w + [[h]]([[f]](r1;�!�); :::; [[f]](rm;�!�); r1; :::; rp;�!�):� Assume xa occurs in w: Since x is compatible with s in t; clearly a 2Acc(s): The cell a may not be un�lled in s; because otherwise clause(3) in de�nition 25 (for the compatibility of x with s in t) would implyt = (?; w):� Otherwise the result follows immediately from the induction hypothesisand proposition 21.2. Otherwise, the result follows from proposition 27 and the continuity of [[f]]:Corollary 29 For each i, xi is compatible with ei[xi] in [[f]](e1[x1]; :::; en[xn]):3.5 SubstitutionsThe notion of composition is crucial when functions are studied but, usually, onlythe results are, in some sense, composed. The notion of traces allows to composealso the computations. The precise meaning of this is given in theorem 34 which,as already mentionned, is the key point of this section. It needs the notion ofsubstitutions.De�nition 30 Let t be a trace, (si) = (ei; �i) be a sequence of traces and (xi) be asequence of distinct letters. Assume that, for each i, xi is compatible with si in t.Then t[xi := si=i = 1; :::; n] is the trace obtained by simultaneously replacing each(xi)a by �i(a) in all the words �(c) for c 2 Acc(t).Comment and examples1. Note that, to be able to make substitutions, the clause (2) in the de�nition ofcompatibility would be enough but, since in the sections 4 and 5, I will makesubstitutions only when the other clauses are also satis�ed I consider only thisrestrictive situation.2. I may de�ne in the same way w[xi := si=i = 1; :::; n] if w is a branch of atrace.3. Let t = (e; �): Then t = e[x][x := t]:15

Proposition 31 Let x be compatible with s in t.1. V al(t[x := s]) = V al(t).2. b is an addressing branch for t i� b is an addressing branch for t[x := s].Moreover Br(t[x := s]; b) = Br(t; b)[x := s]Proof. Immediate.Proposition 32 Let (tk), (sk) be increasing sequence of traces. Let t = Sup tkand s = Sup sk. Assume that, for each k, x is compatible with sk in tk. Thent[x := s] = Sup tk[x := sk].Proof. Remember that, by proposition 27, x is compatible with s in t: Assumea 2 Acc(tk0): I must prove that �t[x:=s](a) = Supf�tk[x:=sk](a) = k � k0g: It isclearly enough to prove that, for k � k0; if xb occurs in �tk (a) and xb is not the�nal token in �tk (a); then �sk (b) = �s(b): The cell b is �lled in sk because otherwise,since x is compatible with sk in tk; xb would be the �nal token in �tk (a) and thusthe result follows from the de�nition of the ordering on traces.Proposition 33 Let r, s, t be traces. Assume x is compatible with s in t. Then1. If y is regular both in t and s, then y is regular in t[x := s].2. If y is compatible with r both in t and s, then y is compatible with r in t[x := s].Proof.(1) Let t0 = t[x := s]: Let b be an addressing branch for t; u = Br(t; b) andu0 = Br(t0; b): Let a < c and assume yc occurs in u0. When the least occurrence ofyc comes from u the result is clear. Otherwise, it comes from the substitution ofsome xa0 by �(a0) where � = lab(s). Since y is regular in s, ya occurs in �(b0) forsome b0 � a0. Since x is regular in u, xb0 occurs in u before xa0 and so ya occurs inu0 before yc.(2) The regularity of y is proved in (1). Assume ya occurs in t0: Then it comeseither from t or from the substitution of some xc: Since y is compatible with rboth in s and t; a is accessible in s: Assume �nally that a is un�lled in r. Thus,t = t # ya and s = s # ya: By proposition 32 and lemma 20 it is enough to provethat t0 = t0 # ya for �nite t: This is proved by induction on V al(t).� t = (?; w): Then t0 = (?; w[x := s]):{ Assume ya does not occur in w[x := s]: The result is clear.{ Assume the least occurrence of ya in w[x := s] comes from w: Sincet = t # ya; w = w # ya and the result follows.{ Assume the least occurrence of ya in w[x := s] comes from the substi-tution of xb by �s(b): Since y is compatible with r in s; b is un�lled ins: Since x is compatible with s in t; w = w # xb and again the resultfollows.� t = h(c; w) t1; :::; tni. Then t0 = h(c; w[x := s]) t1[x := s]; :::; tn[x := s]i.Claim : ya does not occur in w[x := s]: Proof : Since t = t # ya, ya doesnot occur in w: Let b be an address and assume xb occurs in w: Then ya doesnot occur in �s(b) : Otherwise, since y is compatible with r in s; b would beun�lled in s: Since x is compatible with s in t; this contradicts the fact that" is �lled in t: End of proof.Thus t0 # ya = h(c; w[x := s]) t1[x := s] # ya; :::; tn[x := s] # yai. The resultfollows then from the induction hypothesis.16

Theorem 34 Let f be a prc, t1; :::; tn be traces and, for each i; let ri be the namedelement (with the fresh name xi) such that V al(ti) = V al(ri). Then xi is compatiblewith ti in [[f]](r1; :::; rn) and [[f]](t1; :::; tn) = [[f]](r1; :::; rn)[xi := ti = i =1; :::; n]:Proof. The compatibility comes from corollary 29. The second point is provedby induction on f . The only non-trivial case is when f is de�ned by recursion.When V al(t1) is �nite, this is done by an immediate induction on its size. Otherwise,this follows by continuity (cf. proposition 32).3.6 Some other resultsThe results in this subsection are not used in sections 4 and 5 and may be skipped.For the same reason, I do not give a proof of propositions 38, 40 and 41. Theseproofs are very similar to the ones in the previous subsections.Proposition 36 is the basic tool in [11] to study the intensional properties ofalgorithms. Propositions 38 and 40 show that other properties of traces can beconsidered.3.6.1 IntensionalityIn the next de�nition and proposition I assume that the type of f and g areNk ! Nbut they may use other auxiliary data types in their de�nition.De�nition 35 The prc f and g are (strongly) intensionally equivalent i�[[f]](Sn1(?)[x1]; :::; Snk(?)[xk]) = [[g]](Sn1(?)[x1]; :::; Snk(?)[xk]) for every se-quence n1; :::; nk of integers and distinct letters x1; :::; xn.Proposition 36 The prc f and g are (strongly) intensionally equivalent i�[[f]](S![x1]; :::; S![xk]) = [[g](S![x1]; :::; S![xk]):Proof. (if) This follows from the fact that S![x] # xn = Sn(?)[x] and propo-sition 21. (only if) This follows from the fact that S![x] = Sup Sn(?)[x] and thecontinuity of [[f]] and [[g]].3.6.2 Normal tracesThe \useful\ traces (i.e. the image by some prc of named elements) have additionalproperties. Here are two examples :� Let t = (e; �): For a 2 Acc(e) � dom(e), the word �(a) is non-empty. Thismeans that, if the algorithm cannot �nd the content of the node a in e, thisis only because of a lack of information on some input and thus �(a) mustcontain some xb where b is an un�lled cell in some argument.� A computation may not be in�nite if, intuitively speaking, it does not examine"from time to time" some cells.The next de�nition formalizes these properties and proposition 38 states thedesired result.De�nition 37 Let T* be the set of normal traces t = (e; �), i.e. such that for alladdresses a:1. If a is un�lled in t, then �(a) is non-empty.17

