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A -calculus with explicit weakening and explicit substitution
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1. Introduction

Calculi of explicit substitutions are useful tools that ll the gap between the meta operation of substitution appearing in the -reduction of the -calculus and its concrete implementation.

The most natural property such calculi have to satisfy is the simulation of thereduction (SIM): every -reduction can be done in the new calculus and conversely this calculus does not introduce other reductions.

To have a good implementation of the -calculus, it is also natural to ask that no in nite reductions are created by the use of explicit substitutions. This is called the preservation of strong normalization (PSN). Melli es gave in (Melli es, 1995) a simply typed term with an in nite reduction in . This counter-example shows that has not PSN.

Another important property is to have the con uence on terms with metavariables (MC): in proof assistants or theorem provers one has to consider proof trees with some unknown subtrees. To represent these proof trees, -terms with metavariables (corresponding to unknown parts of the tree) are necessary. The con uence on usual (closed) terms is easy to obtain but MC is much more di cult.

Since Melli es gave his counter-example, many calculi have been proposed but none of them satis es simultaneously SIM, PSN and MC. Figure 1 gives some of them and their properties.

In order to satisfy both SIM and MC, rules for the interaction between substitutions are necessary. These rules are responsible for the lack of PSN in and s e . In d and n , a weaker notion of composition is used and thus PSN is satis ed, but these rules are not strong enough to get MC.

The s-calculus is the most natural calculus of explicit substitutions: it is the -calculus (with de Bruijn indices) where the substitution ( i ) and the updating ( k j ) have been Fig. 1. Calculi of explicit substitutions and their properties internalized. The s e -calculus is obtained by adding new rules for the interaction of substitutions. This set of rules is the minimal one to get MC but unfortunately, s e does not satisfy PSN (Guillaume, 1999a).

In the following example, the -reduction is done in two steps: rst, the reduction of the -redex and the propagation of the substitution and then, the propagation of the updating function. The h1i in the middle term means that the free indices in the term below must be increased by 1. This corresponds to the function 1 0 in s e .

Example 1.1. @ @ @ @ @ 0 1 @ @ 2 @ @ 1 0 -@ @ 1 @ @ h1i @ @ 0 1 0 -@ @ 1 @ @ @ @ 0 2 0

The rules for the propagation of the updating functions are responsible for the lack of PSN in s e (Guillaume, 1999a). The key idea of our calculus is to keep the information about updating in terms rather than to move it down. In others words, we decide that (in the example above) the \right" reduct of the term is the second rather than the third one.

Recently, another solution which relies on a translation of -terms into sequent combinators has been proposed [START_REF] Goguen | Sequent combinators: A hilbert system for the lambda calculus[END_REF]. Goguen and Goubault introduce a rst order calculus (named SKIn) on the set of terms de ned by: t ::= x j I m j K m (t) j S m (t; t) where I m , k m and S m are generalizations of the usual combinators I, K and S. The translation of the -term t in SKIn is written t and the reverse one u] ] for any SKInterm u. They show that t ! u implies t ! + SKIn u but conversely, they only have that t ! SKIn u implies t] ] ! u] ]. Unfortunately, with an example a la Melli es, they show that SKIn is not strongly normalizing in the typed case and thus that it does not have PSN.

To recover the PSN, they de ne the SKInT-calculus on the same syntax but with less permissive rules. This second calculus has the expected properties (including PSN) but the relation with the -calculus is more complicated than for SKIn. The logic behind SKInT is a fragment of the modal logic S4 called near-intuitionistic logic. The corresponding notion of \ -calculus" is a closure calculus (named clos ) which is an extension of call-by-value (CBV) -calculus. The -calculus is translated in SKInT in the following way: rst, encode the -calculus in the CBV -calculus (using for example a continuation passing style (CPS) transformation), then use a translation from clos to SKInT. Denoting by L (t) the translation of the -term t in SKInT, they prove: | if t ! u then L (t) ! SKInT L (u); | t and u are convertible if and only if L (t) and L (u) are convertible in SKInT.

The paper is organized as follow: we rst introduce the w -calculus (section 3)which is the usual -calculus (with de Bruijn indices) where terms may contain labels hki, then we give the ws -calculus (section 4) which is obtained from the w -calculus by making the substitutions explicit and by adding rules for interaction between substitutions.

The sections from 5 to 8 are devoted to the proofs of the main properties of the ws -calculus. The most innovative section is the last one where the PSN is proved.

Warning: This paper is the complete version of the extended abstract presented in WESTAPP'99 [START_REF] David | The l-calculus (extended abstract)[END_REF]. There, the ws -calculus was called l (l for label).

Preliminaries

We give here some de nitions and useful lemmas about rewriting systems. We also recall the rules for the usual -reduction on -terms with de Bruijn indices and the explicit substitution calculus s e .

Rewriting

De nition 2.1 (Abstract rewriting systems). Let E be a set of terms and R be a set of rewriting rules. We denote by ! R the binary relation on E de ned by the contextual closure of the set of rules.

We also write ! R (resp. ! + R ) for the transitive and re exive closure, (resp. transitive closure) of ! R . De nition 2.2 (Normal form). We say that t 2 E is an R-normal form if there are no terms u such that t ! R u. The set of R-normal forms is denoted by NF(R).

De nition 2.3 (Normalization).

| A term t 2 E is strongly normalizable if there is no in nite R-reduction of t, i.e.

if every sequence t ! R t 1 ! R t 2 : : : is nite. The set of R-strongly normalizable terms is denoted by SN (R). If SN (R) = E, we say that the reduction R is strongly normalizing.

| A term t is weakly normalizable if there is a nite reduction t ! R u where u is an R-normal form. The set of R-weakly normalizable terms is denoted by WN (R). If WN (R) = E, we say that the reduction R is weakly normalizing.

De nition 2.4 (Con uence).

| A reduction ! R is con uent if, for t; u; v 2 E such that t ! R u and t ! R v there is w such that u ! R w and v ! R w. | A reduction ! R is locally con uent if, for t; u; v 2 E such that t ! R u and t ! R v there is w such that u ! R w and v ! R w. | A reduction ! R is strongly con uent if, for t; u; v 2 E such that t ! R u and t ! R v there is w such that u ! R w and v ! R w. Remark 2.5. The reduction ! R is con uent if and only if the reduction ! R is strongly con uent.

Lemma 2.6 (Newman's lemma). If the reduction ! R is strongly normalizable and locally con uent, then it is con uent.

The following lemmas will be used in section 8. The second one is a particular case of the rst one.

Lemma 2.7 (Projection lemma). Let R, S be reductions on E and F respectively and < be a binary relation on E F. Assume that:

| R = R 1 R 2 .
| R 1 is strongly normalizing. | If t ! R1 t 0 and t < u then there is u 0 such that u ! S u 0 and t 0 < u 0 . | If t ! R2 t 0 and t < u then there is u 0 such that u ! + S u 0 and t 0 < u 0 . Let t 2 E, u 2 F with t < u. If u 2 SN (S) then t 2 SN (R).

Proof. From an in nite R-reduction of t, we can construct an in nite S-reduction of u:

t = t 0 R1 / / < t 0 0 R2 / / < t 1 R1 / / < t 0 1 / / < : : : u = u 0 S / / u 0 0 + S / / u 1 S / / u 0 1 / / : : :
The next lemma corresponds to the particular case where R contains the equality (i.e. for all t, we have t < t) and S = R 2 . Lemma 2.8 (Simulation lemma). Let R = R 1 R 2 be a reduction on the set E and < be a binary relation on E E. Assume that: | For all t 2 E, we have t < t. | R 1 is strongly normalizable. | If t ! R1 t 0 and t < u then there is u 0 such that u ! R2 u 0 and t 0 < u 0 . | If t ! R2 t 0 and t < u then there is u 0 such that u ! + R2 u 0 and t 0 < u 0 .

Then SN (R) = SN (R 2 ). The lemma 2.10 is an adaptation of a result given in [START_REF] Klop | Term Rewriting Systems[END_REF]. The original result is that a rewriting system which is locally con uent, weakly normalizing and increasing (there is a measure which is strictly increased by reduction) is also strongly normalizing. In lemma 2.10, the measure is only increasing (not strictly) but we have the additional hypothesis that reductions which leave the measure unchanged are strongly normalizing.

Lemma 2.9. Let R be a locally con uent reduction, t be a normalizable term and v be a normal form of t. Assume t 6 2 SN (R). Then, there is a term u 6 2 SN (R) such that t ! + R u and v is a normal form of u.

Proof. Let t = t 0 ! t 1 ! : : : ! t n = v a derivation from t to v. Let i be such that t i 6 2 SN (R) and t i+1 2 SN (R) and u be a term such that t i ! u and u 6 2 SN (R).

Since R is locally con uent there is a term w such that u ! w and t i+1 ! w. Since t i+1 2 SN (R) and R is locally con uent, t i+1 has a unique R-normal form v and thus v also is a normal form of w. Finally, we have t ! + u and v is an R-normal form of u.

t / / t i / / t i+1 / / v u / / w = =
Lemma 2.10 (Increasing reductions). Let R = R 1 R 2 and j j be a measure such that:

| R 1 is strongly normalizing. | If t ! R1 t 0 then jtj = jt 0 j. | If t ! R2 t 0 then jtj < jt 0 j. | R is weakly normalizing. | R is locally con uent.

Then R is strongly normalizing.

Proof. Assume there is a term t which is not R-strongly normalizable. The weak normalization of the R-reduction ensures that t has an R-normal form v. By lemma 2.9 we can construct an in nite derivation: t = t 0 ! + t 1 ! + : : : ! + t i ! + : : : such that v is an R-normal form of each t i . Since R 1 is strongly normalizing, there are in nitely many R 2 -reductions in this derivation. Thus, jt j j > jvj for some j. This gives a contradiction since t j ! R v and thus jt j j jvj.

