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2 CHAPTER 1.

1.1 Introduction

This chapter considers the principles of multiple-input multiple-output (MIMO) wireless

communication systems as well as some recent accomplishments concerning their implemen-

tation. By employing multiple antennas at both transmitter and receiver, very high data

rates can be achieved under the condition of deployment in a rich-scattering propagation

medium. This interesting property of MIMO systems suggests their use in the future high-

rate and high-quality wireless communication systems. Several concepts in MIMO systems

are reviewed in this chapter. We first consider “MIMO channel models” and recall the basic

principles of MIMO structures and channel modelling. We next study the “MIMO channel

capacity” and present the early developments in these systems, concerning the information

theory aspect. “Iterative signal detection” is considered next, where we particularly con-

sider iterative techniques for signal detection or in other words, for space-time decoding. As

the capacity is inversely proportional to spatial channel correlation, MIMO antennas should

be enough separated by several wavelengths. In order to minimize antennas’ deploying, we

then present the “Advanced polarization diversity techniques for MIMO systems” and ex-

plain how these techniques can help us to reduce the spatial correlation in order to achieve

high transmission rates. We end the chapter by considering the application of MIMO sys-

tems in local area networks, as well as their potential in enhancing range, localisation, and

power efficiency of sensor networks.
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1.2. MIMO SYSTEMS AND CHANNEL MODELS 3

1.2 MIMO Systems and Channel Models

In this section, a briefly discussed structure based on MIMO communication system is pro-

vided. The definition of MIMO channel is described with some related characteristics of

wireless communication channels. Recent MIMO channel models are also reported.

1.2.1 MIMO Communication Systems

Using multiple antennas [1] at both transmitter and receiver is to increase the data rate by

creating multiple spatial channels. Multiple receiving antennas can also be used to combat

fading without expanding the bandwidth of the transmitted signal. In particular, with MT

transmitting and MR receiving antennas, it is possible to achieve an M -time capacity of

single transmitting and single receiving antenna configuration where M = min{MT ,MR}.
Fig.1.1 demonstrates a general system employing multiple transmitting and multiple re-

ceiving antennas to increase the data rate. A sequence of input symbols is encoded by a

space-time encoding function into MT × 1 discrete-time complex baseband sequence x[n](n

is a discrete time index). The x[n] sequence is subsequently transformed by pulse shaping

filter into MT × 1 continuous-time complex baseband sequence x(t) and then the baseband

signal is modulated with a transmission carrier. The transmission channel H superposes the

transmitted signal due to the distortions of environment. At the reception side, under the

assumption of synchronous sampling, the received signal y(t) with additive noise is down-

converted to baseband and sampled to produce a discrete-time signal sequence. Finally, the

estimated symbols are decoded by the space time decoding block.

Figure 1.1: General configuration of a MIMO communication system
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4 CHAPTER 1.

If the channel is time-invariant, the equivalent received signal at the receiving antenna

with MT elements at the transmitter and MR elements at the receiver can be written as

y(t) =
L−1
∑

l=0

Hlx(t− τl) + η(t) (1.1)

If the channel is time-variant, the overall MIMO relation can be formulated as

y(t) =

∫

τ

H(t, τ)x(t− τ) + η(t) (1.2)

where x(t) and y(t) represent the transmitted and received signals

x(t) = [x1(t), x2(t), . . . , xMT
(t)] (1.3)

y(t) = [y1(t), y2(t), . . . , yMR
(t)] (1.4)

and L denotes the number of resolvable multipath, τ is the propagation delay, H is the

MR ×MT channel matrix at instant τ and finally η(t) is an additive noise.

1.2.2 MIMO Channel stationary definition

In wireless communication, stochastic time-variant linear channel usually employs wide sense

stationary uncorrelated scattering (WSSUS) for stationary property [2], [3]. This WSSUS

channel expresses uncorrelated attenuation in both time-delay and Doppler-shift domains.

The quasi-WSSUS channel [2] is usually applied to real radio systems. It has the properties

of a WSSUS channel for a limited bandwidth and for limited time or within a limited

environment. This kind of assumption is exceptionally useful in communication systems.

For example, Ergodic MIMO channel performance can be given by averaging the channel

performances over many independent channel realizations considering that they have the

same statistics.

Since in many practical communication systems, the WSSUS property is not truly satisfied
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1.2. MIMO SYSTEMS AND CHANNEL MODELS 5

Figure 1.2: MIMO channel and propagation models

because of path loss, shadowing, and varying propagation channel effects. That is why these

effects cause the channel to be non-stationary. Non-WSSUS considers also the reflection of

the same physical object or/and delay-Doppler dispersion by band or time-limitations at

both transmitter and receiver [4].

1.2.3 Classification of MIMO channel modeling

Many different Multiple-input multiple-output channel models have been proposed in the

last years. MIMO channel models can be classified as physical and analytical models as

shown in Fig.1.2. On the one hand, physical channel models focus on the characteristics of

an environment and the electromagnetic wave propagation between the transmitter and the

receiver, also they consider the antenna configurations at both ends. On the other hand,

analytical models do not provide the site-specific descriptions so that they do not take into

account the wave propagation characteristics. The model impulse response is mathematically

generated and related to the statistical properties of the propagation environment. However,

due to its simplicity, an analytical channel model is very useful for producing MIMO channel

matrix for different kind of communication systems.

In literature, physical models can be distinguished into deterministic models [5]-[8] and

geometry-based stochastic channel models [9]-[13]. Deterministic models (such as ray-tracing

and recording impulse response models) begin by creating an artificial environment. The

channel response can be consequently calculated for simulation purposes. But in this case,
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6 CHAPTER 1.

the calculation time is considerable high. Geometry-based stochastic channel models (GSCM)

consider that the channel response is carried out by respecting the characteristic of wave prop-

agation, both site-specific Tx-Rx environments, and scattering mechanism. All parameters

are statistically defined to closely match the measured channel observation. The channel

response can be rapidly computed for a single-bounce, double-bounce or multi-bounce scat-

tering mechanism.

Analytical channel models can be further illustrated into correlation-based models, statis-

tical cluster models, and propagation-based models. Correlation-based models contain the

Tx and Rx correlations overall channel matrixes. For example, the i.i.d. model is proposed

in the case of rich scattering environment with no spatial correlation effect [1], [14], [15].

The kronecker model [16]-[18] assumes that the channel correlation is a product of the cor-

relations at the transmitter and receiver sides. Statistical cluster models determine physical

parameters in a random manner without referring to the geometry of a physical medium. For

example, Saleh-Valenzuela model [19] uses two exponentially decaying amplitudes varying in

time and distance of the clusters, while increasing delay time with the assumptions that the

direction of departure (DOD) and the angle of arrival (DOA) are independent and identically

distributed. The other models are propagation-based models such as keyhole channel models

[20], finite scattered model [21], maximum entropy model [22], virtual channel representation

[23] . . . etc.

In addition, there are several organizations that proposed different MIMO channel models,

systems and algorithms for example COST 207, COST 231, COST 259 [24], COST 273 [25],

3GPP [26] and IEEE 802.16a,e.

ha
l-0

03
84

67
0,

 v
er

si
on

 1
 - 

15
 M

ay
 2

00
9



1.3. MIMO CHANNEL CAPACITY 7

1.3 MIMO Channel Capacity

At the end of the 1990s, pioneering works in Bell Labs showed for the first time that the

use of multiple antennas at the both sides of the transmission link can result in tremendous

channel capacities, provided that the propagation medium is rich scattering [1, 27, 14, 28,

29]. This increase in capacity is obtained without any need to extra bandwidth nor to

extra transmission power. Multipath propagation, previously regarded as an impediment to

reliable communication, was shown to be exploitable for increasing the data throughput. In

this section, we explain briefly how exploiting the spatial dimension can lead to an increase

in the system spectral efficiency. Only single-user applications are considered. For more

discussions and details, the reader is referred to [15] and the references therein.