2. If a is an in�nite addressing branch for t, then there are in�nitely many placesalong a at which the word is non-empty, i.e. the set fn = �(a " n) is non-emptyg is in�nite.Comment and examplesNote that a trace may have in�nitely many cells a such that �(a) = ;: Forexample, de�ne double by : double(0) = 0 and double(Sx) = SSdouble(x): It iseasy to check that [[double]](S![x]) = (S; x0)(S; ;)(S; x1)(S; ;)(S; x2)(S; ;) ::: .Proposition 38 Let f be a prc and t1; :::; tn be in T �. Then, [[f]](t1; :::; tn) 2 T �:3.6.3 Index of sequentialityUsing the traces, there is no need to express the sequentiality in the usual way, sincethe trace itself codes, in some sense, the sequentiality. This can however be done.De�nition 39 Let f be a prc and tj = (ej ; �j) be normal traces. Assume the addressa is un�lled in (e; �) = [[f]](t1; :::; tn) and �(a) is �nite. A pair (i, b) is an indexof sequentiality of (e; �) at the address a if1. b is un�lled in ti:2. The �nal token of �(a) is the �nal token of �i(b):3. For all sequences of normal traces t0j = (e0j ; �0j) such that, for each j; t0j � tjand letting (e0; �0) = [[f]](t01; :::; t0n) :(a) Assume �0i(b) > �i(b). Then �0(a) > �(a):(b) Assume �0i(b) = �i(b). Then �0(a) = �(a):Proposition 40 Let f be a prc and t1; :::; tn be in T �. Assume a is un�lled in(e; �) = [[f]](t1; :::; tn) and �(a) is �nite. Then, there is an index of sequentialityfor (e; �) at the address a.3.6.4 A stronger notion of continuityThe next proposition shows that [[f]] is continuous in a stronger sense than pre-serving the Sup : it also preserves the limit:Proposition 41 Let f be a prc and (t1n); ..., (tkn) be sequences of traces. Assumethat Lim(tin) = tifor i = 1; :::; k: Then Lim([[f]](t1n; :::; tkn)) = [[f]](t1; :::; tk):4 The ultimate obstination theoremThis section is devoted to the proof of theorem 13 and its consequences in terms ofcomplexity (theorems 48 and 49). Recall that the only data type to be used is Nand that, in this case, x1i is written for simplicity xi: Also recall that a trace t overN has only one branch that I denote by Br(t).In this section I allow the use of mutual recursion in the de�nition of a prc.The extension of the de�nitions and the properties given in section 2 and 3 areimmediate.The proof of theorem 13 is by induction on f: The only non-trivial case is whenf is de�ned by recursion. The idea is the following : Let r = S![x] = h(S; x0) r1iand t = [[f]](r;�!�) = x0 + [[h]](r1; t1;�!�) where t1 = [[f]](r1;�!�): Let s = x0 +[[h]](r1; e[y];�!�) where e = V al(t1): By theorem 34, t = s[y := t1]: Since r1 is thesame as r where x is lifted (i.e. xj is replaced by xj+1); t1 is the same as t where x18

is lifted. By the induction hypothesis s is ultimately obstinate. The diÆcult case iswhen the (unique) unbounded letter in s is y: Since the other letters are used in tand t1 in the same way, it is not diÆcult to show that the only possibly unboundedletter is x: Proposition 45 makes this argument precise.4.1 Some preliminary resultsPropositions 43 and 44 show that the ultimate obstination is preserved by substi-tution.De�nition 42 Let t be a trace.1. t �nishes with the letter x if the �nal token (if any) of Br(t) is some xk :2. thx + ki is the trace obtained from t by replacing, in the labelling of t, xj byxj+k for each j.Comment and examplesLet t = S![x]; then t = h(S; x0) thx+1ii: Note that, for all traces, V al(thx+ni) =V al(t):Proposition 43 Let t and s be traces and x be a letter. Assume that :1. x is compatible with s in t.2. x is bounded in t and t does not �nish with x.3. t is ultimately obstinate.Then t[x := s] also is ultimately obstinate.Proof. Since x is bounded in t; the tokens introduced by the substitution comefrom the �nite set of words f�s(c) = xc occurs in Br(t)g. But �s(c) may be in�niteonly if c is un�lled in s: Since x is compatible with s and t does not �nish with x;if xc occurs in Br(t); c may not be un�lled in s and thus �s(c) is �nite. Thus, thesubstitution introduces only a �nite set of new tokens.Proposition 44 Let t, s be traces and x be a letter. Assume that :1. x is compatible with s in t.2. s and t are ultimately obstinate.then t[x := s] also is ultimately obstinate.Proof. By case analysis.- Br(t) is �nite and does not �nish with x : By proposition 43.- t �nishes with x and Br(t[x := s]) is in�nite : There is a �nal segment of Br(s)which is a �nal segment of Br(t[x := s]) and the result follows from the fact that sis ultimately obstinate.- x is unbounded in t : The other letters are bounded in t. So, the unboundedletters in t[x := s] come from s and thus there is at most one such letter since s isultimately obstinate.- Otherwise : By proposition 43.Proposition 45 Let t, s be traces, x, y be letters and n be an integer. Assume that :1. y does not occur in t. 19

