N
N

N

HAL

open science

A lambda-calculus with explicit weakening and explicit
substitution

René David, Bruno Guillaume

» To cite this version:

René David, Bruno Guillaume. A lambda-calculus with explicit weakening and explicit
in Computer Science, 2001, 11 (1), pp.169-206.

substitution. Mathematical Structures
10.1017/S0960129500003224 . hal-00384683

HAL Id: hal-00384683
https://hal.science/hal-00384683v1
Submitted on 15 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00384683v1
https://hal.archives-ouvertes.fr

Under consideration for publication in Math. Struct. in Comp. Science

A \-calculus with explicit weakening and
explicit substitution

RENE DAVID! and BRUNO GUILLAUMEY? T

! Laboratoire de Mathématiques

Université de Savoie

F-733876 Le Bourget du Lac Cedex

2 Laboratoire de Recherche en Informatique
Bat. 490 - Unwversité Paris SUD

F-91405 Orsay Cedex

Received 8 April 2000

Since Mellies has shown that Ao (a calculus of explicit substitutions) does not preserve
the strong normalization of the #-reduction, it became a challenge to find a calculus
satisfying the following properties: step by step simulation of the 3-reduction, confluence
on terms with metavariables, strong normalization of the calculus of substitutions and
preservation of the strong normalization of the A-calculus. We present here such a
calculus. The main novelty of the calculus (given with de Bruijn indices) is the use of
labels that represent updating functions and correspond to explicit weakening. A typed
version is also presented.

Contents

1 Introduction
Preliminaries
2.1  Rewriting
2.2 The A-calculus with de Bruijn indices: the Ag,-calculus
2.3 The As-calculus and the As.-calculus
3 The calculus with explicit weakening: A,
3.1 Terms with labels
3.2 The Ay-calculus
3.3 Simply typed Ay-calculus
3.4 A, versus Ag
3.5 Conclusion: A\, versus Ag
4  The Ay s-calculus
4.1 Syntax and reduction rules for the A -calculus
4.2 Typing rules for the Ay -calculus
4.3 Link with the As.-calculus

t This work was done at Université de Savoie and was finished in Université Paris SUD.

O O =1 O = =~ o

10
10

13
14
14
16
17



René DaviD, Bruno GUILLAUME 2

5 Strong normalization of the calculus of substitutions 17
5.1 The substitutive contexts 17
5.2 Simulation of the ws-calculus in the ps-calculus 19
5.3 Strong normalization of the pp-calculus 20

6 Confluence on open terms 22
6.1 The calculus with metavariables 22
6.2 Confluence of the ws,-calculus 22
6.3 Confluence of the Ay -calculus 22

7 Simulation of the S-reduction 28

8 Preservation of strong normalization 29
8.1 Sketch of the proof 30
8.2 Definitions 30
8.3 Preservation of infinite reductions by propagation 32
8.4 Proof of the key lemma 37

9 Conclusion 38

References 39

1. Introduction

Calculi of explicit substitutions are useful tools that fill the gap between the meta op-
eration of substitution appearing in the g-reduction of the A-calculus and its concrete
implementation.

The most natural property such calculi have to satisfy is the simulation of the -
reduction (SIM): every S-reduction can be done in the new calculus and conversely this
calculus does not introduce other reductions.

To have a good implementation of the A-calculus, it is also natural to ask that no infinite
reductions are created by the use of explicit substitutions. This is called the preservation
of strong normalization (PSN). Melliés gave in (Mellies, 1995) a simply typed term with
an infinite reduction in Ae. This counter-example shows that Ao has not PSN.

Another important property is to have the confluence on terms with metavariables
(MC): in proof assistants or theorem provers one has to consider proof trees with some
unknown subtrees. To represent these proof trees, A-terms with metavariables (corre-
sponding to unknown parts of the tree) are necessary. The confluence on usual (closed)
terms is easy to obtain but MC is much more difficult.

Since Melliés gave his counter-example, many calculi have been proposed but none of
them satisfies simultaneously SIM, PSN and MC. Figure 1 gives some of them and their
properties.

In order to satisfy both SIM and MC, rules for the interaction between substitutions
are necessary. These rules are responsible for the lack of PSN in Ao and As.. In Ad and
Aoy, a weaker notion of composition is used and thus PSN is satisfied, but these rules
are not strong enough to get MC.

The As-calculus is the most natural calculus of explicit substitutions: it is the A-calculus
(with de Bruijn indices) where the substitution (¢?) and the updating ((bf) have been



A A-calculus with explicit weakening and explicit substitution 3

SIM PSN  MC

without Av (Benaissa et al., 1996) Yes Yes No
interaction As (Kamareddine and Rios, 1995b) Yes Yes No
A¢ (Munoz, 1996; Murtioz, 1997) Big step  Yes  Yes

Ao(Abadi et al., 1991) Yes No  Yes

with Ase (Kamareddine and Rios, 1997) Yes No Yes
interaction Ad (Ferreira et al., 1996) Yes Yes No
SKInT (Goguen and Goubault-Larrecq, 1999) Yes Yes  Yes

Fig. 1. Calculi of explicit substitutions and their properties

internalized. The As.-calculus is obtained by adding new rules for the interaction of
substitutions. This set of rules is the minimal one to get MC but unfortunately, As, does
not satisfy PSN (Guillaume, 1999a).

In the following example, the S-reduction is done in two steps: first, the reduction of
the f-redex and the propagation of the substitution and then, the propagation of the
updating function. The (1) in the middle term means that the free indices in the term
below must be increased by 1. This corresponds to the function ¢§ in As..

Example 1.1.

/\ A A
N /<\ 1 /<\ 1
)\ = =

0/\1 — > 0 1) — g A
AN : A
0 1 Q 2

0 1

The rules for the propagation of the updating functions are responsible for the lack of
PSN in As. (Guillaume, 1999a). The key idea of our calculus is to keep the information
about updating in terms rather than to move it down. In others words, we decide that
(in the example above) the “right” reduct of the term is the second rather than the third
one.

Recently, another solution which relies on a translation of A-terms into sequent combi-
nators has been proposed (Goguen and Goubault-Larrecq, 1999). Goguen and Goubault
introduce a first order calculus (named SKIn) on the set of terms defined by:

tuo=a | I; | Kn(t) | Sm(t,1)

where I,,, k,, and S, are generalizations of the usual combinators 7/, K and S. The
translation of the A-term ¢ in SKIn is written ¢* and the reverse one [u] for any SKIn-
term u. They show that { —5 « implies ¢~ H"S'KM u* but conversely, they only have
that ¢ —skrn u implies [{] — %, [«]. Unfortunately, with an example & la Melliés,



René DaviD, Bruno GUILLAUME 4

they show that SK In is not strongly normalizing in the typed case and thus that it does
not have PSN.

To recover the PSN, they define the SKInT-calculus on the same syntax but with
less permissive rules. This second calculus has the expected properties (including PSN)
but the relation with the A-calculus is more complicated than for SKIn. The logic
behind SKInT is a fragment of the modal logic S4 called near-intuitionistic logic. The
corresponding notion of “A-calculus” is a closure calculus (named Ag,s) which is an
extension of call-by-value (CBV) A-calculus. The A-calculus is translated in SKInT in
the following way: first, encode the A-calculus in the CBV A-calculus (using for example
a continuation passing style (CPS) transformation), then use a translation from Ags to
SKInT. Denoting by L*(t) the translation of the A-term ¢ in SKInT, they prove:

— if t — w then L*(t) — % i L7 (w);
— t and u are convertible if and only if L*(t) and L*(u) are convertible in SKInT.

The paper is organized as follow: we first introduce the Ay-calculus (section 3)which
is the usual A-calculus (with de Bruijn indices) where terms may contain labels (k), then
we give the Ay -calculus (section 4) which is obtained from the Ay-calculus by making
the substitutions explicit and by adding rules for interaction between substitutions.

The sections from 5 to 8 are devoted to the proofs of the main properties of the
Aws-calculus. The most innovative section is the last one where the PSN is proved.

Warning: This paper 1s the complete version of the extended abstract presented in
WESTAPP’99 (David and Guillaume, 1999). There, the Ay ;-calculus was called A; (! for
label).

2. Preliminaries

We give here some definitions and useful lemmas about rewriting systems. We also recall
the rules for the usual g-reduction on A-terms with de Bruijn indices and the explicit
substitution calculus As,.

2.1. Rewriting

Definition 2.1 (Abstract rewriting systems). Let F be a set of terms and R be
a set of rewriting rules. We denote by —> g the binary relation on E defined by the
contextual closure of the set of rules.

We also write —% (resp. —>1‘S) for the transitive and reflexive closure, (resp. transitive
closure) of —g.

Definition 2.2 (Normal form). We say that ¢ € F is an R-normal form if there are
no terms u such that t — g u. The set of R-normal forms is denoted by NF(R).

Definition 2.3 (Normalization).

— A term t € F is strongly normalizable if there is no infinite R-reduction of ¢, i.e.
if every sequence t —g t1 —>g 12 ... is finite. The set of R-strongly normalizable
terms is denoted by SN(R). If SN(R) = FE, we say that the reduction R is strongly
normalizing.



A A-calculus with explicit weakening and explicit substitution 5

— A term ? is weakly normalizable if there is a finite reduction ¢ —% « where u is an
R-normal form. The set of R-weakly normalizable terms is denoted by WN(R). If
WN(R) = F, we say that the reduction R is weakly normalizing.

Definition 2.4 (Confluence).

— A reduction — g is confluent if, for ¢, u, v € E such that ¢t —% v and t —} v there
is w such that v —% w and v —% w.

— A reduction — g is locally confluent if, for ¢{,u,v € E such that ¢t — g u and
t — g v there is w such that v —% w and v — 3 w.

— A reduction — g is strongly confluent if, for ¢,u,v € E such that ¢ — g w and
t —> g v there i1s w such that v —p w and v — g w.

Remark 2.5. The reduction —g is confluent if and only if the reduction —7% is
strongly confluent.

Lemma 2.6 (Newman’s lemma). If the reduction —p is strongly normalizable and
locally confluent, then it is confluent.

The following lemmas will be used in section 8. The second one is a particular case of
the first one.

Lemma 2.7 (Projection lemma). Let R, S be reductions on E and F respectively
and > be a binary relation on £ x F'. Assume that:

— R=R1UR,.

— Ry is strongly normalizing.

— Ift — g, t' and t = u then there is v’ such that u —7% v’ and ¢/ = o'
— Ift —> g, t" and ¢ = u then there is w’ such that u —>'|S' u and ¢/ = u'.

Lett € B, u€ F witht = u. If u € SN(S) then t € SN(R).

Proof. From an infinite R-reduction of ¢, we can construct an infinite S-reduction of u:

t=to R: ty —z h R: th
Y Y Y Y
U = UQ e g* u6 .......... g U oo g*ull -

O

The next lemma corresponds to the particular case where R contains the equality (i.e.
for all ¢, we have t = t) and S = R,.

Lemma 2.8 (Simulation lemma). Let R = Ry U Ry be a reduction on the set £ and

»= be a binary relation on F x F. Assume that:

— For all t € I/, we have t = t.

— R is strongly normalizable.

— Ift —> g, ¥ and ¢ = u then there is w’ such that u —R, u and ¢ = u'.