1.3.1 Capacity of a fading channel

Let us first recall the definition of the capacity for a fading channel. For a time-varying

channel, the capacity C becomes a random variable whose instantaneous value depends on

the channel realization [30]. In such a case, the Shannon capacity of the channel may even be

zero. Indeed, if we choose a transmission rate for communication, there may be a non-zero

probability that the channel realization is incapable of supporting it. The two mostly used

definitions for the channel capacity are ergodic capacity and outage capacity. The ergodic

capacity Cerg, which is the expected value of C, is suitable for fast varying channels. The

outage capacity Cout is usually used when considering packet-based transmission systems

where the block-fading model properly describes the channel. If the pre-assumed channel

capacity is too optimistic, i.e., larger than the instantaneous capacity, a channel outage may

occur. The outage capacity, or to say more correctly, the capacity-versus-outage, as seen

from its name, is the channel capacity conditioned to an outage probability Pout. Obviously,

there is a trade-off between the expected data throughput and the outage probability.

In the expressions that we will provide in this section, C will denote the instantaneous

channel capacity.
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8 CHAPTER 1.

Figure 1.3: Global scheme of a MIMO communication structure

1.3.2 MIMO Capacity

We present the MIMO channel capacity for different cases of channel state information (CSI)

at transmitter (Tx) and receiver (Rx).

General assumptions

The global scheme of the transmission link is shown in Fig.1.3. We denote by MT and MR

the number of antennas at Tx and Rx, respectively. The communication channel includes

the effect of transmit/receive antennas and the propagation medium. We neglect the effect

of the antenna patterns and assume the far field conditions; that is, dominant reflectors

are assumed to be sufficiently far from the Tx and the Rx. We consider the simple case of

frequency non-selective (flat) fading channel that is true for narrow-band communications.

This assumption is mostly valid in indoor applications [31, 32]. In the equivalent baseband

representation, each subchannel is characterized by a complex circularly-symmetric random

variable that is assumed to be normalized in power. The entire MIMO channel is described by

a channel matrix H of dimension (MR×MT ). For instance, the entry Hij of H , characterizes

the subchannel between the ith receive and the jth transmit antenna. Finally, we assume

that the total transmit power at each sample time (corresponding to each channel-use) is

constrained to PT .

CSI known to Rx but unknown to Tx

This is the classical case that is usually considered in the literature. The channel is assumed

to be known (e.g. perfectly estimated) at the Rx but unknown to the Tx. Since the Tx does
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1.3. MIMO CHANNEL CAPACITY 9

not know the channel, it is logical to distribute the available power uniformly on the transmit

antennas. In fact, this is the optimal way for power allotment over the MT antennas in this

case. We denote by ρT the total average received signal-to-noise ratio (SNR) at the receiver

array ρT = PT/σ
2
n, where σ2

n is the variance of the additive white Gaussian complex noise.

The MIMO channel capacity in units of bps/Hz is:

C = log2 det

[

IMR
+

ρT

MT

HH†
]

. (1.5)

Here IMR
is the (MR×MR) Identity matrix. Equation (1.5) can also be written in a different

form if we consider the singular value decomposition of H :

H = UH ΛH V
†
H (1.6)

where .† denotes complex conjugate transpose ; UH and V H are unitary matrices of dimen-

sions (MR×MR) and (MT ×MT ), respectively ; and ΛH is an (MR×MT ) matrix containing

the singular values of H . Let us define M = min{MT ,MR}. We denote these singular values

by λH,i, i = 1, · · · ,M . The MIMO capacity can be written in the following form:

C = log2 det

[

IMR
+

ρT

MT

ΛHΛ†
H

]

=
M
∑

i=1

log2

(

1 +
ρT

MT

λ2
H,i

)

(1.7)

CSI known to both Tx and Rx

This is the case when the estimated CSI at the Rx is provided for the Tx, which is practi-

cally feasible when the channel varies slowly in time. Providing the CSI for the Tx can be

done using a (hopefully low bandwidth) feedback channel or via the reverse link when the

communication takes place in a duplex mode. We assume that CSI is provided perfectly and

without any delay to the Tx. In this case, the Tx can allot the available power on the anten-

nas in an optimal manner in order to achieve the maximum capacity [33]. This capacity is

often called known-CSI capacity or water-filling (WF) capacity. For this purpose, we should

weight the transmitted symbols vector x by the matrix V H , and the received signal vector

by the matrix U
†
H [15, 34]. This can be regarded as an optimal beam forming solution. By
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10 CHAPTER 1.

this weighting, we can in fact consider an equivalent channel Heq between x and y:

Heq = U
†
H H V H = ΛH . (1.8)

In other words, the MIMO channel matrix H is decomposed into several parallel indepen-

dent single-input single-output subchannels. The number of these subchannels is equal to

rank(H), and their gain is given by the singular values of H . Let RX be the autocorrela-

tion matrix of x, with eigenvalues λX,i, i = 1, · · · ,M . The optimal WF solution consists

in distributing the available power PT , optimally over the equivalent parallel subchannels,

which results in [15, 35]:

λX,i =

(

ψ − σ2
n

λ2
H,i

)+

, i = 1, · · · ,M (1.9)

where, (s)+ = s if s > 0, and 0 otherwise. Also, ψ is a constant which is determined so

as to satisfy the constraint on the total transmit power,
∑M

i=1 λX,i = PT . The WF solution

imposes that we allocate more power to best subchannels and lower (or perhaps no) power

to worse ones. Now, the WF capacity CWF is given by [15, 35]:

CWF =
M
∑

i=1

log2

(

1 +
λX,i λ

2
H,i

σ2
n

)

. (1.10)

CSI unknown to both Tx and Rx

If channel is not known to the Tx nor to the Rx, we can consider (1.5) as un upper bound

on capacity. Let ∆ be the coherence interval of the channel in units of channel-uses. As

∆ tends to ∞, the channel capacity approaches this upper bound, because with greater ∆,

tracking the channel variations becomes more possible for the Rx [36]. For the same reason,

there is less difference between the capacity and the upper bound for higher SNR values.

This difference becomes more considerable, however, for larger MT and/or MR [36]. For a

fast varying channel, the capacity is far less than the Rx perfect-knowledge upper bound,

because practically there is no possibility to estimate the channel at the Rx. For M > ∆, no

increase is achieved in capacity of MIMO channel by increase in M [36]. It is shown in [37]
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1.3. MIMO CHANNEL CAPACITY 11
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Figure 1.4: Capacity for MIMO, SIMO, MISO structures; uncorrelated Rayleigh flat fading; SNR = 10
dB, Pout = 0.01.

that at high SNR and for a rich-scattering propagation medium, the MIMO unknown-CSI

capacity increases linearly with M∗(1 −M∗/∆), where M∗ = min{MT ,MR, ⌊∆
2
⌋}.

1.3.3 Some numerical results

We present some numerical results, excluding the case where CSI is unknown to both the Tx

and the Rx. We consider the outage capacity Cout for an outage probability of Pout = 0.01 and

will refer to it simply by “capacity.” Let us first consider the case where CSI is known only to

the Rx. We will call this case no-WF. Fig.1.4 contrasts the outage capacity of MIMO, single-

input multiple-output (SIMO), and multiple-input single-output (MISO) systems under the

conditions of uncorrelated Rayleigh flat fading [38] and Pout = 0.01. SNR stands for ρT .

For the MIMO system, we have MT = MR = M . Uncorrelated fading necessitates enough

antenna spacings at the Tx and the Rx that depends, in turn, on the propagation conditions

[39, 16]. The MIMO capacity increases linearly with M . It is much more considerable than

that of MISO and SIMO systems.

Now consider the case of known-CSI at both the Tx and the Rx. For MR ≥ MT , the

improvement in capacity by performing WF, that we call the WF gain, is considerable for low

SNR and a large number of transmit antennas [33]. But this gain is much more considerable
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12 CHAPTER 1.

Figure 1.5: WF and no-WF capacities of a MIMO system with MR > MT = 4 (left) and MT > MR = 4
(right), Rayleigh flat fading, SNR = 3 dB, Pout = 0.01.

when MT > MR. For example, Fig.1.5 shows curves of no-WF and WF capacities for two

cases of MR > MT = 4 and MT > MR = 4. Notice that the WF-capacity of an (MT ,MR)

system is equal to that of an (MR,MT ) system. Also, the WF-capacity of a MISO system is

equal to that of the equivalent SIMO system.