2. y is compatible with t in s and t = s[y := thx + ni].3. the �rst token in Br(s) is x0.De�ne the sequence (si) by : s0 = s, si+1 = si[y := shx+ n(i+ 1)i]. Then1. t = Lim (si).2. Assume moreover that s is ultimately obstinate. Then t also is ultimately ob-stinate.Proof. Since t = s[y := thx+ni]; by proposition 31, V al(t) = V al(s) and thus,by proposition 26, the compatibility of y with t and s are equivalent: Similarly, sinceV al(thx + ni) = V al(t) and V al(shx+ ni) = V al(s), the compatibility of y with tand thx + ni (respectively with shx+ ni) are equivalent:Claim 1 For all i, V al(si) = V al(s) = V al(t): The letter y is compatible withshx+ n(i+ 1)i and t in si. In particular, the sequence (si) is well-de�ned.Proof By induction on i. Use proposition 33.Claim 2 For all i, t = si[y := thx + n(i+ 1)i].Proof By induction on i. The case i = 0 is trivial . The case i + 1 is givenbelow (where p = n(i+ 1)).si+1[y := thx+ p+ ni] = si[y := shx+ pi][y := thx+ p+ ni]= si[y := shx+ pi[y := thx+ p+ ni]] (�)= si[y := shx+ pi[y := thx+ nihx+ pi]]= si[y := s[y := thx+ ni]hx+ pi]= si[y := thx+ pi]= t(*) because the only occurrences of y in si[y := shx+pi] are coming from shx+pi:Claim 3 The �rst token of Br(shx + ji) is xj :Proof Immediate.Claim 4 For all i; k, if y does not occur in Br(si) " k then Br(si) " k = Br(t) " k:Proof Immediate from claim 2. Recall that w " k is the pre�x of w of length p.Proof of (1). By the claim 4, I have to prove that for each k, y does not occurin Br(si) " k for i large enough. This is done by an easy induction on k : since yis regular in si (because y is compatible with si), the �rst occurrence of y0 in si issubstituted (to get si+1) by an initial segment of shx+ n(i+1)i, i.e. a word whose�rst token is xn(i+1).Proof of (2).- Assume every letter z 6= x; y is bounded in s: Let m be a bound for z in s. Itis easy to check, by induction on i, that z is also bounded by m in each si and thusalso in t. Thus, the only letter that may be unbounded in t is x.- Assume some letter z 6= x; y is unbounded in s: Since s is ultimately obstinate,y is bounded in s and (since it follows from the assumption that s is in�nite) s doesnot �nish with y: The result follows then from proposition 43.
20

4.2 Proof of theorem 13By induction on f . The only non-trivial case is when f is de�ned by recursion.By theorem 34 and proposition 44, I may assume that the arguments are namedelements. Let r be the recursive argument and �!� be the sequence of parameters.For �nite r, the result is easily proved by induction on its size. Assume then thatr = S![x] and let ri = rhx + ii.For a better understanding, I �rst give the proof when mutual recursion is notallowed and then, the general case.(1) Assume the recursive equation for f is f(Sn;�!m) = h(n; f(n;�!m);�!m). Thent = [[f]](r;�!�) = x0+[[h]](r1; [[f]](r1;�!�), �!�). Let s = x0+[[h]](r1; e[y];�!�) wheree = V al([[f]](r1;�!�)) and y is a fresh letter. Then, by theorem 34, t = s[y :=[[f]](r1;�!�)]. Clearly [[f]](r1;�!�) = thx + 1i and thus t = s[y := thx + 1i]. Bythe induction hypothesis s is ultimately obstinate. The result follows then fromproposition 45.(2) Assume f1; :::; fk are de�ned by mutual recursion and fj(Sn;�!m) = hj(n;f1(n;�!m); :::; fk(n;�!m);�!m). Let vj = ej [zj] where ej = V al([[fj]](r1;�!�)) and zjis a fresh letter. Let �j = x0 + [[hj]](r1;�!v ;�!�) and tj = [[fj]](r;�!�). By theinduction hypothesis, the �j are ultimately obstinate. By theorem 34, tj = �j [zi :=[[fi]](r1;�!�) = i = 1; :::; k]. By proposition 43, the only cases where it is not clearthat tj is ultimately obstinate are those where �j is in�nite and the only unboundedletter is one of the zi, or when it is �nite and it �nishes by some zi. In such a casesay that fj recursively calls fi.We have to prove that t1 is ultimately obstinate.(2.1) Assume �rst that f1 recursively calls f1: Let �1 = �1[zi := [[fi]](r1;�!�) = i 6= 1]:Claim 5 �1 is ultimately obstinate.Proof Since f1 recursively calls f1 either �1 is in�nite and then z2; :::; zk arebounded in �1 or �1 is �nite and does not �nish with z2; :::; zk: In both cases theresult follows from proposition 43. (End of proof of claim 5)Since t1 = �1[z1 := t1hx+ 1i] the result follows from proposition 45.(2.2) Assume f1 recursively calls, say f2. Let �1 = �1[zi := [[fi]](r1;�!�) = i 6=2]: By the same argument as in claim 5, �1 is ultimately obstinate. Since t1 =�1[z2 := t2hx + 1i] it is enough (by theorem 34 and proposition 44) to show thatt2 is ultimately obstinate. When f2 recursively calls f2; the same argument as in (2.1) gives the result. Otherwise, by repeating the argument, we get a cycle, say oflength n : f1 recursively calls f2, ..., that recursively calls fn, that recursively callsf1. The following claim �nishes the proof.Claim 6 For each j = 1; :::; n there is a trace sj using only the letters x; zjand the letters in �!� such that the hypotheses of proposition 45 are satis�ed witht = [[fj]](r;�!�), s = sj and y = zj .Proof For the simplicity of notations, I assume that n = 2.Since �1 is ultimately obstinate and f1 recursively calls f2, z1 is bounded in �1and �1 does not �nish with z1. Similarly for �2. Let �1 = �1[z1 := t1hx + 1i] and�2 = �2[z2 := t2hx+1i]. Then, zi does not occur in �i and t1 = �1[z2 := t2hx+1i],t2 = �2[z1 := t1hx+1i]. By proposition 43, �1 and �2 are ultimately obstinate. Lets1 = �1[z2 := �2hx + 1i] and s2 = �2[z1 := �1hx + 1i]. It is clear that : s1 and s2are ultimately obstinate (by proposition 44), the �rst token of si is x0, zi does notoccur in ti , z1 does not occur in s2, z2 does not occur in s1, zi is compatible withti in si (by proposition 33). Thus, it remains to show that t1 = s1[z1 := t1hx + 2i](the proof is similar for t2). 21

