N
N

N

HAL

open science

Decidability results for primitive recursive algorithms
René David

» To cite this version:

René David. Decidability results for primitive recursive algorithms. Theoretical Computer Science,

2003, 300 (1-3), pp.477-504. hal-00384668

HAL Id: hal-00384668
https://hal.science/hal-00384668
Submitted on 15 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00384668
https://hal.archives-ouvertes.fr

Decidability results for primitive recursive
algorithms

R. David*
January 30, 2002

Abstract

In this paper I use the notion of trace defined in [9] to extend T.Coquand’s
constructive proof [6] of the ultimate obstination theorem of L. Colson to the
case when mutual recursion is allowed. As a by product I get an algorithm
that computes the value of a primitive recursive combinator applied to lazy
integers (infinite or partially undefined arguments may appear). I also get, as
T. Coquand got from his proof, that, even when mutual recursion is allowed,
there is no primitive recursive definition f such that f(S™(L1)) = s (L).

1 Introduction

In [3], Colson proved the so-called ”ultimate obstination theorem”. This theorem
asserts that a primitive recursive algorithm always reads, and so locks, on a par-
ticular input argument to complete its computation. This behaviour does not allow
the computation to shift from one argument to another one in order to efficiently
compute a function, as for example the inf function studied originally by Colson.
In [9], by using the syntactic notion of trace which is a simplified version of the se-
quential algorithms of Berry and Curien (see [2] or [1], chapter 14) a reformulation
of this theorem is given and proved.

The proof of this theorem, as given in [3] or [9], is not constructive : it does not
give a way to determine on which particular input argument the algorithm locks.

In this paper, I show that this can be done in a constructive way. This was
proved by T.Coquand in [6] for primitive recursive algorithms. This is extended
here in the case where mutual or alternate recursion is allowed. Alternate recursion
(see definition 2) has been introduced by P. Valarcher [17] to give a good algorithm
to compute the inf function.

The proof of the main theorem needs a difficult combinatorial result (proposition
18) which has some interest by itself.

Decidability results : I show that, even when mutual or alternate recursion is
allowed, various problems are decidable. For example, it is possible to compute
the intentional behaviour of a primitive recursive combinator f, i.e. the value of
f when applied to lazy integers (infinite or partially undefined arguments may
appear). Note that, when alternate recursion is allowed, the ultimate obstination
theorem obviously fails. This shows that the decidability results have nothing to do
with ultimate obstination ! I also show that when lists or change of parameters in
the recursion scheme are allowed, these problems become undecidable.

As a by-product of the proof I also get :

*Laboratoire de Mathématiques. Campus Scientifique. 73376 Le Bourget du Lac Cedex. email
david@Quniv-savoie.fr

The Input-Output behaviour of primitive recursive combinators : 1 show, for
example, that, even when mutual or alternate recursion is allowed, there is no
primitive recursive definition f such that f(S™(L1)) = 5n° (L). This was proved
by T. Coquand in the ordinary case. I believe the same technic could imply other
similar results such as, for example, if mutual recursion is restricted to at most
two functions, there is no f such that f(S™(L)) = S"/3](1) where where [z] is the
integer part of but this seems to need a combinatorial lemma that I have not
been able to prove (nor disprove).

I recall here after the main intuitions concerning the notion of trace. Let A/ be
the domain of lazy integers. An element e of N can be seen as a partial function
that fills some accessible cells (in the sense of [2]) with the constructors S, 0 and
L. Since L corresponds to a lack of information, a cell filled with L is often said to
be unfilled. For example (see figure 1) in ey = S(0) the accessible cells are the ones
denoted by their address 0 and 1. The first one is filled with S and the second with
0. In e; = S?(L) the accessible cells are the ones denoted 0,1,2. The cells 0 and 1
are filled with S and the third one is unfilled.

cell number | 0 | 1 |ande | cell number | 0 | 1 | 2
constructor | S 0| Y= eonstructor | S | S | L

€y =

fig. 1

The set of traces is defined as follows. Let W be the set of (finite or infinite)
words on the alphabet {z, / n > 0, x is a letter}. A trace is a pair (e, A) where
e € N and A is a labelling i.e. a function from the accessible cells of e to W (see
examples in figure 2).

To each primitive recursive definition (prc) f we associate a function [[f]] from
traces to traces which "codes” the way f gets its result : the fact that the token
x; occurs in A\(n) intuitively means that the cell i of the element named x has been
used to get e(n).

An example is given in figure 2 : define add as usual by add(0,m) = m and
add(Sn,m) = S add(n,m).

- The trace t> means that to get S the algorithm has used the cell 0 of ¢ty and
to get 0 the algorithm has used first the cell 1 of ¢y and next the cell 0 of ¢;.

- The trace t3 means that to get S the algorithm has used first the cell 0 of ¢;
and next the cell 0 of tp and to get 0 the algorithm has used the cell 1 of #g.

cell number | 0 1 cell number | 0
to =| constructor | S 0 | t; =| constructor | 0
labelling o | T labelling Yo

cell number | 0 1

to = [[add]|(to,t1) =| constructor | S
labelling | zo | 1 Yo

cell number 0 1
ts = [[add]|(t1,t0) =| constructor S 0
labelling | yo o | o1

fig. 2

Since a trace carries the informations on a computation and not only on the
result, this notion allows to also compose the computations. I believe it also makes

the proofs easier and, at least, closer to the intuition than in the original formulation
of Colson. In particular, the extension of Coquand’s constructive result to the case
where mutual recursion is allowed would probably be impossible without the notion
of trace.

This notion of trace is related to the sequential algorithms introduced by Berry
and Curien ([2] or [1], chapter 14) as follows. In their terminology, a sequential
algorithm is a tree. Each branch of this tree corresponds to the computation of the
algorithm on particular arguments, that is exactly (with a slight variation on the
syntax and the terminology) what I call a trace. In particular [[f]] can be seen as
the sequential algorithm associated to f.

The paper is organized as follows : I recall the notion of trace (section 2) and
its main properties (section 5). The main result is given in section 3. In section 4,
I give a combinatorial result that is crucial for the proof of the main theorem. The
sections 6, 7 and 8 are devoted to its proof. In section 9, I give the undecidability
results. Finally the appendix gives the proof of the combinatorial proposition of
section 4.

2 The trace

In this section I recall, for self completeness, the main definitions about traces. More
details can be found in [9]. Since, in this paper, the only data type I am concerned
with, is the data type of integers many things are simpler than in the general case.
I thus adapt the definitions of [9] to this case.

Definition 1 1. The scheme for primitive recursion is : f(O,?) = g(?) and
f(Sz,7) = h(f(z,7),2,7).
2. The scheme for mutual recursion is : f;(0,7) = ¢:(7) and fi(Sz,7) =
hi(fi(z, 7Y, ooy frl,), 2, 7).

3. The scheme for alternate recursion is :
FO,Y2, eyt 7) = 91 (Y2 o Uiy 7)
F(591,0,4s5., 9k, 7) = G2(Y1, Y35 -, Yk)
F(Sy1,8Y2,0, 00y Yk) = g3y, Y2, s b,)

F(Sy1s s Syr—1,0,7) = g (Y1, oo, Y1, 7)
f(Sy17 "'7Syk7 ?) = h(f(yb o Yk ?)72/17 "'73;’1677)

Definition 2 1. The sets of prc (primitive recursive combinators) are defined as
the least sets containing the projections, the constructors S and O and which
are closed under composition and primitive recursion.

2. The sets of pregue are defined in the same way as pre but definition by mutual
recursion s allowed.

3. The sets of preq: are defined in the same way as prc but definition by alternate
recursion s allowed.

Examples and comments

1. For the simplicity of notations, I assume, without loss of generality, that the
recursion always is on the first argument of the pre.

2. The addition is defined by : add(0,n) = n and add(Sm,n) = S add(m,n).
Thus add is a prc.

3. The functions odd and even are defined by : even(0) = 1 and odd(0) = 0.
even(Sz) = odd(x) and odd(Sx) = even(x). Thus odd and even are in prepy:-

4. The function inf is defined by : 4nf(0,0) = 0, inf(Sz,0) = 0 and inf
(Sz,Sy) = Sinf(z,y). Thus inf is in preg and it is easy to see that the
computation time of inf(S™(0), S™(0)) is inf(n, m).

5. It is well known that, as functions, the sets pre, preg.e and preg: are equal
but this paper shows, in particular, that, as algorithms, they are not.

Definition 3 1. N (resp. N*,Z) is the set of non negative (resp. positive,
negative or non negative) integers.

2. An element e of N is a partial function from an initial segment of N (denoted
by Acc(e)) into {S,0, L} satisfying :
e 0 € Acc(e)
e If (n+1) € Acc(e), then e(n) = S.
e Ife(n) =1, then (n+1) ¢ Acc(e).

3. An element e is finite iff Acc(e) is finite.

4. Let e e’ be elements of N' . e < e means : Acc(e) C Acc(e') and for all
n € Acc(e), if e(n) # L, then e(n) = €'(n).

5. I will denote the elements of N as :

e §™0) ={(5,9)/0<i<n}U{(n,0)},
e S™(L)={(,9)/0<i<n}tuU{(n,L1)}
e 5 ={(i,S) /i€ N}

Comment

Acc(e) represents the set of integers that are accessible in e. In this presentation,
this simply is the domain of e. In the general case (when various data types are
allowed) it was more convenient to define two distinct sets : the domain of e and
Acc(e). T have kept the notation Acc(e) to remain compatible with the notations
of [9].