The gain in capacity by WF is specially interesting for the case of correlated channels. For

instance, for the case of Ricean fading [40, 41], curves of capacity versus the Ricean factor

(RF) are presented in Fig.1.6 a MIMO system with MT = MR = M and two cases of M = 2

and M = 4. RF represents the percentage of power received from the line-of-sight (LOS) to

the total received average power [41]. For relatively high RF that can be regarded as a more

correlated channel, the WF gain is quite considerable.

1.4 Iterative Signal Detection

No need to say, signal detection is a crucial part of the transmission system. Among the

various detection techniques proposed for the case of MIMO systems, there are iterative (also

called turbo) detectors. This is what we are going to focus on in this section. In effect, since

the invention of turbo-codes by Berrou et al. [42] who proposed iterative decoding of parallel

concatenated convolutional codes, the turbo principle has been applied to several problems in

communications such as channel equalization [43], channel estimation [44], synchronization
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1.4. ITERATIVE SIGNAL DETECTION 13
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Figure 1.6: WF and no-WF capacities (left) and WF gain in capacity (right) for a MIMO system with
MT = MR = M ; Ricean flat fading, SNR = 10 dB, Pout = 0.01.

[45], multi-user detection [46], and of course to MIMO signal detection [47]. The turbo

principle consists of the exchange of soft information between two different stages of the

Rx, mostly including the soft channel decoder. In MIMO systems too, iterative processing

has attracted special attention as it makes a good compromise between complexity and

performance. Before presenting the basics of iterative detection, we have to present a brief

introduction on space-time coding that is performed at the Tx. We mostly consider frequency

non-selective (flat) fading conditions and single-carrier modulation.

1.4.1 Space-time coding and decoding

An important aspect in the implementation of MIMO systems is to appropriately distribute

redundancy in space and in time at the Tx, what is called space-time (ST) coding [48]. To

this date, there has been considerable work on this subject and a variety of ST schemes

has been proposed for MIMO systems. The key criteria in the design of ST codes are the

coding gain and the diversity gain. The first one aims at achieving high rate by capital-

izing on the MIMO capacity, whereas the latter aims at profiting from the space diversity

to reduce fading at the Rx. The two extreme schemes corresponding to these criteria are

respectively spatial multiplexing and transmit diversity. For instance, orthogonal space-time

block codes (OSTBC) [49, 50] aim at diversity gain and some coding rate; space-time trellis
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14 CHAPTER 1.
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Figure 1.7: Block diagram of the BICM transmission scheme.

codes (STTC) [51] and linear constellation precoding (LCP) [52] aim at both coding and

diversity gain; spatial multiplexing or the V-BLAST architecture maximizes the coding rate

[28]; and the more general family of linear dispersion (LD) codes [53] that maximize the

mutual information between the Tx and the Rx, allow flexible rate-diversity trade-off.

Apart from the problem of code construction, one important criterion in the choice of the

appropriate ST scheme could be its decoding complexity. ST orthogonal designs like OS-

TBCs offer full diversity while they can be decoded using an optimal decoder with linear

complexity. However, these schemes suffer from low rate, especially for a large number of

transmit antennas. In addition, full-rate OSTBCs exist only for restricted number of trans-

mit antennas and modulations [49]. Non-orthogonal schemes, on the other hand, offer higher

coding rates but their optimal decoder becomes prohibitively complex for large number of

transmit antennas and large signal constellation sets. This is specially the case for STTC

schemes that although offering high rates and good diversity gains, are complex to decode

and, moreover, suffer from long decoding delays. For non-orthogonal schemes, instead of

performing complex optimal decoding, we may use sub-optimal decoding based on simple

linear-algebraic techniques such as sphere decoding [54] or interference-cancelling-based de-

coding [28, 47]. For either solution, the Rx performance can be improved considerably by

performing iterative detection.

ST coding, Tx scheme

In addition to using a special ST scheme, we usually perform channel coding at the Tx.

Let us consider bit-interleaved coded modulation (BICM) [55] for which a typical scheme is

shown in Fig.1.7. The advantage of the BICM is its flexibility regarding the choice of the

code and the bit-symbol mapping, as well as its conformity to iterative detection. In Fig.1.7,
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1.4. ITERATIVE SIGNAL DETECTION 15

the binary data b are encoded by a channel code C, before being interleaved (the block Π).

The output bits c are then mapped to symbols according to a given constellation set. We

will mostly consider QAM modulation with B bits per symbol. Power-normalized symbols

s are next combined according to a given ST scheme and then transmitted on MT antennas.

1.4.2 General formulation of LD codes

Before talking about ST decoding, let us present the general formulation of the LD codes

from [53] that can be equally used for other ST schemes as well. Let S of dimension (Q× 1)

be the vector of data symbols prior to ST coding:

S = [s1, s2, · · · , sQ]t, (1.11)

where .t denotes transposition. By ST coding, these symbols are mapped into a (MT × T )

matrix X, where T is the number of channel-uses. We define the ST coding rate as RSTC =

Q/T . Corresponding to an encoded matrix X, we receive the (MR × T ) matrix Y . We

separate the ℜ and ℑ parts of the entries of S and X and stack them row-wise in vectors S
of dimension (2Q× 1) and X of dimension (2MTT × 1), respectively. For instance,

S =
[

ℜ{s1} ℑ{s1}, · · · ,ℜ{sQ} ℑ{sQ}
]t

. (1.12)

We have then, X = F S, where the (2MTT × 2Q) matrix F depends on the actual ST

scheme (see [53] for more details). Let the (MR ×MT ) matrix H represent our flat channel.

Similar to X , we construct the (2MRT × 1) vector Y from Y . Vectors X and Y are then

related through a (2MRT × 2MTT ) matrix H:

Y = H X + N (1.13)
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16 CHAPTER 1.

where N is the vector of real AWGN of zero mean and variance σ2
n. Matrix H is composed

of (2T × 2T ) segments Hij, i = 1, · · · ,MR, j = 1, · · · ,MT , described below.

Hij =















H ij 0 · · · 0

0 H ij · · · 0
...

. . .
...

0 · · · 0 H ij















(1.14)

The (2 × 2) elements H ij are obtained from each entry Hij of the initial matrix H :

H ij =

[

ℜ{Hij} −ℑ{Hij}
ℑ{Hij} ℜ{Hij}

]

. (1.15)

Now, we can describe the “ST encoder and channel” input/output relationship by considering

an equivalent channel matrix Heq of dimension (2MRT × 2Q):

Y = H F S + N = Heq S + N . (1.16)

1.4.3 Iterative detection for non-orthogonal ST schemes

We assume that Heq and σ2
n are known at the Rx. Having received the vector Y , we should

extract from it the transmitted data S. As we perform channel coding together with ST

coding, the idea of iterative detection comes into mind. Indeed, by profiting in this way from

the channel coding gain, we can obtain a good performance after only few iterations and

approach the optimal “ST decoder + channel decoder” performance. This is, of course, the

case for non-orthogonal ST schemes. In what follows, we explain the principle of iterative

detection and explain in detail the ST decoding part.

The block diagram of such a Rx is shown in Fig.1.8. Soft-input soft-output signal detection

and channel decoding are performed. For MIMO signal detection or ST decoding, we can

use the optimal maximum a posteriori (MAP) algorithm, or a sub-optimal solution based

on sphere decoding or interference cancelling, for example. In fact, the optimal MAP de-

tector becomes too complex to implement in practice, especially for large Q or large signal
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1.4. ITERATIVE SIGNAL DETECTION 17
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 .
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Π−1

of C

P
Det

ext(c)

Figure 1.8: Block diagram of the receiver.

constellations.

Soft channel decoding, on the other hand, can be done using the well known forward-

backward algorithm [56], the soft-output Viterbi algorithm (SOVA) [57] or a simplification

of them [58]. For the final decision making on the transmitted data bits, we use the a poste-

riori probabilities at the decoder output. Like in any other turbo processing case, extrinsic

information are exchanged between the two blocks of soft detector and channel decoder. In

what follows, we explain the principle of MIMO detection based on MAP, sphere decoding,

and soft interference cancelling, while focusing on the third approach.