2.2. The -calculus with de Bruijn indices: the db -calculus We will use de Bruijn representation of -terms where the rst index is 0 and not 1. This will simplify notations in the next sections and, this is more natural with respect to the typed calculus. For instance, the -term x y(x y) is written (1 0).

Substitutions will be written on the left of the terms (for example fx := ugt means t where x is substituted by u): this corresponds to the tree representation of terms and we believe this is easier to read.

Terms of the db -calculus are de ned by: t ::= n j t j (t t) with n 2 N

The -reduction is given by the next de nition. fi := ug (the substitution) and (the updating function) are meta functions, i.e. are not in the syntax of the calculus.

De nition 2.11. The db -calculus is de ned by the rule:

( t u) ! db f0 := ugt with:

fi := ug t = fi + 1 := ugt j i ( t) = j i+1 (t) fi := ug(t v) = (fi := ugt fi := ugv) j i (t u) = ( j i (t) j i (u)) fi := ugn = 8 < : n if n < i i 0 (u) if n = i n 1 if n > i j i (n) = n if n < i n + j if n i
It is well known that this reduction is isomorphic to the usual -reduction on -terms modulo -equivalence [START_REF] Kamareddine | Bridging de bruijn indices and variable names in explicit substitutions calculi[END_REF].

The s-calculus and the s e -calculus

The s-calculus and the s e -calculus were introduced and studied by Kamareddine and Ros (Kamareddine and R os, 1995a;[START_REF] Kamareddine | Extending a -calculus with explicit substitution which preserves strong normalisation into a con uent calculus on open terms[END_REF]. They both use the same syntax. The s-calculus is obtained naturally from the db -calculus by writing explicitly the substitutions and the updating functions.

t ::= n j t j (t t) j i := t]t j hi; jit with n; i; j 2 N Remark 2.12. In the papers by Kamareddine and Ros, the rst De Bruijn index is 1 whereas we use 0. The term i := u]t correspond to the term t i+1 u in the original syntax and hi; jit correspond to ' j i+1 (t).

Rules are translation of the de nition 2.11:

( )

( t u) ! 0 := u]t ( ) i := u] t ! i + 1 := u]t ( a) i := u](t v) ! ( i := u]t i := u]v) ( n 1 ) i := u]n ! n if n < i ( n 2 ) i := u]n ! h0; iiu if n = i ( n 3 ) i := u]n ! n 1 if n > i (' ) hi; ji t ! hi + 1; jit ('a) hi; ji(t u) ! (hi; jit hi; jiu) ('n 1 ) hi; jin ! n if n < i ('n 2 ) hi; jin ! n + j if n i
This calculus lacks only the metacon uence property. In order to recover this property, the reduction relation is extended to give the s e -calculus. The extra rules are:

( ) i := u] j := v]t ! j := i j := u]v] i + 1 := u]t if j i ( ' 1 ) i := u]hj; kit ! hj; k 1it if j i < j + k ( ' 2 ) i := u]hj; kit ! hj; ki i k := u]t if j + k i (' )
hj; ki i := u]t ! i := hj i; kiu]hj + 1; kit if i j ('' 1 ) hi; jihk; lit ! hk; j + lit if k i k + l ('' 2 ) hi; jihk; lit ! hk; lihi l; jit if k + l < i These extra rules are exactly the ones needed to get MC. The strong normalization of the substitution calculus ( s e without the rule ) is an open question.

The PSN was conjectured but its failure has been shown in (Guillaume, 1999a). At rst sight, the -rule seems to be the right rule to have PSN: everything is right with respect to the Melli es counter-example. The problem comes from the rules for the interaction between substitutions and updatings. The following example shows where the problem arises.

Example 2.13.

4 := u] 7 := v]h3; 4it ! ' 2; ' 4 := u] 3 := h0; 4iv]h4; 4it

In the left-hand side, the substitution 4 := u] should not interact with the substitution 7 := v] (because 4 < 7, the -rule does not apply). In the right-hand side, after two reduction steps, the two substitutions can now interact and produce a self-embedded term as in the Melli es counter-example. This phenomenon can be used to construct an in nite reduction of a simply typed -term. See (Guillaume, 1999a) for details.

3. The calculus with explicit weakening: w

Terms with labels

We avoid the counter-example to the PSN property of the s e -calculus by adding to the usual syntax a new constructor that we call a label and which represents an updating information. The term t with label k (denoted by hkit) corresponds to the term t where all free indices have been increased by k (i.e. k 0 (t) in s e ).

In the terms we are nally interested in, two successive labels are not allowed. We rst de ne preterms without this restriction.

De nition 3.1. We de ne the set of w -preterms by the following grammar:

t ::= n j t j (t t) j hkit with n; k 2 N

The function E de ned below gives the db -representation of a -term represented by a preterm.

De nition 3.2. The function E is de ned from the set of preterms to db by: |

E(n) = n | E( t) = E(t) | E(t u) = (E(t) E(u)) | E(hkit) = k 0 (E(t))
where is the function from db to db de ned by:

| j i ( t) = j i+1 (t) | j i (t u) = ( j i (t) j i (u)) | j i (n) = n if n < i n + j if n i
De nition 3.3. w is the set of terms given by the following grammar:

t ::= u j hkiu with k 2 N u ::= n j t j (t t) with n 2 N It is easy to de ne a reduction to recover a w -term from any w -preterm. Let m be the reduction rule (called mixing):

hiihjit ! hi + jit

This reduction is clearly con uent and strongly normalizable on the set of preterms. We denote by m(t) the w -term which is the m-normal form of the preterm t.

The following lemma ensures that the m-reduction does not change the meaning of terms.

Lemma 3.4. Let t; u be w -preterms such that t ! m u, then E(t) = E(u). In particular, for each preterm t, we have E(t) = E(m(t)).

Proof. By an easy induction on the construction of t. Use the fact that for any db -term v, we have k 0 ( l 0 (v)) = k+l 0 (v).

The w -calculus

Let t = (hki u v). Since E(t) is a redex, t must also be a redex. We thus need a rule to reduce a redex which contains a label and the substitution must record this label. The substitution fi=u; jg means that the indices i must be replaced by hiiu and that there was a label hji in the redex. Note that, even if t and u are terms, fi=u; jgt only is a preterm. This is why, in the next de nition, the m-normal form has to be taken in the -rules. In the nal calculus, the m-rule will also be an explicit rule.

De nition 3.5. The w -calculus is de ned on the set w by the two rules:

( 1 )

( tu) ! m(f0=u; 0gt) ( 2 ) (hki tu) ! m(f0=u; kgt) with: | fi=u; jgn = 8 < : n if n < i hiiu if n = i n + j 1 if n > i | fi=u; jg t = (fi + 1=u; jgt) | fi=u; jg(t v) = ((fi=u; jgt) (fi=u; jgv)) | fi=u; jghkit = hk + j 1it if i < k hki(fi k=u; jgt) if i k 3.3. Simply typed w -calculus
As usual, types (denoted by A; B; : : :) are constructed with basic types and !. Contexts (denoted by ; ; : : :) are lists of types. j j denotes the length of . The typing rules are given below (where j j = i).

(ax)

; A; `i : A A; `t : B (! i ) ` t : A ! B `t : A ! B `u : A (! e ) `(t u) : B `t : A (weak) ; `hiit : A

The rst three rules are the usual ones of the db -calculus. The last rule introduces labels. A label corresponds to a weakening in the proof tree associated with the term. This is the motivation of the subscript \w" in the name of the calculus.

The proof of subject reduction is straightforward.

Theorem 3.6 (Subject reduction). Let t; u 2 w . Assume t ! w u and `t : A. Then `u : A.

It is easy to check that if `t : A, then `E(t) : A. The following result follows then immediately from theorem 3.15 below.

Theorem 3.7 (Strong normalization). Every typed w -terms is strongly normalizable.

w versus db

In this subsection we show that the w -calculus corresponds to the usual notion ofreduction. We need some easy lemmas. Their detailed proof can be found in [START_REF] Guillaume | Un calcul de substitutions avec etiquettes[END_REF].

Remark 3.8. Let t 2 db and i 2 N. Then 0 i (t) = t. Lemma 3.9. Let t 2 db . Then

1 If k i k + l then j i ( l k (t)) = j+l k (t). 2 If i > k + l then j i ( l k (t)) = l k ( j i l (t)).
Lemma 3.10. Let t; u 2 db and i k < i + j. Then fk := ug j i (t) = j 1 i (t).

Lemma 3.11. Let t; u 2 db .

1 If i k then j i (fk := ugt) = fk := j i k (u)g j i+1 (t).

2 If i k then j i (fk := ugt) = fk + j := ug j i (t).

Lemma 3.12. Let t; u 2 db be such that t ! db u. Then j i (t) ! db j i (u). Lemma 3.13. Let t; u 0 2 db be such that j i (t) ! db u 0 . Then there is a term u 2 db such that t ! db u and j i (u) = u 0 .

The db -calculus simulates the w -calculus

The following lemma translates a w -term with substitution into a db -term with substitution.

Lemma 3.14. Let t; u be w -preterms. Then E(fi=u; jgt) = fi := E(u)g j i+1 (E(t)).

Proof. By induction on t. If t = v or t = (v w), the result is trivial.

| If t = n and n < i then E(fi=u; jgn) = n = fi := E(u)g j i+1 (E(n)). | If t = i then E(fi=u; jgi) = E(hiiu) = i 0 (E(u)). We have also j i+1 (E(i)) = i and so fi :

= E(u)g j i+1 (E(i)) = i 0 (E(u)). | If t = n and n > i then E(fi=u; jgn) = n + j 1 = fi := E(u)g j i+1 (E(n)). | If t = hkiv and i k, then E(fi=u; jghkiv) = E(hkifi k=u; jgv) = k 0 (E(fi k=u; jgv)) = k 0 (fi k := E(u)g j i k+1 (E(v))) induction hypothesis = fi := E(u)g k 0 ( j i k+1 (E(v))) lemma 3.11(2) fi := E(u)g j i+1 (E(hkit)) = fi := E(u)g j i+1 ( k 0 (E(v))) = fi := E(u)g k 0 ( j i k+1 (E(v))) lemma 3.9(2) | If t = hkiv and i < k, then fi := E(u)g j i+1 (E(hkiv)) = fi := E(u)g j i+1 ( k 0 (E(v))) = fi := E(u)g j+k 0 (E(v)) lemma 3.9(1) = j+k 1 0 (E(v)) lemma 3.10 E(fi=u; jghkiv) = E(hj + k 1iv) = j+k 1 0 (E(v))
The following result shows that the w -reduction corresponds to the usual db -reduction.