Definition 4 1. Let ¥ = {z,, / = is a letter and n € N}. The elements of ¥ are
called tokens.

2. A word is a finite (possibly empty) or infinite sequence of tokens. The empty
word is denoted by €. The set of words is denoted by W .

3. Let u,u’ be words. u < u' means that u is a prefix of v’ and u 1 p denotes,
for p < lg(u), the prefix of u of length p.

4. u+u' is the result of concatenating u' at the end of u. More generally, if (uy)
is a (finite or infinite) sequence of words ug+uy + ... will be denoted by > uy.

5. Let uy, be a sequence of words. Say that u, — w if for each p there is an
ng such that for all n > ng, u, T p = u 1 p. This unique u is denoted by
Lim(uy,).

Definition 5 1. A trace is a pair (e, \) where e is an element of N and X is a
labelling function X\ : Acc(e) = W such that : Vn € Acc(e), if e(n) # L, then
A(n) is finite.

2. A trace (e, \) is finite if e is finite and all labels are finite.

3. The ordering on traces is given by : (e,\) < (e',\) iff e < e’ and for eachn
in Acc(e), A(n) < X' (n) and, if e(n) # L, then A(n) = X' (n).

4. The set of traces is denoted by T'.

5. Let e be an element of N and x be a letter. The trace (e, \) where A(n) = x,,
for all n € Acc(e) will be denoted as e[z]. A trace as e[z] is called an element
named .

6. Let t = (e, \) be a trace. e is called the value of t and is denoted by Val(t). A
is called the labelling of t and is denoted by Lab(t).

Proposition 6 T with its ordering forms a domain. In particular :

1. Every trace is a least upper bound (denoted by Sup) of an increasing sequence
of finite traces.

2. Every increasing sequence has a Sup.
The following notations will be convenient at many places.
Definition 7 Let t = (e, \) be a trace and w be a finite word.

1. w+t is the trace (e, \') defined by : X'(0) = w + A(0) and X' (n) = A(n) for
n > 1.

2. ((S,w) t) (or simply (S,w) t if no confusion is possible) is the trace (e',\')
defined by : €'(0) = S, X' (0) = w and, forn > 0, €'(n + 1) = e(n) and
N(n+1)=Xn).

3. Let x be a letter. t{x + k) = (e, ') where ' is obtained from X\ by replacing
z; by xj4p for all j.

Example
e yo+ S(0)[z] = (S,y0 o) (0, 1)
o S™(L)[z] = (S,20)(S,21)...(S, Tp_1)(L, zy).
e Let t = S¥[z], then ¢t = ((S,zo) s) where s = t(z + 1).
Definition 8 Let f be a function from T™ to T.
1. fis increasing if for all t; < t, f(t1, ..., te) < f(B, s).
2. fis continuous if it is increasing and preserves the Sup of increasing sequences.

Proposition 9 Every n-ary f € prec (resp. premut, resp. preg) induces (in a
unique way) a continuous function (denoted by [[f]]) from T™ to T such that :

® [[0]](t17) tn) = (0,5)
o [[S]t) = (S,e)t
o If f is the i-th projection then [[f]](t1, ..., tn) =t;

o If f =g(hi, ..., ht) then,
[, s tn) = [[gll(ry, ori) where rj = [[h]](E1, ...y T0)

o If f is defined by ordinary or mutual recursion and the recursive equations

are f;(0, ?) = g,-(?) and f;i(Sz, ?) = h,-(fl(m,?), oy Jre(, ?),x, ?) Then

[Fllt,F) =
- (L,’LU) ift = (J-aw)'
—w+[[gll(3) if t = (0,w)
—w+ [[hl]]([[fl]](ra ?)7] [[fk]](""; ?),’I", ?) ift = (Sa w) r

e If f is defined by alternate recursion and (for simplicity of notations I assume
k = 2) the recursive equations are : f(0,y,8) = q1(y,3), f(Sz,0,%) =
92(337 ?) and f(S;U; Sy; ?) = h(f(:l?, Y, ?)7 r,Y, ?) Then [[f]](th ta, ?) =

- (L,’LUl) thl = (J_,wl).

— wy + [[g1]](22, ?) ifti = (0,wy)

— (L,wy +ws) if t1 = (S,w1) r and to = (L, w2).

— w1 +ws + [[gg]]((rl,?) if t1 = (S,w1) 1 and tz = (0,ws).

s RN, 7s, 3)m,ma, F) if 0= (S,wn) v ond ty =

Comments and examples

[[add])(S(0)[x], 5*[y]) (S,20) (S, 2190) (S,91) (S,y2)---
L [ladd]](S(0)[=], S*(L)]) = (S,20) (S,z190) (S,91) (L,92)
([add]}(S*(L)[y], S(0)[x]) (S, 90) (S,91) (L,92)

2. Since this paper is only concerned with decidability results (and not with com-
plexity results), I do not care on the strategy of reduction used to transform
the equations into algorithms. However, the strategy that is implicit in this
definition is call by name : intuitively, at each step the leftmost outermost re-
dex is reduced and, in particular, two copies of the same redex will be reduced
twice if they are needed twice.

3 The main result

In this section, I give the main result (theorem 14) of the paper and the definitions
that are necessary for its statement.

Definition 10 Let t = (e, \) be a trace.

1. The branch of t (denoted by Br(t)) is the word defined by: Br(t) = > A(k).
keAcc(e)

2. A letter x is unbounded (respectively bounded) in t if {j / x; occurs in Br(t)}
is infinite (respectively finite).

3. t is ultimately obstinate if it has at most one unbounded letter.

4. Nb(t,x,n) is the least k such that x,, occurs in (k). If x, does not occur in
Br(t), Nb(t,z,n) is undefined.

Comments and examples

e The intuitive meaning of ultimate obstination is that, if the trace represents
an infinite computation, at most one argument may be used entirely and thus
the computation cannot shift from one argument to another one.

e Let t = e[z] be a named element. Since z is the only letter that appears in
Br(t), t is ultimately obstinate. Since both z and y are unbounded in ¢’ =
(L, Y-z yk), t' is not ultimately obstinate.

k>0

e If ¢ represents a computation, Nb(¢,z,n) represents the number of output

symbols produced before the use of the cell n of the argument z.

e Lett = (S,20)(S,2190)(0,z2y1). Nb(t,x,0) =0, Nb(t,y,0) = 1 and Nb(t,y, 1)
=2

e Let f be a prc and assume that, for some function g (usually called the
intentional behaviour of f), f(S™(L)) = S9(")(L). We will see (cf. proposition
28) that, if t = [[f]](S¥(z)) and g is not eventually constant, then g(n) =
Nb(t,z,n).

Definition 11 Let C be a class of functions from N into N. Say that C' is closed
by :

e finite change if f € C and for all n, except finitely many, f(n) = g(n) then
geC.

e minimum if f,g € C then h € C, where h is defined by h(n) = min{f(n),g(n)}.

e iteration if f € C is such that f(n) > n for all n and g satisfies g(n + 1) =
f(g(n)) for all n, then g € C.

e multi-step iteration if f € C is such that f(n) > n for all n and, for some
p > 1, g satisfies g(n + p) = f(g(n)) for all n, then g € C.

e mixed iteration if f,g € C, f(n) > n for all n and h satisfies h(n + 1) =
Min{g(n+1),f oh(n)} for all n, then h € C.

Definition 12 1. Let Cy be the following set of functions : {n — 0,n —>
n,n+—n+1,n+—— ifn =0 then 0 else (n — 1)}.

2. Let Cp, be the least set of increasing functions containing Coy and closed by
composition, finite change and iteration.

3. Let Cut be the least set of increasing functions containing Coy and closed by
composition, finite change and multi-step iteration.

4. Let Cyyy be the least set of increasing functions containing Co and closed by
composition, finite change, minimum and mized iteration.

Open question
I believe that Cp,, = Cyyt i.e. Cp, is closed by minimum and mixed iteration,
but I have not been able to prove that.

Definition 13 Let C be either Cp, or Cpye or Cyz.

1. T(C) is the set of traces t such that for every letter x which is unbounded in
t, the function n — Nb(t,z,n) is in C.

2. The description of t (denoted by Desc(t)) is, for t € T(C), the following set
of informations :

e Val(t).
o for every letter x, whether x is bounded or not in t and

— if © is bounded, max{j /x; occurs in Br(t)}.
— if x is unbounded, a description of the function n — Nb(t,z,n) as
a member of C.

Theorem 14 1. Let f € prc and assume t1, ..., t, € T(Cypy) are ultimately
obstinate. Then [[f]](t1, ..., tn) € T(Cpr) and is ultimately obstinate.

2. Let f € premae and assume ty, ..., tn € T(Chut) are ultimately obstinate.
Then [[f]](t1, -, tn) € T(Cmut) and is ultimately obstinate.

3. Let f € pregy and assume ty, ..., t, € T(Cq). Then [[f]](t1, ..., tn) €
T(Cart)-

Moreover, in all cases, Desc([[f]|(t1, ..., tn)) can be computed from f, Desc(ty),
..., Desc(t,,).

As a consequence, I get :

Corollary 15 1. If t1, ..., t, are named elements and f € prc (resp. premu,
prea), then [fl1(t1, -, tn) € T(Cypr) (resp. T(Crut), T(Catt))-

2. The following problem is decidable.

Data : Let t = [[f]](t1, ..., t,) where f € prc (resp. premut, resp. preq:) and
t1, ..., tn are named elements .