MAP signal detection

We present here the formulation of the MAP detector based on probabilities. It can also be

implemented using logarithmic likelihood ratios (LLR). Remember the expression of Y from

(1.16). The MIMO detector provides at its output extrinsic probabilities on coded bits c.

Let Q be the cardinality of S of size q , |Q| = 2BQ. Let also ci, i = 1, · · · , BQ be the bits

corresponding to a vector of symbols S ∈ Q. The extrinsic probability on the bit cj at the

MIMO detector output, PDet

ext
(cj), is calculated as follows [59]:

PDet

ext
(cj = 1) = K

∑

S∈Q
cj=1

exp

(

−‖Y −HeqS‖2

σ2
n

) BQ
∏

i=1
i6=j

PDec

ext
(ci) (1.17)

where K is the normalization factor satisfying PDet

ext
(cj = 1) + PDet

ext
(cj = 0) = 1. The

probability PDec

ext
(ci) is in fact the a priori information on bit ci, fed back from the channel
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18 CHAPTER 1.

decoder. At the first iteration, where no a priori information is available on bits ci, P
Dec

ext
(ci)

are set to 1/2. The summation in (1.17) is taken over the product of the conditional channel

likelihood (the exponential term) given a vector S, and the a priori probability on this

symbol, i.e., the term
∏

PDec

ext
. In this latter term, we exclude the a priori probability

corresponding to the bit cj itself, so as to respect the exchange of extrinsic information

between the channel decoder and the MIMO detector. Also, this term assumes independent

coded bits ci, which is true for random interleaving of large size.

Sphere decoding

As it was seen, in the calculation of the extrinsic probabilities, the MAP detector considers

the exhaustive list of all possibly-transmitted symbol vectors. Hence, the complexity of the

MAP detector grows exponentially with the number of transmit antennas MT and the num-

ber of bits per modulation symbol B. By sphere decoding, these probabilities are calculated

based on a non-exhaustive list [54]. Corresponding to a vector Y , we only take into account

those lattice points that are in a hypersphere of radius R around Y . In this way, the average

complexity of the detector under flat fading conditions becomes polynomial (often sub-cubic)

[60]. The main detection tasks are then setting the radius R as well as determining which

lattice points are within the sphere.

Parallel-Interference-Cancelling-based detection

The block diagram of the detector based on soft-parallel interference cancellation (Soft-PIC)

is shown in Fig.1.9. We will refer to the corresponding receiver scheme as turbo-PIC. It

is essentially composed of the three blocks of PIC detector, conversion to LLR, and soft-

estimation of transmit symbols.

• PIC detector

In order to present general expressions for the detector, let us denote by γ̂p, p = 1, · · · , 2Q,

the detected data at the PIC detector output, corresponding to the real or imaginary parts

of sq, q = 1, · · · , Q. At the first iteration, γ̂p are obtained via MMSE (minimum mean-square
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1.4. ITERATIVE SIGNAL DETECTION 19

detector

MIMO

data symbols

Soft estimate

PIC. . .

to LLR
Conversion

x̃

x̂

Figure 1.9: Block diagram of the Soft-PIC detector

error) filtering [47, 61, 62].

γ̂p = W†
p Y = h†p

(

HeqH†
eq + σ2

nI
)−1 Y (1.18)

where Wp denotes the filter, hp is the pth column of Heq, and (.)† stands for transpose com-

plex conjugate. Note that the entries of Heq are real values, and hence, (.)† is equivalent

to transposition. From the second iteration, we can calculate soft estimates S̃ of the trans-

mitted data using the soft decoder outputs. Using these estimates, we perform interference

cancelling followed by a simple inverse (zero-forcing) or MMSE filtering:

Ŷp = Y −Hp S̃p , γ̂p = W†
p Ŷp (1.19)

ZF: Wp =
1

h†p hp

hp , MMSE: Wp =
1

(h†p hp + σ2
n)

hp (1.20)

where S̃p of dimension ((2Q− 1) × 1) is S̃ with its pth entry removed, and Hp of dimension

(2MRT × (2Q− 1)) is the matrix H with its pth column removed. Notice that, compared to

the exact MMSE filtering proposed in [47], (1.20) are simplified solutions that assume almost

perfect estimation of data symbols and permit a considerable reduction of the computational

complexity. Thanks to iterative processing, the performance loss due to this simplification

would be negligible. In the results that we present later, we will consider the simplified ZF

solution.

• Conversion to LLR

For QAM modulation with B (an even number) bits per symbol, we can attribute m = B/2

bits to the real and imaginary parts of each symbol. Let for instance, the bit ci corresponds

ha
l-0

03
84

67
0,

 v
er

si
on

 1
 - 

15
 M

ay
 2

00
9



20 CHAPTER 1.

to the real (imaginary) part of the symbol sq. Let also a1,j and a0,j, j = 1, · · · , B
2

denote the

real (imaginary) part of the signal constellation points, corresponding to ci = 1 and ci = 0,

respectively. Remember that the signal constellation points have normalized average power.

The LLR corresponding to ci is calculated as follows [61]:

LLRi = log10

∑2m−1

j=1 exp
(

− 1
2σ2

p
(γ̂p − a1,j)

2
)

∑2m−1

j=1 exp
(

− 1
2σ2

p
(γ̂p − a0,j)2

) , i = 1, · · · ,m (1.21)

where σ2
p is the variance of noise plus the residual interference (RI) that intervenes in the

detection of γ̂p, and assumed to be Gaussian. Note that, as the detection is performed on

blocks of Q complex symbols, or in other words on blocks of 2Q real symbols in our model,

the RI comes in fact from (2Q− 1) other real symbols in the corresponding channel-use [63].

In LLR calculation, we need the variances σ2
p. These variances can be calculated analytically

as shown in [64], or estimated at each iteration and for each one of 2Q real symbols, as done

in [63]. To simplify the detector further, we may neglect the RI and take only into account

the noise variance. For not too large signal constellation sizes, this simplification causes a

negligible performance loss [65, 66].

• Soft estimation of transmit symbols

Each element γ̃p of the vector S̃ is obtained by taking a summation over the all possible

values of the real part (or imaginary part) of the signal constellation, multiplied by the cor-

responding probability calculated using the soft decoder output [61, 62]. It is preferable to

use the a posteriori information from the decoder output rather than extrinsic information in

the calculation of γ̃p. This has the advantage of permitting a better and faster convergence

of the Rx.

Case study

As we focus here on the turbo-PIC detector as the sub-optimal solution, we just compare the

performance of this detector with that of turbo-MAP. We consider the simplified implemen-

tation of Soft-PIC based on ZF filtering given in (1.20). For this comparison, we consider
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1.4. ITERATIVE SIGNAL DETECTION 21
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Figure 1.10: Comparison of turbo-PIC and turbo-MAP detectors, MT = 4, (5, 7)8 channel code, QPSK
modulation, 64 channel-uses per frame.

the simple spatial multiplexing (V-BLAST) ST scheme and the case of a four-transmit an-

tennas, MT = 4 while we take MR between 1 and 4. The Tx and the Rx schemes correspond

to Figures 1.7 and 1.8, respectively. We consider Gray bit/symbol mapping and random

interleaving, as well as the Rayleigh flat quasi-static channel model. The non-recursive and

non-systematic convolutional (NRNSC) channel code (5, 7)8 (in octal representation) is con-

sidered with rate Rc = 1/2. SNR is considered in the form of Eb/N0, where Eb is the average

received energy per information bit and N0 is the unilateral noise power spectral density;

Eb/N0 includes the Rx array gain, MR.