s1[z1 := t1hx+ 2i] = �1[z2 := �2hx+ 1i][z1 := t1hx+ 2i]= �1[z2 := �2hx+ 1i[z1 := t1hx+ 2i]] (�)= �1[z2 := �2[z1 := t1hx+ 1i]hx+ 1i]= �1[z2 := t2hx+ 1i] because t2 = �2[z1 := t1hx+ 1i]= t1(*) because z1 does not occur in �1.4.3 Complexity resultsDe�nition 46 Let f be a prc. The computation time of f is the function de�nedby : time(n1; :::; nk) = lg(Br([[f]](Sn1(0)[x1]; :::; Snk(0)[xk]))) where x1; :::; xk aredistinct letters.In [3] the computation time of f is de�ned as the number of reductions in call byname strategy. It is not diÆcult to check that the time de�ned here is smaller thanthe one in [3]. This is due to the fact that I only count the reductions correspondingto redexes where the symbols S and 0 \come from\ the named arguments and notthose where these symbols are created by previous reductions. For example, assumeadd is de�ned by : add(0; y) = y; add(Sx; y) = S add(x; y) and double is de�nedby : double(0) = 0; double(Sx) = SSdouble(x). Let f(x; y) = add(double(x); y): Itis easy to check that the time function for f; as de�ned in [3], is (approximately)time(n; p) = 2n+ p whereas lg(Br([[f]](Sn(0)[x]; Sp(0)[y]))) = n+ p:However, to prove the complexity result for the inf function, [3] shows that thetime complexity is at least ... the time I de�ned here and thus, even though myresult seems to be stronger than Colson's result, it is actually the same.In order to prove theorems 48 and 49, I �rst need the following proposition. Itessentially says that if a cell is not used in the computation of f(e) and e and e0coincide on the path up to this address then [[f]](e[x]) = [[f]](e0[x]):Proposition 47 Let f be a prc, r = e[x]; s = e0[x] and �!t be a sequence of elementsof N with names distinct from x. Assume j is accessible both in e and e0. Then1. [[f]](r;�!t) # xj = [[f]](Sj(?)[x];�!t)2. Assume xj does not occur in [[f]](r;�!t). Then [[f]](r;�!t) = [[f]](s;�!t)3. Assume xj does not occur in Br([[f]](r;�!t)) " p. Then Br([[f]](r;�!t)) " p =Br([[f]](s;�!t)) " p:Proof.1. This follows immediately from proposition 21 and the fact that r # xj =Sj(?)[x]:2. [[f](r;�!t) = [[f]](r;�!t) # xj = [[f]](Sj(?)[x];�!t) = [[f]](s # xj ;�!t) =[[f]](s;�!t) # xj = [[f]](s;�!t).3. Br([[f]](r;�!t)) " p = fBr([[f]](r;�!t)) # xjg " p = fBr([[f]](s;�!t)) # xjg "p = Br([[f]](s;�!t)) " p:Theorem 48 There is no prc (even using mutual recursion) that computes the infof two integers in time a function of this inf. In particular there is no prc computingthe inf function in time O(inf).Proof. Otherwise, assume f is a prc computing the inf function in time �(inf).Let t = [[f]](S![x]; S![y]) and w be the branch of t. The letters x and y can-not both be bounded in w : Otherwise, by proposition 47, for m;n large enough22

[[f]](Sm(0)[x]; Sn(0)[y]) = t and thus, f(Sm(0); Sn(0)) = V al(t). Hence f does notcompute the inf function.Thus, by theorem 13, there is exactly one unbounded letter, say x, in w. Let n bea bound for the indexes of y in w. Then (by proposition 47) [[f]](S![x]; Sn(0)[y]) =t. Let m = maxf�(n), ng. Assume that the �rst occurrence of xm+1 is the p-thtoken of w (since x is unbounded and regular in w, xm+1 does occur in w). Byproposition 47, w " p� 1 = Br([[f]](Sm(0)[x]; Sn(0)[y])) " p � 1. But the numberof tokens in w " p� 1 is at least m+1 because x is regular in t and thus x0; :::; xmoccur in w " p � 1. Thus the number of tokens in Br([[f]](Sm(0)[x]; Sn(0)[y]))is at least m + 1 and the time to compute f(Sm(0); Sn(0)) is larger than m, acontradiction.Theorem 48 corresponds to a computation where the rewriting strategy is callby name. The result remains true for any strategy, as the next theorem states (thisresult also is in [3]).Theorem 49 Let f be a prc computing the function inf: Let � be any function.Then, there are integers n and m such that the number of reductions made to getthe normal form of f(Sm(0); Sn(0)) (no matter which strategy is used) is largerthan �(inf(n;m)).I only give a sketch of the proof. A complete proof would need a formaliza-tion of the rewriting rules on terms, i.e. prc applied to arguments of the formSn(0) or Sn(?) and the fact that this rewriting satis�es the Church-Rosser prop-erty. The idea of the proof is the following : The de�nition of [[f]] in proposition 9has been made in correspondence with call by name strategy. It is possible to dothe same thing for any other strategy (call ffg the corresponding function) and toshow that the properties (in particular the preservation of regularity) of ffg are thesame as those of [[f]]. By using the same argument as in the proof of theorem 48,the only additional point is the following : If xj occurs in [[f]](Sn(0)[x]; Sm(0)[y])then xj also occurs in ffg(Sn(0)[x]; Sm(0)[y]). This is proved as follows. As-sume xj occurs in [[f]](Sn(0)[x]; Sm(0)[y]). By proposition 47 (since Sn(0)[x] #xj = Sj(?)[x]), the �nal token in [[f]](Sj(?)[x]; Sm(0)[y]) is xj and thus the nor-mal form of f(Sj(?); Sn(0)) is Sk(?) for some k. Assume xj does not occur inffg(Sn(0)[x]; Sm(0)[y]): Then ffg(Sn(0)[x]; Sm(0)[y]) = ffg(Sj(?)[x]; Sm(0)[y])and the normal form of f(Sj(?); Sn(0)) should be Sp(0) for some p. This contra-dicts the Church-Rosser property.5 The backtracking propertyThis section is devoted to the proof of theorem 16.5.1 The idea of the proofThe intuition is the following. It is basically, at least at the beginning, the sameas the proof of theorem 13. Let r = S![x] and s = S![z]: I want to prove that� = [[f]](r; s) has the BTP. Let ri be the subtree of r at the address i; i.e. ri =h(S; xi) ri+1i = (S; xi)(S; xi+1)::: .� = �0[y1 := [[f]](r1; s)] where �0 = x0 + [[h]](r1; t1; s) and t1 is the namedelement with fresh name y1 and value [[f]](r1; s): Repeat the same thing with[[f]](r1; s) = �1[y2 := [[f]](r2; s)]; ::: . We get � = �n�1[yn := [[f]](rn; s)] where�n�1 = �0[y1 := �1[y2 := :::]:::]. By the induction hypothesis �n has the BTP andthus it remains to analyze the behaviour of the BTP with respect to the fact that� = Sup �n: 23