— Ift —> g, t" and ¢ = u then there is w’ such that u —>1‘S2 u and ¢ = u'.



René DaviD, Bruno GUILLAUME 6

Then SN(R) = SN(Rz).

The lemma 2.10 is an adaptation of a result given in (Klop, 1992). The original result
is that a rewriting system which is locally confluent, weakly normalizing and increasing
(there is a measure which is strictly increased by reduction) is also strongly normalizing.
In lemma 2.10, the measure is only increasing (not strictly) but we have the additional
hypothesis that reductions which leave the measure unchanged are strongly normalizing.

Lemma 2.9. Let R be a locally confluent reduction, ¢ be a normalizable term and v
be a normal form of ¢. Assume ¢ € SN(R). Then, there is a term u ¢ SN(R) such that

t —>}S v and v 1s a normal form of u.

Proof. Lett =tg — t; — ... —> t,, = v a derivation from ¢ to v. Let ¢ be such that
t; ¢ SN(R) and t;41 € SN(R) and u be a term such that {; — u and v ¢ SN(R).

Since R is locally confluent there is a term w such that v —* w and #;;,7 —* w.
Since t;4+1 € SN(R) and R is locally confluent, ¢;41 has a unique R-normal form v and
thus v also is a normal form of w. Finally, we have t —T u and v is an R-normal form

of u.
t "t tiy1 —> v
-
W S
U
Lemma 2.10 (Increasing reductions). Let R = R; U Rs and |- | be a measure such
that:

— Ry is strongly normalizing.
— Ift —>g, ' then |t| = |¢'].
— Ift — g, ¢’ then [t| < |t'].
— R is weakly normalizing.
— R is locally confluent.

Then R is strongly normalizing.

Proof. Assume there is a term ¢ which is not R-strongly normalizable. The weak nor-
malization of the R-reduction ensures that ¢ has an R-normal form v. By lemma 2.9 we
can construct an infinite derivation: t = tg —+ ¢t; — 1+ ... —1t ¢, —1 .. . such that v
is an R-normal form of each ¢;. Since R; 1s strongly normalizing, there are infinitely many
Ry-reductions in this derivation. Thus, [¢;] > |v| for some j. This gives a contradiction
since t; — 5 v and thus |t;| < |v]. ]

2.2. The A-calculus with de Bruign indices: the Agp-calculus

We will use de Bruijn representation of A-terms where the first index is 0 and not 1. This
will simplify notations in the next sections and, this is more natural with respect to the
typed calculus. For instance, the A-term AzAy(x y) is written AA(10).



A A-calculus with explicit weakening and explicit substitution 7
Substitutions will be written on the left of the terms (for example {# := u}t means ¢

where z is substituted by «): this corresponds to the tree representation of terms and we
believe this is easier to read.

Terms of the Agp-calculus are defined by:

tu=n | M| (@t with neN

The g-reduction is given by the next definition. {i := u} (the substitution) and ¢ (the
updating function) are meta functions, i.e. are not in the syntax of the calculus.

Definition 2.11. The Ag-calculus is defined by the rule:

(At u) —a,, {0:=ult

with: ) )
{i:z=ulM = Ai+1:=ult ¢l (M) = /\¢>‘Z+1(t)
(i = ud(tw) = ({i == u}t {i == ulv) ot u) = (¢7(t) 7 (u))
n if n<i , n if n<i
{iz=uln=1 oh(w) if n=i ¢?<ﬂ>={;+j i noi

n—1 1if n>1

It is well known that this reduction is isomorphic to the usual F-reduction on A-terms
modulo a-equivalence (Kamareddine and Rios, 1998).

2.3. The As-calculus and the As.-calculus

The As-calculus and the As.-calculus were introduced and studied by Kamareddine and
Ros (Kamareddine and Rios, 1995a; Kamareddine and Rios, 1997). They both use the
same syntax. The As-calculus is obtained naturally from the Ag-calculus by writing
explicitly the substitutions and the updating functions.

to=n | M| @) | [i:=¢tt ] @)t with ni,jEN
Remark 2.12. In the papers by Kamareddine and Ros, the first De Bruijn index is 1

whereas we use 0. The term [i := u]t correspond to the term to'+!u in the original syntax
and (i, j)t correspond to ¢ (t).



René DaviD, Bruno GUILLAUME 8

Rules are translation of the definition 2.11:

(8) (Mu) — [0:=ult
(o)) [[:=uld — Ali+1:=ujt

(ga) [i=u](tv) — ([{:=ult]i:=u]v)
(on1) [i:=un — n if n<i
(on2)  [ir=uln — (0,d)u if n=i
(ons) [ii=un — n-—1 if n>i
(pA) (E DA — A+ 1,5

(pa) (G)Eu)  — (G0 )u)
(en1) (i,jin — n if n<i
(¢n2) (i,j)m — n+j if n>i

This calculus lacks only the metaconfluence property. In order to recover this property,
the reduction relation is extended to give the As.-calculus. The extra rules are:

(co) [i=ulj=ov]t — [J=[i—-j=up]i+l:=ut if j<i
(cp1)  [i=u]( k)t — (G k— 1)t if j<i<j+k
(op2)  [i=u](G k)t — (G R)i— k=t if j4+k<i
(po) G, =ut — [i:= =i, )i+ 1, k) if i<

(pe1) Gk, Dt — (kj+ Dt if k<i<k+l
(pp2) (6, 5)Ck, Ot — (kD =1, 5t if k+l<i

These extra rules are exactly the ones needed to get MC. The strong normalization of
the substitution calculus (As. without the rule ) is an open question.

The PSN was conjectured but its failure has been shown in (Guillaume, 1999a). At first
sight, the go-rule seems to be the right rule to have PSN: everything is right with respect
to the Mellies counter-example. The problem comes from the rules for the interaction
between substitutions and updatings. The following example shows where the problem
arises.

Example 2.13.
[4 = u][7:= v](3, )t —pos.0p [4 = u][3:= (0,4)v](4, 4)t

In the left-hand side, the substitution [4 := ] should not interact with the substitution
[7 := v] (because 4 < 7, the go-rule does not apply). In the right-hand side, after two
reduction steps, the two substitutions can now interact and produce a self-embedded
term as in the Mellies counter-example. This phenomenon can be used to construct an
infinite reduction of a simply typed A-term. See (Guillaume, 1999a) for details.



A A-calculus with explicit weakening and explicit substitution 9

3. The calculus with explicit weakening: A,
3.1. Terms with labels

We avoid the counter-example to the PSN property of the As.-calculus by adding to the
usual syntax a new constructor that we call a label and which represents an updating
information. The term ¢ with label & (denoted by (k)t) corresponds to the term ¢ where
all free indices have been increased by k (i.e. ¢k (¢) in As.).

In the terms we are finally interested in, two successive labels are not allowed. We first
define preterms without this restriction.

Definition 3.1. We define the set of Ay -preterms by the following grammar:
tu=n | M| (@t) ] k)t with n,keN

The function E defined below gives the Ag-representation of a A-term represented by
a preterm.

Definition 3.2. The function F is defined from the set of preterms to Ag, by:
— Er)=n
— E(M) =AE(t)
— E(tu) = (E(t) E(u))
— E((k)) = ¢5(E(1))

where ¢ is the function from Ag, to Ay, defined by:

— (A = AdLL, (1)
— dl(tw) = (¢](t) ¢} (w))
Y _In if n<i
d)l(ﬂ)_{ n+j if n>i
Definition 3.3. A, is the set of terms given by the following grammar:

ti=wu | (k)u with k€N
wu=mn| A | (tt) with n€eN

It is easy to define a reduction to recover a A,-term from any A,-preterm. Let m be
the reduction rule (called mixing):

@@ — i+

This reduction is clearly confluent and strongly normalizable on the set of preterms.
We denote by m(t) the Ay-term which is the m-normal form of the preterm ¢.

The following lemma ensures that the m-reduction does not change the meaning of
terms.

Lemma 3.4. Let t,u be Ay-preterms such that ¢ —,, u, then F(t) = F(u). In partic-
ular, for each preterm t, we have E(t) = E(m(t)).

Proof. By an easy induction on the construction of ¢. Use the fact that for any Ag-term

v, we have ¢f (¢h(v)) = 65T (v). U



René DaviD, Bruno GUILLAUME 10

3.2. The Ay -calculus

Let ¢ = ({(k)Au v). Since F(1) is a redex, t must also be a redex. We thus need a rule to
reduce a redex which contains a label and the substitution must record this label. The
substitution {i/u,j} means that the indices ¢ must be replaced by (é)u and that there
was a label (j) in the redex.

Note that, even if ¢ and u are terms, {i/u, j}t only is a preterm. This is why, in the
next definition, the m-normal form has to be taken in the S-rules. In the final calculus,
the m-rule will also be an explicit rule.

Definition 3.5. The A, -calculus is defined on the set A,, by the two rules:

(B)  (Mw) — m({0/u,0}1)
(B2)  ((W)Atu)  — m({0/u, k}t)
with:
n if n<i
—{i/u,jin=1< (Hu if n=14

n+j—1 if n>i
— {i/u, M = A{i+ 1/u, i }1)
— 00 = {400 (000
BN R S R T it i<k
R YR =\ (i — ki) it > k

3.3. Sumply typed Ay, -calculus

As usual, types (denoted by A, B, ...) are constructed with basic types and —. Contexts
(denoted by T', A, ...) are lists of types. |I'| denotes the length of T'. The typing rules are
given below (where |T'| = ).

(ax) A,F"t:B

T 4 AL A _— (=
LA AR A FFM:A%B(
I'tt:A— B I'Fu:A AFt: A
—e — (weak)
'k (tu):B VAR A

The first three rules are the usual ones of the Agy-calculus. The last rule introduces
labels. A label corresponds to a weakening in the proof tree associated with the term.
This is the motivation of the subscript “w” in the name of the calculus.

The proof of subject reduction is straightforward.

Theorem 3.6 (Subject reduction). Let t,u € A,,. Assume? —} wand ['F¢: A
Then I' - u : A.

It is easy to check that if ' = ¢ : A then T' F E(t) : A. The following result follows
then immediately from theorem 3.15 below.



A A-calculus with explicit weakening and explicit substitution 11

Theorem 3.7 (Strong normalization). Every typed A, -terms is strongly normaliz-

able.

3.4. X\, versus Ag

In this subsection we show that the A,-calculus corresponds to the usual notion of §-
reduction. We need some easy lemmas. Their detailed proof can be found in (Guillaume,

1999b).
Remark 3.8. Let { € Ay and i € N. Then ¢ (t) =

Lemma 3.9. Let t € Ag,. Then
1 Ifk <i<k+1then ¢l (gh(t) = ¢1% (1).
2 100> k+1 then ¢} (6} (1)) = oh (61, (1).

Lemma 3.10. Let {,u € Ay and 1 < k <i+ j. Then {k := u}(bf(t) = (;S‘Z_l(t).

Lemma 3.11. Let t,u € Ag.

1 16>k then ¢f ({k := u}t) = {k := ¢]_,(w)}ol,, (1).
2 If i <k then ¢] ({k :=u}t) = {k+j := u}e!(¢).

Lemma 3.12. Let ¢, u € Ag, be such that £ —s»,, u. Then ¢J(t) —s»,, &% (u).

