
HAL Id: hal-00384668
https://hal.science/hal-00384668

Submitted on 15 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decidability results for primitive recursive algorithms
René David

To cite this version:
René David. Decidability results for primitive recursive algorithms. Theoretical Computer Science,
2003, 300 (1-3), pp.477-504. �hal-00384668�

https://hal.science/hal-00384668
https://hal.archives-ouvertes.fr


Decidability results for primitive recursivealgorithmsR. David�January 30, 2002AbstractIn this paper I use the notion of trace de�ned in [9] to extend T.Coquand'sconstructive proof [6] of the ultimate obstination theorem of L. Colson to thecase when mutual recursion is allowed. As a by product I get an algorithmthat computes the value of a primitive recursive combinator applied to lazyintegers (in�nite or partially unde�ned arguments may appear). I also get, asT. Coquand got from his proof, that, even when mutual recursion is allowed,there is no primitive recursive de�nition f such that f(Sn(?)) = Sn2(?).1 IntroductionIn [3], Colson proved the so-called "ultimate obstination theorem". This theoremasserts that a primitive recursive algorithm always reads, and so locks, on a par-ticular input argument to complete its computation. This behaviour does not allowthe computation to shift from one argument to another one in order to eÆcientlycompute a function, as for example the inf function studied originally by Colson.In [9], by using the syntactic notion of trace which is a simpli�ed version of the se-quential algorithms of Berry and Curien (see [2] or [1], chapter 14) a reformulationof this theorem is given and proved.The proof of this theorem, as given in [3] or [9], is not constructive : it does notgive a way to determine on which particular input argument the algorithm locks.In this paper, I show that this can be done in a constructive way. This wasproved by T.Coquand in [6] for primitive recursive algorithms. This is extendedhere in the case where mutual or alternate recursion is allowed. Alternate recursion(see de�nition 2) has been introduced by P. Valarcher [17] to give a good algorithmto compute the inf function.The proof of the main theorem needs a diÆcult combinatorial result (proposition18) which has some interest by itself.Decidability results : I show that, even when mutual or alternate recursion isallowed, various problems are decidable. For example, it is possible to computethe intentional behaviour of a primitive recursive combinator f , i.e. the value off when applied to lazy integers (in�nite or partially unde�ned arguments mayappear). Note that, when alternate recursion is allowed, the ultimate obstinationtheorem obviously fails. This shows that the decidability results have nothing to dowith ultimate obstination ! I also show that when lists or change of parameters inthe recursion scheme are allowed, these problems become undecidable.As a by-product of the proof I also get :�Laboratoire de Math�ematiques. Campus Scienti�que. 73376 Le Bourget du Lac Cedex. emaildavid@univ-savoie.fr 1