Question : What is Val(t)? Is the letter x unbounded in t ¢ If it is bounded
what is the mazimum n such that x,, occurs in Lab(t) ¢ Otherwise what is the
function n — Nb(t,z,n) ?

3. There is no f € pre (resp. premut, pPreas) such that, for every n, f(S™(L)) =
577 (L).

Proof. 1. and 2. are immediate consequences of theorem 14. It follows easily
from proposition 18 below that the function n — n? is not in Cpr neither in Chyyy
nor in Cyy. The point 3 follows thus from proposition 28 below. m

Comments and open questions

1. It is already proved in [9] that if f € pre (resp. premu) and tp, ... t,
are ultimately obstinate then so is [[f]](t1, ..., tn). The new result is the
constructivity. Some informations about t = [[f]](¢1, ..., t,) can be obtained
by a simple computation. For example, if we know that Val(t) > S(L), it is
easy to compute Lab(t)(0). But deciding whether Val(t) > S(L) or not is not
immediate at all.

2. It is not difficult to check that, for every function f € Cp, (resp. Cput, Cait),

there is a g € prc (resp. premut, preqat) such that for every n, g(S™(L)) =
SIm (L),

3. It is clear that the ultimate obstination theorem does not hold for prc,;; and
thus the computation of Desc([[f]](t1, ..., tn)) has nothing to do with the
ultimate obstination ! In particular, parts (1) and (2) of theorem 14 could be
stated without the hypothesis on ultimate obstination but, in this case, in the
definition of the class C, I should assume that C is closed by minimum and
mixed-iteration.

4. Let prepue,r be the set defined as prepgy: but where at most k functions
may be defined by simultaneous recursion. Let Ci,r be the set defined
as Cput but where the multi-step iteration is restricted to 1 < p < k. It
follows immediately from the proof that the theorem holds for prep,,: r and
T(Cmut,k)-

Is there f € pregu2 such that, for every n, f(S™(L)) = S/3(L) where [z]
is the integer part of x 7 I believe there is no such f but I have not been able
neither to prove nor to disprove it. See the remark after proposition 18.

5. Various necessary conditions are known (theorem 14 gives one and some others
are given in section 5) for ¢ € T to be, for example, [[f]](S¥[z], S¥[y]) for some
f € prc but these conditions are far from being sufficient. Can we find other
necessary such conditions ? In other words, can we find other properties of
traces preserved by the use of prc 7

4 A combinatorial result

The main difficulty in the proof of theorem 14 (which is done by induction on f)
is the computation of Val(t) for t = [[f]](S“(z)) when f is defined by recursion
(for simplicity I assume here that f has only one argument). For the usual case of
primitive recursion (the other ones are conceptually the same but technically more
difficult) the rough idea of this computation is the following :

For some h and by definition, t = zo + [[h]]([[f]](s), s) where S¥(z) = ((S, zo) s).
Let 7 = g + [[R]](S¥[y], s) where y is a fresh letter. By the induction hypothesis, I
can compute Desc(7). I will show that if Nb(r,y,n) < n for some n then Val(t) =
S™(L) where n is the least such integer and otherwise Val(t) = Val(7).

By the induction hypothesis, the function n — Nb(7,y,n) is in Cp,. I thus
have to show that for functions in C),, I can effectively decide whether there is an
n such that Nb(r,y,n) < n or not.

The main ingredient of the proof is thus :

Proposition 16 The following problem is decidable : given a description of f in
Cpr (resp. Cut, Tesp. Cait) is there an n such that f(n) <n ¢

Proof. This follows easily from proposition 18 below. =
Definition 17 Let f be a function from N to N.

1. f is linear if, for n large enough, f(n) = an + b where a € N and b € Z.
2. f is quasi-linear if, for n large enough, f(n+q) = f(n) +p where p,q € N.

3. f is N-exponential (resp. Q-exponential) if, for n large enough, f(n) > a™b
where b is a positive rational number and a € N — {0,1} (resp. a € Q).

Remark

It is easy to check that f is quasi-linear iff there are integers p, ¢ and a function
g such that, for all n, f(n) = [np/q] + g(rm(n, q)) where [z] denote the integer part
of # and rm(n,q) the remainder of n in the division by g.

Proposition 18 Let C be either Cp, or Cpyyt or Cor and let f € C. Then, forn
large enough :

1. If C = Cpy or Cyt : f is constant or strictly increasing.

2. o IfC =Cp, or Cy ¢ f is linear or N-exponential.

o If C =Chut - f is quasi-linear or Q-exponential.

3. Moreover, this is effective i.e. we can compute, from a description of f, the
various numbers involved.

The proof is given in the appendix : for pr and alt this is, more or less, a
straightforward verification by case analysis but for mut this is a highly non trivial
result.

Remark

Let E be a set of integers. Say that f is E-quasi-linear if, for some p € E and
some ¢, f(n+p) = f(n) + ¢ for all n. If I could prove that each f € T(Cpyut 2)
is either exponential or E-quasi-linear for some E such that 3 ¢ E, I will be able
to prove that there is no f such that f(S™(L)) = S®/31(L). The problem is the
following : since, if f and g are {p}-quasi-linear, f o g is {p?}-quasi-linear, E will
contain {2" / n € N}. The proof of proposition 18 shows that E will also contain
the length of the cycles associated to the functions that are iterated. It is not difficult
to find an example of lemma 43 where p = 4 and there is a cycle of length 3. This
example does not give the desired counter-example but it seems to show that a finer
analysis is necessary.

5 Some basic facts on traces

This section recalls various properties of traces. Most of the results are given here
without proof : complete proofs, for pre, are given in [9]. It is easy to check that
they remain valid for preg,.: and preg:. It also introduces the crucial notion of
deficiency. The important points are the following.

1. To compute [[f]](¢) it is enough to compute [[f]](e[z]) where z is a fresh letter
and e = Val(t) and then substitute in the result each x,, by A(n) where A is
the labelling function of ¢. See definition 29 and theorem 30.

2. In a computation, a cell may not be accessed before the previous cells have
been accessed. See definition 21 and proposition 22.

3. Let e, €' be lazy integers. If a cell is not used in the computation of f(e) and
e, €' coincide up to this cell, then [[f]](e[z]) = [[f]](e[z]). See proposition 25.

4. Assume f is defined by recursion, r = S“(z) and ¢t = [[f]](r). Then, t =
xo + [[R]]([[f]](s),s) where s = r(z + 1) (i.e. r with a lift of the indices) and
thus ¢ satisfies the equation t = v[y := t(x+1)] where v = o +[[h]](e[y], s) and
e = Val(t). The important point to compute e is whether or not y is deficient
in v i.e. v needs more information on y than it has already produced.

5. Propositions 31 and 33 give the behaviour of Nb and Desc with respect to
substitutions.

6. Proposition 28 is the technical result that proves point 3 of corollary 15.

5.1 Deficiency

Definition 19 Let t be a trace and x be a letter. I say that x is deficient in t if for
some n, Nb(t,z,n) < n.

Examples and comment
1. Let t = (S,20)(S,21y0)(0, Z2y1). Then, x is deficient in ¢ because Nb(t, z,0) =
0 but y is not because Nb(t,y,0) = 1 and Nb(¢t,y,1) = 2.

10

2. The intuition is the following : if ¢ represents a computation, x is deficient in ¢
if, for some n, the n-th cell of z has been used to compute Val(t)(0), ..., Val(t)(n).

3. We will see (cf. the comments after proposition 22) that, for the traces t we
have to consider, the function n — Nb(t, z,n) is increasing and x is deficient
in ¢ iff, for some n, Nb(t,z,n) = n.

5.2 Finiteness

Proposition 20 Let f be a prc and ty, ..., t, be finite traces. Then [[f]](t1,..., tn)
also is finite.

5.3 Regularity

The regularity intuitively means that, in a computation, a cell may not be accessed
before the previous cells have been accessed. Regularity is called safety in [2].

Definition 21 Let t be a trace. A letter x is reqular in t if for all n < n' such that
T occurs in Br(t), x, also occurs in Br(t) and the first occurrence of x,, is earlier
than the first occurrence of T, .

Proposition 22 Let f be a prc and ty,..., t, be traces. Assume that a letter is
regular in each of the t;, then x also is regular in [[f]](t1, ..., tn)-

Comment and examples
e z is regular in e[x] for every element e. z is not regular neither in (L, z, zo)
nor in (L, zp z2).

e Assume that z is regular in ¢. It is clear then that the function Nb(t,z,n) is
defined on an initial segment of N and is increasing. Since it is impossible
that Nb(t,z,n) < n for all n, x is deficient in ¢ iff, for some n, Nb(t,z,n) = n.

5.4 Restrictions

Definition 23 1. Let w be a word. w | x, = w if ©, does not occur in w and
otherwise w' + x,, where w' is the longest prefix of w that does not contain an
occurrence of Ty.

2. Let t be a trace. t | x,, is defined by :

o (Liw)lxy=(Lwlmz,).
e (0,w)lzy,=(L,wlx,) if x, occurs in w and otherwise (0, w).
((S,w) t)y | zn=(L,wlxy,) if x, occurs in w and otherwise ((S,w) t |

Comment and examples

1. w | x, is the word obtained by truncating w after the first occurrence (if any)
of ©,. t | x, is the trace obtained by truncating ¢ at the first node where z,,
occurs.