Curves of bit-error-rate (BER) versus Eb/N0 are given in Fig.1.10. It fact, the performance

of turbo-PIC and turbo-MAP are relatively close to each other for MR ≥ MT . Turbo-PIC

can still be used for certain values of MR < MT , mostly for MR > MT/2 [62]. So, for these

MR values where turbo-PIC converges properly, it would be preferred to turbo-MAP due

to its considerably lower complexity. Better performances are obtained for turbo-PIC if the

variance of the RI is taken into account in LLR calculation [62].
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1.4.4 Orthogonal versus non-orthogonal ST schemes

In practice, to attain a desired spectral efficiency, we should adopt the most appropriate

scheme by fixing the degrees of freedom of the system, that is, the signal constellation, the

channel coding rate, and the ST coding scheme. The answer to the question “what is the

most suitable combination” is not obvious for moderate to high spectral efficiencies. In

effect, if a low spectral efficiency is required, an OSTBC scheme together with a power-

ful turbo-code would be a suitable solution, as the reduction in the overall coding rate is

best invested in turbo channel codes [67]. To attain high spectral efficiencies with OSTBC

schemes, however, we have to use large signal constellations and to increase the channel

coding rate by puncturing the encoder output bits. Use of larger signal constellations com-

plicates the tasks of synchronization and detection at the Rx and also results in a higher

SNR required to attain a desired BER. On the other hand, puncturing results in a reduced

channel code robustness against noise. Higher ST coding rates are offered by non-orthogonal

schemes, hence, relaxing the conditions on signal constellation and channel coding. Here,

a simple (sub-optimal) iterative detector can be used for ST decoding, as explained in the

previous subsection, and we may approach the optimal detection performance after few it-

erations. Nevertheless, the detector remains more complex, as compared to the OSTBC

case. However, this increased Rx complexity is quite justified; using such an appropriate

non-orthogonal ST scheme and iterative detection, we obtain a considerable gain in perfor-

mance with respect to OSTBC choice [63, 65, 66]. Results in [65, 66] have also confirmed

that the gain obtained by using non-orthogonal with respect to orthogonal schemes is still

considerable and even more important when channel estimation errors are taken into account.

• Case study

We consider again the case of a (2×2) MIMO system, Gray bit/symbol mapping and random

interleaving, as well as the Rayleigh flat block-fading channel model with Nc = 32 indepen-

dent fades per frame. The number of channel-uses corresponding to a frame is 768. The

NRNSC channel code (133, 171)8 is considered with rate Rc = 1/2. ST schemes we consider

are resumed in Table I, where η is the spectral efficiency in units of bps/Hz. As the OSTBC

scheme, we consider the Alamouti code [50]. Using the formulation of LD codes that we
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1.4. ITERATIVE SIGNAL DETECTION 23

Table 1.1: Different ST schemes for a (2 × 2) MIMO system with η = 2 bps/Hz

ST scheme RSTC Modulation Rc

Alamouti 1 16-QAM 1/2

V-BLAST 2 QPSK 1/2

GLD 2 QPSK 1/2

presented in Subsection 1.4.2, we have Q = T = 2, RSTC = 1, and:

X =

[

s1 s2

−s∗2 s∗1

]

. (1.22)

For the OSTBC case, the decoding is performed once using (1.18). We also consider two non-

orthogonal schemes. The first one is the simple V-BLAST scheme described by X = [ s1 s2 ]t

for which Q = 2, T = 1 and RSTC = 2. The second one is the optimized scheme proposed in

[68] and called Golden code that we denote by GLD. For this code that offers full-rate and

full-diversity with the property of non-vanishing determinant, we have Q = 4, T = 2, and

RSTC = 2:

X =
1√
5

[

α (s1 + θ s2) α (s3 + θ s4)

γ α (s3 + θ s4) α (s1 + θ s2)

]

, (1.23)

where θ = 1+
√

5
2
, α = 1 + j(1 − θ), θ = 1 − θ, α = 1 + j(1 − θ), γ = j =

√
−1. The factor

1/
√

5 ensures normalized transmit power per channel-use. For η = 2 bps/Hz, performance

curves are shown in Fig.1.11, where again perfect channel knowledge is assumed at the Rx.

For V-BLAST and GLD schemes, BER curves are shown for the second and the fourth

iteration where almost full Rx convergence is attained. We see that, by using V-BLAST

scheme, we gain about 3.3 dB and 3.75 dB in SNR at BER= 10−4 after two and four

iterations, respectively, compared to Alamouti coding. The corresponding gains by using

GLD code are about 3.5 dB and 4.3 dB, respectively. We note that even when for the

reasons of complexity and/or latency, only two iterations are to be performed, the gain in

SNR compared to Alamouti scheme is still considerable.
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Figure 1.11: (2 × 2) MIMO system, Turbo-PIC detection, (133, 171)8 channel code, η = 2 bps/Hz
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1.5. ADVANCED POLARIZATION DIVERSITY TECHNIQUES FOR MIMO SYSTEMS25

1.5 Advanced Polarization Diversity Techniques for MIMO

Systems

For next-generation wireless communication systems, multiple antennas at both transmitter

and receiver could be used to achieve a higher capacity and reliability of wireless communi-

cation channels under rich scattering environments. With multiple antenna communication

systems, the performance could moreover be improved on a limited bandwidth and trans-

mission power.

Due to the potential of MIMO systems, the initial research demonstrates that the channel

capacity based on uncorrelated channel model can be proportionally increased with respect

to the number of antennas. However, in practice, the performance of MIMO communication

channel are affected by the spatial correlation, which is dependent on antenna array config-

urations (such as radiation pattern, antenna spacing and array geometry), and propagation

channel characteristics, which are dependent on the environment, (such as number of channel

paths, distribution and properties of scatterers, angle spread and cross-polarization discrim-

ination). Thus, the antenna arrays at transmitter and receiver should be properly designed

to reduce the spatial correlation effects and to improve the communication performance.

However, it is possible to reduce these effects by increasing antenna array spacing but

this solution is not always suitable in some wireless applications where the array size is lim-

ited. Therefore, in order to eliminate the spatial correlation effects and remain with high

transmission performance, there are essentially two diversity techniques such as angular [69]

and polarization diversity techniques [70]. For pattern diversity technique, the radiation of

antennas should be generated in a manner to isolate the radiation pattern. For polarization

diversity techniques [71], the antennas are designed to radiate with orthogonal radiation po-

larizations to create uncorrelated channels across different array elements. The polarization

diversity techniques could be applied in point-to-point communication systems such as Inter

Mobile Base Station Communications, Mobile Satellite Communications, High Resolution

Localization Systems, Military Communications, etc.
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Finally, there are also other diversity techniques; such as multimode diversity [72] that

exploits the difference of high order modes to obtain low correlated channels across the

modes and a combination of pattern and polarization diversity techniques [73], [74] that

take together the advantages of orthogonal radiation patterns and polarizations.

1.5.1 Antennas

In pratice, not only the propagation environment for the multiple antenna systems has an

important role in determining the transmission performance, but also the proper implemen-

tation of the antennas plays another dominant role. For example uniform linear arrays,

uniform circular arrays and cube antenna arrays give different performances in terms of

channel capacity. Moreover, different array configurations produce different correlation ef-

fects. In this part, we will analyze five types of antennas [75] such as x -, y- and z - oriented

dipole antennas, azimuth, and elevation isotropic antennas are applied to a uniform linear

array.

Table 1.2: Patterns of different electric dipoles
Ex Ey Ez Eφ Eθ

Eθ(θ, φ) -cosθcosφ -cosθsinφ -sinθ 0 1

Eφ(θ, φ) sinφ -cosφ 0 1 0

The radiating patterns of the antennas are considered in the far field case, and also

simplified by neglecting path loss and distance phase. Hence, these radiating patterns are

simply dependent on the azimuth and elevation angle direction as shown in table 1.2. A

general expression of radiation patterns is given by [75]

E = Eθ(θ, φ)~θ + Eφ(θ, φ)~φ (1.24)

where Eθ(θ, φ) and Eφ(θ, φ) are the amplitudes of polarization vector at ~θ− and ~φ−direction,

and x, y and z are the antenna orientations. As different types of antenna are employed in

this paper, it is necessary to normalize the radiation pattern when comparing all channel

performances. Thus all radiation patterns of an antennas are normalized by that of isotropic
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1.5. ADVANCED POLARIZATION DIVERSITY TECHNIQUES FOR MIMO SYSTEMS27

antenna, and they can be written as

G =

√

√

√

√

√

√

∫ ∫

∆φ,∆θ

sin θdθdφ

∫ ∫

∆φ,∆θ

[

|Eθ (θ, φ)|2 + |Eφ (θ, φ)|2
]

sin θdθdφ

(

Eθ (θ, φ) ~θ + Eφ (θ, φ) ~φ
)

(1.25)

where G is the antenna gain that is used for the computation of the channel matrix.