Lemma 3.13. Let t,u’ € Ag be such that (/)‘Z (t) —»,, ¢'. Then there is a term u € Ag
such that ¢ —»,, v and ¢ (u) = v’.

3.4.1. The Agp-calculus simulates the Ay, -calculus
The following lemma translates a Ay,-term with substitution into a Ag-term with
substitution.

Lemma 3.14. Let ¢, u be Ay-preterms. Then E({i/u,j}t) = {i := F(u )}¢z+1( (t)).

Proof. By induction on t. If t = Av or ¢ = (v w), the result is trivial.
— Ift =nand n <ithen E({i/u,jin) =n={i = E(u )}¢z+1( (n)).
— If t = ¢ then E({/u j}i) = BE((i)u) = ¢4 (E(u)). We have also ¢z+1( (1)) = i and so
{i = E(u)}},, (B(0) = ¢h(E(u)). '
— Ift = nand n > i then E({i/u,jjn) =n+4j—1={i:= E(u)}¢] (E(n)).
— Ift = (k)v and ¢ > k, then
E({i/u, j} k) = E((k){i—k/u,jlv)
o8 (E({i — k/u, j}v))
¢i({i—k = BE(u )}qbl k41(E£(v))) induction hypothesis
=l = B (E0)  Temma 3 1)
{i:= B}l (B(k)) = {i=Eu )}¢>Z+1( 6 (E(v)))
{i = E(u)}d5(d]_xy1 (£(v))) lemma 3.9(2)

— Ift = (k)v and ¢ < k, then



René DaviD, Bruno GUILLAUME 12

{i:= B()}ol 1 (E(k)0) = {i= E(u)}é,,(5(E()))

= {i:== B}l (E(v)) lemma 3.9(1)
¢‘6+k_1(E(v)) lemma 3.10
E({i/u, j}k)jv) = E((G+k=1)v)

o E ()
U

The following result shows that the A, -reduction corresponds to the usual Ag,-reduction.
Theorem 3.15. Let ¢, u € Ay. If t —», u, then E(t) —i,, E(u).

Proof. By induction on t.
—Ift=Xvand u= X', ort=(vw)and u= (v w), ort = (wv) and u = (wv') with
v —>»,, v, we use the induction hypothesis.
— Ift = (k)v and u = (k)v' with v —,, v/, then by induction hypothesis F(v) —,,
E(v') and, using lemma 3.12, E(t) = ¢f(E(v)) —x,, ¢E(E(W)) = E(u).
— Ift = (Aww) and u = m({0/w, 0}v) then E(t) = (AE(v)E(w)) and E(t) —a,, {0:=

E(w)}E(v).
E(u) = E(m({0/w,0}v))
= F{0/w,0}v) lemma 3.4
{0:= E(w)}¢{(F(v)) lemma 3.14
= {0:=FE(w)}E(v) remark 3.8

Finally, E(t) —a,, E(u).
— If t = ({k) v w) and u = m({0/w, k}v) then E(t) = (AdF(E(v))E(w)) —r, 10 :=
B(w)} ¢k (E(v))
E(u) E(m({0/w, k}v))
E({0/w, k}v) lemma 3.4
= {0:= E(w)}¢}(E(v)) lemma 3.14
Finally, E(t) —a,, E(u).

3.4.2. The A\ -calculus simulates the Ay -calculus
Conversely, we show that, if ¢ is a Ay-term such that F(t) has a -redex, then the
reduction of this redex can always be simulated in A, .

Theorem 3.16. Let t € Ay, and ' € Agy be such that E(t) —»,, . Then, there is a
term u € Ay, such that ¢t —y v and F(u) = v’

Proof. By induction on ¢. The non trivial cases are the following:

— If t = (k)v then E(t) = ¢5(E(v)). Since E(t) —>x,, u', lemma 3.13 gives a term w’
such that E(v) —»,, w' and ¢%(w') = «/. By the induction hypothesis on v, we get
a term w such that v —,, w and F(w) = «'. Let u = (k)w, then ¢ —, « and
E(u) = ¢6(E(w)) = ¢ (w') = u"

— Ift = (Aww) and v’ = {0 := E(w)} E(v) then let v = {0/w, 0}v, we get + —> 5, u and
E(u) = {0:= E(w)}¢}(E(v)) (lemma 3.14), and finally E(u) = «’ (lemma 3.9(1)).



A A-calculus with explicit weakening and explicit substitution 13

term Aap-calculus Aw-calculus
(inf 16 20) 1.441.824 steps 101.761 steps
10.5 seconds 0.9 seconds
((30 pred) 30)  607.840 steps 38.420 steps
5.6 seconds 1.4 seconds
(mult 100 200)  142.026 steps 80.718 steps
1.7 seconds 1.6 seconds

Fig. 2. Comparison between the Ags-calculus and the Ay -calculus

— Ift = ((k) v w) and v’ = {0 := FE(w)}¢5(E(v)) then let u = {0/w, k}v, we get
t —z, v and E(u) = {0 := F(w)}¢%(E(v)) (lemma 3.14), and so E(u) = u'.

O

3.5. Conclusion: A, versus Ag

In our final calculus (the Ays-calculus defined below), the normal forms of the calculus
of substitution are terms of A, and not the usual terms of Agz. We actually think that
this gives a better representation of A-terms.

— The fact that, with labels, a A-term is not uniquely represented is not a drawback
since labels are intrinsic: a term can be put in any context (whatever its labeling is).
Therefore in an implementation, the function E (cf. definition 3.2) would be useless.
Moreover, if necessary, the algorithm to check whether two terms represent the same
A-term is clearly linear in the size of the terms. Also note that it does not cost more
work to translate a labeled term into a term with variables than to translate a usual
de Bruijn term.

— A label in a typed term corresponds to a weakening in the associated proof. In the
normalization of a proof| it is natural to move cuts up to the axiomsi.e. to propagate
substitutions in terms but there is no reason to move weakenings up to the axioms
i.e. to propagate labels in terms.

— We hope that labels will give more efficient implementations. Compared with imple-

mentations in the representation of de Bruijn, there are no steps of propagation of
lifts and many steps of propagation of substitutions are avoided since substitutions
are erased earlier when they are useless. A very small implementation of the de Bruijn
calculus and the labeled calculus gives an idea of the difference between these two
presentations.
Figure 2 gives the number of elementary reduction steps and the time of the reduc-
tion to normal form in both systems. These tests were made on a PC-133Mhz with
Objective Caml. The integers are the Church numerals. The inf function of the first
example is an efficient one given in (David, 1994).



René DaviD, Bruno GUILLAUME 14

b1 (Mu) — [0/u,0]t

b ((K)Atu) — [0/u, k]t

l [i/u, ] —  A[i+ 1/u, j]t

a [i/w,g)(tv)  — (([1/u, 3]t) ([i/u, 5]v))

el [ifu, j ) kY — (J+k—1)t i<k

€2 [i/u, j kYt — (k)i —k/u, ]t k<1

n1 [{/u,jln. — n n <t

na [i/u,jln. — {(Du n=i

ns [(/u,jln. — n+j—1 1< n

c1 [ifu, Jlk/v, 1]t — [K/[t —k/u,jlv,7+1—1]¢ k<i<k+l
2 [fu, Jlk/o, 0t — [k/[t —kju, jlo, Qi =1+ 1/u, 5]t k4+1<1
m Ht — i+t

Fig. 3. Rules of the Ay s-calculus

4. The A, ;-calculus
4.1. Syntax and reduction rules for the Ay s-calculus

In this section, we give our new calculus. The syntax is obtained from the syntax of the
Ay-calculus (definition 3.5) by adding a constructor for substitutions. This definition is
similar to the definition of the As.-calculus from the Agp-calculus.

The set Ay s of terms of the A -calculus is defined by:

to=n | M| (@) | (k)] [i/t, 4]t with n,ij k€N

Note that, as for the Ay -calculus, two natural numbers are needed in each substitution:
the second one keeps track of labels from redexes of the form ((k)Af u). Also note that
there is no restriction on nested labels: (k)}{(I)t is a valid term of the Ay -calculus.

The set of rules is given in figure 3. The first two rules deal with §-redexes (with or
without labels). The seven next rules come from the definition of the “implicit” substitu-
tion (definition 3.5). The composition rules ¢; and ¢z are needed for the confluence: they
appear naturally to close the critical pairs a/b; and a/by on the terms [i/v, j](At u) and
[i/v, j]1({k)At u). Finally, the mixing rule m deals with nested labels. It has to be made
explicit for the simulation of the g-reduction.

Example 4.1. The following example shows the use of the rule e;. It erases a substitu-
tion when a label ensures that this substitution 1s useless in the term below.



A A-calculus with explicit weakening and explicit substitution 15

In the last step, the substitution [0/v’,0] is erased in one step, independently of the
complexity of u.

Example 4.2. The rule ¢5 looks like the oo-rule of the As.-calculus. The rule ¢; 1s less
common. This rule can be understood as the simultaneous use of ¢5 and ey:

/\ /\ v

A A A0/ u, O] / 0/v',0
/\ u bi,a,l,a,n: /\L[__/_@u___]J b1, b2 [[8//:;,’(1]] 1 [0/[ /w' ]’:|
_________ ’ u
A (1) 1/, 0] “
/\ D N
u w'
l w

In the last but one term, the substitution [0/v’,0] could be propagated in w’ and wu,
but the index 1 in the second substitution ensures that [0/v, 0] is useless in u.

Notation 4.3. In the following, b will denote the reduction by Ubs. In the same way, we
define e = ey Ues, n =ny Uns Ung and ¢ = ¢ U ¢s.

Definition 4.4. We define two sub-calculus on the set A, of terms:

— The ws-calculus is the A, s-calculus without the rules b6y and b, 1.e. the rules [, a, e,
n, ¢ and m.

— The p-calculus is the calculus of propagation of the substitutions i.e. the ws-calculus
without the rule m, i.e. the rules I, a, e, n and c.

The ws-calculus allows the propagation of the substitutions and the contraction of
successive labels. The p-calculus allows only the propagation of substitutions. The p-
calculus is introduced for technical reasons: in the proof of PSN, working on p-normal
forms rather than on ws-normal forms gives a shorter proof. The p-calculus is also used
in the proof of the strong normalization of the ws-calculus.

Remark 4.5. For any t € Ay, we have ws(t) = m(p(t)), i.e. we can always postpone
the mixing rule.

The complexity of a term is defined as usual as the number of constructors of the term:

Definition 4.6. The complexity of t € Ay (denoted by cxty(t)) is defined by:
— cxty(n) =1
— cxty(Au) = 1+ exty(u)
— cxty((uv)) = 1 4 cxty(u) + cxty(v)
(

(
— cxty({(k)u) = 1 4 cxty(u)



René DaviD, Bruno GUILLAUME 16

— cxty([i/u, jlv) = 1 + cxty(u) + cxty(v)

4.2. Typing rules for the Ay s-calculus

As usual, types (denoted by A, B, ...) are constructed with basic types and —. Contexts
(denoted by T', A|...) are lists of types. |T'| denotes the length of T
The typing rules are the following (where || = ¢ and |A| = j):

ATHFt:B
— (ax) ot
IAAF:A I'FM:A— B 2
I'tt:A— B I'Fu:A AFt: A
—e — (weak)
'k (tu):B VAR A

ATIFu: A A IIFt: B
A IE [i/u, j]t: B

cut)

We add the cut rule to the typing system of subsection 3.3. This rule is twofold : a
(usual) cut and a weakening (A is added to the hypotheses for ¢). Intuitively, the context
used to type [i/u,j]t can be divided into three parts: the first one (T', of length ¢) is
specific to ¢, the next one (A, of length j) is specific to « and the remaining one (II) is
common to ¢ and u.