2. S¥x] L xp = S"(L)[x].
Proposition 24 Let f be a prc, x be a letter, k € N and ty, ..., t, be traces. Then
[N s tn) b ae = [f](0 L 2k, ooy tn L 2)

11

oy —-
Proposition 25 Let f be a pre, r = e[z],s = €'[z] and t be a sequence of elements
of N' with names distinct from x. Assume j is accessible both in e and e'. Then

L[N0) Ly = [F) b ay.

2. Assume x; does not occur in Br([[f]](r, _t))) Then [[f]](r,_t)) = [[f]](s,?)

5.5 Compatibility

Definition 26 Let s,t be traces. A letter x is compatible with s in t if x is reqular
int and, for each n,

1. If x, occurs in Br(t) then n € Acc(s).
2. If Val(s)(n) = L, thent =1t | zp.
Comment and examples

1. The intuition for the clause (2) in the definition is the following : if a cell n
is filled with L in s (this means a lack of information) and the information
of this cell is needed in a computation (this means that z,, occurs), then the
computation has to stop.

2. x is compatible with s intuitively means that ¢ can be seen as a computation
using an argument e[z] where e = Val(s) i.e. the occurrences of x in ¢ are
compatible with the value of ¢.

3. Let e be an element, A\; and A2 be labelling functions for e. A letter x is
compatible with (e, A1) in ¢ iff = is compatible with (e, A2) in ¢.
4. Let s = (e, A). Then x is compatible with s in e[z]. Let ¢t = (L, >_ x). Then
k>0
x compatible with (S, \) in ¢ but, because clause (1) is not satisfied, = is not
compatible with (S™(0), A) in ¢ for any n. Because clause (2) is not satisfied,
x is not compatible with (S(L),) in (L, zoz120).

Proposition 27 Let f be a prc.

1. Assume x is compatible with s in each of the t;. Then x is compatible with s

in [[fl](t1, s tn)

2. For each i, z* is compatible with e;[x%] in [[f]](e[z'], ..., en[z"]).

Proposition 28 Let f be a prc. Assume that, for each n, f(S™(L)) = 89" (L
and g is not eventually constant. Then, for each n, g(n) = Nb(t,x,n) where t

(NS ().

Proof. z is unbounded in ¢ because, otherwise, by proposition 25, Val(t,)
would be eventually constant where t, = [[f]](S™(L)(x)). By proposition 25, ¢ |
Zpn = tn | ,. By proposition 27 and definition 26, clause (2) t,, = ¢, | @, and thus
t | x, = tn. The result follows then from the definition of Nb(¢t,z,n). ®

12

5.6 Substitutions

The notion of composition is crucial when functions are studied but, usually, only
the results are, in some sense, composed. The notion of traces allows to compose
also the computations. The precise meaning of this is given in theorem 30. It needs
the notion of substitutions.

Definition 29 Let t be a trace, (s;) = (e, \;) be a sequence of traces and (x%) be a
sequence of distinct letters. Assume that, for each i, x* is compatible with s; in t.
Then t[z' := s;/i = 1,...,n] is the trace obtained by simultaneously replacing each
(%), by Xi(n) in all the words A(m) for m € Acc(t).

Example
Let t = (e, A). Then ¢ = e[z][z = t].

Theorem 30 Let f be a pre, ty, ..., t, be traces and, for each i, let r; be the named
element (with the fresh name x') such that Val(t;) = Val(r;). Then [[f]](t1,-.., tn) =

(N1, cyrp)[zt =t /i=1, ..., n].

Proposition 31 Let t,r be traces and x,y be letters. Assume that x is compatible
with v in t and let s = t{lx == r].
Then Nb(s,y,n) = Min{Nb(t,y,n), Nb(t,z, Nb(r,y,n)}.

Proof. If the least occurrence of y,, in Br(s) comes from ¢, then Nb(s,y,n) =
Nb(t,y,n). Otherwise it comes from the substitution of x,, by Lab(r)(m) where
m = Nb(r,y,n) and thus Nb(s,y,n) = Nb(t,z, Nb(r,y,n)} . m

Corollary 32 Lett,r € T(Cauyz), « a letter compatible with r int. Then s = t[z :=
r] € T(Cait) and we can compute Desc(s) from Desc(t) and Desc(r).

Proof. This follows immediately from proposition 31. m

Proposition 33 Let t,r € T(Cp,) (resp. T(Cmut)), T a letter compatible with r
in t. Assume that r,t are ultimately obstinate, then s = t[x :=r] € T(Cyp,) (resp.
T(Cmut)) and we can compute Desc(s) from Desc(t) and Desc(r).

Proof. First note that, if it is true that C}, and C),,: are closed by minimum
(see the open question in section 3) , the result would follow immediately from
proposition 31.

The informations concerning bounded letters are easily computed. Assume y is
unbounded in s and let r = (e, A).

1. Assume z is bounded in ¢ and let n be the maximum index of z in Br(t).

(a) If e(n) # L then A(n) is finite and, then for p large enough (and easily
computed) Nb(s,y,p) = Nb(t,y,p).

(b) If e(n) = L then, by definition 26, t = t | x,, and A(n) is a final segment
of Br(s). Thus, for p large enough, Nb(s,y,p) = n.

2. Assume z is unbounded in t. Since ¢ is ultimately obstinate, y is bounded in
t. It follows immediately that y must be unbounded in r and then it is easy
to check that for n large enough Nb(s,y,n) = Nb(t,z, Nb(r,y,n)). m

13

6 Proof of theorem 14(1)

The proof is by induction on the definition of f. The only non trivial case is when
f is defined by recursion. By theorem 30 and proposition 33, I may assume that ¢,
..., t, are named elements. Let 7= to, vy bty

(Case 1 : ty is finite) 1 only consider t; = S*(0)[z]. The proof is similar for t; =
Sk(L)[z]. This is done by induction on k.

- k=0 : trivial.

“k=p+1:let t = [f])(ts,7) = mo + [[R]([f]](s, T),s, 7) where t; =
((S,) s). Let o = S(0)[z] where z is a fresh variable and ' = [[h]]([[f]](c, 7), 0, 7).
By the induction hypothesis, Desc(t') is computable. It is easy to check that, for
every letter y in 7, Nb(t,y,n) = Nb(t',y,n) and that, for n > 1, Nb(t,z,n) =
Nb(t', z,n —1).

(Case 2 : t1 is infinite) The idea is the following : let t; = S¥[z] = ((S, o) s)
and t = [[f]](t,, 7) = zo + [P]([[f]i(s, 7),s, 7). Let y be a fresh letter and
7 = zo + [[1]](S¥[y], 5, 7). By the induction hypothesis, 7 € T(C,,) and we can
compute Desc(r). I will show (this is point (1) in each of the sub-cases below)
that, if y is not deficient in 7 then Val(t) = Val(7) and, otherwise, Val(t) = S™(1)
where n is the least such that Nb(7,y,n) = n. The computation of Desc(t) and
the proof that Desc(t) € T(Cpy) is quite simple (this is point (2) in each of the
sub-cases below).

Let e = Val(t) and v = zo + [[k]](e[y],s, 7). Since s = t;(z + 1), ¢ satisfies
the equation t = v[y := t(z + 1)]. It is thus not difficult to prove that ¢t = Lim(v;)
where v; is defined by vg = v and v; 1 = v;[y := v{z + i+ 1)]. For a complete proof
see [9]. Note that Val(t) = Val(v) = Val(v;) for each i. I need first the following
result.

Claim 34 Assume y,, occurs in 7 and y is not deficient in 7 | ym- Then Val(v) >
SmHL().

Proof. Note that the hypothesis means that, for every n < m, y, does not
occur in Y A(k). The proof is by induction on m.
k<n
m = 0 : by proposition 25, v | yo = 7 | yo. By the hypothesis Nb(r,y,0) > 0
and so Val(v) > S(L).
m = p+1: by the induction hypothesis, Val(v) > S™(L). Thus (by proposition
25) v | Ym =T | ym. By the hypothesis Nb(r,y,m) > m and so Val(v) > S™H(L).

(Case 2.a) Assume first that y is deficient in 7 and let n be the least such that
Nb(r,y,n) = n. Note that, since the function n — Nb(7,y,n) belongs to Cyp,,
we can decide whether y is deficient in 7 and, in this case, determine n. Let
A; = Lab(v;). It is easy to check (by induction on 4) that for each i , Nb(v;, y,n) = n.

1. By claim 34, Val(t) > S™(L). Since t = Lim/(v;), both Val(t) = S™(0) and
Val(t) > S"T1(L) are impossible : this would contradict the fact y, occurs
in Aj(n). Thus Val(t) = S™(L).

2. For a letter z in 7 it is easy to see that the maximum index of z in ¢ is the
one it has in v | ¥, = 7 | y». The only variable which is unbounded in t is z
and Nb(t,z,p) = n for p large enough.

(Case 2.b) Assume next that y is bounded and not deficient in 7.

14

1. Let n be the greatest such that y, occurs in 7. Since Desc(7) can be computed,
this n can be determined. By claim 34, Val(t) > S™t!(L1). But then, by
proposition 25, v = 7 and thus Val(t) = Val(v) = Val(r).

2. t is obtained from v by finitely many substitutions and the result follows from
proposition 33.

(Case 2.¢) Assume finally that y is unbounded and not deficient in 7.