1.5.2 Cross polarization discrimination

In wireless communications, due to the interactions of environment such as diffractions,

reflection and refraction, the transmitted signals are generally not only attenuated, but also

depolarized. Depolarization is the change of the original state of the polarization of the

electromagnetic wave propagated from the transmitter.

Cross-polarization discrimination (XPD) is defined as the power ratio of the co-polarization

and the cross-polarization components of the mean incident wave. The higher the XPD, the

less energy is coupled in the cross-polarized channel. Therefore, there are two transmission

cases namely azimuth transmission (χθ) and elevation transmission (χφ) as follows

χθ =
E
{

|Eθθ|2
}

E
{

|Eθφ|2
} , χφ =

E
{

|Eφφ|2
}

E
{

|Eφθ|2
} (1.26)

where Eθφ denotes the θ-polarized electric field which is propagated from a transmitter and

received in the φ polarization. It has the same explanation for Eθθ, Eφφ and Eφθ. In the

literature, some measurement campaigns have been carried out and they concluded that the

XPD depended on the physical obstacles, the distance between transmitter and receiver and

the delay of multipath components of each environment [76]. Therefore, for simplicity, XPD

can be approximated by a Gaussian statistical distribution with average µ and variance σ2

[77] ,[78]. For urban environment, the mean value of XPD can vary from 0 to 16 dB and the

standard deviation can change from 3 to 9 dB.
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Figure 1.12: Geometries of MIMO channel

1.5.3 Geometry-based stochastic channel models

We now focus on a useful model for simulation purposes, geometry-based stochastic modelling

or geometric scattering modelling [10],[79],[80], which can be easily exploited to examine the

performance of different antenna patterns and polarizations. This model is based on the

assumption that scatterers around the transmitter and receiver influence the direction of de-

parture (DOD) and the direction of arrival (DOA) respectively within transmit and receive

scattering areas. Scatterers are randomly located according to a certain probability distrib-

ution. In particular, the scatterers are used to represent the depolarization and attenuation

mechanism of incident waves travelling from the transmitters.

In Fig.1.12, a scattering geometry is shown. A uniform linear array of z-oriented dipole

antennas at both transmitter and receiver is employed. The height of transmitter and receiver

has the same level. Moreover, transmit and receive scatterers are uniformly distributed

within an angular region defined by |φ+ π/2| ≤ ∆φ/2 in elevation area and |θ + π/2| ≤ ∆θ/2

in azimuth area. In order to determine one propagation path, from one transmit scatterer to

one receive scatterer, we consider that there is a double depolarization mechanism replaced by

one scattering matrix. One of the propagation path channels occurs when one of transmit

and one of receive scatterers are randomly linked. To reduce the computational cost, a

scatterer is used to generate only one propagation channel. Then the actual channel impulse

response is established by a sum of propagation channels. We also assume that the channel
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1.5. ADVANCED POLARIZATION DIVERSITY TECHNIQUES FOR MIMO SYSTEMS29

coherence bandwidth is larger than the transmitted bandwidth of the signal. This channel

is usually called frequency non-selective or flat fading channel.

In case of far field transmission without the line-of-sight channel, the flat fading trans-

mission channel between the antenna p at the transmitter and the antenna m at the receiver

can be expressed as

hmp (t, f) = 1√
NS

NS
∑

i=1

a
(i)
m a

(i)
p exp

{

−j~k(i) · ~vRxt− j~k′(i) · ~vTxt+ ϕmp

}

[

Gm
θ (θi, φi) Gm

φ (θi, φi)
]

S
(i)
mp

[

Gp
θ (θi, φi)

Gp
φ (θi, φi)

] (1.27)

where

- t is time;

- f is frequency;

- NS is the number of scatterers at the receiver and the transmitter;

- ~vRx and ~vRx are the velocity vector of the transmitter and the receiver;

- ~k′(i) and ~k(i) are the vectors of wave number in the direction of the ith transmit scatterer

and the ith receive scatterer where

∣

∣

∣

∣

⇀

k
(i)
∣

∣

∣

∣

=

∣

∣

∣

∣

⇀

k
′(i)
∣

∣

∣

∣

= 2π/λ;

- Gp
θ (θi, φi) and Gp

φ (θi, φi) are the gain in the ~θ and ~φ directions of the pth transmit antenna

in the direction of the ith transmit scatterer;

- Gm
θ (θi, φi) and Gm

φ (θi, φi) are the gain in the ~θ and ~φ directions of the mth receive antenna

in the direction of the ith receive scatterer;

- a
(i)
m is the mth element of the local vector of the receive antenna, so that the local receive

vector can be expressed as a
(i)
Rx =

[

1 exp
{

−j~k(i) · ~r1
}

· · · exp
{

−j~k(i) · ~rMR−1

}]

;

- a
(i)
p is the pth element of the local vector of the transmit antenna, so that the local transmit

vector can be expressed as a
(i)
Tx =

[

1 exp
{

−j~k′(i) · ~r′1
}

· · · exp
{

−j~k′(i) · ~r′MT−1

}]

;

- S
(i)
mp are a 2×2 scattering matrix for the ith transmit scatterer and the ith receive scatterer

for i = 1 . . . NS wave components. Scattering matrix contains the polarization mechanism

as defined by

S(i)
mp =





√

χθ

1+χθ
exp

{

jβ
(θθ)
mp

}
√

1
1+χφ

exp
{

jβ
(φθ)
mp

}

√

1
1+χθ

exp
{

jβ
(θφ)
mp

}
√

χφ

1+χφ
exp

{

jβ
(φφ)
mp

}



 (1.28)
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where β
(φθ)
mp denotes phase offset of ith incident wave which changes from ~φ directions to ~θ

directions superposing on m-p channel and χθ and χφ denote the ratio of the co-polarized

average received power to the cross-polarized average received power. In [77], after suffi-

ciently reflecting the propagation signal between transmitters and receivers, the polarization

state of the signal will be independent of the transmitted signals.

1.5.4 Spatial correlation and angle spread effects

The consecutive MIMO systems based on spatial diversity technique are directly influenced

by spatial correlation effect (or antenna correlation effect) [16]. This effect is drastically

dependent on array configurations and environment characteristics. Therefore, the antenna

arrays at both transmitter and receiver should be properly designed or adapted to decrease

spatial correlation effects.

As illustrated in Fig.1.13, the spatial correlation of 2 × 2 uniform linear antenna array

depends on the antenna spacing and the angle spread (AS). The general expression of spatial

correlation [81] between two antenna elements can be written as

ρij =

∫ ∫

∆θ,∆φ

ai·a∗j sin (θ) p (θ, φ) dθdφ

√

∫ ∫

∆θ,∆φ

|ai|2 sin (θ) p (θ, φ) dθdφ ·
∫ ∫

∆θ,∆φ

|aj|2 sin (θ) p (θ, φ) dθdφ
(1.29)

where ai is local value of the ith transmit or receive antenna and aj is local value of the

j th transmit or receive antenna in local vector. The scalar p (θ, φ) is the joint probability

density function (pdf) of the angles of arrival for the receiving spatial correlations or of the

angles of departure for the transmitting spatial correlations.

When the narrow angle spread of incident fields occurs in the transmitting or receiving

side, the separation between antennas should be expanded in order to reduce the spatial

correlation problem as shown in Fig.1.13. This shows the spatial correlation of 2× 2 MIMO

z -oriented antennas in the case of a uniform distribution of the angles of arrival within a
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Figure 1.13: Spatial correlation of uniform linear antenna array for single-polarized config-
uration

region. It demonstrates that the received signals become uncorrelated when the antenna

spacing is sufficiently increased and the angle spread is quite wide.
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Figure 1.14: Spatial correlation of uniform linear antenna array for dual-polarized configu-
ration

However, wide antenna spacing may preclude implementation is some applications where

size is a limitation. The use of polarized antennas is promising low spatial correlation. The

spatial correlation is demonstrated in Fig.1.14 while 2 × 2 polarized MIMO configuration

employs a pair of y- and z -oriented dipole antennas at both Tx and Rx. The spatial cor-

relation of dual-polarized MIMO is much lower than that of single-polarized MIMO in all

simulation scenarios.