It is easy to check that the reduction rules of the A, s-calculus correspond naturally to
the cut elimination process of the proof tree.

Theorem 4.7 (Subject reduction). Let t,u € Ay I t —>
I'Fu:A

wand I' ¢ : A then

ws

Proof. By induction on t. We may assume that the reduction is at the root. Just check,
for each rule, that the reduct can be typed, with the same type and the same hypothesis,
as the redex. U

The rest of the paper is devoted to the untyped Asc-calculus. We give here the nor-
malization property of the typed calculus.

Theorem 4.8. Every typed Ay ;-term is weakly normalizable.

Proof. Let t € Ays be typable. Theorem 4.7 ensures that ws(?) (which exists by
sections b and 6) is typable. The strong normalization of the typed A-calculus and the
preservation of the strong normalization of the Ay -calculus (section 8) ensure that ws(¢)
is strongly normalizable for the A, s-calculus. Finally, ¢ is weakly normalizable. O

It should be possible to prove the strong normalization of the typed calculus by the
same kind of technique as in the proof of PSN. This result has been proved recently (Di
Cosmo et al., 2000) by using a translation into proof nets, a technique introduced in (Di
Cosmo and Kesner, 1997).



A A-calculus with explicit weakening and explicit substitution 17

4.3. Link with the As.-calculus

Every Ays-term t can be translated in a As.-term (denoted by t') in the following way.
Note that there is no translation in the other way.

— [ifu, jlt = [i == W)+ 1, )t

The Ays-calculus can be seen as a part of the As.-calculus where some reductions are
forbidden. Intuitively, in Ays, an updating (¢, j) may not move down, except if it appears
at the root of the function part of a redex. In this case, the updating may cross the A
but the redex has to be contracted immediately after and this new updating must be
linked to the substitution coming from the redex (i.e. they cannot move independently).
The relation betwen both calculi is the following. If t —, _  u then ¢/ —>j\'se u' and one
step of Ays-reduction can be simulated by a fixed number (from 1 to 4, depending of the
rule) of Asc-reduction.

5. Strong normalization of the calculus of substitutions

In this section, we prove that the ws-calculus is strongly normalizing. This proof is
inspired by the one Zantema gave for the strong normalization of the oo-rule of the
Asc-calculus (Zantema, 1998).

We first show, using the simulation lemma (lemma 2.8) that SN (ws) = SN (p2) where
the pa-calculus is the calculus defined by the set of rules that increase (not strictly)
the complexity i.e. the rules {, a, es and ¢ (subsection 5.2). Then, using the increasing
reductions lemma (lemma 2.10), we prove that the ps-calculus is strongly normalizing
(subsection 5.3). We finally get the theorem:

Theorem 5.1. The ws-calculus is strongly normalizing.

The complete proofs of the lemmas 5.6, 5.7 and of the propositions 5.9, 5.10 and 5.11
can be found in (Guillaume, 1999b).

5.1. The substitutive contexts

In the rest of this paper, the notion of “normal form” of a sequence of substitutions 1s
useful. We call such a sequence substitutive context.

Notation 5.2. N denotes the set IN U {—00, 00} with its natural ordering extended in
such a way that —oo is the smallest element and oo is the greatest one. The addition is
extended by i + 0o = 0o and i — 0o = —oo for i € N (00 — o0 is not defined).

We use the notation * to represent a term about which nothing has to be known. The
contexts have only one hole (denoted by {-[}). C{¢[} denotes the context C' in which the
hole has been replaced by t.



René DaviD, Bruno GUILLAUME 18

Definition 5.3. A substitutive context is a context:
S=Tlir/*, 1] [in/*du]{ - [} with n >0 and iy < ... < ij,.
We define:

— The initial index i(S) € N of S:

. oo if n=0
Z(S)_{ iy if n >0
— The final index f(S) € N of S:
—o0 1if n=0
f(S)_{ in if >0

— The height h(S) € N of S:

h(S)y=n

— The shift d(S) € Z of S:

It is important to note that (for technical reasons) we allow a substitutive context to
be empty. When there 1s no ambiguity, we extend the usual notion of reduction on the
terms to reduction on contexts.

Notation 5.4. If S is the substitutive context [¢1 /%, j1] .. .[in/*, jn] we will denote by:

— [¢/u, §]S the substitutive context [i/w, j][i1/*, 1] .. [in/*, Jn]d - [} if ¢ < i(5).
— S[ié/u, j] the substitutive context [i1/*, j1]...[in/*, jnl[¢/w, J1 - [} if ¢ > F(S).

Remark 5.5. Let S be a substitutive context such that h(s) > 0, then f(S5) > i(5). A
trivial induction on A(S) show that if ~2(s) > 0 then i(S) < f(S) — A(S) + 1.

The next two lemmas give the result of the “composition” of a substitution with a
substitutive context. There are two cases: either the new substitution can “go through”
the context (lemma 5.6), or the substitution is “integrated” in the context (lemma 5.7).
These two cases are not disjoint: when the substitution goes through the context, we can
choose to either integrate it at the end of the context (lemma 5.7) or keep it separated

(lemma 5.6).

Lemma 5.6. Let S be a substitutive context, and [i/u, j] be a substitution such that
i > d(S) + f(S). Then, there is a substitutive context S’ such that: [i/u,jlS —
S'[i = d(S)/u, j], d(S7) = d(S) and f(S") = f(5).

Proof. The proof is by induction on h(S): we show that there is a substitutive context
S’ such that [i/u, j]S —% S'[i—d(S)/u, j], d(S") = d(S), f(S') = f(S) and i(S") = i(95).
U

Lemma 5.7. Let S be a substitutive context, and [i/u, j] a substitution. Then there is
a substitutive context S” such that [¢/u, j]S —% 5, d(S') =d(S)+j — 1 and
(S =1 1< 0 4 1
F(S) =i—=4d(S) if i>d(S)+ f(9)



A A-calculus with explicit weakening and explicit substitution 19

Proof. The case i > d(S)+ f(5) is a reformulation of the previous lemma. Indeed, there
is a substitutive context S” such that [i/u, j]S —F S"[i — d(S)/u,j]. Let S' = S"[i —
d(S)/u, j], we verify that S’ is a substitutive context because f(S”) = f(S) < i — d(S).

For the second point, remark that ¢ < d(S) + f(S) only if ~(S) > 0. We then use an
induction on h(S) and show that there is a substitutive context S’ such that [i/u, j]1S —
Sd(SY=d(S)+7—1, f(5) = f(S) and ¢(S") = min(¢,(5)).

U

The following lemma shows how we can erase the context when all the substitutions
are useless. This also shows that d(S) really is a shift.

Lemma 5.8. Let S be a substitutive context. If f(s) < k, then S{(k)t[} — (k+
d(S))t.

Proof. By induction on h(S). The case h(S) = 0 is trivial. If A(S) > 0, then S =
S'[i/u, j] with ¢ < k and d(S) =d(S')+j—1so

SYEM] —e, Sk + 5 — 1)t}

and we can use the induction hypothesis (because f(S') < ¢ < k—1)and f(S') < k+j—1),
we have

S k47— Wt} —2 (k+j—1+d(S")t = (k+d(9))t.

5.2. Svmulation of the ws-calculus in the po-calculus

In order to prove that SN (ws) = SN (pz), we use intermediate reductions:
— The ws-calculus is defined by the rules [, a, e, n, ¢ and m.
— The p-calculus (propagation) is defined by the rules [, a, e, n and c.
— The py-calculus is defined by the rules [, a, e5, n and c.
— The pa-calculus (rules which increase (not strictly) the complexity) is defined by the
rules I, a, es and c.
The proof is divided in three steps: SN (ws) = SN(p), SN(p) = SN(p1) and SN (p1) =
SN (p2)-

Proposition 5.9. SN (ws) = SN(p).

Proof. ws = pUm. We use the simulation lemma (lemma 2.8) with Ry = m, Ry = p
and the relation = on Ays X Ay, defined by:
—kxk
— A=A A=
— (tu) = () iff t =t and u = o'
— k)t =k k) ifft =t n>Tland k=ki+ ...+ ky
— [i/u, jlt = [i/u, 4]t iff ¢ =t/ and u = v'.

Proposition 5.10. SN(p) = SN (p1).



René DaviD, Bruno GUILLAUME 20

Proof. p = p1 Ue1. We use lemma 2.8 with Ry = e, Ro = pi1, and the relation =
defined by:
—k =k
— A=A A=
— (tu) = () iff t =t and u = o'
— (k) = S{ENOY]} with ¢ 3= ¢/ and S is a substitutive context such that f(S) < k&’ and
k=k +4d(95)
— [i/u, jlt = [i/u, 4]t iff ¢ =t/ and u = v'.

Proposition 5.11. SN(p1) = SN(p2).
Proof. py = poUn. We use lemma 2.8 with Ry = n, Ry = p» and the relation 3= defined

by:
—k =tforallt
— A=A A=
— (tu) = () iff t =t and u = o'
— (k)t = v iff v is of one of the following form:

— v={(ky and t =t

— v =S{[K/t, jlwl} with f(S) <k, k=k +d(S)andt =1
— [i/u, jlt = [i/u, 4]t iff ¢ =t/ and u = v'.

5.3. Strong normalization of the ps-calculus

We prove the strong normalization of the ps-calculus by using lemma 2.10 where the
measure is the complexity and

— Ry = the rules I, ¢; and ey (the complexity is left unchanged by these rules).
— R2 = the rules a and ¢s (these rules increase the complexity).

We have to check:
— The reduction Rj is strongly normalizable (proposition 5.12).

— The reduction ps is locally confluent (this is done by analyzing critical pairs).
— The reduction ps is weakly normalizing (proposition 5.15).

5.3.1. Strong normalization of the rules that leave complexity unchanged
We use a measure which decreases by Rj-reduction. This measure is the sum of the
complexities of the subterms which are below each substitution of the term.

Proposition 5.12. The R;-reduction is strongly normalizing.

Proof. The measure || - || defined below strictly decreases by [, ¢; and es-reduction:
— [lnf| =0
— [ =1l



A A-calculus with explicit weakening and explicit substitution 21

— )l = litl] + [l
— IRl = ([l
— ILé/w, 3l = {Jef] + [l 4 exty (2).

5.3.2. Weak normalization of the ps-calculus

Definition 5.13. We define a binary relation f} on Ay x N by: f (¢, k) iff t = (k)v or
t=[k/v,lJw.

Proposition 5.14 (Description of the ps-normal forms). A py-normal form is a
term in one of the following forms:
— n
— At with t € NF(p2)
(tu) with t,u € NF(p2)
— (k)t with t € NF(p2)
[i/u, jln with u € NF(p2)
[i/u, j]t with t,u € NF(p2) and there is k such that k£ > ¢ and 1} (¢, %)

Proof. By induction on t. ]
Proposition 5.15. The py-calculus is weakly normalizing.