1. Since y is not deficient, Val(7) = S¥. By claim 34, Val(t) > S™(L) for every
n and thus Val(t) = S¥.

2. Since Val(t) = S, v = 7. Again, since t = Lim(v;), it is clear that the only
unbounded letter in ¢ is and the maximum index of the other variables is
the one they have in v. Since we know that v is ultimately obstinate, x is
bounded in v. Let k be the maximum index of # in v. Since t = v[y := t(z+1)],
by proposition 31, Nb(t,z,n + 1) = Min{Nb(v,z,n + 1), Nb(v,y, Nb(t{z +
1),z,n+ 1))}. It is clear that Nb(t{(x + 1),z,n + 1) = Nb(¢t,z,n). For n >
k, Tp4+1 does not occur in Br(v) and thus the previous equation becomes
Nb(t,z,n+1) = Nb(v,y, Nb(t,z,n)). Since y is not deficient in v, Nb(v,y, j) >
j for all 7, and thus this equation finishes the proof since it shows that the
function n — Nb(t,z,n) belongs to Cp,.

7 Proof of theorem 14(2)

By induction on f. I only check the difficult case where t; = S¥[z] and f is defined
by mutual recursion.

Assume thus that fi,..., fi are defined by mutual recursion by : f;(Sn, ?) =
Bilfi (0,), oo filn, 7)1, 7). Let e; = [[])(S“[a],) and a; = Val(e;). T must
show that, if 7 are named elements, the e; are in T'(Cyuut) and I can compute
Desc(e;).

The e; satisfy the equations e; = o + [[hi]](e1(x + 1), ..., ex(x + 1), 0, 7) where
t1 = ((S,x0) o) (recall that o = t1{x + 1)). In the following the e;(x + 1) will be
called ”the recursive calls”.

7.1 Computation of ¢; : introduction

The algorithm given in the next section computes the a;. It is essentially the same as
in the proof of theorem 14(1), though the mutual recursive calls make the detection
of deficiency (corresponding here to loops) harder. If this algorithm had to be
implemented, many points could be done in a more efficient way. I chose not to do
so because it would be more difficult to understand how it works.

e We keep the informations we already have in two sets : known_results and
known_facts. a; € known-results means that we know a; = S?(0), a; =
SP(L) or a; = S¥. known_facts is a finite set of informations of the form
Q5 Z SP(J_).

e The expression ”"a; > SP(L) is known” means that either a; > SP(L) €
known facts or a; = S“ € known_results.

e 7; is what we can compute of e; using the informations we have at the present
time : if a; € known-results the recursive call e;{(xz + 1) is replaced by
a;[y(j)] and otherwise by S“[y(j)] where y(j) is a fresh name. Each time we
have found the real value a;, we have to recompute the r; since we started
with a; = S“ and we have discovered it is something else. Lab(r;) will be
denoted by A;.

15

If w is a word, the expression ”a; is sufficiently known for w” means that

— either a; € known-results

— or y(j) is bounded in w and, for all p such that y(j), occurs in w,
aj > SPTL(L) is known.

The algorithm calls a procedure denoted by Next. When Next (i,n) is called
a; > S™(L) is known but a; > S"*!(L) is not known and we try to know
more on a;.

e Restart is a Label of the main program. Going to Restart means that we
have found a new information and we look if there are some other values to
compute.

Loops correspond to deficiency in the proof of theorem 14(1). Two kinds
of loops may occur. The first one corresponds to unbounded use of recur-
sive calls. It is detected when the following holds for every i such that a; ¢
known-results (this is case (3) of the main program) :

— For every j such that y(j) is bounded in r;, a; is sufficiently known for
Br(a;).

— For some j such that y(j) is unbounded in 74, a; is not sufficiently known
for Br(a;). Since r; is ultimately obstinate this j is unique. In such a
case I will say that f; recursively calls f;.

Since there are finitely many simultaneously defined functions there is a loop :
fi, recursively calls f;, ... that recursively calls f; that recursively calls f;, .

e The second one corresponds to bounded use (this is case (3.a) of the procedure
Next). The set rec_calls of pairs (7, p) is used to detect these loops. (j,p) €
rec_calls means that we are "inside” the computation of a; at a point where
we know that a; > SP(L) and we try to know more on a;. A loop is detected
when there is a sequence (i1,p1), ..., (in,pn) such that the computation of
ai, (p1) needs the computation of a;,(p2) that himself needs ... a;, (p,) that
needs the computation of a;, (p1)-

e When, in the description of algorithm, I say, for example, ” compute Desc(r;)”
or ”let n be the least such that g(n) = n” this can effectively be done : this
follows immediately from the induction hypothesis and the properties (see
proposition 18) of Chyy¢-

7.2 The algorithm

Procedure Next (i, n)
Begin

1. If Val(r;) > S™*!(L) and for all j, a; is sufficiently known for > X;(m),

m<n

then Add a; > S™"!(L) to known_facts and Goto Restart.

2. If Val(r;) = S™(0) (resp. S™(L)) and for all j, a; is sufficiently known for
Br(r;), then Add a; = S™(0) (resp. a; = S™(L)) to known_results and Goto
Restart.

3. Otherwise, let y(j), be the least token in Y~ A;(m) such that a; > SPTL(L)

m<n
is not known.

16

(a) If (j,p) € rec_calls, then Add a; = SP(L) to known_results and Goto
Restart.

(b) Otherwise, add (i,n) to rec_calls and Call Next (j,p).

End (of procedure Next).

Main Program

Begin

Let known_facts := () and known_results := ().

Label : Restart

Let rec_calls := ().

If every a; is known then Exit else do

Forj=1,..,kdo: let s(j) = a;[y(j)] if a; € known_results and s(j) = S“[y(j)]
otherwise ; let r; = o + [[h]](s(1), ..., s(k), S¥[z](z + 1), 7) ; compute Desc(r;).

1. If there is an ¢ such that a; ¢ known-results and for all j, a; is sufficiently
known for Br(r;) : choose such an 4, add a; = Val(r;) to known_results and
Goto Restart.

2. If there is an i such that a; ¢ known-results and j such that y(j) is bounded
in r; and a; is not sufficiently known for Br(r;) : choose such an i. Let n
be maximal such that a; > S™(L) € known_facts. Let y(j), be the least
tokenin Y. A;(m) such that a; > SP*(L1) is not known.Let rec_calls:=

m>n

{(i,n)} and Call Next (j,p).

3. Otherwise, a loop is detected. Choose one. To simplify the notations assume

the loop is : f; recursively calls f, that recursively calls ... f,, that recursively
calls f;.

For j = 1 to m, let G be the function n — Nb(rj,y(j + 1),n) and let
g= Gy 0Gyo0..0Gy, where I consider that y(m + 1) = y(1).

e If g(n) > n for every n, then Add a; = S to known_results and Goto
Restart.

e Otherwise, let n be the least such that g(n) = n. Add a; = S™(L) to
known_results and Goto Restart.

End (of main program)

7.3 Proof of the algorithm

The proof is essentially the same as the one of theorem 14(1) and uses extensively
proposition 25. Two things have to be shown : the informations on the a; computed
by the algorithm are correct and the algorithm terminates.

The following results will be useful.

Claim 35 Assume that, at some point of the algorithm, a; > SP*L(L) is known.
Then we can compute A;(n) for all n < p.

Proof. Immediate. m

Claim 36 rec_calls cannot contain both (i,n) and (i,m) for n # m.

17

Proof. Thave to show that the following cannot appear, where I assume, for sim-
plicity of notations, that (7, m) is put in rec_calls after two calls of Next : the main
program set rec_calls= {(i,n)} and calls Next(j, p) which adds (j,p) in rec_calls
and calls Next(i,m) which goes in case (3.b) and adds (i,m) to rec_calls.

Assume, towards a contradiction, that this situation does appear. This means
that a; > S™(L) is known but a; > S™"!(L) is not and a; > SP(L) is known but
aj > SPT1(L) is not. If Next(j,p) calls Next(i,m), this means that a; > S™(L) is
known but a; > S™* (1) is not and thus n = m. Then, Next(i,n) does not go in
case (3.b) but in case (3.a) since (i,n) €rec_calls. Contradiction m

1. Proof of correctness. The fact that each time the algorithm adds an informa-
tion to known_facts or known_results, this information is correct is proved
as in the proof of theorem 14(1), using proposition 25. The only different case
is when a loop is detected : case (3.a) of the procedure Next and case (3) of
the main program. In the proof of theorem 14(1), both cases correspond to y
deficient in 7. Recall that, in this case, we showed that if n is the least such
that Nb(7,y,n) = n then Val(t) = S™(L).

e The unbounded case.

Assume again, for simplicity of notations that the loop is f; recur-
sively calls fo and fo recursively calls fi. At this point, y(2) (resp.
y(1)) is the only unbounded letter in ry (resp. r2). Moreover, all the
other letters are sufficiently known and, in particular, y(1) (resp. y(2))
is sufficiently known in 7y (resp. r2). By claim 35, let s;1,s2 be fi-
nite traces such that e; = zo + [[h]](s1,e2(z + 1),0,7) and ey =
zo + [[he]](e1 (@ + 1), 52,0, 7) where 0 = S¥[z](z + 1).

Let p; = zo + [[Pu]](s1, 5¥[y(2)], o, ?) and p, = 2o + [[h2]](S¥[y(1)], s2,
o, 7). Let 71 = p[y(2) = py] and 7o = po[y(1) := py]. It is clear
that ey = 71[y(1) := er{x + 2)] and ez = T2[y(2) := ea(x + 2)]. For
more details, see the proof of the ultimate obstination theorem in case
of mutual recursion in [9]. For i = 1,2 let Gi(n) = Nb(p;,y(i),n). It
follows from proposition 33 that Nb(71,y(1),n) = Gy o Ga(n).