The Input-Output behaviour of primitive recursive combinators : I show, forexample, that, even when mutual or alternate recursion is allowed, there is noprimitive recursive de�nition f such that f(Sn(?)) = Sn2(?). This was provedby T. Coquand in the ordinary case. I believe the same technic could imply othersimilar results such as, for example, if mutual recursion is restricted to at mosttwo functions, there is no f such that f(Sn(?)) = S[n=3](?) where where [x] is theinteger part of x but this seems to need a combinatorial lemma that I have notbeen able to prove (nor disprove).I recall here after the main intuitions concerning the notion of trace. Let N bethe domain of lazy integers. An element e of N can be seen as a partial functionthat �lls some accessible cells (in the sense of [2]) with the constructors S, 0 and?. Since ? corresponds to a lack of information, a cell �lled with ? is often said tobe un�lled. For example (see �gure 1) in e0 = S(0) the accessible cells are the onesdenoted by their address 0 and 1. The �rst one is �lled with S and the second with0: In e1 = S2(?) the accessible cells are the ones denoted 0; 1; 2. The cells 0 and 1are �lled with S and the third one is un�lled.e0 = cell number 0 1constructor S 0 and e1 = cell number 0 1 2constructor S S ?�g. 1The set of traces is de�ned as follows. Let W be the set of (�nite or in�nite)words on the alphabet fxn = n � 0; x is a letterg. A trace is a pair (e; �) wheree 2 N and � is a labelling i.e. a function from the accessible cells of e to W (seeexamples in �gure 2).To each primitive recursive de�nition (prc) f we associate a function [[f ]] fromtraces to traces which "codes" the way f gets its result : the fact that the tokenxi occurs in �(n) intuitively means that the cell i of the element named x has beenused to get e(n):An example is given in �gure 2 : de�ne add as usual by add(0;m) = m andadd(Sn;m) = S add(n;m):- The trace t2 means that to get S the algorithm has used the cell 0 of t0 andto get 0 the algorithm has used �rst the cell 1 of t0 and next the cell 0 of t1.- The trace t3 means that to get S the algorithm has used �rst the cell 0 of t1and next the cell 0 of t0 and to get 0 the algorithm has used the cell 1 of t0:t0 = cell number 0 1constructor S 0labelling x0 x1 t1 = cell number 0constructor 0labelling y0t2 = [[add]](t0; t1) = cell number 0 1constructor S 0labelling x0 x1 y0t3 = [[add]](t1; t0) = cell number 0 1constructor S 0labelling y0 x0 x1�g. 2Since a trace carries the informations on a computation and not only on theresult, this notion allows to also compose the computations. I believe it also makes2



the proofs easier and, at least, closer to the intuition than in the original formulationof Colson. In particular, the extension of Coquand's constructive result to the casewhere mutual recursion is allowed would probably be impossible without the notionof trace.This notion of trace is related to the sequential algorithms introduced by Berryand Curien ([2] or [1], chapter 14) as follows. In their terminology, a sequentialalgorithm is a tree. Each branch of this tree corresponds to the computation of thealgorithm on particular arguments, that is exactly (with a slight variation on thesyntax and the terminology) what I call a trace. In particular [[f ]] can be seen asthe sequential algorithm associated to f .The paper is organized as follows : I recall the notion of trace (section 2) andits main properties (section 5). The main result is given in section 3. In section 4,I give a combinatorial result that is crucial for the proof of the main theorem. Thesections 6, 7 and 8 are devoted to its proof. In section 9, I give the undecidabilityresults. Finally the appendix gives the proof of the combinatorial proposition ofsection 4.2 The traceIn this section I recall, for self completeness, the main de�nitions about traces. Moredetails can be found in [9]. Since, in this paper, the only data type I am concernedwith, is the data type of integers many things are simpler than in the general case.I thus adapt the de�nitions of [9] to this case.De�nition 1 1. The scheme for primitive recursion is : f(0;�!r ) = g(�!r ) andf(Sx;�!r ) = h(f(x;�!r ); x;�!r ).2. The scheme for mutual recursion is : fi(0;�!r ) = gi(�!r ) and fi(Sx;�!r ) =hi(f1(x;�!r ); :::; fk(x;�!r ); x;�!r ).3. The scheme for alternate recursion is :f(0; y2; :::; yk;�!r ) = g1(y2; :::; yk;�!r )f(Sy1; 0; y3:::; yk;�!r ) = g2(y1; y3; :::; yk;�!r )f(Sy1; Sy2; 0; :::; yk;�!r ) = g3(y1; y2; :::; yk;�!r )...f(Sy1; :::; Syk�1; 0;�!r ) = gk(y1; :::; yk�1;�!r )f(Sy1; :::; Syk;�!r ) = h(f(y1; :::; yk;�!r ); y1; :::; yk;�!r )De�nition 2 1. The sets of prc (primitive recursive combinators) are de�ned asthe least sets containing the projections, the constructors S and 0 and whichare closed under composition and primitive recursion.2. The sets of prcmut are de�ned in the same way as prc but de�nition by mutualrecursion is allowed.3. The sets of prcalt are de�ned in the same way as prc but de�nition by alternaterecursion is allowed.Examples and comments1. For the simplicity of notations, I assume, without loss of generality, that therecursion always is on the �rst argument of the prc.3