Theorem 3.15. Let t; u 2 w . If t ! w u, then E(t) ! db E(u).

Proof. By induction on t.

| If t = v and u = v 0 , or t = (v w) and u = (v 0 w), or t = (w v) and u = (w v 0 ) with v ! w v 0 , we use the induction hypothesis. | If t = hkiv and u = hkiv 0 with v ! w v 0 , then by induction hypothesis E(v) ! db E(v 0 ) and, using lemma 3.12, E(t

) = k 0 (E(v)) ! db k 0 (E(v 0 )) = E(u). | If t = ( v w) and u = m(f0=w; 0gv) then E(t) = ( E(v)E(w)) and E(t) ! db f0 := E(w)gE(v). E(u) = E(m(f0=w; 0gv)) = E(f0=w; 0gv) lemma 3.4 = f0 := E(w)g 0 1 (E(v)) lemma 3.14 = f0 := E(w)gE(v) remark 3.8 Finally, E(t) ! db E(u). | If t = (hki v w) and u = m(f0=w; kgv) then E(t) = ( k 1 (E(v))E(w)) ! db f0 := E(w)g k 1 (E(v)). E(u) = E(m(f0=w; kgv))
= E(f0=w; kgv) lemma 3.4 = f0 := E(w)g k 1 (E(v)) lemma 3.14 Finally, E(t) ! db E(u).

The w -calculus simulates the db -calculus

Conversely, we show that, if t is a w -term such that E(t) has a -redex, then the reduction of this redex can always be simulated in w .

Theorem 3.16. Let t 2 w and u 0 2 db be such that E(t) ! db u 0 . Then, there is a term u 2 w such that t ! w u and E(u) = u 0 .

Proof. By induction on t. The non trivial cases are the following:

| If t = hkiv then E(t) = k 0 (E(v))
. Since E(t) ! db u 0 , lemma 3.13 gives a term w 0 such that E(v) ! db w 0 and k 0 (w 0 ) = u 0 . By the induction hypothesis on v, we get a term w such that v ! w w and E(w) = w 0 . Let u = hkiw, then t ! w u and

E(u) = k 0 (E(w)) = k 0 (w 0 ) = u 0 .
| If t = ( v w) and u 0 = f0 := E(w)gE(v) then let u = f0=w; 0gv, we get t ! w u and E(u) = f0 := E(w)g 0 1 (E(v)) (lemma 3.14), and nally E(u) = u 0 (lemma 3.9(1)). | If t = (hki v w) and u 0 = f0 := E(w)g k 1 (E(v)) then let u = f0=w; kgv, we get t ! w u and E(u) = f0 := E(w)g k 1 (E(v)) (lemma 3.14), and so E(u) = u 0 .

Conclusion: w versus db

In our nal calculus (the ws -calculus de ned below), the normal forms of the calculus of substitution are terms of w and not the usual terms of db . We actually think that this gives a better representation of -terms.

| The fact that, with labels, a -term is not uniquely represented is not a drawback since labels are intrinsic: a term can be put in any context (whatever its labeling is). Therefore in an implementation, the function E (cf. de nition 3.2) would be useless. Moreover, if necessary, the algorithm to check whether two terms represent the same -term is clearly linear in the size of the terms. Also note that it does not cost more work to translate a labeled term into a term with variables than to translate a usual de Bruijn term.

| A label in a typed term corresponds to a weakening in the associated proof. In the normalization of a proof, it is natural to move cuts up to the axioms i.e. to propagate substitutions in terms but there is no reason to move weakenings up to the axioms i.e. to propagate labels in terms.

| We hope that labels will give more e cient implementations. Compared with implementations in the representation of de Bruijn, there are no steps of propagation of lifts and many steps of propagation of substitutions are avoided since substitutions are erased earlier when they are useless. A very small implementation of the de Bruijn calculus and the labeled calculus gives an idea of the di erence between these two presentations. Figure 2 gives the number of elementary reduction steps and the time of the reduction to normal form in both systems. These tests were made on a PC-133Mhz with Objective Caml. The integers are the Church numerals. The inf function of the rst example is an e cient one given in [START_REF] David | The inf function in the system F[END_REF] In this section, we give our new calculus. The syntax is obtained from the syntax of the w -calculus (de nition 3.5) by adding a constructor for substitutions. This de nition is similar to the de nition of the s e -calculus from the db -calculus.

. b1 ( t u) ! 0=u; 0]t b2 (hki t u) ! 0=u; k]t l i=u; j] t ! i + 1=u; j]t a i=u; j](t v) ! (( i=u; j]t) ( i=u; j]v)) e1 i=u; j]hkit ! hj + k 1it i < k e2 i=u; j]hkit ! hki i k=u; j]t k i n1 i=u; j]n ! n n < i n2 i=u; j]n ! hiiu n = i n3 i=u; j]n ! n + j 1 i < n c1 i=u; j] k=v; l]t ! k= i k=u; j]v; j + l 1]t k i < k + l c2 i=u; j] k=v; l]t ! k= i k=u; j]v; l] i l + 1=u; j]t k + l i m hiihjit ! hi + jit
The set ws of terms of the ws -calculus is de ned by: t ::= n j t j (t t) j hkit j i=t; j]t with n; i; j; k 2 N Note that, as for the w -calculus, two natural numbers are needed in each substitution: the second one keeps track of labels from redexes of the form (hki t u). Also note that there is no restriction on nested labels: hkihlit is a valid term of the ws -calculus.

The set of rules is given in gure 3. The rst two rules deal with -redexes (with or without labels). The seven next rules come from the de nition of the \implicit" substitution (de nition 3.5). The composition rules c 1 and c 2 are needed for the con uence: they appear naturally to close the critical pairs a=b 1 and a=b 2 on the terms i=v; j]( t u) and i=v; j](hki t u). Finally, the mixing rule m deals with nested labels. It has to be made explicit for the simulation of the -reduction.

Example 4.1. The following example shows the use of the rule e 1 . It erases a substitution when a label ensures that this substitution is useless in the term below. @ @ u @ @ 1 v -b1; a; l @ @ 1=u; 0]

1 0=u; 0] v v 0 - n2 @ @ h1i u v 0 - b1 0=v 0 ; 0] h1i u - e1 h0i u
In the last step, the substitution 0=v 0 ; 0] is erased in one step, independently of the complexity of u.

Example 4.2. The rule c 2 looks like the -rule of the s e -calculus. The rule c 1 is less common. This rule can be understood as the simultaneous use of c 2 and e 1 : @ @ u @ @ v @ @ 1 w -b1; a; l; a; n2

@ @ 0= u; 0] v v 0 @ @ h1i u 1= u; 0] w w 0 - b1; b2 0=v 0 ; 0] 0=w 0 ; 1] u - c1 0 0=v 0 ; 0] w 0 ; 0 u
In the last but one term, the substitution 0=v 0 ; 0] could be propagated in w 0 and u, but the index 1 in the second substitution ensures that 0=v 0 ; 0] is useless in u. | The p-calculus is the calculus of propagation of the substitutions i.e. the ws-calculus without the rule m, i.e. the rules l, a, e, n and c. The ws-calculus allows the propagation of the substitutions and the contraction of successive labels. The p-calculus allows only the propagation of substitutions. The pcalculus is introduced for technical reasons: in the proof of PSN, working on p-normal forms rather than on ws-normal forms gives a shorter proof. The p-calculus is also used in the proof of the strong normalization of the ws-calculus.

Remark 4.5. For any t 2 ws , we have ws(t) = m(p(t)), i.e. we can always postpone the mixing rule.

The complexity of a term is de ned as usual as the number of constructors of the term:

De nition 4.6. The complexity of t 2 ws (denoted by cxty(t)) is de ned by: | cxty

(n) = 1 | cxty( u) = 1 + cxty(u) | cxty((u v)) = 1 + cxty(u) + cxty(v) | cxty(hkiu) = 1 + cxty(u) | cxty( i=u; j]v) = 1 + cxty(u) + cxty(v)

Typing rules for the ws -calculus

As usual, types (denoted by A; B; : : :) are constructed with basic types and !. Contexts (denoted by ; ; : : :) are lists of types. j j denotes the length of . The typing rules are the following (where j j = i and j j = j):

(ax)

; A; `i We add the cut rule to the typing system of subsection 3.3. This rule is twofold : a (usual) cut and a weakening ( is added to the hypotheses for t). Intuitively, the context used to type i=u; j]t can be divided into three parts: the rst one ( , of length i) is speci c to t, the next one ( , of length j) is speci c to u and the remaining one ( ) is common to t and u.

It is easy to check that the reduction rules of the ws -calculus correspond naturally to the cut elimination process of the proof tree.

Theorem 4.7 (Subject reduction). Let t; u 2 ws . If t ! ws u and `t : A, then `u : A.

Proof. By induction on t. We may assume that the reduction is at the root. Just check, for each rule, that the reduct can be typed, with the same type and the same hypothesis, as the redex.

The rest of the paper is devoted to the untyped s e -calculus. We give here the normalization property of the typed calculus.

Theorem 4.8. Every typed ws -term is weakly normalizable.