The fact that, if y(1) is not deficient in 7, then a; = S and otherwise
a; = S™(L) where n is the least such that Nb(71,y(1),n) = n is proved
exactly as in the proof of theorem 14(1).

e The bounded case.

Assume again, for simplicity of notations, that the loop has length 2.
By claim 36, assume the loop is (1,n) — (2,p) — (1,n). I have to show
that a; = S™(L). As in the previous unbounded case, I can find 71 such
that e; = 71[y(1) := e (x + 2)] and show that n is the least such that
Nb(7r1,y(1),n) = n. The results follows then exactly as in the proof of
theorem 14(1).

2. Proof of terminaison :

e By claim 36, the procedure Next can call itself at most k£ many times.

e Thus, when the main program calls Next the program always return
to Restart with a new information, i.e. some new a; > S™(Ll) €
known_facts or some new a; € known_results.

e In cases 1 and 3 of the main program, the algorithm adds some new a; in
known_results. It is thus enough to check that it cannot always stay in
case 2. This case corresponds to bounded letters : since there is a finite
number of traces and letters, there is only a finite set of informations

18

needed about bounded letters. The result follows then again from the
fact that each time the algorithm goes back to Restart it has got a new
information.

7.4 e; € T(Cpu) and computation of Desc(e;)

Let r; = 2o + [[Ri]](s(1), ...,s(k),o,) where s(j) = a;[y(j)]. We know that e; =
rily(4) =ei{z+1) [j=1,.. k.

The only non immediate case is the one when there is a loop (of length p) of
recursive calls, e.g. fi recursively calls fo that recursively calls ... that recursively
calls fi. In this case the only letter with unbounded index in the e; (1 = 1,...,p) is
z. The informations concerning the other variables are easy to get.

Assume again, for simplicity of notations, that the loop has length 2. As in the
proof of correctness, I can find traces 7; such that :

the only letters occurring in 7; are : z,y(i) and the letters in 7.

the only letter which is unbounded in 7; is y(7).

7; € T(Cput) and Desc(r;) can be computed by using proposition 33.

e; = Ti[y(i) = Ti<£l? + 2)]
e y(i) is not deficient in 7;.

It is then not difficult to check (this in done as in the proof of theorem 14(1))
that for n large enough Nb(e;,x,n + 2) = Nb(r;,y(i), Nb(e;, z,n)) and thus the
function n — Nb(e;,z,n) is in Chyue.

8 Proof of theorem 14(3)

The proof is essentially the same as the one of theorem 14(1). The difficult case is
when f is defined by alternate recursion. For simplicity of notations, I assume the re-
cursion is made only on two arguments. The main case is : t = [f](S¥[z], S“[y], 7).
Let v = zo+yo+[[h]](Val(t)[z], 0,7, 7) where o = S¥[z](z+1) and 7 = S¥[y](y+1)
and z is a fresh letter. Let p = o + yo + [[A]](S¥[2], 0, 7,)

I show, exactly as in the proof of theorem 14(1), that if z is not deficient in p
then Val(t) = Val(p) and otherwise that Val(t) = S™(L) where n is the least such
that Nb(p,z,n) = n.

It is clear that t = v[z = t(z + 1,y + 1)]. It follows easily that in the non trivial
case i.e. Val(t) =S¥ :

e If G, is the function : n — Nb(t,z,n) then Gy(n + 1) = Min{Nb(v,z,n +
1), Nb(v,z,G1(n))}. Similarly for Gy :n+— Nb(t,y,n).

e If G, is the function : n — Nb(t,a,n) where «a is a letter in 7, then
Guo(n) = Nb(v,a,n).

Thus ¢t € T(Cput). m

9 The undecidability result

This section uses the general notion of trace where the data type of lists is allowed.
I do not recall here the corresponding notions. More details can be found in [9].

19

Theorem 37 There is no algorithm to compute f(S¥) from a description of f, in
the following cases :

1. f is a prc using integers and lists of integers as data types.

2. f is a prc using only integers as data types but allowing the following recursion
scheme : f(Sz,y) = h(f(x,Sy),z,y).

Proof. Note again that these schemata define new algorithms but the functions
they compute are primitive recursive functions.

It is enough to show that, from a description of a Turing machine, I can compute
a prc f such that the Turing machine halts if and only if f(S¥) = S¥.

Assume (without loss of generality) that the final state has number 0 and that
when the final state is entered, the machine remains in this state for ever. It is quite
usual (and easy) to show that the internal description (the state, the positions of
the scanned cells and the symbols in the cells) of the machine at the step n are
primitive recursive functions of n. Notice that this definition is usually made by
use of mutual recursion but primitive recursive functions are -extensionally- closed
by mutual recursion. It is then not difficult to find a pre state depending on one
argument such that, for every integer n, state(S™(0)) is the number of the state of
the machine at time n.

1. Define incr and g by : incr(nil) = nil, incr(cons(a,l)) = cons(Sa,incr(l)),
g(0) = cons(0,nil) and g(n + 1) = cons(0,incr(g(n))). Then g(S¥) is the
infinite list [0, 1,2, ...]. Define h by: h(nil) = 0, h(cons(a,l)) = if state(a) =0
then Sh(l) else h(l) and let f = hog. It is easy to check that f(S¥) =S¥ iff
the machine enters the final state.

2. Define g and f by ¢(0,y) = 0, g(Sn,y) = if state(y) = 0 then Sg(n, Sy) else
g(n,Sy). f(x) = g(x,0). It is again easy to check that f(S¥) = S¢ iff the
machine enters the final state. m

10 Appendix

10.1 Proof of proposition 18 for C,,

By simultaneous induction on the construction of f.
1. For the base functions and finite change, the result is trivial
2. Composition :

e if f and g are are either constant or strictly increasing, then so is f o g.

— if f and ¢ are linear then so is f o g.
— if f(n) =an+ b and g(n) > d"c then f(g(n)) > d"ac+ b > d"e (for
some e) for n large enough and g(f(n)) > d*"*tc .

— if f(n) > ab™ and g(n) > d"c. Since d > 2, g(n) > n for n large
enough and then f(g(n)) > b™c for n large enough .

3. Tteration : since for all n, f(n) >n, g(n +1) = fog(n) > g(n).

e if f(n) =cn+dand g(n+1) = f(g(n)) :
— ¢ cannot be 0 since f cannot be constant.
—Ifc=1,then d >0 and g(n+1) = g(n) + d and so g(n) = dn + b.

20

— If ¢ > 1 then g(no+n) = d+c(d+c(d+...))) = d(c"™ =1)/(c—1) >
c"e (for some e) for n large enough.

e if f(n) > d"c then for some ng and all n > ng f(n) > 2n and so
g(ng +n) >2"g(ng). m

10.2 Proof of proposition 18 for C,,;

By simultaneous induction on the construction of f.
1. For the base functions and finite change, the result is trivial.

2. Composition : the only problem is to check that the composition of two quasi-
linear functions is quasi-linear. Assume f(n+¢) = f(n) +p and f'(n+¢') =
f'(n) +p'. Then fo f'(n +qq") = f(f'(n) + ap') = fo f'(n) +pp.

3. Multi-step iteration : the only difficult case is when f is quasi-linear and h is
defined by iteration from f. Assume f(n +q) = f(n) + p.

e if ¢ > p: it is easy to check that for some n, f(n) < n. So this case does
not occur.

e if ¢ < p: it is easy to check that for some a > 1 and for n large enough
f(n) > an and thus h is exponential.

e if p = ¢ : this is given by the next lemma. m

Lemma 38 Assume that f is increasing, for all n large enough, f(n+p) = f(n)+p
and h(n +r) = foh(n). Then h is quasi-linear for n large enough.

Proof. The idea is the following : since h is obtained by iterating f and the
value of f(n) depends essentially of the remainder of n in the division by p, we
have to study, for each i, the sequence defined by a(0,7) = i and a(n + 1,i) = the
remainder of f(a(n, 1)) in the division by p. Since the number of possible remainders
is finite this sequence is eventually cyclic. The main difficulty of the proof is the
fact (see lemma 43) that the form of these cycles is essentially independent of i.

I have to show that h is quasi-linear on some final segment of N and to determine
this segment. For simplicity, I will assume the hypothesis of the lemma hold for all
n. For the general case I should, in the following, replace everywhere ”for all n” by
"for n large enough” and check that the final segment of N on which the mentioned
property is true can be effectively determined. This is easily done and I will not
care about this.

The result follows immediately from lemmas 42 and 43 below. I need first some
definitions.

Claim 39 f(0) < f(1) < ... < f(p— 1) < f(0) +p.

Proof. This immediately follows from the fact that f is increasing and f(p) =
fO) +p. =

Claim 40 I may assume without loss of generality, that 0 < f(0) < p.