2. The addition is de�ned by : add(0; n) = n and add(Sm; n) = S add(m;n):Thus add is a prc:3. The functions odd and even are de�ned by : even(0) = 1 and odd(0) = 0:even(Sx) = odd(x) and odd(Sx) = even(x): Thus odd and even are in prcmut:4. The function inf is de�ned by : inf (0; 0) = 0, inf (Sx; 0) = 0 and inf(Sx; Sy) = Sinf (x; y). Thus inf is in prcalt and it is easy to see that thecomputation time of inf (Sn(0); Sm(0)) is inf (n;m).5. It is well known that, as functions, the sets prc, prcmut and prcalt are equalbut this paper shows, in particular, that, as algorithms, they are not.De�nition 3 1. N (resp. N�; Z) is the set of non negative (resp. positive,negative or non negative) integers.2. An element e of N is a partial function from an initial segment of N (denotedby Acc(e)) into fS; 0;?g satisfying :� 0 2 Acc(e)� If (n+ 1) 2 Acc(e), then e(n) = S:� If e(n) = ?, then (n+ 1) =2 Acc(e):3. An element e is �nite i� Acc(e) is �nite.4. Let e; e0 be elements of N . e � e0 means : Acc(e) � Acc(e0) and for alln 2 Acc(e), if e(n) 6= ?, then e(n) = e0(n):5. I will denote the elements of N as :� Sn(0) = f(i; S) = 0 � i < ng [ f(n; 0)g,� Sn(?) = f(i; S) = 0 � i < ng [ f(n;?)g� S! = f(i; S) = i 2 Ng:CommentAcc(e) represents the set of integers that are accessible in e. In this presentation,this simply is the domain of e. In the general case (when various data types areallowed) it was more convenient to de�ne two distinct sets : the domain of e andAcc(e). I have kept the notation Acc(e) to remain compatible with the notationsof [9].De�nition 4 1. Let � = fxn = x is a letter and n 2 Ng. The elements of � arecalled tokens.2. A word is a �nite (possibly empty) or in�nite sequence of tokens. The emptyword is denoted by ": The set of words is denoted by W .3. Let u; u0 be words. u � u0 means that u is a pre�x of u0 and u " p denotes,for p � lg(u); the pre�x of u of length p:4. u+u0 is the result of concatenating u0 at the end of u. More generally, if (uk)is a (�nite or in�nite) sequence of words u0+u1+ ::: will be denoted byPuk:5. Let un be a sequence of words. Say that un ! u if for each p there is ann0 such that for all n � n0, un " p = u " p. This unique u is denoted byLim(un). 4



De�nition 5 1. A trace is a pair (e; �) where e is an element of N and � is alabelling function � : Acc(e)! W such that : 8n 2 Acc(e), if e(n) 6= ?, then�(n) is �nite.2. A trace (e; �) is �nite if e is �nite and all labels are �nite.3. The ordering on traces is given by : (e; �) � (e0; �0) i� e � e0 and for each nin Acc(e); �(n) � �0(n) and, if e(n) 6= ?, then �(n) = �0(n):4. The set of traces is denoted by T .5. Let e be an element of N and x be a letter. The trace (e; �) where �(n) = xnfor all n 2 Acc(e) will be denoted as e[x]. A trace as e[x] is called an elementnamed x.6. Let t = (e; �) be a trace. e is called the value of t and is denoted by V al(t): �is called the labelling of t and is denoted by Lab(t):Proposition 6 T with its ordering forms a domain. In particular :1. Every trace is a least upper bound (denoted by Sup) of an increasing sequenceof �nite traces.2. Every increasing sequence has a Sup.The following notations will be convenient at many places.De�nition 7 Let t = (e; �) be a trace and w be a �nite word.1. w + t is the trace (e; �0) de�ned by : �0(0) = w + �(0) and �0(n) = �(n) forn � 1:2. h(S;w) ti (or simply (S;w) t if no confusion is possible) is the trace (e0; �0)de�ned by : e0(0) = S; �0(0) = w and, for n � 0, e0(n + 1) = e(n) and�0(n+ 1) = �(n).3. Let x be a letter. thx + ki = (e; �0) where �0 is obtained from � by replacingxj by xj+k for all j:Example� y0 + S(0)[x] = (S; y0 x0) (0; x1)� Sn(?)[x] = (S; x0)(S; x1):::(S; xn�1)(?; xn):� Let t = S![x], then t = h(S; x0) si where s = thx+ 1i.De�nition 8 Let f be a function from Tn to T:1. f is increasing if for all tj � t0j , f(t1; :::; tk) � f(t01; :::; t0k):2. f is continuous if it is increasing and preserves the Sup of increasing sequences.Proposition 9 Every n-ary f 2 prc (resp. prcmut, resp. prcalt) induces (in aunique way) a continuous function (denoted by [[f ]]) from Tn to T such that :� [[0]](t1; :::; tn) = (0; ")� [[S]](t) = (S; ") t� If f is the i-th projection then [[f ]](t1; :::; tn) = ti5