Proof. Let t be a Ays-term. We show, by induction on the complexity of ¢, that ¢ €
WN (p2). The only difficult case is ¢ = [i/u, j]v. By induction, u and v have normal forms
« and v' and we can reduce t —* [i/u/, j]v'. We have to show: If ¢,u € NF(p2) then
[i/u, j]t € WN (p2).

By induction on the complexity of ¢, we show that there is ¢ € NF(p2) such that:

— [ifu, jlt —,
— If 1y (¢, k) then { (¢, min(¢, k))
The non trivial cases are:
— If t = n then ¢’ = [i/u, j]n is a normal form.
— Ift = (k)v:
— If i<k then t' = [i/u,j](k)v is a normal form and we have {} (#', min(7, k)).
— If i > k then [i/u,jlt — (k)[i — k/u, j]v. By induction [i — k/u,jlv —* o/
with v/ € NF(p2) and so [i/u,jlt —* {(k)v' and (k)v" € NF(ps2). Clearly 1}
(', min(é, k)).
— It = [k/v, [uw:
— TIf i<k then t' = [i/u,j]t is a normal form and we have {} (#', min(Z, k)).
— Itk < i< k41 then [i/u,j)t — [k/[i — k/u,jlv,l + j — 1Jw. By induction
[i — k/u, jlo —* ¢' with o' € NF(p2) and so [i/u,jlt —* ¢/ = [k/v', 1+ j — 1]w.
Finally ' € NF(p2) and 1t (¢, min(Z, k)).
— If k+1 < i then [i/u,jlt — [k/[i — k/u,jlv,]][i = | + 1/u, jlw. By induction,



René DaviD, Bruno GUILLAUME 22

[i — k/u, jlu —* v" with v/ € NF(p2), and [i — [ + 1/u, jlu —* v’ with v’ €
NF(p2). Thus:

[i/u, j]t —>;§2 t=[k/v, u
Clearly ft (#/,min(é, k)). The only thing to prove is that ' is a ps-normal form. w
is necessarily of one of the following forms:

o w=mand w =[i—1+1/u,jlwbut k <i—1[41, and then t' € NF(ps).

e 1 (w,n) with & < n. By induction hypothesis, {} (@', min(i —{ + 1,n)). As
k<i—1+1, we have k < min(n,i— 1+ 1) and ¢ is a ps-normal form.

O

6. Confluence on open terms

In this section, we show that the A, -calculus i1s confluent on terms with metavariables.

6.1. The calculus with metavariables

We enlarge the syntax of terms by allowing metavariables (denoted by a,b,...).

Definition 6.1. A, ;, is the set of terms with metavariables which are defined by:
tu=n|a | M| ()] k)t | [i/t,j]t with a a metavariable and n,4,j,k € N

Definition 6.2. The Ay, -calculus is the reduction on A, ;, defined by the rules of the
Aws-calculus. The ws,-calculus is the reduction defined by the rules of the ws-calculus.

Proposition 6.3. The ws,-calculus is strongly normalizing.

Proof. Tt 1s an immediate consequence of the strong normalization of the ws-calculus.

U
6.2. Confluence of the ws,-calculus
Proposition 6.4. The ws,-calculus is locally confluent.
Proof. By analyzing the critical pairs (see (Guillaume, 1999b)). ]

Theorem 6.5. The ws,-calculus is confluent.

Proof. The ws,-calculus is locally confluent (proposition 6.4) and strongly normalizing
(proposition 6.3). The result follows from Newman’s lemma. ]

6.3. Confluence of the Ay s, -calculus

In order to show the confluence of the A, -calculus, we use the interpretation method
(Hardin, 1989). This allows to restrict ourselves to confluence on ws,-normal forms.



A A-calculus with explicit weakening and explicit substitution 23

Lemma 6.6 (Description of the ws,-normal forms).
The terms NF(ws,) are described by the following grammar:

to=u | (k)u

we=n | [/t d1] .. Jim/t dmla | At | (t1)

with m > 0, @ a metavariable and &k, n,%1, 71, ..., im, jm € N such that 11 < ... <1p.
Proof. Trivial. ]

We denote by ws,(t) the ws,-normal form of t. Remark, in the previous definition, that
the term [41/t, j1] .. .[im/t, jm]a could be written S{af} with S a substitutive context,
but we have to say that the terms inside the substitutions are ws,-normal forms.

Definition 6.7. On the set NF(ws,), we define a reduction ' by:
t —p w iff there is ' € Ay such that ¢ —4 t/ and u = ws, ().

Theorem 6.8. The A, -calculus is confluent.

Proof. We will check:
(1) Ift —»,,, u then ws,(t) —3 ws,(u) (proposition 6.15).
(2) b is confluent (proposition 6.20).

The following diagram (the interpretation method) then gives the confluence of the Ay -
calculus.

t X *t1
\ (1) \
WS (1) i b)/* ws,(t1)
1
Awso ¥
to (2)
\ » *Vil
wso(t2) .................................... > U l:‘

Corollary 6.9. The A\, -calculus is confluent.

In order to prove (1) and (2) above we need some lemmas. The following definition
will simplify the proofs.
Definition 6.10. We define a function {from A, to N by:

— t(a) = oo,
— A (lifu ) =1,

— 1(t) = —oo in the other cases.

Remark 6.11. This function allows to write easily the condition under which a substi-
tution can go down in a term: if ¢, u are ws,-normal forms then

[i/u, j]t € NF(ws,) iff ¢ < 1 (%)



René DaviD, Bruno GUILLAUME 24

Lemma 6.12. Let t,u € NF(ws,). Then, 1 (ws,([i/u, j]t)) = min(i, 1 (2)).

Proof. Trivial. ]

6.3.1. The calculus on the ws,-normal forms
Lemma 6.13. Let ¢, u,u’ € NF(ws,) be such that © —7, v/. Then,
ws, ([i/u, j]t) —5 wso([i/, 5]t) .

Proof. By an immediate induction on the length of the derivation v —}, v/, we may
assume that w —4 u’. The proof is by induction on ¢. The only interesting case is
t=[k/v,lJw.

— If ¢ < k then
wso ([i/u, jl[k/v, lJw) = [i/u, j][k/v, (Jw

wso([i/v', jl[k/v, lJw) = [i/u’, j][k/v, (Jw
Thus,

ws,([i/u, jt) —4 ws,([i/v, 5]t)
Ik <i<k+ then

ws, ([i/u, j][k/v, Qw) = [k/ws,([i — k/u, jlv), 1+ j = 1w
ws, ([i/u, J)[k /v, Qw) = [k/ws,([i — k/u', jo), 1+ § — 1w
By induction hypothesis, ws,([i — k/u, jJv) —}, ws,([i — k/u’, j]v) and then
wso([i/u, j]t) —p wso([i/v, j]t)
— I k41<i.
wso ([i/u, jllk/v, Jw) = wso([k/[i — k/u, jlv, {[i = L+ 1/u, jlw)

Since t € NF(ws,), we have k < 1 (w) so k < min(1 (w),i +{ — 1). Lemma 6.12
ensures that k& < 1 (ws,([i = + 1/u, jlw)). We get

wso ([i/u, jl[k/v, Jw) = [k/wso([i — k/u, j]v), Qwso([i = I + 1/u, jlw)
In the same way,
wso([i/u, jllk /v, Jw) = [k/wso([i — k/u', jlv), ws,([i — L+ 1/, jlw)

By induction hypothesis, ws,([i — k/u, jlv) —f wso([i — k/u/, jlv) and ws,([i — [+
1/u, jlw) — 5 wso([i — 1 4+ 1/4/, jlw). Finally,

ws, ([i/u, j]t) —5 ws,([iju’, j]t) .

Lemma 6.14. Let ¢,t',u € NF(ws,) be such that t —, t'. Then

wso([i/u,j]t) —>ZI wso([i/uaj]t/)



A A-calculus with explicit weakening and explicit substitution 25

Proof. By an immediate induction on the length of the derivation ¢ —, ¢/, we may
assume that this reduction is one step. The proof is by induction on ¢. The only interesting
case is when the redex is at the root of #: t = ((k)Av w) and ¥ = ws,([0/w, k]v).

— If 7 < k then
wso([i/u, jlt) = (k47— DAvws,([i/u, jlw))
wso([i/u, jlt") = wso([i/u, jlws,([0/w, k]v))

= wso([i/u,j][0/w, k]v)
= sy (0/[i]w, fJw, k+ — 1]0)
Thus, ws,([i/u, jlt) —5 ws.([i/u, j]t').
— If ¢ > k then
wso([i/uaj]t)

wso([i/u, 1)

(k) Aws, ([ = b + 1/, 1) ws, ([i/u, jlw))

wso([i/u, jlws,([0/w, k]v))

= ws,([i/u, j][0/w, k]v)

= wso([0/[i/u, jlw, k][i — k + 1/u, j]v)
Thus, ws,([i/u, jlt) —5 ws.([i/u, j]t').

O
Proposition 6.15. If t — . u then ws,(t) —, ws,(u).

Proof. 1If the reduction ¢ —+x,, u is a ws,-reduction, then the uniqueness of ws,-
normal forms gives the result. Assume then that ¢ — u. The proof is by induction on
i

— If ¢t does not begin with a substitution, the difficult case is when the reduction is at
the root, i.e. t = ({(k)Av w) and u = [0/w, k]v. We get
ws,o(t) = ((k)Aws, (v) wse(w)) —rp ws,([0/ws,(w), klws,(v)) = ws,(u)
— If ¢t = [i/w, jlv and u = [i/w’, j]v with w —4 w’ then, by the induction hypothesis,
ws,(w) —p ws,(w'). By lemma 6.13, we have
ws, ([i/wse(w), Jlwse(v)) —5 ws,([i/ws,(w'), jlws,(v))
and then ws,(t) —7 ws,(u).
— Ift = [i/w, jlv and u = [i/w, j]v" with v — v’ then, by the induction hypothesis,
ws,(v) —f ws,(v'). By lemma 6.14, we have
ws, ([i/ws,(w), jlws,(v)) —5 wso([i/ws,(w), jlws,(v'))

and then ws,(t) —7, wso(u).

O

6.3.2. Confluence of the reduction on ws,-normal forms
To show the confluence of the b’-reduction, we use the usual method of parallel reduc-
tions.

Definition 6.16. We define the parallel reduction = on the set NF(ws,) by:
— n=n.



René DaviD, Bruno GUILLAUME 26

— If {1 = t5 then At = At».
— Ift; = 3 and 43 = us then (t1u1) = (t2u2).
— Ift{ = ¢, then <k’>t1 — <k’>t2
— Ifty = upforl <k <nandi <...<i,
then [il/tlajl] - [Zn/tn,]n]a — [il/ul,jl] Co [zn/un,jn]a
— Ift; = 3 and w3 = us then (At; u1) = ws,([0/us, 0]ta).
— Ift; = 3 and w1 = us then ((k)At; uy) = ws,([0/uq, k]t2).

Lemma 6.17. ="=—3},.