Proof. Let k£ = [f(0)/p] and define f' by : f'(n) = f(n) — kp. Clearly, f' is
increasing, 0 < f'(0) < p and, for all n, f'(n + p) = f'(n) + p. Define h' by h'(i) =
h(i) for 0 <i <rand h'(n+7r) = f'(h'(n)). Assume h'(n+ a) = h'(n) + b for some
a,b. Let fOdenotes fo f...o f, I times. It is easy to check (by induction on [) that
for all 1,3, h(lr+i) = fO(h(i)), ' (Ir+i) = f O (i) and fO @) = f'O @) +1kp. Tt
follows that, for all n, h(n) = h'(n) + [n/r]kp and thus h(n + ar) = h(n) + rb+ kap.
|

21

Definition 41 o Let I ={i /0 <i<p}. Foricl,letq(i) be the quotient
and r(i) the remainder, in the division of f(i) by p. Note that q is increasing
on i and, by claims 39 and 40, q(i) =0 or 1.

e Say that i is a right (resp. left) point if q(i) = 1 (resp. q(i) = 0). This
terminology will be easily understood by looking at the example below.

e For j € I, define a(n, j) and b(n, j) by : a(0,j) = j, a(n + 1,j) = r(a(n, j))
and b(n, j) = q(a(n, j)). Thus f(a(n,j)) = b(n,j)p+a(n +1,j).

o Letlg(j) be the least such that a(n +1g(j), j) = a(n,j), for some n. Say that
a(n,j) = a(n +1,j) = .. = a(n+19(j) — 1,7) = aln +19(j),j) = a(n,j)
is a cycle for j. The function lg is clearly defined since I is finite. It is also
clear that, for n > p, a(n +1g9(j),7) = a(n,j).

o Let S(j) = Card{m [n <m <n+lg(j) and b(m,j) = 1}. It is easy to check
that S(j) does not depend on n, if n > p.

The role of S and the cycles is given by lemma 42 below.

Example
i 012345678]9 1011
fG@)|414]5{5|8(9]9|9|10|13|14 |14
r(i) |4])14(5]5|819]9]|9|10(1] 2| 2
gi) [OJO0|O|O]O]O|O|O] O] 1| 1]1

In this example (wherep=12): 1 - 458 —>10—-2—>5—9 = lisacycle
for 1. lg(1) = 7 and S(1) = 2. There is, in fact, only one cycle : for example, 6 has
the same cycle since 6 — 9 and 9 belongs to the cycle of 1. This is however not the
general case.

Lemma 42 For all n > pr, h(n +1Ir) = h(n) + pS where I =1g(i), S = S(i) and
i =rh(n —pr) is the remainder of h(n — pr) in the division by p.
)

Proof. Let n = pr+n', i =rh(n'), | =lg(i) and S = S(¢). Then h(n') = pk +i
for some k. Since f(a(m,i)) = pb(m,i)+a(m+1,17), it is easy to check (by induction
qg—1
on q) that f(9(h(n')) = a(q,i) + p(k + > b(m,i)). Since a(p + [,i) = a(p,i) it
m=0
p+i—1

follows that f®+)(h(n')) = fP (h(n')) +p > b(m,i) = fP (h(n')) + pS. Thus,

m=p

h(n' + (p+0)r) = fP(h(n')) = [P (h(n')) +pS = h(n' +pr) +pS. =
Lemma 43 The functions lg and S are constant on I.

Proof. This is done in several steps, according to various situations. Claim 46
gives the easy cases. Claims 48 to 50 prove the most difficult case. Claims 44 and
45 will be useful.

Claim 44 There are no n,m and i,j such that b(n,i) = 0,b(m,j) =1 and a(n +
Li) <a(m+1,j).

Proof. Otherwise, we have f(0) +p < f(a(n,9)) +p = a(n + 1,i) + p <
a(m+1,j) +p= f(a(m,j)) < f(p—1) and this contradicts claim 39. =

Claim 45 1. Assume b(n,i) =1 and a(n + 1,i) > a(n,i). Then, for all m > n,

b(m,i) = 1. Similarly, if b(n,i) = 0 and a(n + 1,i) < a(n,i) then, for all
m >mn, b(m,i) =0.

22

Assume that for n large enough b(n,i) =1 (resp. b(n,i) =0). Then, for some
m, a(m + 1,i) = a(m, 7).

Assume a(m + 1,i) = a(m,i) and b(m,i) = 1 (resp. b(m,i) = 0). Then for
each j, there is an n such that a(n + 1,j) = a(n,j) and b(n,j) = 1 (resp.
b(n,i) =0).

Proof.

1.

3.

Since b(n,i) = 1 and a(n + 1,i) > a(n,i), then b(n + 1,7) = 1. I prove, by
induction on m that for all m > n, a(m + 1,i) > a(m,i) and b(m,i) = 1.
Since f is increasing p + a(m + 1,%) = b(m,i)p + a(m + 1,7) = f(a (m i) <
fla(m + 1,i)) = b(m + 1,i)p + a(m + 2,i) = p+ a(m + 2,i) and the result
follows.

Assume that, for m > n, b(m,i) = 1 and, for example, a(n + 1,i) > a(n,i).
It is easy to prove by induction as in the previous case that for m > n,
a(m + 1,7) > a(m,4). The result follows immediately from the fact that I is
finite.

e Assume that for some ng, a(ng,j) > a(m,i). It is easy to check by
induction as in the previous cases that for n > ng, a(n,j) > a(m, i) and
b(n,j) = 1. The result follows then from (2).

e Assume for all n, a(n + 1,j) < a(m + 1,). Then, by claim 44, for all n,
b(n,j) =1 and again the result follows from (2). m

Claim 46 1. One of the following situation holds :

(a) All the cycles are uniquely made of right points.
(b) All the cycles are uniquely made of left points.
(c) For all i,n if b(n,i) =1 then b(n + 1,7) = 0.
(d) For all i,n if b(n,i) =0 then b(n + 1,7) = 1.

2. In case (a) lg(i) = S(i) = 1 for each i. In case (b) lg(i) = 1 and S(i) =

for each i. In case (¢) and (d) hold simultaneously lg(i) = 2 and S(i) =1 for
each i.

Proof.

1.

Assume neither case (c¢) nor case (d) holds. Let b(n,i) = b(n + 1,4) = 0 and
b(m,j) = b(m + 1,5) = 1. If a(n,i) > a(n + 1,i) then, claim 45 implies
that we are in case (a). Similarly if a(m + 1,j) > a(m,j) we are in case (b).
Otherwise, we have a(n,i) < a(n + 1,i) < a(m + 1,j) < a(m,j) and this
contradicts claim 44.

. If (a) or (b) holds the result follows immediately from claim 45. Assume

(c¢) and (d) hold simultaneously and, for all n, a(n + 2,i) # a(n,i). Say, for
example, a(0,7) < a(2,7). Since b(2n,4) is constant it is immediate to check
that for all n, a(2(n — 1),4) < a(2n,4) which is impossible. m

Thus it remains to prove lemma 43 in the following case (the symmetric one is
similar).

e For all i,n if b(n,i) = 1 then b(n + 1,4) = 0.

23

e For some i,n b(n,i) = b(n +1,i) = 0.

Note that the example of definition 41 corresponds to this situation. Fix ¢ such
that b(n,i7) = b(n + 1,7) = 0 for some n and let [= lg(i) and S = S(7). Note that
lg(i) > 3 since there are at least two left points and one right point. Choose j # i.
I may assume that {a(m,i) / m € N} N {a(m,j) / m € N} = 0 since, otherwise, i
and j have the same cycle and thus, lg(j) = [and S(j) = S. I will show that the
cycle of j looks like the one of i and thus, again, lg(j) = [and s(j) = S. I need
some more definitions. I may assume without loss of generality that :

1.

a(l,i) = a(0,i) and a(lg(j),j) = a(0,5). This means that, in the cycles
corresponding to j (resp. i), the first element of the cycle is j (resp.).

b(0,i) = b(0,j) = 1. This means that i and j are right points.

For all n, if b(n,7) = 1 then a(n,i) > a(0,i). This means that i is the smallest
of the right points of its cycle. It follows that a(1,7) is the smallest of the left
points of its cycle.

. Let k be such that b(k,¢) = 0 and for every m such that b(m,i) = 0, a(m, i) <

a(k,i). This means that a(k,?) is the largest of the left points in its cycle. It
follows that a(k + 1,4) is the largest of the right points in its cycle.

There is no m such that b(m,j) = 1 and a(m, j) < a(0,i). This means that
the smallest of the right points of the cycle of i is smaller than the smallest
of the right points of the cycle of j. (The opposite case is done in a similar
way). It follows that there is no n such that b(n,j) =0 and a(n,j) < a(1,7).

Definition 47 1. Say that Suc(n,m) if a(n,i) < a(m,i) and there is no q such

2.

that a(n,i) < a(q,i) < a(m,i). It is convenient to also say that Suc(k+1,1).

If Suc(n,m), say j €|n,m[if a(n,i) < j < a(m,i) (resp. if n = k + 1,
j>alk+1,7))

Example and comments

1.
2.

Note that this notion is only defined modulo I.

By the assumption on i and j, we always have Suc(k,0) and a(m, j) € |k, 0[
iff b(m,7) =0 and a(m, j) > a(k,1).

In the example of definition 41, the cycle corresponding to ¢ = 0 satisfies k = 3
and a(1,7) < a(5,7) < a(2,i) < a(6,i) < a(3,7) < a(0,7) = a(7,i) < a(4,1i).

Thus Suc(1,5), Suc(5,2), Suc(2,6), Suc(6, 3), Suc(3,0), Suc(0,4) and Suc(4,1).

Claim 48 Assume Suc(n,m). Then Suc(n+ 1,m + 1).