When the only data type was N; the situation was very simple for two reasons.(1) In N; a tree has only one branch and thus there is exactly one recursive call(in the example above [[f]](r1; s)). In the general case the number of recursive callsis variable and depends on the node of the tree. (2) In N; the recursive calls aresimilar : [[f]](r1; s) = [[f]](r; s)hx + 1i: In the general case, there is, a priori, norelations between successive recursive calls.However, when all the data types are allowed, we can do basically the samethings and get � = �n[�!Y := the recursive calls at depth n in r]: By the inductionhypothesis �n has the BTP. It remains then to analyze how the BTP is propagatedor created in � = Sup �n: This is the role of next subsection. The main point isthe following : If the letter z is unbounded in � and bounded in each �n; then itmust be backtracking in �: This is basically because the unboundedness comes fromalways new copies of s and, since z is regular in �; if zk occurs and comes from anew copy of s then all the zk0 for k0 � k also occur and are new.5.2 Some preliminary resultsIn this subsection I examine the behaviour of the backtracking with respect to sub-stitution. Proposition 53 gives the main cases where backtracking is propagated bysubstitution. Proposition 55 shows how a backtracking is created by a substitutionand 56 shows that the backtracking property is preserved by substitution.We will have to use traces which are not regular. This problem, which alreadyarises in section 3 (see the proof of proposition 24), requires a more complete treat-ment and a slight extension of regularity is needed.De�nition 50 Let t be a trace.1. Let b be an address. A letter x is b-regular in a branch w of t if for all addressesb � a � a0, if xa0 occurs in w, then xa also occurs in w and the �rst occurrenceof xa is earlier than the �rst occurrence of xa0 .2. x is b-regular in t if it is b-regular in each branch of t.3. t is quasi-regular if, for each letter x, each branch w of t and each function afrom N to N* there is an n such that x is a " n-regular in w.Comment and examples1. x is regular in t i� it is "-regular in t. Note that, if x is b-regular in t andb0 � b; then x also is b0-regular in t:2. Let e be an element of a data type and a 2 Acc(e): Let ea[x] be the subtreeof e[x] whose root is at the address a in e[x]: Then, if a 6= ", x is not regularin ea[x] but it is a-regular.3. We will have to do (see de�nition 59) simultaneous substitutions of a-regulartraces (for non-�xed a): This is the reason of the use of quasi-regularity.4. If, for n � n0; xa"n does not occur in a branch w; then x is clearly a " n0-regular in w. Thus, being quasi-regular is a condition only for the functionsa such that x is a-unbounded in w:Proposition 51 1. If t1; :::; tn are b-regular, then [[f]](t1; :::; tn) is b-regular.2. Assume x is compatible with s in t and y is b-regular both in s and t. Then yis b-regular in t[x := s]:Proof. As in section 3. 24

Proposition 52 Let w be a word.1. If x is a-BT in a subword w0 of w (i.e. w0 is obtained from w by deletingsome, possibly in�nitely many, tokens), then x is a-BT in w.2. w has the BTP i� there is a �nal segment of w that has the BTP.Proof. Immediate.Proposition 53 Let r, t be traces such that x is compatible with r in t. Let w bea branch in t, a be an addressing branch for r and c be a function from N to N*.Assume that :1. Either x is a-unbounded in w and y is c-BT in Br(r,a)2. Or x is a-BT in w and y is c-unbounded in Br(r,a).Then y is c-BT in w[x := r].Proof.1. Since x is regular and a-unbounded in w, Br(r; a) is a subword of w[x := r]and the result follows.2. Since x is a-BT in w, for each n large enough, the word �r(a " n) occursin�nitely many times in w[x := r] and the result follows from the fact that yis c-unbounded in Br(r; a).De�nition 54 Let w be a word and d be a �nite or in�nite sequence of positiveintegers. I say that w calls (x,d) if either x is d-unbounded in w or the last tokenof w is some xd"n.Remark Note that, if x is d-unbounded in w; then w is in�nite. Also note that,if w calls (x; d) and w is in�nite, then x is d-unbounded in w: This will be usedwithout mention in the rest of the paper.Proposition 55 Let r, t be traces such that x is compatible with r in t. Let wbe a branch in t, c be a function from N to N* such that y is regular in w andc " m-regular in r. Assume that :1. y is c-bounded in w.2. (y; c) is a BT-counterexample in w[x := r].Then there is an addressing branch d for r such that w calls (x, d) and y isc-unbounded in Br(r,d).Proof. This is proved in the following way : I assume, toward a contradiction,that for each addressing branch d for r such that w calls (x; d), y is c-bounded inBr(r; d) and I show that y is c-BT in w[x := r]. Note that this result thus gives acondition to create a backtracking with a substitution.Let � = lab(r): Denote by w(E), for a set E of addresses, the result of thesubstitution in w of xb by �(b) for each b 2 E: Denote by Ea, for an address a,the set of addresses b such that b � a or b � a: Let wfag = w(Ea): In particular,wf"g = w[x := r]. It is easy to check that, for each address a; y is c " m-regular inwfag:Claim 1 There is an in�nite addressing branch d for r such that, for each n; y isc-unbounded in wfd " ng and xd"n occurs in w:25