Proof. Tt is easy to see that if { — u then t = u. Conversely, assume that t — u.
We use an induction on the definition of { = u. The hardest case is the last one:
Let ¢ = ((k)Av w) and u = ws,([0/w', k]v’) with v = v’ and w = w’. By induction
hypothesis, v —}, v/ and w —, w'. Then,
t = ((BYAvw) —5 ()M w) —5 (YA w') —p u = ws, ([0/w, k]v') .
U
Lemma 6.18. Let t,u € NF(ws,). If t = t/ and u = v/, then ws,([i/u, j]t) =
ws,([i/u', j]t').

Proof. Let T'= ws,([i/u, j]t) and T" = ws,([i/u', j]t'). We show T'=> T" by induction
on the definition of t — ¢’
The difficult cases are:

—t=[k/v,Jw and ¢ = [k/v,[Jw’ with v = ¢’ and w = w’.
— TIf i<k then [i/u, ]t and [i/u, j]t are already ws,-normal forms and so
T = [ifu, jllk/v,0w=T" = [i/u, j][k/v", u'
— Ifk<i<k+l!then
T = [k/ws,([i — k/u, jlo), l + j — 1JwT" = [k/ws,([{ — k/u', j]v"), [+ j — 1]’
By the induction hypothesis, ws, ([ — k/u, jlv) = ws,([{ — k/u', j]v') and T —
T
— Ifi>k+1 then
T = ws,([k/[i — k/u, jlo,[{ =l + 1/u, jlw)
T = wso([k/[i — k/u', 7] [ — 1+ 1/, jlw’)

By the induction hypothesis, ws,([i—k/u, jlv) = ws,([i—k/u', j]v') and ws, ([i—
L+ 1/u,jlw) = ws,([{ — { + 1/4/, jlw'). Moreover, lemma 6.12 ensures that
P (wso([t =1 + 1/u, jlw)) = min(t (w),i — [ + 1). Since t € NF(ws,) we have
k < 1(w) and so k < min(f (w),i — 1+ 1).

T = [k/ws,([i — k/u, jlv), Qwso([§ — I + 1/u, jlw)

T = [k/ws,([i — k/u', j]v"), Qws,([i — 1 + 1/u/, jlu’)
Finally, T — T".



A A-calculus with explicit weakening and explicit substitution 27

— t = ({(k)Awv) and t' = ws,([0/w, k]v') with v = v/ and w = w’.
- Ife<k
T = ((k 47— 1)Avws,([ifu, jlw))
T = wso([i/w, j][0/w', k]v') = wso([0/[i/ v, jlw', k + j — 1]v")
By the induction hypothesis, ws,([i/u, jlw) = ws,([i/, jlw') so T = T".
ik
T = (Whwso(li =k + 1/, 10) ws, ([i/u,710))
T' = ws,([i/w, j]I0/w', k]v") = wso([0/[i/w, jlw', k][i — k + 1/, j]v")
By the induction hypothesis, ws, ([i/u, jlw) = ws,([{/v, jlw') and T = T".
]

Lemma 6.19. The reduction = is strongly confluent.

Proof. Let t1,ta,t5 € NF(ws,) be such that ¢t; = t5 and t; = #3. We show that
there is a term t4 such that ¢t = t4 and {3 = 4 by induction on the complexity of #;.
The only interesting case is when t; = ((k)Auy v1). We consider the form of ¢5 and 3.

— If ta = ((k)Aug ve) with vy = us and v; = vs.

— TIftz3 = ({(k)Aug v3) with vy = us and v; = vz the induction hypothesis gives
the result.

— TIft3 = ws,([0/vs, k]us) with 43 = uz and v; = vz the induction hypothesis
ensures that there are uy and wvq such that uy =— u4, us = u4, v4 = v4 and
vz = v4 and then

t1 = ((k))\ul ’U1) ty = ((k))\Ug U2)
ty = ws([0/05, Kus) -5 b4 = w ([0 e, K

prev. lemma
— If ta = ws,([0/va, k]uz) with 4y = us and v1 = va.

— TIfts = ({(k)Auz v3) with u; = uz and v; = v3, we conclude as in the previous
case.

— TIft3 = ws,([0/vs, k]us) with 43 = uz and v; = vz the induction hypothesis
ensures that there are uy and wvq such that uy =— u4, us = u4, v4 = v4 and
v3 = V4, then

t1 = (<l€>/\ul ’U1) 1y = wso([Q/vg,k]uQ)

U prev. lemma

ts = wso([0/vs, klus) = £y = wso([0/v4, klua)

prev. lemma

Proposition 6.20. b’ is confluent.



René DaviD, Bruno GUILLAUME 28

Proof. The reduction = is strongly confluent, therefore the reduction —, is also
strongly confluent and then &' is confluent (remark 2.5). ]

7. Simulation of the g-reduction

There 1s a one-one correspondence between one-step reduction in the Ag-calculus and
one-step of f-reduction in the Ay-calculus. In order to show that the A, s-calculus cor-
rectly implements the g-reduction, we give the link with the Ay -calculus. We show that
any reduction of the Ay-calculus can be done in the Ay -calculus (cf. proposition 7.3)
and that any Ays-reduction corresponds to a Ay-reduction on the ws-normal forms (cf.
proposition 7.4). In this sense, our calculus has a step by step simulation of 5.

Strictly speaking, Ays does not simulate the Ag-reduction. However, as we already
said in subsection 3.5, A-terms with labels are efficient notations for A-terms and, when
the Ay s-calculus is used as the internal representation of A-terms (for the implementation
of a functional language or a proof assistant), the simulation property we give here is
clearly the useful one.

Finally note that A{ only simulates big steps of reduction and that the link of the
Aws-calculus with the g-reduction is much simpler than the one of the SK InT-calculus:
A-terms trivially are Ay s-terms whereas, in SK InT', CPS transformation and abstraction
algorithm are necessary to get the translation.

The following property is trivial:

Proposition 7.1. The ws-normal forms are the terms of Ay, i.e. they are given by the
grammar:
tuo=u | (ku with k€N
un=n | At | (t?)
The set of ws-normal forms will be denoted either by NF(ws) or by A,,.

The next lemma gives the relation between the implicit substitution (cf. definition 3.5)
and the explicit one.

Lemma 7.2, Let t,u € NF(ws). Then {i/u,j}t = p([¢/u, j]t).
Proof. By induction on the complexity of t. ]

The following proposition shows that any Ay s-reduction can be simulated in the Ay -
calculus.

Proposition 7.3. Let t,u € NF(ws). If t —, u then t —3 u.

Proof. We consider the case t —g, u (the £y rule is simpler). Let ¢ = C{J({k)Av w)[}
and u = m(C{{0/w, k}t[}).
— If the context C' ends with a label: C{ - [} = C'{|{l) - [} then
t = CORA0 w)l —p, CYDI0/w, Kt} —75,, C{ws((D[0/w, k)]

with remark 4.5 and lemma 7.2,

ws((1)[0/w, kJt) = m(p({D]0/w, k]t)) = m({Hp([0/w, k]t)) = m((H{0/w, k}t)



A A-calculus with explicit weakening and explicit substitution 29

Moreover, as C' cannot end with a label, we have u = m(C'{{){0/w, k}t[}) =
C'Im((H{0/w, k}t)[} and thus ¢ —3 u.
— If the context C' does not end with a label:

t = C{{(R)Av w)} —, C{[0/w, K}t —, 5 Clws([0/w, k)]
with remark 4.5 and lemma 7.2,

ws([0/w, kJt) = m(p([0/w, k]t)) = m({0/w, k}1)
Moreover, u = m(C{{0/w, k}t[}) = C{{m({0/w, k}?)[} and thus t — u.
U

Conversely, we can show that any Ays-reduction of a term ¢ corresponds to a Ay-
reduction of the ws-normal form of ¢.

Proposition 7.4. Let t,u € Ay,. If t — v then ws(?) —. ws(u).

ws

Proof. This is a particular case of proposition 6.15 with terms without metavariables.
Just remark that, on terms without metavariables, the reductions A, and o’ (cf. defini-
tion 6.7) are the same. U

8. Preservation of strong normalization

In this section, we give the proof of the preservation of the strong normalization. This
property is the hardest one. Since most of the calculi with composition of substitutions
fail to have the PSN property, a new technique has to be invented. This technique is
inspired by the notion of standard reduction of the A-calculus.

The labels prevent the loss of information which appears in the As.-calculus and in
the Ao-calculus. The rules ¢; and ¢5 are exactly the rules needed to obtain both MC and
PSN.

As in As., the Mellies counter-example is avoided with the side condition of the inter-
action rules: a term [i/u, j][k/v, ]t is a redex (rule ¢1 or ¢2) if and only if ¢ > k. In As.,
new rules are added for the propagation of updatings. We have seen, in subsection 2.3,
that one of these rules (¢o) causes the failure of PSN. In Ay, this rule is useless, since
there no need to move updatings down. In this way, A, avoids the As. counter-example.

The key point of the proof is lemma 8.15. This lemma ensures that it is always possible
to do a useful composition to get MC (first point) and that it is never possible to do a
useless and dangerous (for PSN) composition (second point). The corresponding lemma
would be false for As. and Ac. In other words, unlike As., the substitution have a good
behavior: if a term contains a subterm [i/u, j][k/v, (]t with i < k (no possible interaction)
then in all future reducts of ¢ 1t will still be impossible to make these two substitutions
interact.

The general idea of the proof is the following: we construct an infinite derivation
without composition from an infinite derivation in the A, -calculus. This allows to show
that we never get artificial terms of the form [...u.. Ju.



René DaviD, Bruno GUILLAUME 30

In the subsection 8.1, we give the sketch of the proof. Sections 8.2 and 8.3 give the
definitions and the main tools used in the proof. The key lemma is proved in section 8.4.

8.1. Sketch of the proof

Let ¢t € NF(ws) be such that ¢ € SN(A,). We show that ¢ is strongly normalizable in
the Ay s-calculus.

Theorem 8.1. SN(Ay) C SN (Ays)-

For technical reasons, it is easier to work on p-normal forms rather than on ws-normal
forms (the p-calculus is the ws-calculus without the mixing rule m). We thus prove
the (stronger) result: If ¢t € NF(p) and m(t) € SN(Ay) then ¢ € SN(Ays) which is a
consequence of the following:

Lemma 8.2 (key lemma). Let ¢t € NF(p) \ SN(Ays). There is u € NF(p) such that
u & SN (Ays) and m(t) —a, m(u).

Proof of the theorem 8.1. Lett € NF(p) be such that m(t) € SN(Ay) andt & SN(Ays).
We can choose t such that the length of the longest Ay -reduction of m(¢) is minimal. The
key lemma gives a term u such that the length of the longest Ay-reduction of m(u) is
shorter and thus we get a contradiction. We have proved: If t € NF(p) and m(t) € SN (Ay)
then t € SN (Ays). The theorem is a particular case of this result with ¢ € NF(ws) since,
for such a ¢, m(t) = t. ]

The key lemma is proved by induction. The difficult case is when the head of  1s
((k1) ... (kn)Av w) and v, w as well as all arguments of the head redex are Ay;-strongly
normalizable. The term u (given by the lemma) is defined by the following sequence of
reductions:

— if n > 1, contract the labels (k;),
— reduce the head redex,
— take the p-normal form.

The key point is to show that if ¢ has an infinite Ay s-reduction, then so does u. For
the two first steps (contraction of the labels and reduction of the head redex), it is easy
to show that infinite reductions are preserved.