Although there are only two diversity branches, it does allow the antenna elements to be

colocated without the correlation effect. However, there is considerable interest in many di-
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32 CHAPTER 1.

versity branches by applying a combination of the pattern and polarization diversity [82],[74].

1.5.5 Capacity of polarized channels

Antenna polarization diversity is very useful in MIMO systems for enhancing channel capac-

ity. Indeed, employing polarization diversity can reduce the antenna array size and also the

spatial correlation, then we can obtain a better capacity. That is why the multi-polarized

antennas become more and more interesting in MIMO transmission systems. In this section,

MIMO systems are investigated to show the potential of using multi-polarized antennas for

differently oriented dipole antennas.

We consider that channel state information (CSI) is perfectly known to the receiver but

unknown to the transmitter. This is in theory what happens to signals propagating through

an urban and an indoor environment. In the case of a random channel model, the channel

matrix (1.27) is stochastic and then the capacity given by (1.5) is also random. In this

situation, the ergodic capacity can be obtained by taking the expectation of capacity over

all possible channel realizations.

Fig.1.15 demonstrates the 2×2 MIMO channel capacity of isotropic antennas with single-

polarization in (a) and with dual-polarization in (b). In this case, the single polarization

configuration exploits only azimuth isotropic antenna and the dual polarization configuration

applies azimuth and elevation isotropic antennas. The channel capacity is examined in

function of angular spread (AS) with 20 scatterers distributed around the transmitter and

receiver. As mentioned in the previous section, the XPD is defined for the urban case by χθ

and χφ ∼ N (0, 9). As shown in Fig.1.15a, the MIMO channel capacity increases as the angle

spread increases at transmitter and receiver for the same polarization antennas. In contrast,

dual polarization improves the channel capacity due to the lower antenna correlation as

shown in Fig.1.15b. However, when the spatial correlation of the single-polarized antennas

is lower, the channel capacity is proportional until 6.7 dB for AS> 80◦. It should be noted

that the MIMO channel capacity is significantly dependent on the antenna correlation.

Fig.1.16 shows the difference between the triple-polarized and the single-polarized channel
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1.5. ADVANCED POLARIZATION DIVERSITY TECHNIQUES FOR MIMO SYSTEMS33

(a) (b)

Figure 1.15: 2 × 2 MIMO channel capacity of isotropic antennas: (a) single-polarization
configuration and (b) dual-polarization configuration

capacity (∆C = Ctriple−polar − Csingle−polar) of 3 × 3 MIMO system versus the average XPD

and AS. The propagation environment has the same conditions as the previous section. For

triple-polarization configuration, x -, y- and z -oriented dipole antennas are employed. This

can represent a combination of angular and polarization techniques. We found that for the

triple-polarization case, the average power of subchannel can be unfortunately loosed when

the angular spread is not large enough until covering all antennas. As seen in Fig.1.16, the

single-polarized channel capacity can be superior to the triple-polarized channel capacity

because single polarization has a low spatial correlation and triple polarization loses the

subchannel power due to insufficient angular spread. However, generally speaking for most

scenarios, triple polarizations can maintain a higher capacity with respect to the single

polarization case.

1.5.6 Impact of depolarization effect on MIMO configurations

In this section, we investigate the impact of the depolarization effect on 4×4 MIMO systems

with single- and dual-polarization configurations. While pattern and polarization diversity

techniques are employed, the special correlation effect can be reduced or eliminated when

there is no-pattern interference. Nevertheless, the cross-polarization discrimination (XPD)

becomes the most important parameter because XPD represents the ratio of the co-polarized
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Figure 1.16: Difference between the triple-polarized and the single-polarized channel capacity
of 3 × 3 MIMO system employing the dipole antennas

average received power to the cross-polarized average received power. Then, for a high XPD

value, less energy is coupled between the cross-polarized wireless channels. At lower XPD and

higher K-factor values [83], multi-polarized antenna arrays can give high capacity. However,

at higher XPD and lower spatial correlation, a single-polarized antenna array can provide

even better results.

Figure 1.17: Difference between the dual-polarized and the single-polarized channel capacity
of 4 × 4 MIMO systems in the functions of XPD and AS

Fig.1.17 explains the difference between the dual-polarized and single-polarized channel

capacity (∆C = Cdual−polar − Csingle−polar) of 4×4 MIMO systems versus XPD and AS. Same

angle spreads at transmitter and receiver is considered in the simulation. For high XPD

and sufficiently large angle spread, we can note that the MIMO channel capacity of the

single-polarized antenna is superior to that of the dual-polarized antenna because of the
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1.5. ADVANCED POLARIZATION DIVERSITY TECHNIQUES FOR MIMO SYSTEMS35

subchannel power loss. The Frobenius norm of MIMO channel is used to investigate the

total channel power. It confirms that with a high XPD and low spatial correlation the

average transmission power of single-polarized isotropic antenna arrays is ‖H‖F ≈MN but

that of dual-polarized isotropic antenna arrays is always ‖H‖F ≈ M θN θ +MφNφ for high

XPDs and ‖H‖F ≈M θNφ +MφN θ for low XPDs.

Fig.1.18 shows the XPD impact on 4×4 MIMO systems with single- and dual-polarization

configurations. We employ four azimuth isotropic antennas for the single-polarization con-

figuration and two elevation and two azimuth isotropic antennas for the dual-polarization

configurations, which are applied to a uniform linear antenna array with a λ/2 antenna

separation. It shows that the channel power of single-polarization configuration augments

significantly with respect to XPD until ‖H‖F =4× 4=16, while for that of dual-polarization

configuration keeps around ‖H‖F =2 × 2+2 × 2=8.

(a) (b)

Figure 1.18: Frobenius norm of 4 × 4 MIMO systems in terms of XPD and AS with: (a) a
single-polarization configuration and (b) a dual-polarization configuration

1.5.7 Adaptive MIMO polarized-antenna selection technique(AMPAS)

In the previous sections, we defined the scattering mechanisms which are used to represent

not only the attenuation of traveling waves but also the polarization of the electromagnetic

wave. The achieved performance in capacity is calculated under the assumption that the

average received power is normalized and the channel attenuation is neglected. Subsequently,
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the variation of polarization is characterized only by the XPD effects.

As shown in Fig.1.17, this phenomenon affects directly the performance of non-polarized

MIMO systems. In single-polarization communications case, low XPD causes higher losses

in channel power, in other words there is some sort of mismatch in polarization. That is

why we will apply adaptive techniques to reduce this mismatch in the polarization of MIMO

systems. This technique is called adaptive MIMO polarized-antenna selection technique

(AMPAS). The principle of this method is to choose properly the antenna polarizations that

optimize the receiving signal power while minimizing fading correlation antenna effects. In

Fig.1.19, an example of an adaptive polarization system employing 4 z -oriented dipoles at

transmitter and 4 pairs of y- and z-oriented dipoles at receiver is illustrated. Simulation

results based on 3D ray-tracing techniques show that the channel capacity obtained by an

adaptive polarization increases 7%-13% in comparison to the single polarization channel

capacity.

Figure 1.19: Adaptive polarization technique (AMPAS) at Rx

Another example of an adaptive polarization system is based on the rotation of the an-

tenna elements according to the polarization of traveling waves at receiver. The proposed

MIMO system consists of P half-wavelength dipole antennas that are rotated against one

another by the rotation angle γ = 180◦/P with phase centers at the same point at both

transmitter and receiver.

Fig.1.20 demonstrates the obtained performances of 1 × 1 SISO, 1 × 2 SIMO and 2 × 2

MIMO communication systems while the receiving antenna is rotating on y-z plane with χθ

and χφ ∼ N (0, 5). Performance can be better enhanced if polarization at the receiver is
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1.5. ADVANCED POLARIZATION DIVERSITY TECHNIQUES FOR MIMO SYSTEMS37

properly matched to that of incident waves. In contrast, it can be worst if they are not well

matched as shown in Fig.1.20a (at rotational angle (γ) ≈ 140◦). Thus for improving the

MIMO channel capacity, the receiving antenna elements should be rotated to find maximum

receiving signals while minimizing fading correlation antenna effects.