Proof. Let t 2 ws be typable. Theorem 4.7 ensures that ws(t) (which exists by sections 5 and 6) is typable. The strong normalization of the typed -calculus and the preservation of the strong normalization of the ws -calculus (section 8) ensure that ws(t) is strongly normalizable for the ws -calculus. Finally, t is weakly normalizable.

It should be possible to prove the strong normalization of the typed calculus by the same kind of technique as in the proof of PSN. This result has been proved recently [START_REF] Di Cosmo | Proof Nets and Explicit Substitutions[END_REF] by using a translation into proof nets, a technique introduced in (Di Cosmo and Kesner, 1997).

Link with the s e -calculus

Every ws -term t can be translated in a s e -term (denoted by t ] ) in the following way. Note that there is no translation in the other way.

| n ] = n | ( t) ] = t ] | (t u) ] = (t ] u ] ) | (hkit) ] = h0; kit ] | i=u; j]t = i := u ] ]hi + 1; jit ]
The ws -calculus can be seen as a part of the s e -calculus where some reductions are forbidden. Intuitively, in ws , an updating hi; ji may not move down, except if it appears at the root of the function part of a redex. In this case, the updating may cross the but the redex has to be contracted immediately after and this new updating must be linked to the substitution coming from the redex (i.e. they cannot move independently).

The relation betwen both calculi is the following. If t ! ws u then t ] ! + se u ] and one step of ws -reduction can be simulated by a xed number (from 1 to 4, depending of the rule) of s e -reduction.

Strong normalization of the calculus of substitutions

In this section, we prove that the ws-calculus is strongly normalizing. This proof is inspired by the one Zantema gave for the strong normalization of the -rule of the s e -calculus [START_REF] Zantema | The -rule terminates[END_REF].

We rst show, using the simulation lemma (lemma 2.8) that SN (ws) = SN (p 2 ) where the p 2 -calculus is the calculus de ned by the set of rules that increase (not strictly) the complexity i.e. the rules l, a, e 2 and c (subsection 5.2). Then, using the increasing reductions lemma (lemma 2.10), we prove that the p 2 -calculus is strongly normalizing (subsection 5.3). We nally get the theorem:

Theorem 5.1. The ws-calculus is strongly normalizing.

The complete proofs of the lemmas 5.6, 5.7 and of the propositions 5.9, 5.10 and 5.11 can be found in [START_REF] Guillaume | Un calcul de substitutions avec etiquettes[END_REF].

The substitutive contexts

In the rest of this paper, the notion of \normal form" of a sequence of substitutions is useful. We call such a sequence substitutive context. Notation 5.2. N denotes the set N f 1; 1g with its natural ordering extended in such a way that 1 is the smallest element and 1 is the greatest one. The addition is extended by i + 1 = 1 and i 1 = 1 for i 2 N (1 1 is not de ned).

We use the notation to represent a term about which nothing has to be known. The contexts have only one hole (denoted by f] g). Cf]t g denotes the context C in which the hole has been replaced by t.

De nition 5.3. A substitutive context is a context: S = i 1 = ; j 1 ] : : : i n = ; j n ]f] g with n 0 and i 1 < : : : < i n .

We de ne:

| The initial index i(S) 2 N of S: i

(S) = 1 if n = 0 i 1 if n > 0 | The nal index f(S) 2 N of S: f(S) = 1 if n = 0 i n if n > 0 | The height h(S) 2 N of S: h(S) = n | The shift d(S) 2 Zof S: d(S) = n X k=1 j k ! n
It is important to note that (for technical reasons) we allow a substitutive context to be empty. When there is no ambiguity, we extend the usual notion of reduction on the terms to reduction on contexts.

Notation 5.4. If S is the substitutive context i 1 = ; j 1 ] : : : i n = ; j n ] we will denote by: | i=u; j]S the substitutive context i=u; j] i 1 = ; j 1 ] : : : i n = ; j n ]f] g if i < i(S). | S i=u; j] the substitutive context i 1 = ; j 1 ] : : : i n = ; j n ] i=u; j]f] g if i > f(S). Remark 5.5. Let S be a substitutive context such that h(s) > 0, then f(S) i(S). A trivial induction on h(S) show that if h(s) > 0 then i(S) f(S) h(S) + 1.

The next two lemmas give the result of the \composition" of a substitution with a substitutive context. There are two cases: either the new substitution can \go through" the context (lemma 5.6), or the substitution is \integrated" in the context (lemma 5.7). These two cases are not disjoint: when the substitution goes through the context, we can choose to either integrate it at the end of the context (lemma 5.7) or keep it separated (lemma 5.6).

Lemma 5.6. Let S be a substitutive context, and i=u; j] be a substitution such that i > d(S) + f(S). Then, there is a substitutive context S 0 such that: i=u; j]S ! c S 0 i d(S)=u; j], d(S 0 ) = d(S) and f(S 0 ) = f(S).

Proof. The proof is by induction on h(S): we show that there is a substitutive context S 0 such that i=u; j]S ! c S 0 i d(S)=u; j], d(S 0 ) = d(S), f(S 0 ) = f(S) and i(S 0 ) = i(S).

Lemma 5.7. Let S be a substitutive context, and i=u; j] a substitution. Then there is a substitutive context S 0 such that i=u; j]S ! c S 0 , d(S 0 ) = d(S) + j 1 and

f(S 0 ) = f(S) if i d(S) + f(S) f(S 0 ) = i d(S) if i > d(S) + f(S)
Proof. The case i > d(S)+f(S) is a reformulation of the previous lemma.Indeed, there is a substitutive context S 00 such that i=u; j]S ! c S 00 i d(S)=u; j]. Let S 0 = S 00 i d(S)=u; j], we verify that S 0 is a substitutive context because f(S 00 ) = f(S) < i d(S).

For the second point, remark that i d(S) + f(S) only if h(S) > 0. We then use an induction on h(S) and show that there is a substitutive context S 0 such that i=u; j]S ! c S 0 , d(S 0 ) = d(S) + j 1, f(S 0 ) = f(S) and i(S 0 ) = min(i; i(S)).

The following lemma shows how we can erase the context when all the substitutions are useless. This also shows that d(S) really is a shift. Lemma 5.8. Let S be a substitutive context. If f(s) < k, then Sf]hkit g ! e1 hk + d(S)it.

Proof. By induction on h(S). The case h(S) = 0 is trivial. If h(S) > 0, then S = S 0 i=u; j] with i < k and d(S) = d(S 0 ) + j 1 so Sf]hkit g ! e1 S 0 f]hk + j 1it g and we can use the induction hypothesis (because f(S 0 ) < i k 1) and f(S 0 ) < k+j 1), we have S 0 f]hk + j 1it g ! e1 hk + j 1 + d(S 0 )it = hk + d(S)it : 5.2. Simulation of the ws-calculus in the p 2 -calculus In order to prove that SN (ws) = SN (p 2 ), we use intermediate reductions:

| The ws-calculus is de ned by the rules l, a, e, n, c and m. | The p-calculus (propagation) is de ned by the rules l, a, e, n and c. | The p 1 -calculus is de ned by the rules l, a, e 2 , n and c. | The p 2 -calculus (rules which increase (not strictly) the complexity) is de ned by the rules l, a, e 2 and c. The proof is divided in three steps: SN (ws) = SN (p), SN (p) = SN (p 1 ) and SN (p 1 ) = SN (p 2 ). Proposition 5.9. SN (ws) = SN (p).

Proof. ws = p m. We use the simulation lemma (lemma 2.8) with R 1 = m, R 2 = p and the relation < on ws ws de ned by: | k < k | t < t 0 i t < t 0 | (tu) < (t 0 u 0 ) i t < t 0 and u < u 0 | hkit < hk 1 i : : :hk n it 0 i t < t 0 , n 1 and k = k 1 + : : : + k n | i=u; j]t < i=u 0 ; j]t 0 i t < t 0 and u < u 0 . Proposition 5.15. The p 2 -calculus is weakly normalizing.

Proof. Let t be a ws -term. We show, by induction on the complexity of t, that t 2 WN (p 2 ). The only di cult case is t = i=u; j]v. By induction, u and v have normal forms u 0 and v 0 and we can reduce t ! i=u 0 ; j]v 0 . We have to show: If t; u 2 NF(p 2 ) then i=u; j]t 2 WN (p 2 ). By induction on the complexity of t, we show that there is t 0 2 NF(p 2 ) such that: | i=u; j]t ! p2 t 0 | If * (t; k) then * (t 0 ; min(i; k))

The non trivial cases are:

| If t = n then t 0 = i=u; j]n is a normal form. | If t = hkiv: { If i < k then t 0 = i=u; j]hkiv is a normal form and we have * (t 0 ; min(i; k)). { If i k then i=u; j]t ! hki i k=u; j]v. By induction i k=u; j]v ! v 0 with v 0 2 NF (p 2 ) and so i=u; j]t ! hkiv 0 and hkiv 0 2 NF(p 2 ). Clearly * (t 0 ; min(i; k)).

| If t = k=v; l]w: { If i < k then t 0 = i=u; j]t is a normal form and we have * (t 0 ; min(i; k)). { If k i < k + l then i=u; j]t ! k= i k=u; j]v; l + j 1]w. By induction i k=u; j]v ! v 0 with v 0 2 NF(p 2 ) and so i=u; j]t ! t 0 = k=v 0 ; l + j 1]w. Finally t 0 2 NF(p 2 ) and * (t 0 ; min(i; k)). { If k + l i then i=u; j]t ! k= i k=u; j]v; l] i l + 1=u; j]w. By induction, i k=u; j]v ! v 0 with v 0 2 NF (p 2 ), and i l + 1=u; j]w ! w 0 with w 0 2 NF (p 2 ). Thus: i=u; j]t ! p2 t 0 = k=v 0 ; l]w 0 Clearly * (t 0 ; min(i; k)). The only thing to prove is that t 0 is a p 2 -normal form. w is necessarily of one of the following forms: w = m and w 0 = i l + 1=u; j]w but k < i l + 1, and then t 0 2 NF (p 2 ). * (w; n) with k < n. By induction hypothesis, * (w 0 ; min(i l + 1; n)). As k < i l + 1, we have k < min(n; i l + 1) and t 0 is a p 2 -normal form.