For the last step (propagation of the substitution), we use the projection lemma on an
extended syntax of the A, s-calculus. This syntax allows to keep track of the reducts of
the substitution created by reduction of the head redex. (subsection 8.3).

8.2. Definitions

We give here the definitions which are used in the definition of the term u of the key
lemma.

Definition 8.3.
We define particular contexts and terms:



A A-calculus with explicit weakening and explicit substitution

— The feet F' and the bodies B are contexts defined by the grammars:

F={-1| (k). (k)AF

B={-[ | (k)B | (Bt) with t € NF(p)

31

— The heads H are terms of the form n or ((k1)...{(kn)Auv) with m > 0 and u,v €

NF(p).

Lemma 8.4 (canonical decomposition of the p-normal-forms).
Each term ¢t € NF(p) has a canonical decomposition ¢t = F{{B{H[[}.

Proof. By induction on t.

Example 8.5. Let { = A(2)(3)A(L) (1)) ((2)((1)(4)A0 u) 1) L),

The two main points are the following: (1) The interesting reductions of ¢ are the ones
of B{H[}. This is due to the fact that a foot is either empty or is a context finishing

with a A. (2) An important information is the level where the substitution created by the
reduction of the head redex appears in the term B{{H[}. This will be defined (cf. below)
as the depth of B.

Definition 8.6.

1 Let B be a body, Arg(B) (the set of arguments of B) is defined by:

— If B={ [} then Arg(B) = 0.
— If B = (k)B' then Arg(B) = Arg(B’).
— If B = (B't) then Arg(B) = Arg(B') U {t}.

2 Let B be a body. |B| (the depth of B) is defined by:



René DaviD, Bruno GUILLAUME 32

—1-BI=0.
— |(k)B| = |B| + k.
—|(B1)| =B

Let ¢ be the term of example 8.5, then Arg(B) = {t1,%2} and |B| = 8.
The following lemma will be used in the proof of the key lemma.

Lemma 8.7. Let ¢ € NF(p) and #',t" € Ay, be such that t —, ' — ¢/, Then
m(t) —x, m(u) where u = p(¢").

Proof. By induction on t. If ¢ = (k1)...{kn)Av or t = (k1)...{(kn)(v w) and the b-
reduction is in v or w, the induction hypothesis immediately gives the result.

The only difficult case is t = (k1) ... (kn)({l1) ... {{;)Av w) and the b-reduction is the
one of the head redex. Then,

m(t) = (kY(()Am(v) m(w)) with k=57 k;and I =512 1;

= (k]).. (KOOI ') with v —7F v, w —) w' and k = Z?:IO kL.

= (kDY R0/

m(u) = m(p(t")) = ws(t") = ws({k)[0/w' {]v') .
Finally, m(t) —x,, ws((k)[0/w,Jv) = m(u) (because the ws-calculus is confluent and
normalizing). U

8.3. Preservation of infinite reductions by propagation

The goal of this subsection is to prove the following lemma; it is the hardest part of
the proof. The meaning of this lemma is that the infinite reduction is preserved by the
propagation of the head substitution.

Lemma 8.8. Let t = B{|[0/w,{]v]} where v,w € NF(p). Assume that v, w and the
arguments of B are Ay -strongly normalizable. If ¢ has an infinite Ay -reduction then
p(t) also has an infinite Ay ;-reduction.

The idea of the proof is the following: let « = p(t). In order to translate the reduction
t — t;, — ts — ... into a reduction u — u; — us —> ..., we will tag the
reducts of the substitution [0/w,!{] and write them [0/w,!]. Then, in any reduct of ¢,
there are two kinds of substitutions: the tagged ones (denoted [...]) which are reducts
of the head substitution of ¢ and the other ones (denoted [...]) which are created during
the reduction.

The key point (which allows to construct the derivation of ) consists in proving the
following properties of the #;: they ensure that, in each ¢; we can move down the sub-
stitutions [...] without moving the substitutions [... and thus define u; as the “normal
form of ¢; by tagged propagation”.

— If a subterm is [i/w’, jJv’ then v' and w’ contain no substitution [...].
— Substitutions [.. ] are always “higher” than the [.. ], i.e. if the subterm is [.. J[.. Jw

then we can always compose the substitutions. Conversely, if the subterm is [. . ][. . Jw,
the composition is never possible.



A A-calculus with explicit weakening and explicit substitution 33

— If a subterm is [i/w’, jJv’ then w’ is strongly normalizable.

The first property comes from the syntax of the A -calculus (cf. 8.3.1). The two
others are proved in subsection 8.3.2 and are derived from the notion of well-tagged
terms. Finally, it will remain to check that the terms u; give an infinite Ay ;-reduction of
u.

8.3.1. The tagged reductions

Definition 8.9 (The A¢ -calculus). The set of terms of the A¢ -calculus (denoted by
A¢),) is defined by:

t=n | X | () | (k| [i/t, 51t | [é/w, jlv with n i, 5,k €N and u,v € Ays.

The rules of the A7 -calculus are those of the Ay -calculus with the additional rules:

L [i/u, At
s [i/w, jl(tv)

ALi + 1/u, j]t
(Li/w, 31t i/, 1v)

.
.

e [ijw il — (k+j— 1) i<k

ea6 [i/w, 51k — (k)i — k/u, j]t k<i

nio li/u,jln. — n n<i

nao [i/w, jln —  (i)u n=i

n3o lifu,iln — n+j—1 i<n

o [ifw jllk/v, 0t — [k/[i— k/u, jJo, L+ — 1]t k<i<h+l
—

eae [i/u, jllk/v, 1]t k/li—k/u, jlo, Qi =L+ 1 /u, jIt k4+1<1

It is easy to check that the set Ag,, is closed under this reduction: the only constraint
imposed by the syntax is that the subterms under or inside a tagged substitution are
Aws-terms (i.e. without tagged substitution). This constraint is clearly preserved by the
new rules.

Definition 8.10. The o-calculus is the calculus on the set A, which contains the rules
of propagation of tagged substitutions: I, a,, €., n, and c,.

Remark 8.11. Note that the following rules
o Tifu I6/0, 00— [k/Ti— kfu, o+ — 1Tt k<i<htl
cho [ifu k0,00t — [k/li— K, o, 0l — L+ Ll k+1<i

which would be natural in a general framework are missing in the Aj  -calculus. We will
have to consider only well-tagged terms (cf. below) of the AS,,-calculus and these terms
do not contain any ¢ -redex or ¢ -redex. These rules are thus useless.



René DaviD, Bruno GUILLAUME 34

8.3.2. The well-tagged terms

Here, we formalize the following intuitive fact: in the terms that we are interested in,
the tagged substitutions are always higher than the others. We actually define a more
general property which is preserved by reduction.

The relation H between a term (with tagged substitutions) and an integer means that
any untagged substitution has a small enough index if a tagged substitution occurs below.
The integer gives the depth where the tagged substitution (if any) is in the term.

The relation B between a term (without tagged substitutions) and an integer means
that any untagged substitution which occurs under a tagged one has a small enough
index, allowing thus the tagged substitution to be propagated.

Definition 8.12. We define the binary relations by:
— Bon Ay x N
- B(n,m)
— B(Au,m) iff B(u,m+1)
— B((uv),m) iff B(u,m) and B(v, m)
i<m and B(u,m—1)
— B({(dyu,m) iff { or
i>m
i<m<i+j and B(u,m—i)
— B([i/u, jlv,m) iff ¢ or
i+j<m and B(u,m—1) and Blv,m—j+1)
— H on A}, x N
— H(n,m)
— H(Au,m) iff H(u,m+1)
— H((uwv),m) iff H(u,m) and H(v, m)
i<m and H(u,m—1)
— H({{)u,m) iff ¢ or
i>m and u € Ay,

m<1t and u € Ays and v € Ay,

or
— H([i/u,jlo,m) iff ¢ i<m<i+j and H(u,m —14) and v € Ay,

or

i+j<m and H(u,m—1i) and H(v,m —j+1)
— H([#/u, jlv,m) iff i = m, u € Ays, u € SN(Ays) and B(v, m)

Definition 8.13. A termt € A? | is well-tagged if there is an integer m such that H (¢, m).
The set of well-tagged terms is denoted by WT.

Remark 8.14. The following facts are immediate (by induction on t):

— Ift € NF(p) (i.e. t contains no substitution) then, for all m € N, we have B(¢, m).
— Ift € Ays (i-e. t contains no tagged substitution) then, for all m € N, we have (¢, m).



A A-calculus with explicit weakening and explicit substitution 35

— If t € WT then, for all u subterm of ¢, we have u € WT.
The following lemma gives the desired properties of well-tagged terms.

Lemma 8.15. Let ¢ be a well-tagged term.

1 TIf [é/u, jl[k/v, [Jw is a subterm of ¢, then ¢ > k (i.e. the subterm is a ¢j4-redex or a
Coo-redex).
2 If [i/u, j][k/v,{Jwis a subterm of ¢, then { < k (i.e. there is no ¢} -redex or ¢}, -redex

(cf. remark 8.11)).

Proof.

1 Let ¢ =[i/u, jl[k/v,Jw be the subterm. This is a well-tagged term (remark 8.14(3))
therefore there is an integer m such that H(¢', m). The definition of A implies that
m =i and B([k/v,lJw, ). The definition of B implies k& < 4.

2 Let t/ = [i/u, j][k/v,{]Jw be the subterm. There is an integer m such that #(t', m).
Since [k/v,{Jw & Ays, we have m > i+ j and H([k/v,{Jw,m — j + 1), and thus
k=m-—j+1. Finally, k=m—j5+1>1.

U
Proposition 8.16. W1 is closed by AJ,,-reduction.

Proof. The proof is not difficult but tedious. We first prove that if { — . u and
B(t, m) then B(u, m). We may assume that the reduction is at the root of {. We consider
each rule of the Ay s-calculus. The proposition is a consequence of the fact that if { — o
w and H(t,m) then H(u,m). This is proved by induction on ¢ using the previous fact.
Again we may assume that the reduction is at the root, and we consider each rule of the
Ag s-calculus. The complete proof is given in the annex of (Guillaume, 1999b). ]

Lemma 8.17. The o-calculus is confluent and strongly normalizable on the set of well-
tagged terms. Let o(t) denote the normal form of ¢ for the o-calculus.

Proof. The ¢-calculus is locally confluent because it has no critical pairs. The strong
normalization of the o-calculus is a trivial consequence of the strong normalization of the
ws-calculus. U

Proposition 8.18. Let ¢ be a well-tagged term. Then o(t) € Ays.

Proof. Tf t is a well-tagged term then o(¢) also is one (proposition 8.16). If o(¢) & Ay
then it contains a tagged substitution and the lemma 8.15(1) ensures that we can move
down this substitution. This contradicts the fact that o(¢) is a -normal form. U

8.3.3. The projection

We show that an infinite AJ,  -reduction of a well-tagged term ¢, gives an infinite Ay s-
reduction of o(t). This is done by showing that the relations Ry and Ra defined below
satisfy the hypothesis of the projection lemma (lemma 2.7).

— Rjy: the o-reductions and the reductions inside tagged substitutions (i.e. [i/u, j|t —
[¢/w, 7]t with v —»,, u').