� If f = g(h1; :::; hk) then,[[f ]](t1; :::; tn) = [[g]](r1; :::; rk) where rj = [[hj ]](t1; :::; tn)� If f is de�ned by ordinary or mutual recursion and the recursive equationsare fi(0;�!s ) = gi(�!s ) and fi(Sx;�!s ) = hi(f1(x;�!s ); :::; fk(x;�!s ); x;�!s ). Then[[fi]](t;�!s ) ={ (?; w) if t = (?; w):{ w + [[gi]](�!s ) if t = (0; w){ w + [[hi]]([[f1]](r;�!s ); :::; [[fk]](r;�!s ); r;�!s ) if t = (S;w) r� If f is de�ned by alternate recursion and (for simplicity of notations I assumek = 2) the recursive equations are : f(0; y;�!s ) = g1(y;�!s ), f(Sx; 0;�!s ) =g2(x;�!s ) and f(Sx; Sy;�!s ) = h(f(x; y;�!s ); x; y;�!s ): Then [[f ]](t1; t2;�!s ) ={ (?; w1) if t1 = (?; w1):{ w1 + [[g1]](t2;�!s ) if t1 = (0; w1){ (?; w1 + w2) if t1 = (S;w1) r and t2 = (?; w2):{ w1 + w2 + [[g2]]((r1;�!s ) if t1 = (S;w1) r1 and t2 = (0; w2):{ w1 + w2 + [[h]](([[f ]](r1; r2;�!s ); r1; r2;�!s ) if t1 = (S;w1) r1 and t2 =(S;w2) r2:Comments and examples1. [[add]](S(0)[x]; S! [y]) = (S; x0) (S; x1y0) (S; y1) (S; y2) � � �[[add]](S(0)[x]; S2(?)[y]) = (S; x0) (S; x1y0) (S; y1) (?; y2)[[add]](S2(?)[y]; S(0)[x]) = (S; y0) (S; y1) (?; y2)2. Since this paper is only concerned with decidability results (and not with com-plexity results), I do not care on the strategy of reduction used to transformthe equations into algorithms. However, the strategy that is implicit in thisde�nition is call by name : intuitively, at each step the leftmost outermost re-dex is reduced and, in particular, two copies of the same redex will be reducedtwice if they are needed twice.3 The main resultIn this section, I give the main result (theorem 14) of the paper and the de�nitionsthat are necessary for its statement.De�nition 10 Let t = (e; �) be a trace.1. The branch of t (denoted by Br(t)) is the word de�ned by: Br(t) = Pk2Acc(e)�(k):2. A letter x is unbounded (respectively bounded) in t if fj = xj occurs in Br(t)gis in�nite (respectively �nite).3. t is ultimately obstinate if it has at most one unbounded letter.4. Nb(t; x; n) is the least k such that xn occurs in �(k). If xn does not occur inBr(t), Nb(t; x; n) is unde�ned.Comments and examples 6