Con uence on open terms

In this section, we show that the ws -calculus is con uent on terms with metavariables.

The calculus with metavariables

We enlarge the syntax of terms by allowing metavariables (denoted by a; b; : : :).

De nition 6.1. wso is the set of terms with metavariables which are de ned by: t ::= n j a j t j (t t) j hkit j i=t; j]t with a a metavariable and n; i; j; k 2 N De nition 6.2. The wso -calculus is the reduction on wso de ned by the rules of the ws -calculus. The ws o -calculus is the reduction de ned by the rules of the ws-calculus. Proposition 6.3. The ws o -calculus is strongly normalizing.

Proof. It is an immediate consequence of the strong normalization of the ws-calculus.

Con uence of the ws o -calculus

Proposition 6.4. The ws o -calculus is locally con uent.

Proof. By analyzing the critical pairs (see [START_REF] Guillaume | Un calcul de substitutions avec etiquettes[END_REF]).

Theorem 6.5. The ws o -calculus is con uent.

Proof. The ws o -calculus is locally con uent (proposition 6.4) and strongly normalizing (proposition 6.3). The result follows from Newman's lemma.

Con uence of the wso -calculus

In order to show the con uence of the wso -calculus, we use the interpretation method [START_REF] Hardin | Con uence results for the pure strong categorical logic CCL : -calculi as subsystems of CCL[END_REF]. This allows to restrict ourselves to con uence on ws o -normal forms. Lemma 6.6 (Description of the ws o -normal forms).

The terms NF (ws o ) are described by the following grammar: t ::= u j hkiu u ::= n j i 1 =t; j 1 ] : : : i m =t; j m ]a j t j (t t) with m 0, a a metavariable and k; n; i 1 ; j 1 ; : : :; i m ; j m 2 N such that i 1 < : : : < i m .

Proof. Trivial. We denote by ws o (t) the ws o -normal form of t. Remark, in the previous de nition, that the term i 1 =t; j 1 ] : : : i m =t; j m ]a could be written Sf]a g with S a substitutive context, but we have to say that the terms inside the substitutions are ws o -normal forms.

De nition 6.7. On the set NF (ws o ), we de ne a reduction b 0 by: t ! b 0 u i there is t 0 2 ws such that t ! b t 0 and u = ws o (t 0 ). Theorem 6.8. The wso -calculus is con uent.

Proof. We will check:

(1) If t ! wso u then ws o (t) ! b 0 ws o (u) (proposition 6.15).

(2) b 0 is con uent (proposition 6.20). The following diagram (the interpretation method) then gives the con uence of the wsocalculus. ws o (t 2 ) b 0 / / u Corollary 6.9. The ws -calculus is con uent.

In order to prove (1) and ( 2) above we need some lemmas. The following de nition will simplify the proofs.

De nition 6.10. We de ne a function " from wso to N by: | "(a) = 1, | "( i=u; j]t) = i, | "(t) = 1 in the other cases. Remark 6.11. This function allows to write easily the condition under which a substitution can go down in a term: if t; u are ws o -normal forms then i=u; j]t 2 NF (ws o ) i i < "(t) Lemma 6.12. Let t; u 2 NF (ws o ). Then, "(ws o ( i=u; j]t)) = min(i; "(t)).

Proof. Trivial. 6.3.1. The calculus on the ws o -normal forms Lemma 6.13. Let t; u; u 0 2 NF(ws o ) be such that u ! b 0 u 0 . Then, ws o ( i=u; j]t) ! b 0 ws o ( i=u 0 ; j]t) : Proof. By an immediate induction on the length of the derivation u ! b 0 u 0 , we may assume that u ! b 0 u 0 . The proof is by induction on t. The only interesting case is t = k=v; l]w.

| If i < k then ws o ( i=u; j] k=v; l]w) = i=u; j] k=v; l]w ws o ( i=u 0 ; j] k=v; l]w) = i=u 0 ; j] k=v; l]w Thus, ws o ( i=u; j]t) ! b 0 ws o ( i=u 0 ; j]t) | If k i < k + l then ws o ( i=u; j] k=v; l]w) = k=ws o ( i k=u; j]v); l + j 1]w ws o ( i=u 0 ; j] k=v; l]w) = k=ws o ( i k=u 0 ; j]v); l + j 1]w By induction hypothesis, ws o ( i k=u; j]v) ! b 0 ws o ( i k=u 0 ; j]v) and then ws o ( i=u; j]t) ! b 0 ws o ( i=u 0 ; j]t) | If k + l i. ws o ( i=u; j] k=v; l]w) = ws o ( k= i k=u; j]v; l] i l + 1=u; j]w) Since t 2 NF (ws o ), we have k < " (w) so k < min(" (w); i + l 1). Lemma 6.12 ensures that k < "(ws o ( i l + 1=u; j]w)). We get ws o ( i=u; j] k=v; l]w) = k=ws o ( i k=u; j]v); l]ws o ( i l + 1=u; j]w) In the same way, ws o ( i=u 0 ; j] k=v; l]w) = k=ws o ( i k=u 0 ; j]v); l]ws o ( i l + 1=u 0 ; j]w)

By induction hypothesis, ws o ( i k=u; j]v) ! b 0 ws o ( i k=u 0 ; j]v) and ws o ( i l + 1=u; j]w) ! b 0 ws o ( i l + 1=u 0 ; j]w). Finally, ws o ( i=u; j]t) ! b 0 ws o ( i=u 0 ; j]t) : Lemma 6.14. Let t; t 0 ; u 2 NF (ws o ) be such that t ! b 0 t 0 . Then ws o ( i=u; j]t) ! b 0 ws o ( i=u; j]t 0 )

Proof. By an immediate induction on the length of the derivation t ! b 0 t 0 , we may assume that this reduction is one step. The proof is by induction on t. The only interesting case is when the redex is at the root of t: t = (hki v w) and t 0 = ws o ( 0=w; k]v).

| If i < k then ws o ( i=u; j]t) = (hk + j 1i v ws o ( i=u; j]w)) ws o ( i=u; j]t 0 ) = ws o ( i=u; j]ws o ( 0=w

; k]v)) = ws o ( i=u; j] 0=w; k]v) = ws o ( 0= i=u; j]w; k + j 1]v) Thus, ws o ( i=u; j]t) ! b 0 ws o ( i=u; j]t 0 ). | If i k then ws o ( i=u; j]t) = (hki ws o ( i k + 1=u; j])v ws o ( i=u; j]w)) ws o ( i=u; j]t 0 ) = ws o ( i=u; j]ws o ( 0=w; k]v)) = ws o ( i=u; j] 0=w; k]v) = ws o ( 0= i=u; j]w; k] i k + 1=u; j]v)
Thus, ws o ( i=u; j]t) ! b 0 ws o ( i=u; j]t 0 ). Proposition 6.15. If t ! wso u then ws o (t) ! b 0 ws o (u).

Proof. If the reduction t ! wso u is a ws o -reduction, then the uniqueness of ws o - normal forms gives the result. Assume then that t ! b u. The proof is by induction on t: | If t does not begin with a substitution, the di cult case is when the reduction is at the root, i.e. t = (hki v w) and u = 0=w; k]v. We get ws o (t) = (hki ws o (v) ws o (w)) ! b 0 ws o ( 0=ws o (w); k]ws o (v)) = ws o (u) | If t = i=w; j]v and u = i=w 0 ; j]v with w ! b w 0 then, by the induction hypothesis, ws o (w) ! b 0 ws o (w 0 ). By lemma 6.13, we have ws o ( i=ws o (w); j]ws o (v)) ! b 0 ws o ( i=ws o (w 0 ); j]ws o (v)) and then ws o (t) ! b 0 ws o (u). | If t = i=w; j]v and u = i=w; j]v 0 with v ! b v 0 then, by the induction hypothesis, ws o (v) ! b 0 ws o (v 0 ). By lemma 6.14, we have ws o ( i=ws o (w); j]ws o (v)) ! b 0 ws o ( i=ws o (w); j]ws o (v 0 )) and then ws o (t) ! b 0 ws o (u).

Con uence of the reduction on ws o -normal forms

To show the con uence of the b 0 -reduction, we use the usual method of parallel reductions.

De nition 6.16. We de ne the parallel reduction =) on the set NF(ws o ) by: |

n =) n. | If t 1 =) t 2 then t 1 =) t 2 . | If t 1 =) t 2 and u 1 =) u 2 then (t 1 u 1 ) =) (t 2 u 2 ). | If t 1 =) t 2 then hkit 1 =) hkit 2 .
| If t k =) u k for 1 k n and i 1 < : : : < i n then i 1 =t 1 ; j 1 ] : : : i n =t n ; j n ]a =) i 1 =u 1 ; j 1 ] : : : i n =u n ; j n ]a.

| If t 1 =) t 2 and u 1 =) u 2 then ( t 1 u 1 ) =) ws o ( 0=u 2 ; 0]t 2 ). | If t 1 =) t 2 and u 1 =) u 2 then (hki t 1 u 1 ) =) ws o ( 0=u 2 ; k]t 2 ). Lemma 6.17. =) = ! b 0 .

Proof. It is easy to see that if t ! b 0 u then t =) u. Conversely, assume that t =) u.