René DaviD, Bruno GUILLAUME 36

— Ra: the other reductions, i.e. the Ay -rules used outside a tagged substitution.
Lemma 8.19. WT C SN(R;).

Proof. The measure || - || is defined on well-tagged terms as follows. lg(u) denotes the
length of the longest Ay -derivation of u (which exists since any term inside a tagged
substitution is strongly normalizable). Note that this measure is not the same as the one
in proposition 5.12.

— |lnll=0

— [IA¢]] = (1]l

— 1 w)]] = [l 4 ffeel]
— (IRl = [J¢]]

— [Mi/w, g1l = [t + ||l
— [Il/w, g1t|| = exty (¢)(1 + 1g(u))

We have to show that if ¢ —, u then [|{|| > ||u||. By induction on ¢, we may assume
that the reduction is at the root. For the rules ej,, n1,, 72, and ns,, note that if a
term has no tagged substitution its measure is 0. For the other rules, the verification is
immediate.

We also have to show that the measure decreases by reduction inside tagged substi-
tutions. By induction on ¢, we may assume that the reduction is [i/u, jJt — [i/u’, j]¢
with 4 —,, «/. We have lg(v') < lg(u) hence (since cxty(t) > 1):

ws

i/ w, j1tl] = exty () (1 +1g(u)) > exty () (1 +1g(u)) = [I[i/", 54

Lemma 8.20. Let ¢ be a well-tagged term. If ¢ — g, u then o(t) —3  o(u).

Proof. If the reduction t —> g, u is a o-reduction then, by uniqueness of the o-normal
form, o(t) = o(u).

If the reduction is inside a tagged substitution, we use induction on ¢. The difficult
case is t = [i/v,jJw and w = [i/v',j]lw with v —» . v'. An induction on w gives
ot) —3,. o(u). ]

Lemma 8.21. Let ¢ be a well-tagged term. If t — g, u then o(¥) Hj\'ws o(u).

-
o(t) o Xio(u)

Proof. This proof, by induction on ¢, is easy but tedious. The difficult case is ¢ =



A A-calculus with explicit weakening and explicit substitution 37

[¢/v, jlw and w = [i/v, jJow’ with w — g, w'. By an induction on w we may assume that
the reduction 1s at the root of w. We then have to consider each rule of A, -calculus.
This proof has been checked by a Caml Program and is given in the annex of (Guillaume,

1999b). O

Proposition 8.22. Let t € A, be a well-tagged term. If ¢ has an infinite AJ, -reduction
then o(¢) has an infinite Ay ;-reduction.

Proof. The previous lemmas prove the hypothesis of the projection lemma. O
We are now ready to finish the proof of the main result of this subsection.

Proof of lemma 8.8 Let t = BY[0/w,{]v[} with v,w € NF(p). Assume that v, w and
the arguments of B are Ay s-strongly normalizable but ¢ is not strongly normalizable. Let
t — t; —> t2 —> ... be an infinite reduction of ¢t and let ¢} be t; where the residue of
[0/w,!] has been tagged.

— ' = B{[0/w,{]v[} is a well-tagged term: by induction on B, we prove that H(t',|B|)
(cf. definitions 8.6 and 8.12)

- B ={ 1 ¢ =[0/wl]vand w € SN(Ays). Moreover v € NF(p). By re-
mark 8.14(1), we have B(v,0). Finally (¢, 0).

— if B = (k)B’: by the induction hypothesis H(B'{[0/w,{Ju[},|B’]) and so
H{(EYB{[0/w, o]}, |B'| + k), i.e. H(t',|B]).

— If B = (B'w') with w' € Ays: by induction, H(B'{[0/w,Ju[},|B’]). The re-
mark 8.14(2) gives H(w', |B|). Finally, H(t', | B]).

—t — ty — t, — ... is an infinite A, -reduction of #': proposition 8.16 and
lemma 8.15 that each t; is well-tagged and that the reduction t; — t,, is always
possible (no ¢}, or ¢, redex), respectively.
the proposition 8.16 ensures that each ¢! is well-tagged and lemma 8.15 ensures that
the reduction t; — t}, is always possible (no ¢i, or ¢, redex).

— o(t') = p(t): ¢ has no untagged substitutions. The reduction from ¢ to p(t) can be
translated into a reduction from ¢’ to o(t') by using rules [, a, e, and n, instead of
[, a, e and n. Thus o(t’) and p(¢) differ only by the character of their substitutions
(tagged or not). Since they have no substitutions, o(t') = p(t).

— p(t) has an infinite reduction. ¢’ is well-tagged and has an infinite A -reduction.
Proposition 8.22 gives an infinite Ay -reduction of o(t') = p(t).

O

8.4. Proof of the key lemma

The proof of the key lemma finishes the proof of theorem 8.1:
Lemma 8.2 Let t € NF(p) \ SN (Ays). There is u € NF(p) such that v ¢ SN (Ay;) and
m(t) —a, mu).

Proof. We prove, by induction on ¢, that there is a term u such that:

— u & SN(Ays),



René DaviD, Bruno GUILLAUME 38

— there are ¢/, € Ay; such that t —% t' —4 t” and u = p(t").

The result follows then immediately from lemma 8.7.

1) If ¢ has a proper subterm v which is not Ay s-strongly normalizing then ¢ = C'{Jv[}
and there is a term w &€ SN(Ay;s) such that w = p(v”) and v —, v/ —p v". Let
u = C{lw[}. Since C has no substitutions, p(u) = C{{p(w)[}.

2) Else, Every proper subterm of ¢ is Ay s-strongly normalizable. Let ¢t = F{{B{H[[}. F
is empty since (if not, B{H[} would be a non Ay ;-strongly normalizable proper subterm
of t). H is not a de Bruijn index since, otherwise, ¢t would be strongly normalizable. Thus

t = B{({(k1) ... {(kn)Xvw)[}. Let k =57 k; and
= B{((kvw)} " =B{0/w kel u=p(B{0/w, k)

By construction: t — ' —34 t” and u = p(¢”). It remains to prove that « has an
infinite A, s-reduction.

Since every subterm is strongly normalizable, any infinite reduction of ¢ must reduce
the head redex. The infinite reduction of ¢ looks like:

t —* B (k)M W)} — B0/ k'] — ...
And thus ¢ has an infinite reduction:
t" = B{[0/w, ko[ — B {[0/w' K]V} — ...

Lemma 8.8 ensures that « = p(¢”") has an infinite reduction. ]

9. Conclusion

The counter-examples to the preservation of strong normalization of the Ao-calculus
and the Asc-calculus led us to introduce the Ay-calculus: a new presentation of the -
reduction.

We then derived a calculus with explicit substitutions satisfying: step by step simula-
tion of 3, confluence on terms with metavariables and preservation of strong normaliza-
tion.

The simulation property of our calculus is not exactly the expected one, however, we
believe that the idea of keeping updating functions in terms rather than pushing them
down is one of the interesting points of our calculus.

This calculus is the first (together with SKInT of Goubault and Goguen) to answer
positively the open question on the existence of such a calculus. We believe that the link
of our calculus with De Bruijn calculus is much simpler than the one of the SKInT-
calculus.

We leave for future work the study of other systems of types for the Ay s-calculus.
The implementation of this calculus would also be interesting in order to measure the
efficiency of the use of labels.



A A-calculus with explicit weakening and explicit substitution 39

Acknowledgements

We would like to thank Pierre-Louis Curien, Délia Kesner, Yves Lafont and the anony-
mous referees for their helpful comments on this work.

References

Abadi, M., Cardelli, L., Curien, P.-L., and Lévy, J.-J. (1991). Explicit substitutions. Journal of
Functional Programming, 1(4):375-416.

Benaissa, Z.-E.-A., Briaud, D., Lescanne, P., and Rouyer-Degli, J. (1996). Av, a calculus of ex-
plicit substitutions which preserves strong normalisation. Journal of Functional Programming,
6(5):699-722.

David, R. (1994). The inf function in the system F. Theoretical Computer Science, 135:423-431.

David, R. and Guillaume, B. (1999). The A;-calculus (extended abstract). In Proceedings of
The Second International Workshop on Explicit Substitutions: Theory and Applications to
Programs and Proofs (WESTAPP’99), Trento.

Di Cosmo, R. and Kesner, D. (1997). Strong normalization of explicit substitutions via cut
elimination in proof nets. In Proceedings of the 12" Annual IEEE Symposium on Logic In
Computer Science (LICS), Warsaw.

Di Cosmo, R., Kesner, D., and Polonovsky, E. (2000). Proof Nets and Explicit Substitutions.
In Foundations of Software Science and Computation Structures (FOSSACS). To appear.
Ferreira, M.-C.-F., Kesner, D., and Puel, L. (1996). A-calculi with explicit substitutions and
composition which preserve strong normalization. Proceedings of Algebraic and Logic Pro-

gramming 96 in Lecture Notes in Computer Science, 1139:284-298.

Goguen, H. and Goubault-Larrecq, J. (1999). Sequent combinators: A hilbert system for the
lambda calculus. Mathematical Structures in Computer Science, special issue in honor of Sir
Roger Hindley.

Guillaume, B. (1999a). The As.-calculus does not preserve strong normalisation. To appear in
Journal of Functional Programminyg.

Guillaume, B. (1999b). Un calcul de substitutions avec étiquettes. PhD thesis, Université de
Savoie. (URL : http://www.lama.univ-savoie.fr/users/GUILLAUME).

Hardin, T. (1989). Confluence results for the pure strong categorical logic CCL : A-calculi as
subsystems of CCL. Theoretical Computer Science, 65(2):291-342.

Kamareddine, F. and Rios, A. (1995a). A A-calculus & la de Bruijn with explicit substitutions.
Proceedings of the 7th international symposium on Programming Languages: Implementations,
Logics and Programs, PLILP '95 in Lecture Notes in Computer Science, 982:45-62.

Kamareddine, F. and Rios, A. (1995b). The As-calculus: its typed and its extended versions.
Technical report, Department of Computing Science, University of Glasgow.

Kamareddine, F. and Rios, A. (1997). Extending a A-calculus with explicit substitution which
preserves strong normalisation into a confluent calculus on open terms. Journal of Functional
Programming, 7(4):395-420.

Kamareddine, F. and Rios, A. (1998). Bridging de bruijn indices and variable names in explicit
substitutions calculi. Logic Journal of the IGPL, 6(6):843-874.

Klop, J. (1992). Term Rewriting Systems. In Abramsky, S., Gabbay, D., and Maibaum, T.,
editors, Handbook of Logic in Computer Science, volume 2, pages 1-116. Oxford University
Press.

Mellies, P.-A. (1995). Typed A-calculi with explicit substitutions may not terminate. Proceedings
of Typed Lambda Calculi and Applications 951in Lecture Notes in Computer Science, 902:328—
334.



René DaviD, Bruno GUILLAUME 40

Muiioz, C. (1996). Confluence and preservation of strong normalisation in an explicit substitu-
tions calculus. Proceeddings of LICS’96, pages 440-447.

Muiioz, C. (1997). Un calcul de substitutions pour la représentation de preuves partielles en
théorie des types. PhD thesis, Université Paris VII.

Zantema, H. (1998). The oo-rule terminates. Personnal communication.