� The intuitive meaning of ultimate obstination is that, if the trace representsan in�nite computation, at most one argument may be used entirely and thusthe computation cannot shift from one argument to another one.� Let t = e[x] be a named element. Since x is the only letter that appears inBr(t), t is ultimately obstinate. Since both x and y are unbounded in t0 =(?; Pk�0xk yk), t0 is not ultimately obstinate.� If t represents a computation, Nb(t; x; n) represents the number of outputsymbols produced before the use of the cell n of the argument x:� Let t = (S; x0)(S; x1y0)(0; x2y1): Nb(t; x; 0) = 0,Nb(t; y; 0) = 1 andNb(t; y; 1)= 2:� Let f be a prc and assume that, for some function g (usually called theintentional behaviour of f), f(Sn(?)) = Sg(n)(?). We will see (cf. proposition28) that, if t = [[f ]](S!(x)) and g is not eventually constant, then g(n) =Nb(t; x; n).De�nition 11 Let C be a class of functions from N into N . Say that C is closedby :� �nite change if f 2 C and for all n, except �nitely many, f(n) = g(n) theng 2 C.� minimum if f; g 2 C then h 2 C, where h is de�ned by h(n) = minff(n); g(n)g:� iteration if f 2 C is such that f(n) > n for all n and g satis�es g(n + 1) =f(g(n)) for all n, then g 2 C.� multi-step iteration if f 2 C is such that f(n) > n for all n and, for somep � 1, g satis�es g(n+ p) = f(g(n)) for all n, then g 2 C.� mixed iteration if f; g 2 C, f(n) > n for all n and h satis�es h(n + 1) =Minfg(n+ 1); f Æ h(n)g for all n, then h 2 C:De�nition 12 1. Let C0 be the following set of functions : fn 7�! 0; n 7�!n; n 7�! n+ 1; n 7�! if n = 0 then 0 else (n� 1)g.2. Let Cpr be the least set of increasing functions containing C0 and closed bycomposition, �nite change and iteration.3. Let Cmut be the least set of increasing functions containing C0 and closed bycomposition, �nite change and multi-step iteration.4. Let Calt be the least set of increasing functions containing C0 and closed bycomposition, �nite change, minimum and mixed iteration.Open questionI believe that Cpr = Calt i.e. Cpr is closed by minimum and mixed iteration,but I have not been able to prove that.De�nition 13 Let C be either Cpr or Cmut or Calt.1. T (C) is the set of traces t such that for every letter x which is unbounded int, the function n 7�! Nb(t; x; n) is in C.2. The description of t (denoted by Desc(t)) is, for t 2 T (C); the following setof informations : 7