Proof d(n) is de�ned by recursion on n, preserving the desired conditions. Notethat y is c-unbounded in wf"g and x" occurs in w (otherwise, by the regularity ofx in w, w = w[x := r] and this contradicts the hypothesis). Assume b = d " n isde�ned.- b is �lled in r : otherwise (because x is compatible with r) xb would occur onlyas the �nal token of w and thus w calls (x; b): By the hypothesis, y is c-bounded in�(b) and, since xb is the �nal token of w; also in wfbg: A contradiction.- b is not �lled in r with a terminal constructor : otherwise, for each a � b; �(a)is �nite and again y would be c-bounded in wfbg:Thus b is �lled in r with a non-terminal constructor cf of arity p: Eb = [1�i�p Eb+iand y is c-unbounded in wfbg. Thus, for some 1 � i � p; xb+i occurs in w and y isc-unbounded in wfb+ ig. d(n) = i satis�es the desired conditions. (End of proof ofclaim 1)Since w calls (x; d), let n0 � m be such that, if yc"n occurs in w or in Br(r; d),then n < n0. The next claim �nishes the proof.Claim 2 For each n � n0, yc"n occurs in�nitely many times in w[x := r].Proof Let p be an integer and n � n0:We must check that there is an occurrence ofyc"n in w[x := r] after the p-th token. Let n1 be such that each token in w[x := r] " pcomes either from w or from the substitution of some xa by �(a) and lg(a) < n1.Since y is c-unbounded and c " n-regular in wfd " n1g, yc"n occurs in wfd " n1g.Since n � n0, an occurrence of yc"n in wfd " n1g does not come neither from w norfrom d: Then, by the de�ntion of wfd " n1g; it must come from the substitutionof some xa for a � d " n1. Thus, by the de�nition of n1, this occurrence of yc"nappears in w[x := r] after the p-th token.Proposition 56 Let r, t be traces such that x is compatible with r in t. Let w =Br(t,b) be a branch in t. Assume that :1. t is regular and r is quasi-regular.2. r and w have the BTP.Then w[x := r] has the BTP.Proof. Let � = lab(r): By case analysis.1. w is �nite and its last token is not some xa : w[x := r] also is �nite and thushas the BTP.2. The last token of w is xa and w[x := r] is in�nite : Then, �(a) is a �nalsegment of w[x := r]. The cell a is un�lled in r (since otherwise �(a) is �niteand thus w[x := r] is �nite). Thus, a is an addressing branch for r: Since thebranch Br(r; a) has the BTP, by using proposition 52 (2) twice, �(a) has theBTP and w[x := r] also has the BTP.3. w is in�nite : Assume (y; a) 6= (z; c) are BT-counterexamples for w[x := r]. Byproposition 55, either y is a-unbounded in w or, for some addressing branchd in r, y is a-unbounded in Br(r; d) and x is d-unbounded in w. Similarly for(z; c). There are thus 4 cases to look at.� y is a-unbounded in w and z is c-unbounded in w : This is impossiblebecause, since w has the BTP, y would be a-BT (or z would be c-BT) inw and thus, by proposition 52 (1), in w[x := r].26

� y is a-unbounded in w and, for some addressing branch d for r, z is c-unbounded in Br(r; d) and x is d-unbounded in w : Since w has the BTP,either y is a-BT in w and thus in w[x := r] (and this is a contradiction)or x is d-BT in w and thus, by proposition 53, z is c-BT in w[x := r] andthis is again a contradiction.� the symmetrical case for (y; a) and (z; c).� For some addressing branches d and d0 for r, x is d and d0-unbounded inw, y is a-unbounded in Br(r; d) and z is c-unbounded in Br(r; d0):{ Assume d = d0. Since Br(r; d) has the BTP, y is a-BT (or z is c-BT) in Br(r; d)) and thus, by proposition 53, y would be a-BT (orz would be c-BT) in w[x := r]. A contradiction.{ Assume d 6= d0. Since w has the BTP, x is d-BT (or d0-BT) in w andthus, by the proposition 53, y is a-BT (or z is c-BT) in w[x := r]. Acontradiction.5.3 Proof of theorem 16By induction on f . The only non-trivial case is when f is de�ned by recursion.Let r be the recursive argument and �!� be the sequence of the other arguments.By theorem 34 and proposition 56, I may assume that �!� are named elements andr = e[x]: Let � = [[f]](r;�!�) and denote by y 2 �!� the fact that y is the name ofsome element in �!� i.e. some �i is ei[y]:De�nition 57 For a 2 Acc(e); let ra be the trace obtained by restricting r to thesubtree at address a and sa = [[f]](ra;�!�):Example Let r = S![x]; then rn = (S; xn)(S; xn+1):::De�nition 58 The sets A and An of addresses, the families (�a)a2A of traces,(ha)a2A of prc, (ta)a2A� of named elements and (Xa)a2A� of letters are de�ned, byinduction on lg(a); in the following way :1. " 2 A:2. For a 2 A; assume the recursive equation concerning the constructor cf = e(a)is : f(cf (z1; :::; zpa);�!y) = ha(f(z1;�!y); :::; f(zma ;�!y); z1; :::; zpa ;�!y): Notethat ha; ma and pa depend on the constructor e(a):3. For a 2 A :� a+ j 2 A i� 1 � j � ma:� For j = 1; :::;ma; let ta+j be the element with fresh name Xa+j such thatV al(ta+j) = V al(sa+j).� Let �a be the trace : xa + [[ha]](ta+1; :::; ta+ma ; ra+1; :::; ra+pa ;�!�):4. Let An denote the set fa 2 A / lg(a) = ng:Comment and examples1. By proposition 9, the clause 2. implies that sa = xa + [[ha]](sa+1; :::; sa+ma ;ra+1; :::; ra+pa ;�!�):2. In the previous de�nition A� represents A�f"g; i.e. t" and X" are not de�ned... and not used. Note that in clause 2, ma may be 0 and that, in this case,no extension of a is in A: 27

3. A represents the set of recursice calls in f(e). Note that, for a 2 A; the argu-ments numbered from 1 toma in ha are recursive arguments of the constructore(a) and thus have the same type as e (the notion of recursive argument hasbeen given in the notations at the beginning of section 2.1) but ma may beless than the number of recursive arguments of e(a).4. De�ne � (the data type of sequences of elements of f0; 1g) by : � = fnil : �;s0 : � ! �; s1 : � ! �g: Let e be the in�nite sequence [0; 1; 0; 1; :::]: Iff satis�es : f(s0(l)) = S f(l) and f(s1(l)) = f(l) (e.g. if f computes thenumber of 0 in a list); then A = fn = n � 0g and, for a of even (respectivelyodd) length, ha is the successor (respectively the identity) function.5. De�ne D (the data type of binary trees whose leaves are labelled by integers)by : D = fL of : N ! D; T of : D�D! Dg. Let e be the complete andin�nite binary tree, i.e. Acc(e) is the set of �nite lists of elements of f1; 2gand for each a; e(a) = T of:� If f satis�es : f(T of (e1; e2)) = add(f(e1); f(e2)) (e.g. if f computesthe sum of the leaves of the tree), then A = Acc(e) and for each a 2 A; ha= add and ma = 2:� If f satis�es : f(T of (e1; e2)) = f(e1) (e.g. if f computes the valueof the leftmost leaf in the tree); then A = f1n = n � 0g and, for eacha 2 A; ha is the identity function and ma = 1 (where as T of has tworecursive arguments).6. Note that if A is �nite the fact that � has the BTP follows immediately fromthe induction hypothesis (by a trivial induction on Card(A)). Also note thatAn is �nite for each n:7. If A is in�nite, A has, by K�onig's lemma, an in�nite branch d and d is anaddressing branch for r: The reader might think that (x; d) is the only possibleBT-counterexample for �: Even if this intuition is mainly correct, the situationis much more complicated ... simply because d may be not used in �; i.e. xmay be d-bounded in a branch of �:De�nition 59 The sequence (�n) of traces is de�ned by : Let �0 = �". �n+1 =�n[Xa := �a = a 2 An+1]:Remark The fact that the sequence (�n) is well de�ned follows easily from propo-sition 33 and the lemma 60 below.Lemma 60 Let a 2 An+1 and y 2 �!� : Then :1. The letter y is regular in �a. The letter x is a-regular in �a: The traces �aand sa are quasi-regular.2. Xa is compatible with �a and sa in �n:Proof. Immediate.Lemma 61 For each n, �n has the BTP and � = �n[Xa := sa = a 2 An+1].Proof. By the induction hypothesis, �a has the BTP. The �rst point is provedby induction on n (use proposition 56). The second is immediate (use theorem34). 28