We use an induction on the de nition of t =) u. The hardest case is the last one: Let t = (hki v w) and u = ws o ( 0=w 0 ; k]v 0 ) with v =) v 0 and w =) w 0 . By induction hypothesis, v ! b 0 v 0 and w ! b 0 w 0 . Then, t = (hki v w) ! b 0 (hki v 0 w) ! b 0 (hki v 0 w 0 ) ! b 0 u = ws o ( 0=w 0 ; k]v 0 ) : Lemma 6.18. Let t; u 2 NF(ws o ). If t =) t 0 and u =) u 0 , then ws o ( i=u; j]t) =)

ws o ( i=u 0 ; j]t 0 ). Proof. Let T = ws o ( i=u; j]t) and T 0 = ws o ( i=u 0 ; j]t 0 ). We show T =) T 0 by induction on the de nition of t =) t 0

The di cult cases are:

| t = k=v; l]w and t 0 = k=v 0 ; l]w 0 with v =) v 0 and w =) w 0 . { If i < k then i=u; j]t and i=u 0 ; j]t 0 are already ws o -normal forms and so T = i=u; j] k=v; l]w =) T 0 = i=u 0 ; j] k=v 0 ; l]w 0 { If k i < k + l then T = k=ws o ( i k=u; j]v); l + j 1]wT 0 = k=ws o ( i k=u 0 ; j]v 0 ); l + j 1]w 0 By the induction hypothesis, ws o ( i k=u; j]v) =) ws o ( i k=u 0 ; j]v 0 ) and T =) T 0 . { If i k + l then T = ws o ( k= i k=u; j]v; l] i l + 1=u; j]w) T 0 = ws o ( k= i k=u 0 ; j]v 0 ; l] i l + 1=u 0 ; j]w 0 ) By the induction hypothesis, ws o ( i k=u; j]v) =) ws o ( i k=u 0 ; j]v 0 ) and ws o ( i l + 1=u; j]w) =) ws o ( i l + 1=u 0 ; j]w 0 ). Moreover, lemma 6.12 ensures that " (ws o ( i l + 1=u; j]w)) = min(" (w); i l + 1). Since t 2 NF(ws o ) we have k < "(w) and so k < min("(w); i l + 1). T = k=ws o ( i k=u; j]v); l]ws o ( i l + 1=u; j]w) T 0 = k=ws o ( i k=u 0 ; j]v 0 ); l]ws o ( i l + 1=u 0 ; j]w 0 ) Finally, T =) T 0 . Moreover, as C 0 cannot end with a label, we have u = m(C 0 f]hlif0=w; kgt g) = C 0 f]m(hlif0=w; kgt) g and thus t ! ws u. | If the context C does not end with a label: t = Cf](hki v w) g ! b2 Cf] 0=w; k]t g ! ws Cf]ws( 0=w; k]t) g with remark 4.5 and lemma 7.2, ws( 0=w; k]t) = m(p( 0=w; k]t)) = m(f0=w; kgt)

Moreover, u = m(Cf]f0=w; kgt g) = Cf]m(f0=w; kgt) g and thus t ! ws u.

Conversely, we can show that any ws -reduction of a term t corresponds to a wreduction of the ws-normal form of t.

Proposition 7.4. Let t; u 2 ws . If t ! ws u then ws(t) ! w ws(u).

Proof. This is a particular case of proposition 6.15 with terms without metavariables. Just remark that, on terms without metavariables, the reductions w and b 0 (cf. de nition 6.7) are the same.

Preservation of strong normalization

In this section, we give the proof of the preservation of the strong normalization. This property is the hardest one. Since most of the calculi with composition of substitutions fail to have the PSN property, a new technique has to be invented. This technique is inspired by the notion of standard reduction of the -calculus.

The labels prevent the loss of information which appears in the s e -calculus and in the -calculus. The rules c 1 and c 2 are exactly the rules needed to obtain both MC and PSN.

As in s e , the Melli es counter-example is avoided with the side condition of the interaction rules: a term i=u; j] k=v; l]t is a redex (rule c 1 or c 2 ) if and only if i k. In s e , new rules are added for the propagation of updatings. We have seen, in subsection 2.3, that one of these rules ( ) causes the failure of PSN. In ws , this rule is useless, since there no need to move updatings down. In this way, ws avoids the s e counter-example.

The key point of the proof is lemma 8.15. This lemma ensures that it is always possible to do a useful composition to get MC ( rst point) and that it is never possible to do a useless and dangerous (for PSN) composition (second point). The corresponding lemma would be false for s e and . In other words, unlike s e , the substitution have a good behavior: if a term contains a subterm i=u; j] k=v; l]t with i < k (no possible interaction) then in all future reducts of t it will still be impossible to make these two substitutions interact.

The general idea of the proof is the following: we construct an in nite derivation without composition from an in nite derivation in the ws -calculus. This allows to show that we never get arti cial terms of the form : : :u : : :]u.

In the subsection 8.1, we give the sketch of the proof. Sections 8.2 and 8.3 give the de nitions and the main tools used in the proof. The key lemma is proved in section 8.4.

Sketch of the proof

Let t 2 NF (ws) be such that t 2 SN ( w ). We show that t is strongly normalizable in the ws -calculus.

Theorem 8.1. SN ( w ) SN ( ws ).

For technical reasons, it is easier to work on p-normal forms rather than on ws-normal forms (the p-calculus is the ws-calculus without the mixing rule m). We thus prove the (stronger) result: If t 2 NF(p) and m(t) 2 SN ( w ) then t 2 SN ( ws ) which is a consequence of the following: Lemma 8.2 (key lemma). Let t 2 NF(p) n SN ( ws ). There is u 2 NF(p) such that u 6 2 SN ( ws ) and m(t) ! w m(u).

Proof of the theorem 8.1. Let t 2 NF(p) be such that m(t) 2 SN ( w ) and t 6 2 SN ( ws ).

We can choose t such that the length of the longest w -reduction of m(t) is minimal. The key lemma gives a term u such that the length of the longest w -reduction of m(u) is shorter and thus we get a contradiction. We have proved: If t 2 NF(p) and m(t) 2 SN ( w ) then t 2 SN ( ws ). The theorem is a particular case of this result with t 2 NF(ws) since, for such a t, m(t) = t.

The key lemma is proved by induction. The di cult case is when the head of t is (hk 1 i : : :hk n i v w) and v, w as well as all arguments of the head redex are ws -strongly normalizable. The term u (given by the lemma) is de ned by the following sequence of reductions:

| if n > 1, contract the labels hk j i, | reduce the head redex, | take the p-normal form.

The key point is to show that if t has an in nite ws -reduction, then so does u. For the two rst steps (contraction of the labels and reduction of the head redex), it is easy to show that in nite reductions are preserved.

For the last step (propagation of the substitution), we use the projection lemma on an extended syntax of the ws -calculus. This syntax allows to keep track of the reducts of the substitution created by reduction of the head redex. (subsection 8.3).

De nitions

We give here the de nitions which are used in the de nition of the term u of the key lemma.

De nition 8.3. We de ne particular contexts and terms:

| The feet F and the bodies B are contexts de ned by the grammars: F = f] g j hk 1 i : : :hk n i F B = f] g j hkiB j (B t) with t 2 NF (p) | The heads H are terms of the form n or (hk 1 i : : :hk m i u v) with m 0 and u; v 2 NF(p). Lemma 8.4 (canonical decomposition of the p-normal-forms).

Each term t 2 NF (p) has a canonical decomposition t = Ff]Bf]H g g.

Proof. By induction on t.

Example 8.5. Let t = h2ih3i h1i(h1ih4i(h2i(h1ih4i 0 u) t 1 ) t 2 ), h2i h3i The two main points are the following: (1) The interesting reductions of t are the ones of Bf]H g. This is due to the fact that a foot is either empty or is a context nishing with a .

(2) An important information is the level where the substitution created by the reduction of the head redex appears in the term Bf]H g. This will be de ned (cf. below) as the depth of B.

De nition 8.6. | jf] gj = 0. | jhkiBj = jBj + k. | j(B t)j = jBj. Let t be the term of example 8.5, then Arg(B) = ft 1 ; t 2 g and jBj = 8.

The following lemma will be used in the proof of the key lemma.

Lemma 8.7. Let t 2 NF (p) and t 0 ; t 00 2 ws be such that t ! m t 0 ! b t 00 . Then m(t) ! w m(u) where u = p(t 00 ).

Proof. By induction on t. If t = hk 1 i : : :hk n i v or t = hk 1 i : : :hk n i(v w) and the breduction is in v or w, the induction hypothesis immediately gives the result.

The only di cult case is t = hk 1 i : : :hk n i(hl 1 i : : :hl m i v w) and the b-reduction is the one of the head redex. Then, m(t) = hki(hli m(v) m(w)) with k = P n i=0 k i and l = P m i=0 l i t 0 = hk 0 1 i : : :hk 0 n 0 i(hli v 0 w 0 ) with v ! m v 0 , w ! m w 0 and k = P n 0 i=0 k 0 i .

t 00 = hk 0 1 i : : :hk 0 n 0 i 0=w 0 ; l]v 0 . m(u) = m(p(t 00 )) = ws(t 00 ) = ws(hki 0=w 0 ; l]v 0 ) .

Finally, m(t) ! w ws(hki 0=w; l]v) = m(u) (because the ws-calculus is con uent and normalizing).

Preservation of in nite reductions by propagation

The goal of this subsection is to prove the following lemma; it is the hardest part of the proof. The meaning of this lemma is that the in nite reduction is preserved by the propagation of the head substitution.

Lemma 8.8. Let t = Bf] 0=w; l]v g where v; w 2 NF (p). Assume that v, w and the arguments of B are ws -strongly normalizable. If t has an in nite ws -reduction then p(t) also has an in nite ws -reduction. The idea of the proof is the following: let u = p(t). In order to translate the reduction t ! t 1 ! t 2 ! : : : into a reduction u ! u 1 ! u 2 ! : : :, we will tag the reducts of the substitution 0=w; l] and write them 0=w; l] ]. Then, in any reduct of t, there are two kinds of substitutions: the tagged ones (denoted : : :] ]) which are reducts of the head substitution of t and the other ones (denoted : : :]) which are created during the reduction.