(a) (b)

(c) (d)

Figure 1.20: Performances of (a) 1 × 1 SISO, (b) 1 × 2 SIMO, (c) 2 × 2 MIMO as the same
antenna position, (d) 2 × 2 MIMO as the separated antenna position while the receiving
antenna is rotating on plane y-z

While the other systems employ only z -oriented dipoles at transmitter and y-, z -oriented

dipoles at receiver in the case of the same antenna position (b,c) and the λ/2-separated

antenna elements (d), the rotations of two dipoles on plane y-z can provide different perfor-

mance as shown in Fig.1.20b,c and d. The channel performance is maximized performance

in Fig.1.20b when the polarizations of receiving antennas are well matched and is minimized

performance if they are mismatched. In Fig.1.20c, when the antennas have been rotated to
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38 CHAPTER 1.

nearly the same position, high correlation is produced. Subsequently, the channel capacity is

reduced even if the polarizations are correctly matched. However, it has better performance

in the situation of polarization diversity when the antenna rotation has the difference of 90◦.

Moreover, we observe the MIMO capacity with spatial diversity as illustrated in Fig.1.20d

where the antenna correlation is reduced and the channel capacity is improved.

In order to achieve a better transmission performance, the polarized antenna selection can

exploit together all diversity techniques such as pattern, spatial and polarization diversity.

Pattern diversity should be employed when a large angle spread is detected. Spatial diversity

could be exploited when a high antenna correlation is observed. Polarization diversity should

be used when a low XPD occurs. Therefore, the employed diversity should be properly

selected according to the propagation environment.
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1.6. MIMO APPLICATIONS 39

1.6 MIMO applications

1.6.1 Wireless LAN based MIMO

In this chapter, it was shown that employing MIMO systems could achieve higher perfor-

mance in data transmission. MIMO signalling can increase network bandwidth, range and

reliability. Recently many communication systems begin to take advantage of this chan-

nel capacity enhancement such as Wireless Local Area Networks (WLAN) and Wireless

Metropolitan Area Network (WMAN).

The IEEE 802.11 WLAN and the IEEE 802.16 WMAN standards are based on orthogo-

nal frequency division multiplexing (OFDM). OFDM is a multi-carrier modulation system,

reducing the required bandwidth but keeping the modulated signals orthogonal so they do

not interfere with each other. An important high data transmission rate extension of these

standards could be based on MIMO. An advantage of these systems is that they are prin-

cipally deployed in indoor environments and suburban environments that are characterized

by a rich multipath.

There are also some motivations in order to improve the performance and the transmission

rate in MIMO-OFDM systems when the CSI is available at the transmitter. As mentioned

in previous sections, water-filling technique is used to optimize the distribution of the total

transmit power over transmit antennas. Therefore, information symbols and power could be

optimally allocated over space and frequency in MIMO-OFDM communication.

The number of antennas utilized in a MIMO (WLAN) router for example can vary;

typical MIMO router contains three or four antennas. These systems are driving the need

for the next broadband revolution focused on home networking. Such systems will cover

next-generation game consoles, Video-on-Demand, HDTV and other new products. These

services are creating a more sophisticated home entertainment environment, together with

a high level of Quality of Service (QoS) to facilitate multimedia connectivity.

The intelligence behind the antenna polarization is described as “adaptive polarization”.
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The router receives feedback from the client adapter and has the ability to focus the polariza-

tion of the signals. As signal travels between an access point and wireless card, it will bounce

off of walls, ceilings and any other obstacle, resulting in multiple reflections of the original

signal arriving by different paths and different polarizations. By applying adaptive antenna

polarization algorithms (AMPAS), these reflections can be used to improve the signal to

noise ratio, as instead of having just one copy of the original signal.

This adaptive transmitting feature provides a more reliable signal at extreme ranges.

Moreover, MIMO can eliminate dead spots, delivering reliable whole home coverage with all

the speed you need for application in the future. Today, one can say, wireless is faster than

leased wire systems.

Finally, MIMO networking has the potential to increase communications data rate by

10-20 times above current systems. Such systems will use multipath reflections to create

parallel channels in the same frequency bandwidth, thereby increasing spectral efficiency.

In the next section sensor networks will be discussed as an application of MIMO based

system.

1.6.2 MIMO for Cooperative Sensor Networks

A sensor network can be considered as a self contained circuit with its sensor and RF in-

terface, as shown in Fig.1.21. Recent hardware advances allow more signal processing func-

tionality to be integrated into a single chip. For example it is possible to integrate an RF

transceiver, sensor interface, and base band processors into one device that is as small as a

piece of coin and can be used as a fully-functional wireless sensor node. Such wireless nodes

typically operate with small batteries, that is why these sensor nodes have limited power

capabilities. In many scenarios, the wireless nodes must operate without battery replace-

ment for many years. Consequently, minimizing the energy consumption is a very important

design consideration and energy-efficient transmission schemes must be used for the data

transfer in sensor networks
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1.6. MIMO APPLICATIONS 41

Figure 1.21: Typical wireless sensor node

In addition, because sensor nodes will be deployed in remote and oftentimes dangerous

locations, their maintenance (in particular, battery replacement) will be unlikely [84].

Sensor Networks are a new attraction for many potential applications, such as industrial,

military, geolocalization, surveillance, intrusion detection, and environmental monitoring

[84], [85].

Robust communications between sensor nodes are highly demanded at low power. As it

was shown, MIMO communication promises performance enhancements over conventional

single-input single-output (SISO) technology without increasing the bandwidth consumed by

the system or the total power radiated from a transmitter. MIMO technology has promising

characteristics that make it a serious candidate for sensor network communication technology.

Signal processing techniques that use multiple transmit and receive antennas, such as space-

time coding (ST Coding), have been shown to increase transmission reliability.

In a surveillance application, the ability of sensor nodes to relay data is critical to the

utility and effectiveness of the sensor network.

For a given node density, nodes are more likely to be out of range, thus inhibiting commu-

nication. In a situation such as this, the extended range of MIMO is of greater importance

because it enables cohesion (the ability of the sensor nodes to form a completely connected

network), which guarantees the success of the final application [86].
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New protocols for target reporting and a procedure for target localization which conserve

energy is recently developed [86],[87]. In [88], the authors summarize and compare several

routing MIMO technology.

Mean path length provides a measurement of the impact of MIMO communications on a

wireless sensor network. Mean path length provides a rough estimate of the amount of time

and energy expended in a data transmission from one node to another in the network.

Most significant mean path length reduction is provided by MIMO in the low or midrange

of node densities because the inter-node spacing is such that MIMO can reliably form some

links that SISO cannot. In the elongated region scenario this trend holds, though it is less

apparent [89].

There is also an increasing need for mobile networks with distributed transmitters and

receivers, typically referred to as mobile ad hoc networks (MANET). There, transmitters and

receivers do not pool their information together, either due to geographical dispersiveness,

the bandwidth and resource limitation, or due to security/privacy concern.

Recognizing that multiple antennas at the transceivers provide inherent multiplexing ca-

pability due to their spatial selectivity, it is attractive to study MIMO communication in ad

hoc networks with ”interference” transmission.

Energy-efficient communication techniques typically focus on minimizing the transmission

energy only, which is reasonable in long-range applications where the transmission energy is

dominant in the total energy consumption.

In cooperative sensor networks, we allow the cooperation among sensors for information

transmission and/or reception so as energy consumption as well as transmission delays over

some distance ranges can be reduced.

In conclusion, for the same throughput requirement, MIMO systems require less trans-

mission energy than SISO systems. However, direct application of multi-antenna techniques

to sensor networks is impractical due to the limited physical size of a sensor node which

typically can only support a single antenna. If individual single-antenna nodes allowed co-
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1.6. MIMO APPLICATIONS 43

operating on information transmission and/or reception, a cooperative MIMO system can

be constructed such that energy-efficient MIMO schemes can be deployed [90].

Finally, MIMO can provide significant network performance improvements in power con-

sumption, latency, and network robustness.
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