� V al(t):� for every letter x, whether x is bounded or not in t and{ if x is bounded, maxfj =xj occurs in Br(t)g:{ if x is unbounded, a description of the function n 7�! Nb(t; x; n) asa member of C:Theorem 14 1. Let f 2 prc and assume t1; ..., tn 2 T (Cpr) are ultimatelyobstinate. Then [[f ]](t1; :::; tn) 2 T (Cpr) and is ultimately obstinate.2. Let f 2 prcmut and assume t1; ..., tn 2 T (Cmut) are ultimately obstinate.Then [[f ]](t1; :::; tn) 2 T (Cmut) and is ultimately obstinate.3. Let f 2 prcalt and assume t1; ..., tn 2 T (Calt). Then [[f ]](t1; :::; tn) 2T (Calt).Moreover, in all cases, Desc([[f ]](t1; :::; tn)) can be computed from f;Desc(t1),..., Desc(tn).As a consequence, I get :Corollary 15 1. If t1; ..., tn are named elements and f 2 prc (resp. prcmut,prcalt), then [[f ]](t1; :::; tn) 2 T (Cpr) (resp. T (Cmut), T (Calt)).2. The following problem is decidable.Data : Let t = [[f ]](t1; :::; tn) where f 2 prc (resp. prcmut, resp. prcalt) andt1; ..., tn are named elements .Question : What is V al(t)? Is the letter x unbounded in t ? If it is boundedwhat is the maximum n such that xn occurs in Lab(t)? Otherwise what is thefunction n 7! Nb(t; x; n) ?3. There is no f 2 prc (resp. prcmut, prcalt) such that, for every n; f(Sn(?)) =Sn2(?):Proof. 1. and 2. are immediate consequences of theorem 14. It follows easilyfrom proposition 18 below that the function n 7! n2 is not in Cpr neither in Cmutnor in Calt. The point 3 follows thus from proposition 28 below.Comments and open questions1. It is already proved in [9] that if f 2 prc (resp. prcmut) and t1; ..., tnare ultimately obstinate then so is [[f ]](t1; :::; tn). The new result is theconstructivity. Some informations about t = [[f ]](t1; :::; tn) can be obtainedby a simple computation. For example, if we know that V al(t) � S(?), it iseasy to compute Lab(t)(0). But deciding whether V al(t) � S(?) or not is notimmediate at all.2. It is not diÆcult to check that, for every function f 2 Cpr (resp. Cmut, Calt),there is a g 2 prc (resp. prcmut, prcalt) such that for every n, g(Sn(?)) =Sf(n)(?):3. It is clear that the ultimate obstination theorem does not hold for prcalt andthus the computation of Desc([[f ]](t1; :::; tn)) has nothing to do with theultimate obstination ! In particular, parts (1) and (2) of theorem 14 could bestated without the hypothesis on ultimate obstination but, in this case, in thede�nition of the class C, I should assume that C is closed by minimum andmixed-iteration. 8



4. Let prcmut;k be the set de�ned as prcmut but where at most k functionsmay be de�ned by simultaneous recursion. Let Cmut;k be the set de�nedas Cmut but where the multi-step iteration is restricted to 1 � p � k. Itfollows immediately from the proof that the theorem holds for prcmut;k andT (Cmut;k).Is there f 2 prcmut;2 such that, for every n; f(Sn(?)) = S[n=3](?) where [x]is the integer part of x ? I believe there is no such f but I have not been ableneither to prove nor to disprove it. See the remark after proposition 18.5. Various necessary conditions are known (theorem 14 gives one and some othersare given in section 5) for t 2 T to be, for example, [[f ]](S![x]; S![y]) for somef 2 prc but these conditions are far from being suÆcient. Can we �nd othernecessary such conditions ? In other words, can we �nd other properties oftraces preserved by the use of prc ?4 A combinatorial resultThe main diÆculty in the proof of theorem 14 (which is done by induction on f)is the computation of V al(t) for t = [[f ]](S!(x)) when f is de�ned by recursion(for simplicity I assume here that f has only one argument). For the usual case ofprimitive recursion (the other ones are conceptually the same but technically morediÆcult) the rough idea of this computation is the following :For some h and by de�nition, t = x0+[[h]]([[f ]](s); s) where S!(x) = h(S; x0) si.Let � = x0 + [[h]](S![y]; s) where y is a fresh letter. By the induction hypothesis, Ican compute Desc(� ). I will show that if Nb(� ; y; n) � n for some n then V al(t) =Sn(?) where n is the least such integer and otherwise V al(t) = V al(� ):By the induction hypothesis, the function n 7�! Nb(� ; y; n) is in Cpr . I thushave to show that for functions in Cpr, I can e�ectively decide whether there is ann such that Nb(� ; y; n) � n or not.The main ingredient of the proof is thus :Proposition 16 The following problem is decidable : given a description of f inCpr (resp. Cmut, resp. Calt) is there an n such that f(n) � n ?Proof. This follows easily from proposition 18 below.De�nition 17 Let f be a function from N to N .1. f is linear if, for n large enough, f(n) = an+ b where a 2 N and b 2 Z.2. f is quasi-linear if, for n large enough, f(n+ q) = f(n) + p where p; q 2 N .3. f is N-exponential (resp. Q-exponential) if, for n large enough, f(n) � anbwhere b is a positive rational number and a 2 N � f0; 1g (resp. a 2 Q).RemarkIt is easy to check that f is quasi-linear i� there are integers p; q and a functiong such that, for all n, f(n) = [np=q] + g(rm(n; q)) where [x] denote the integer partof x and rm(n; q) the remainder of n in the division by q.Proposition 18 Let C be either Cpr or Cmut or Calt and let f 2 C. Then, for nlarge enough :1. If C = Cpr or Calt : f is constant or strictly increasing.2. � If C = Cpr or Calt : f is linear or N-exponential.9