The key point (which allows to construct the derivation of u) consists in proving the following properties of the t i : they ensure that, in each t i we can move down the substitutions : : :] ] without moving the substitutions : : :] and thus de ne u i as the \normal form of t i by tagged propagation".

| If a subterm is i=w 0 ; j] ]v 0 then v 0 and w 0 contain no substitution : : :] ]. | Substitutions : : :] ] are always \higher" than the : : :], i.e. if the subterm is : : :] ] : : :]w then we can always compose the substitutions. Conversely, if the subterm is : : :] : : :] ]w, the composition is never possible.

| If a subterm is i=w 0 ; j] ]v 0 then w 0 is strongly normalizable.

The rst property comes from the syntax of the ws -calculus (cf. 8.3.1). The two others are proved in subsection 8.3.2 and are derived from the notion of well-tagged terms. Finally, it will remain to check that the terms u i give an in nite ws -reduction of u.

The tagged reductions

De nition 8.9 (The ws -calculus). The set of terms of the ws -calculus (denoted by ws ) is de ned by: t = n j t j (t t) j hkit j i=t; j]t j i=u; j] ]v with n; i; j; k 2 N and u; v 2 ws :

The rules of the ws -calculus are those of the ws -calculus with the additional rules:

l i=u; j] ] t ! i + 1=u; j] ]t a i=u; j] ](t v) ! ( i=u; j] ]t i=u; j] ]v) e 1 i=u; j] ]hkit ! hk + j 1it i < k e 2 i=u; j] ]hkit ! hki i k=u; j] ]t k i n 1 i=u; j] ]n ! n n < i n 2
i=u; j] ]n ! hiiu n = i n 3 i=u; j] ]n ! n + j 1 i < n c 1 i=u; j] ] k=v; l]t ! k= i k=u; j] ]v; l + j 1]t k i < k + l c 2 i=u; j] ] k=v; l]t ! k= i k=u; j] ]v; l] i l + 1=u; j] ]t k + l i It is easy to check that the set ws is closed under this reduction: the only constraint imposed by the syntax is that the subterms under or inside a tagged substitution are ws -terms (i.e. without tagged substitution). This constraint is clearly preserved by the new rules.

De nition 8.10. The -calculus is the calculus on the set ws which contains the rules of propagation of tagged substitutions: l , a , e , n and c . Remark 8.11. Note that the following rules c 0 1 i=u; j] k=v; l] ]t ! k= i k=u; j]v; l + j 1] ]t k i < k + l c 0 2 i=u; j] k=v; l] ]t ! k= i k=u; j]v; l] ] i l + 1=u; j]t k + l i which would be natural in a general framework are missing in the ws -calculus. We will have to consider only well-tagged terms (cf. below) of the ws -calculus and these terms do not contain any c 0 1 -redex or c 0 2 -redex. These rules are thus useless.

The well-tagged terms

Here, we formalize the following intuitive fact: in the terms that we are interested in, the tagged substitutions are always higher than the others. We actually de ne a more general property which is preserved by reduction.

The relation H between a term (with tagged substitutions) and an integer means that any untagged substitution has a small enough index if a tagged substitution occurs below. The integer gives the depth where the tagged substitution (if any) is in the term.

The relation B between a term (without tagged substitutions) and an integer means that any untagged substitution which occurs under a tagged one has a small enough index, allowing thus the tagged substitution to be propagated.

De nition 8.12. We de ne the binary relations by: | B on ws N { B(n; | there are t 0 ; t 00 2 ws such that t ! m t 0 ! b t 00 and u = p(t 00 ).

The result follows then immediately from lemma 8.7.

1) If t has a proper subterm v which is not ws -strongly normalizing then t = Cf]v g and there is a term w 6 2 SN ( ws ) such that w = p(v 00 ) and v ! m v 0 ! b v 00 . Let u = Cf]w g. Since C has no substitutions, p(u) = Cf]p(w) g.

2) Else, Every proper subterm of t is ws -strongly normalizable. Let t = Ff]Bf]H g g. F is empty since (if not, Bf]H g would be a non ws -strongly normalizable proper subterm of t). H is not a de Bruijn index since, otherwise, t would be strongly normalizable. Thus t = Bf](hk 1 i : : :hk n i v w) g. Let k = P n i=0 k i and t 0 = Bf](hki v w) g t 00 = Bf] 0=w; k]v g u = p(Bf] 0=w; k]v g) By construction: t ! m t 0 ! b t 00 and u = p(t 00 ). It remains to prove that u has an in nite ws -reduction.

Since every subterm is strongly normalizable, any in nite reduction of t must reduce the head redex. The in nite reduction of t looks like: t ! B 0 f](hki v 0 w 0 ) g ! B 0 f] 0=w 0 ; k]v 0 g ! : : : And thus t 00 has an in nite reduction: t 00 = Bf] 0=w; k]v g ! B 0 f] 0=w 0 ; k]v 0 g ! : : : Lemma 8.8 ensures that u = p(t 00 ) has an in nite reduction.

Conclusion

The counter-examples to the preservation of strong normalization of the -calculus and the s e -calculus led us to introduce the w -calculus: a new presentation of thereduction.

We then derived a calculus with explicit substitutions satisfying: step by step simulation of , con uence on terms with metavariables and preservation of strong normalization.

The simulation property of our calculus is not exactly the expected one, however, we believe that the idea of keeping updating functions in terms rather than pushing them down is one of the interesting points of our calculus.

This calculus is the rst (together with SKInT of Goubault and Goguen) to answer positively the open question on the existence of such a calculus. We believe that the link of our calculus with De Bruijn calculus is much simpler than the one of the SKInTcalculus.

We leave for future work the study of other systems of types for the ws -calculus. The implementation of this calculus would also be interesting in order to measure the e ciency of the use of labels.
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Proof. p = p 1 e 1 . We use lemma 2.8 with R 1 = e 1 , R 2 = p 1 , and the relation < de ned by: | k < k | t < t 0 i t < t 0 | (tu) < (t 0 u 0 ) i t < t 0 and u < u 0 | hkit < Sf]hk 0 it 0 g with t < t 0 and S is a substitutive context such that f(S) < k 0 and k = k 0 + d(S) | i=u; j]t < i=u 0 ; j]t 0 i t < t 0 and u < u 0 . Proposition 5.11. SN (p 1 ) = SN (p 2 ).

Proof. p 1 = p 2 n. We use lemma 2.8 with R 1 = n, R 2 = p 2 and the relation < de ned by:

| k < t for all t | t < t 0 i t < t 0 | (tu) < (t 0 u 0 ) i t < t 0 and u < u 0 | hkit < v i v is of one of the following form: { v = hkit 0 and t < t 0 { v = Sf] k 0 =t 0 ; j]w g with f(S) < k 0 , k = k 0 + d(S) and t < t 0 | i=u; j]t < i=u 0 ; j]t 0 i t < t 0 and u < u 0 .

Strong normalization of the p 2 -calculus

We prove the strong normalization of the p 2 -calculus by using lemma 2.10 where the measure is the complexity and | R 1 = the rules l, c 1 and e 2 (the complexity is left unchanged by these rules). | R 2 = the rules a and c 2 (these rules increase the complexity).

We have to check: | The reduction R 1 is strongly normalizable (proposition 5.12). | The reduction p 2 is locally con uent (this is done by analyzing critical pairs). | The reduction p 2 is weakly normalizing (proposition 5.15).

Strong normalization of the rules that leave complexity unchanged

We use a measure which decreases by R 1 -reduction. This measure is the sum of the complexities of the subterms which are below each substitution of the term.

Proposition 5.12. The R 1 -reduction is strongly normalizing.

Proof. The measure k k de ned below strictly decreases by l, c 1 and e 2 -reduction:

| t = (hki w v) and t 0 = ws o ( 0=w 0 ; k]v 0 ) with v =) v 0 and w =) w 0 . { If i < k T = (hk + j 1i v ws o ( i=u; j]w)) T 0 = ws o ( i=u 0 ; j] 0=w 0 ; k]v 0 ) = ws o ( 0= i=u 0 ; j]w 0 ; k + j 1]v 0 ) By the induction hypothesis, ws o ( i=u; j]w) =) ws o ( i=u 0 ; j]w 0 ) so T =) T 0 .

{ If i k T = (hki ws o ( i k + 1=u; j]v) ws o ( i=u; j]w)) T 0 = ws o ( i=u 0 ; j] 0=w 0 ; k]v 0 ) = ws o ( 0= i=u 0 ; j]w 0 ; k] i k + 1=u 0 ; j]v 0 ) By the induction hypothesis, ws o ( i=u; j]w) =) ws o ( i=u 0 ; j]w 0 ) and T =) T 0 . Lemma 6.19. The reduction =) is strongly con uent.

Proof. Let t 1 ; t 2 ; t 3 2 NF (ws o ) be such that t 1 =) t 2 and t 1 =) t 3 . We show that there is a term t 4 such that t 2 =) t 4 and t 3 =) t 4 by induction on the complexity of t 1 .

The only interesting case is when t 1 = (hki u 1 v 1 ). We consider the form of t 2 and t 3 .

{ If t 3 = (hki u 3 v 3 ) with u 1 =) u 3 and v 1 =) v 3 the induction hypothesis gives the result.

{ If t 3 = ws o ( 0=v 3 ; k]u 3 ) with u 1 =) u 3 and v 1 =) v 3 the induction hypothesis ensures that there are u 4 and v 4 such that u 2 =) u 4 , u 3 =) u 4 , v 2 =) v 4 and v 3 =) v 4 and then t 1 = (hki u 1 v 1 )

t 3 = ws o ( 0=v 3 ; k]u 3 ) prev: lemma + 3 t 4 = ws o ( 0=v 4 ; k]u 4 ) | If t 2 = ws o ( 0=v 2 ; k]u 2 ) with u 1 =) u 2 and v 1 =) v 2 . { If t 3 = (hki u 3 v 3 ) with u 1 =) u 3 and v 1 =) v 3 , we conclude as in the previous case.