Proof. The non trivial cases (i.e. the ones that do not immediately follow from
the fact that f is increasing) are :

e n=k+1,m = 1: first note that by claim 44, a(k+2,7) < a(2,7). The equality

is impossible since this would imply lg(i) < k and this contradicts the fact that
the cycle has at least k + 1 points. Assume that a(k + 2,7) < a(n,i) < a(2,1)
for some n. If b(n — 1, i) = 0 then a(n — 1,i) < a(1,i) : contradiction. If
b(n —1,i) =1 then a(n — 1,4) > a(k + 1,4) : contradiction.

e b(n,i) = b(m,i) = 0,b(n + 1,4) = 0 and b(m + 1,7) = 1. I prove below that
[

Jn+1,m+ 1[=]k,0

24

— m+1=1: otherwise a(m + 1,i) > a(l,i) and thus a(n,i) < a(l —1,7) <
a(m,i). This contradicts Suc(n,m).

—n+1 =k : otherwise a(n + 1,i) < a(k,i). If b(k — 1,4) = 0 then
a(n, 1) < a(k — 1,%) and since Suc(n,m), a(k — 1,4) > a(m,i) and thus
b(k,i) = 1. Contradiction. If b(k —1,7) = 1 then a(k — 1,7) = a(k + 1,1%)
and this contradicts the fact that [> 3. m

Claim 49 below implies that, for 0 < ¢ < ¢' < I, a(q,j) # a(q’,j) and b(q,j) =
b(q,i). Thus claim 50 shows that lg(j) =1 and S(j) = S. This finishes the proofs of
lemmas 43, 38 and thus the proof of proposition 18.

Assume that j € |n, m[for some n,m such that Suc(n,m).

Claim 49 For all q, a(q,j) € In+q¢,m + ¢[.

Proof. Note that if the cycle of i satisfies (as in the example of definition
41) a(1,i7) < a(5,i) < a(2,i) < a(6,i) < a(3,7) < a(0,i) = a(7,i) < a(4,i) and
if j > a(4,i), claim 49 implies a(1,7) < a(4,j) < a(5,i) < a(1,j) < a(2,i) <
a(5,j) < a(6,i) < a(2,j) <a(3,i) <al6,j) < a(0,i) < a(3,5) < a(4,i) < a(0,)
and a(7,7) > a(4,1).

The proof is by induction on q. Using the fact that f is increasing, the only non
trivial cases are :

e In+q,m+q[=)k+1,1[: since a(q,j) > a(k+1,i) we must have a(¢+1,j) >
a(k + 2,i). By claim 44 and the fact that the cycles of ¢ and j are disjoints,
we have a(q +1,j) < a(2,1).

e In+q+1,m+q+1[=]k,0[: b(g+1,j) = 0 because otherwise, since a(q, j) <
a(m + ¢,i), we should have a(q + 1,7) < a(0,7) and this contradicts the
assumption on j. Then, since a(g,j) > a(n+q,i), a(¢+1,j) > a(k,i) and we
are done. m

Claim 50 a(l,j) = j.

Proof. Claim 49 shows that a(l,j) € [n,m[. Assume a(l,j) # j, e.g. a(l,j) < j.
It follows from claim 49 by an immediate induction on ¢ that, for every ¢, a(q.l,j) €
Jn,m[and a(g — 1.1,) < a(q.l,j). Contradiction. m
10.3 Proof of proposition 18 for C;

By induction on f, as for Cp,. The only new case is for f given by mixed iteration.
Assume that :

e f, g are strictly increasing and linear or exponential, for n large enough.

e f(n) > n, for all n.

e h(n+1) = Min{g(n+1), foh(n)} (and thus h(n) < g(n)) for n large enough.
I must prove that :

e h is strictly increasing : h(n + 1) > h(n) follows immediately from the facts
that g(n + 1) > g(n) > h(n), f(h(n)) > h(n) and h(n + 1) = Min{g(n +
1), foh(n)}.

e h linear or exponential on some final segment of N.

1. Assume that for for n > m, g(n) = an + b and h(n + 1) = Min{g(n +
1),ch(n) + d}.

25

(a) Assume first that ¢ > 1. There is n > m such that h(n) = g(n) and
gn+1) <cg(n) +d.

Proof : otherwise for all n large enough, h(n) < g(n). Then h(n +
1) = ch(n)+d. This is impossible since then, for some e, h(n) > c"e,
for n large enough and this contradicts the assumption h(n) < g(n).
End of proof.

Then it is easy to see (by simultaneous induction on p) that h(p) =
g(p) and g(p+ 1) < cg(p) + d for all p > n.

(b) Assume that ¢ = 1 and d > a. Thereis n > m such that h(n) = g(n).
Proof : otherwise for all n > m, h(n) < g(n). Then h(n + 1) =
h(n) + d and, for some ¢, h(m) > dm — ¢q for n > m, and this
contradicts the assumption h(n) < g(n). End of proof.

Then it is immediate to see (by induction on n) that h(n) = g(n)
for all n > m.

(¢) Assumethat c=1andd < a. If h(m)+d < g(m+1), it is immediate
to see (by induction on n) that for all n > m, h(n+1) = h(n)+d and
thus h is linear. Otherwise, it is easy to check that h(m + 1) +d <
g(m + 2) and the result is similar.

. Assume that for for n > m, g(n) > b"a and h(n + 1) = Min{g(n +
1),ch(n) + d}.

(a) Assume first that ¢ > b. There is n > m such that h(n) > b"a .
Proof : otherwise for n > m, h(n) < b"a < g(n). Then, h(n +1) =
ch(n)+d and thus b”a > h(n) = cn — g for some ¢. This contradicts
¢ > b. End of proof.

Then, for some r > 1 and some e, h(p) > rPe for all p > n.

Proof : show (by simultaneous induction on p, using ¢ > b) that, if
d > 0 then h(p + 1) = ch(p) + d and h(p) > b**1a for p > n and,
otherwise, for p > 0, h(n +p) > ab™P +P~1d+ P2d + ... + d.End
of proof.

(b) Assume 1 < ¢ < b. If for all n > m, c.h(n) +d > b"ta then h is
exponential. Otherwise let n > m be such that ch(n) + d < b"a.
It is easy to see (by simultaneous induction on p) that for all p > n,
ch(p) + d < bP*a and h(p + 1) = ch(p) + d and thus that h is
exponential.

(c) Assume that ¢ = 1. If for all n > m, h(n) +d > b""'a then h is
exponential. Otherwise let n > m be such that h(n) + d < b"a.
It is easy to see (by simultaneous induction on p) that for all p > n,
h(p) +d < bPTta and h(p+ 1) = h(p) + d and thus that A is linear.

. Assume g(n) > b"a and f(n) > d"c for n large enough. Then, for n
large enough f(n) > bn. It follows (by induction on n) that for some ny,
h(n +ng) > Min{b"*"a,b"h(ng)} for all n and thus h is exponential.

. Assume finally g(n) = an + b and f(n) > d"c for n large enough. Let
e = Max{a,2}. Let m be such that for n > m, f(n) > en and g(n) =
an + b. There is n > m such that g(n +1) < foh(n) .

Proof : otherwise for all n > m, h(n+1) = foh(n) and thus h(p+m) >
2Ph(m) which contradicts eh(n) < foh(n) < g(ln+1) =a(n+1) +b.
End of proof.

Then it is easy to see (by simultaneous induction on p, using e > a) that
for all p > n, g(p+1) < f o h(p) and h(p) = g(p)- m

26

References

[1] R. Amadio and P.L. Curien. Domains and Lambda Calculi. Cambridge Uni-
versity Press Press, 1998.

[2] G. Berry and P.-L. Curien. Sequential algorithms on concrete data structures.
Theoretical Computer Science, 20:265-321, 1982.

[3] L. Colson. About primitive recursive algorithms. Theoretical Computer Sci-
ence, 83 : 57-69, 1991.

[4] L. Colson. Représentation intensionnelle d’algorithmes dans les systemes fonc-
tionnels. Thése de doctorat, Université P 7, 1991.

[5] L. Colson. A unary representation result for system 7. Annals of Mathematics
and Artificial Intelligence, 16:385-403, 1996.

[6] T. Coquand. Une preuve directe du théoreme d’ultime obstination. Compte
Rendus de I’Académie des Sciences, 314, Serie I, 1992.

[7] R. David. Un algorithme primitif récursif pour la fonction inf. Compte Rendus
de I’Académie des Sciences, 317 (Série I), 1993.

[8] R. David. The inf function in the system F. TCS, 135 : 423-431, 1994.

[9] R. David. On the asymptotic behaviour of primitive recursive algorithms. TCS,
266 :159-193, 2001.

[10] Martin Hotzel Escardo. On lazy natural numbers with applications. SIGACT
News, 24(1), 1993.

[11] D. Fredholm. Intentional aspects of function definitions. Theoretical Computer
Science, 152 : 1-66, 1995.

[12] D. Fredholm. Computing minimum with primitive recursion over lists. Theo-
retical Computer Science, 163 : 269-276, 1996.

[13] J.-L. Krivine. Un algorithme non typable dans le systeme F. Compt. Rend. de
I’Acad. des Sci. Paris, 304(5), 1987.

[14] Roza Peter. Recursive Functions. Academic Press, 1968.

[15] H. Rogers. Theory of recursive functions and effective computability. MIT
Press, 1988.

[16] P. Valarcher. A complete characterization of intensional behaviours of primitive
recursive algorithms. Rapport de Recherche du LIR, 96.11, 1996.

[17] P. Valarcher. Contribution & ’etude du comportement intentionel des algo-
rithmes: le cas de la récursion primitive. Thése de doctorat, Université P 7,
1996.

[18] P. Valarcher. Intensionality vs extensionality and primitive recursion. ASIAN
Computing Science Conference - LNCS, 1179, 1996.

[19] J.E. Vuillemin. Proof techniques for recursive programs. PhD thesis, Standford,
1973.

27