Lemma 62 � = Lim (�n).Proof. Let b be an addressing branch in �: By lemma 61, it is enough to showthat, for each p; Br(�n; b) " p has, for n large enough, no occurrences of some Xa:This is done by an immediate induction on p; using the fact that the �rst symbolof sa is xa. This point has been more detailed in the proof of proposition 45.Lemma 63 Let � be an addressing branch in �: Let w = Br(�; �) and wn =Br(�n; �):1. Assume a 2 An+1 and a0 � a. Each occurrence of xa0 in w comes fromwn[Xa := sa].2. Assume a =2 A, lg(a) = n+ 1 and a0 � a: Each occurrence of xa0 in w comesfrom wn.Proof. By lemma 61, w = wn[Xc := sc = c 2 An+1].1. Assume xa0 comes from the substitution of Xc by sc for c 6= a. Then a0 � c,and this is a contradiction since a0 � a, c 6= a and lg(a) = lg(c).2. Assume xa0 comes from the substitution of Xc by sc for some c 2 An+1. Thena0 � c, and this is a contradiction since a0 � a, c 6= a and lg(a) = lg(c).Lemma 64 Let � be an addressing branch in � and c be a function from N toN�. Assume y 2 �!� is c-bounded in each wn = Br(�n; �)and c-unbounded inw = Br(�; �). Then y is c-BT in w.Proof. Let k be an integer. I show that yc"k occurs in�nitely many timesin w. Let p be an integer. Since, by lemma 62, w = Sup wn let n be such thatw " p = wn " p: Let k0 > k be such that if yc"k0 occurs in wn, then k0 < k0. Sincey is c-unbounded in w, there is a k0 � k0 such that yc " k0 occurs in w. Let m bethe least such that yc " k0 occurs in wm. Since wm = wm�1[Xa := �a = a 2 Am],yc " k0 comes from the substitution of some (Xa)d by ��a(d): By the de�nition ofk0, m > n. By the regularity of Xa in wm�1 and the regularity of y in �a, yc"k alsohas an occurrence in wm (and thus in w) coming from the substitution in wm�1 ofsome (Xa)d. This occurrence of yc"k cannot be in w " p.End of the proof the theoremLet � be an addressing branch for �. Let w = Br(�; �) and, for each n; wn =Br(�n; �): Assume w has not the BTP and (y; c) 6= (z; b) be BT-counterexamplesfor w. I show, by examining the di�erent cases, that this is impossible.1. y; z 2 �!� : By lemma 64, for some n; y must be c-unbounded and z be b-unbounded in wn. Since wn has the BTP, y is, for example, c-BT in wn andthus in w. A contradiction.2. z = x and y 2 �!� : By lemma 64, y is c-unbounded in some wn. Since wn hasthe BTP, x must be b-bounded in wn. Let � = b " (n+ 1):� � =2 A : By lemma 63, for p � n+ 1, if xb"p occurs in w; it comes fromwn. A contradiction.� � 2 A : By lemma 63, for p � n+ 1, if xb"p occurs in w; it comes fromwn[X� := s�] and thus, x is b-unbounded in s�.29

{ fa = (X�)a occurs in wng is �nite : The word wn is in�nite (becausey is c-unbounded in it) and thus (because X� is compatible withs�) each ��(a) substituting (X�)a is �nite. Since x is b-bounded inwn and only �nitely many distinct �nite words are substituted, x isb-bounded in wn[X� := s�]: A contradiction.{ fa = (X�)a occurs in wng is in�nite : Since X� is regular in wn,this set is a �nitely branching tree. Thus, by K�onig's lemma, it hasan in�nite branch d. Since wn has the BTP, since (y; c) is a BT-counterexample in wn and X� is d-unbounded in wn, X� is d-BT inwn and, by proposition 53, x is b-BT in wn[X� := s�] and thus inw. A contradiction.3. y = z = x : Let n0 be the least such that b(n0) 6= c(n0):� For some m, b " m =2 A and c " m =2 A : By lemma 63, for each p � m,an occurrence of xb"p (respectively xc"p) in w; comes from wm. Thus, xis both b and c-unbounded in wm. This is a contradiction since wm hasthe BTP.� For each n, b " n 2 A and c " n 2 A : Let v = wn0 , n1 = n0 + 1,b0 = b " n1 and c0 = c " n1. Note that x cannot be both b and c-unbounded in v : Otherwise, since v has the BTP, x would be either bor c-BT in v and thus in w. A contradiction. Thus x is, say, b-boundedin v.By lemma 63, for p � n1, each occurrence of xb"p (respectively xc"p)in w comes from v[Xb0 := sb0] (respectively in v[Xc0 := sc0]. Thus (x; b)(respectively (x; c)) is a BT-counterexample in v[Xb0 := sb0] (respectivelyin v[Xc0 := sc0].{ x is c-unbounded in v : Then v is in�nite and, since x is not c-BTin w; it is not c-BT in v: By proposition 55, there is an address-ing branch d for sb0 such that Xb0 is d-unbounded in v and x isb-unbounded in Br(sb0 ; d). Since v has the BTP and x is not c-BTin v, Xb0 is d-BT in v and thus, by proposition 53, x is b-BT inv[Xb0 := sb0] and thus in w. A contradiction.{ x is c-bounded in v : By proposition 55, there is an addressing branchd for sb0 (respectively d0 for sc0) such that v calls (Xb0 ; d) (respec-tively v calls (Xc0 ; d0)). Since a word cannot �nish by two distincttokens and, if it is �nite, a letter cannot be unbounded, the only pos-sible case is : Xb0 is d-unbounded in v, x is b-unbounded in Br(sb0 ; d);Xc0 is d0-unbounded in v, x is c-unbounded in Br(sc0 ; d0): This isimpossible : Since (Xb0 ; d) 6= (Xc0 ; d0) and v has the BTP, Xb0 forexample would be d-BT in v and thus, by proposition 53, x wouldbe b-BT in v[Xb0 := sb0] and thus in w: A contradiction.� For each n, c " n 2 A and for some n1 � n0, b " n1 =2 A : Let v =wn1 ; n2 = n1 + 1 and c0 = c " n2. By lemma 63, for each p � n2, eachoccurrence of xb"p in w, comes from v, and thus x is b-unbounded in v.{ x is c-unbounded in v : Since v has the BTP x would be b or c-BTin v and thus in w: A contradiction.{ x is c-bounded in v : Since x is c-unbounded in v[Xc0 := sc0], byproposition 55, there is an addressing branch d for sc0 such that Xc0is d-unbounded in v and x is c-unbounded in Br(sc0 ; d). Since vhas the BTP and x is not b-BT in v, Xc0 is d-BT in v and thus,by proposition 53, x is c-BT in v[Xc0 := sc0] and thus in w. Acontradiction. 30