{ If t 3 = ws o ( 0=v 3 ; k]u 3 ) with u 1 =) u 3 and v 1 =) v 3 the induction hypothesis ensures that there are u 4 and v 4 such that u

Proposition 6.20. b 0 is con uent.

Proof. The reduction =) is strongly con uent, therefore the reduction ! b 0 is also strongly con uent and then b 0 is con uent (remark 2.5).

Simulation of the -reduction

There is a one-one correspondence between one-step reduction in the db -calculus and one-step of -reduction in the w -calculus. In order to show that the ws -calculus correctly implements the -reduction, we give the link with the w -calculus. We show that any reduction of the w -calculus can be done in the ws -calculus (cf. proposition 7.3) and that any ws -reduction corresponds to a w -reduction on the ws-normal forms (cf. proposition 7.4). In this sense, our calculus has a step by step simulation of . Strictly speaking, ws does not simulate the db -reduction. However, as we already said in subsection 3.5, -terms with labels are e cient notations for -terms and, when the ws -calculus is used as the internal representation of -terms (for the implementation of a functional language or a proof assistant), the simulation property we give here is clearly the useful one.

Finally note that only simulates big steps of reduction and that the link of the ws -calculus with the -reduction is much simpler than the one of the SKInT-calculus:

-terms trivially are ws -terms whereas, in SKInT, CPS transformation and abstraction algorithm are necessary to get the translation.

The following property is trivial:

Proposition 7.1. The ws-normal forms are the terms of w , i.e. they are given by the grammar:

t ::= u j hkiu with k 2 N u ::= n j t j (t t)

The set of ws-normal forms will be denoted either by NF (ws) or by w . The next lemma gives the relation between the implicit substitution (cf. de nition 3.5) and the explicit one.

Lemma 7.2. Let t; u 2 NF(ws). Then fi=u; jgt = p( i=u; j]t).

Proof. By induction on the complexity of t. The following proposition shows that any ws -reduction can be simulated in the wcalculus.

Proposition 7.3. Let t; u 2 NF (ws). If t ! w u then t ! ws u.

Proof. We consider the case t ! 2 u (the 1 rule is simpler). Let t = Cf](hki v w) g and u = m(Cf]f0=w; kgt g). | If the context C ends with a label: Cf] g = C 0 f]hli g then t = C 0 f]hli(hki v w) g ! b2 C 0 f]hli 0=w; k]t g ! ws C 0 f]ws(hli 0=w; k]t) g with remark 4.5 and lemma 7.2, ws(hli 0=w

| If t 2 WT then, for all u subterm of t, we have u 2 WT .

The following lemma gives the desired properties of well-tagged terms.

Lemma 8.15. Let t be a well-tagged term.

1 If i=u; j] ] k=v; l]w is a subterm of t, then i k (i.e. the subterm is a c 1 -redex or a c 2 -redex). 2 If i=u; j] k=v; l] ]w is a subterm of t, then i < k (i.e. there is no c 0 1 -redex or c 0 2 -redex (cf. remark 8.11)).

Proof.

1 Let t 0 = i=u; j] ] k=v; l]w be the subterm. This is a well-tagged term (remark 8.14(3))

therefore there is an integer m such that H(t 0 ; m). The de nition of H implies that m = i and B( k=v; l]w; i). The de nition of B implies k i. 2 Let t 0 = i=u; j] k=v; l] ]w be the subterm. There is an integer m such that H(t 0 ; m).

Since k=v; l] ]w 6 2 ws , we have m i + j and H( k=v; l] ]w; m j + 1), and thus k = m j + 1. Finally, k = m j + 1 > i.

Proposition 8.16. WT is closed by ws -reduction.

Proof. The proof is not di cult but tedious. We rst prove that if t ! ws u and B(t; m) then B(u; m). We may assume that the reduction is at the root of t. We consider each rule of the ws -calculus. The proposition is a consequence of the fact that if t ! ws u and H(t; m) then H(u; m). This is proved by induction on t using the previous fact.

Again we may assume that the reduction is at the root, and we consider each rule of the ws -calculus. The complete proof is given in the annex of [START_REF] Guillaume | Un calcul de substitutions avec etiquettes[END_REF].

Lemma 8.17. The -calculus is con uent and strongly normalizable on the set of welltagged terms. Let (t) denote the normal form of t for the -calculus.

Proof. The -calculus is locally con uent because it has no critical pairs. The strong normalization of the -calculus is a trivial consequence of the strong normalization of the ws-calculus. Proposition 8.18. Let t be a well-tagged term. Then (t) 2 ws .

Proof. If t is a well-tagged term then (t) also is one (proposition 8.16). If (t) 6 2 ws then it contains a tagged substitution and the lemma 8.15(1) ensures that we can move down this substitution. This contradicts the fact that (t) is a -normal form.

The projection

We show that an in nite ws -reduction of a well-tagged term t, gives an in nite wsreduction of (t). This is done by showing that the relations R 1 and R 2 de ned below satisfy the hypothesis of the projection lemma (lemma 2.7).

| R 1 : the -reductions and the reductions inside tagged substitutions (i.e. i=u; j] ]t ! i=u 0 ; j] ]t with u ! ws u 0 ).

| R 2 : the other reductions, i.e. the ws -rules used outside a tagged substitution. Lemma 8.19. WT SN (R 1 ).

Proof. The measure k k is de ned on well-tagged terms as follows. lg(u) denotes the length of the longest ws -derivation of u (which exists since any term inside a tagged substitution is strongly normalizable). Note that this measure is not the same as the one in proposition 5.12.

We have to show that if t ! u then ktk > kuk. By induction on t, we may assume that the reduction is at the root. For the rules e 1 , n 1 , n 2 and n 3 , note that if a term has no tagged substitution its measure is 0. For the other rules, the veri cation is immediate.

We also have to show that the measure decreases by reduction inside tagged substitutions. By induction on t, we may assume that the reduction is i=u; j] ]t ! i=u 0 ; j] ]t with u ! ws u 0 . We have lg(u 0 ) < lg(u) hence (since cxty(t) 1):

Lemma 8.20. Let t be a well-tagged term. If t ! R1 u then (t) ! ws (u). Proof. If the reduction t ! R1 u is a -reduction then, by uniqueness of the -normal form, (t) = (u).

If the reduction is inside a tagged substitution, we use induction on t. The di cult case is t = i=v; j] ]w and u = i=v 0 ; j] ]w with v ! ws v 0 . An induction on w gives (t) ! ws (u). Lemma 8.21. Let t be a well-tagged term. If t ! R2 u then (t) ! + ws (u). Proof. This proof, by induction on t, is easy but tedious. The di cult case is t = i=v; j] ]w and u = i=v; j] ]w 0 with w ! R2 w 0 . By an induction on w we may assume that the reduction is at the root of w. We then have to consider each rule of ws -calculus. This proof has been checked by a Caml Program and is given in the annex of [START_REF] Guillaume | Un calcul de substitutions avec etiquettes[END_REF].

Proposition 8.22. Let t 2 ws be a well-tagged term. If t has an in nite ws -reduction then (t) has an in nite ws -reduction.

Proof. The previous lemmas prove the hypothesis of the projection lemma.

We are now ready to nish the proof of the main result of this subsection.

Proof of lemma 8.8 Let t = Bf] 0=w; l]v g with v; w 2 NF(p). Assume that v, w and the arguments of B are ws -strongly normalizable but t is not strongly normalizable. Let t ! t 1 ! t 2 ! : : : be an in nite reduction of t and let t 0 i be t i where the residue of 0=w; l] ] has been tagged.

| t 0 = Bf] 0=w; l] ]v g is a well-tagged term: by induction on B, we prove that H(t 0 ; jBj) (cf. de nitions 8.6 and 8.12)

{ If B = f] g, t 0 = 0=w; l] ]v and w 2 SN ( ws ). Moreover v 2 NF (p). By remark 8.14(1), we have B(v; 0). Finally H(t 0 ; 0). { if B = hkiB 0 : by the induction hypothesis H(B 0 f] 0=w; l] ]v g;jB 0 j) and so H(hkiB 0 f] 0=w; l] ]v g;jB 0 j + k), i.e. H(t 0 ; jBj). { If B = (B 0 w 0 ) with w 0 2 ws : by induction, H(B 0 f] 0=w; l] ]v g;jB 0 j). The remark 8.14(2) gives H(w 0 ; jBj). Finally, H(t 0 ; jBj). | t 0 ! t 0 1 ! t 0 2 ! : : : is an in nite ws -reduction of t 0 : proposition 8.16 and lemma 8.15 that each t 0 i is well-tagged and that the reduction t 0 i ! t 0 i+1 is always possible (no c 0 1 or c 0 2 redex), respectively. the proposition 8.16 ensures that each t 0 i is well-tagged and lemma 8.15 ensures that the reduction t 0 i ! t 0 i+1 is always possible (no c 0 1 or c 0 2 redex). | (t 0 ) = p(t): t 0 has no untagged substitutions. The reduction from t to p(t) can be translated into a reduction from t 0 to (t 0 ) by using rules l , a , e and n instead of l, a, e and n. Thus (t 0 ) and p(t) di er only by the character of their substitutions (tagged or not). Since they have no substitutions, (t 0 ) = p(t).

| p(t) has an in nite reduction. t 0 is well-tagged and has an in nite ws -reduction. Proposition 8.22 gives an in nite ws -reduction of (t 0 ) = p(t).

Proof of the key lemma

The proof of the key lemma nishes the proof of theorem 8.1: Lemma 8.2 Let t 2 NF(p) n SN ( ws ). There is u 2 NF (p) such that u 6 2 SN ( ws ) and m(t) ! w m(u).

Proof. We prove, by induction on t, that there is a term u such that: | u 6 2 SN ( ws ),