6 ConclusionThe trace is a mathematical representation of the intuitive notion of "the way analgorithm uses its arguments". The intuitive meaning of the main results of thispaper is the following :- The ultimate obstination : A primitive recursive algorithm (even using mutualrecursion) cannot use alternatively its arguments.- The backtracking property : A primitive recursive algorithm (even using anykind of �rst order data types) cannot alternate without backtracking.The �rst property has a consequence in terms of complexity and, though I haveno such consequences for the second, the notion of trace and the backtrackingproperty are useful tools to study the behaviour of primitive recursive algorithms(see the forthcoming papers [8] and [11]) because the trace contains a very richinformation on the computation. However (at least until now) this information issomehow under-used : In the ultimate obstination we essentially only look at theleast occurrence of a token. In the backtracking property we consider a bit more :how many times a token appears.1) Are there other intensional properties of algorithms that can be capturedby the notion of trace, i.e. are there other intensional properties for which we canprove the analog of theorems 16 and 13 ?2) Valarcher conjectures that there is no prc computing the inf function bothin the good time (i.e. O(inf)) and in the good way (i.e. f(Sn(?); Sm(?) =Sinf (n;m)(?)): A much �ner analysis (i.e. de�ning a stronger notion of trace withmore information) will probably be necessary.I give below some questions (in terms of complexity) that could be solved byusing this kind of technique.3) The term given in [9] computes the inf in time O(inf) but it is not really agood algorithm because it does not use its arguments in real time. A de�nition ofreal time could be the following. A prc f computes a function (e.g. from N2 toN) in real time if there is a constant c such that : for each integer i, the lengthof the subword of Br([[f]](S! [x]; S![y])) between the i-th and the (i + 1)-th leastoccurrence of xi and xi+1 is less than c and similarly for y. It is easy to see thatthe term given in [9] has not a real time computation. I conjecture that there is noprc computing the inf function in real time.4) Let f be a prc and t1; :::; tn be named elements. The ultimate obstinationtheorem says that, if the only data type to be used isN and [[f]](t1; :::; tn) is in�nite,there is a leading argument : the (unique) unbounded one. The experience seems toshow that, even if f uses other data types there is such a leading argument, i.e. anargument that can be somehow distinguished. Is it possible to de�ne a property of[[f]](t1; :::; tn) distinguishing a unique argument ? This property is certainly not :being unbounded and not backtracking. Theorem 16 says that such an element, ifit exists, is necessarily unique but it is easy to �nd examples where there is no suchelement.References[1] R. Amadio and PL. Curien. Domains and Lambda Calculi. Cambridge Uni-versity Press, 1998.[2] G. Berry and P.-L. Curien. Sequential algorithms on concrete data structures.Theoretical Computer Science, 20 : 265-321, 1982.31

[3] L. Colson. About primitive recursive algorithms. Theoretical Computer Sci-ence, 83 : 57-69, 1991.[4] L. Colson. Repr�esentation intentionnelle d'algorithmes dans les syst�emes fonc-tionnels : Une �etude de cas. Th�ese de doctorat, Universit�e Paris 7, 1991.[5] L. Colson. A unary representation result for system T. Annals of Mathematicsand Arti�cial Intelligence, 16 : 385-403, 1996.[6] L. Colson. A unary representation result for system T. Mejanne le Clap Actspecial issue of Theoretical Computer Science, 1996.[7] T. Coquand. Une preuve directe du th�eor�eme d'ultime obstination. ComptesRendus de l'Acad�emie des Sciences, 314, Srie I, 489-492, 1992.[8] R. David. Decidability results for primitive recursive algorithms. In prepara-tion.[9] R. David. Un algorithme primitif r�ecursif pour la fonction inf. Comptes Rendusde l'Acad�emie des Sciences, 317 (S�erie I) 899-902, 1993.[10] R. David. The inf function in the system F. Theoretical Computer Science,135 : 423-431, 1994.[11] R. David and P. Valarcher. Traces of some primitive recursive schemata. Inpreparation.[12] M. Hotzel Escardo. On lazy natural numbers with applications. SIGACTNews, 24(1), 1993.[13] D. Fredholm. Intensional aspects of function de�nitions. PhD Thesis and TCS152 1-66, 1995.[14] D. Fredholm. Computing minimum with primitive recursion over lists. Theo-retical Computer Science, 163 269-276, 1996.[15] J.-L. Krivine. Un algorithme non typable dans le systeme F. Comptes Rendusde l'Acad�emie des Sciences, 304(5), 1987.[16] R. Peter. Recursive Functions. Academic Press, 1968.[17] H. Rogers. Theory of recursive functions and e�ective computability. MITPress, 1988.[18] P. Valarcher. A complete characterization of intensional behaviours of primitiverecursive algorithms. Rapport de Recherche du LIR 96.11 (To appear in TCS),1996.[19] P. Valarcher. Contribution �a l'�etude du comportement intentionnel des algo-rithmes : le cas de la r�ecursion primitive. Th�ese de doctorat, Universit�e Paris7, 1996.[20] P. Valarcher. Intensionality vs extensionality and primitive recursion. ASIANComputing Science Conference - LNCS, 1179, 1996.[21] J.E. Vuillemin. Proof techniques for recursive programs. PhD thesis, Standford,1973.
32