� If C = Cmut : f is quasi-linear or Q-exponential.3. Moreover, this is e�ective i.e. we can compute, from a description of f , thevarious numbers involved.The proof is given in the appendix : for pr and alt this is, more or less, astraightforward veri�cation by case analysis but for mut this is a highly non trivialresult.RemarkLet E be a set of integers. Say that f is E-quasi-linear if, for some p 2 E andsome q, f(n + p) = f(n) + q for all n. If I could prove that each f 2 T (Cmut;2)is either exponential or E-quasi-linear for some E such that 3 =2 E; I will be ableto prove that there is no f such that f(Sn(?)) = S[n=3](?). The problem is thefollowing : since, if f and g are fpg-quasi-linear, f Æ g is fp2g-quasi-linear, E willcontain f2n = n 2 Ng. The proof of proposition 18 shows that E will also containthe length of the cycles associated to the functions that are iterated. It is not diÆcultto �nd an example of lemma 43 where p = 4 and there is a cycle of length 3. Thisexample does not give the desired counter-example but it seems to show that a �neranalysis is necessary.5 Some basic facts on tracesThis section recalls various properties of traces. Most of the results are given herewithout proof : complete proofs, for prc, are given in [9]. It is easy to check thatthey remain valid for prcmut and prcalt. It also introduces the crucial notion ofde�ciency. The important points are the following.1. To compute [[f ]](t) it is enough to compute [[f ]](e[x]) where x is a fresh letterand e = V al(t) and then substitute in the result each xn by �(n) where � isthe labelling function of t: See de�nition 29 and theorem 30.2. In a computation, a cell may not be accessed before the previous cells havebeen accessed. See de�nition 21 and proposition 22.3. Let e; e0 be lazy integers. If a cell is not used in the computation of f(e) ande, e0 coincide up to this cell, then [[f ]](e[x]) = [[f ]](e0[x]): See proposition 25.4. Assume f is de�ned by recursion, r = S!(x) and t = [[f ]](r). Then, t =x0 + [[h]]([[f ]](s); s) where s = rhx + 1i (i.e. r with a lift of the indices) andthus t satis�es the equation t = v[y := thx+1i] where v = x0+[[h]](e[y]; s) ande = V al(t). The important point to compute e is whether or not y is de�cientin v i.e. v needs more information on y than it has already produced.5. Propositions 31 and 33 give the behaviour of Nb and Desc with respect tosubstitutions.6. Proposition 28 is the technical result that proves point 3 of corollary 15.5.1 De�ciencyDe�nition 19 Let t be a trace and x be a letter. I say that x is de�cient in t if forsome n, Nb(t; x; n) � n:Examples and comment1. Let t = (S; x0)(S; x1y0)(0; x2y1): Then, x is de�cient in t because Nb(t; x; 0) =0 but y is not because Nb(t; y; 0) = 1 and Nb(t; y; 1) = 2:10



2. The intuition is the following : if t represents a computation, x is de�cient in tif, for some n, the n-th cell of x has been used to compute V al(t)(0); :::; V al(t)(n).3. We will see (cf. the comments after proposition 22) that, for the traces t wehave to consider, the function n 7�! Nb(t; x; n) is increasing and x is de�cientin t i�, for some n, Nb(t; x; n) = n:5.2 FinitenessProposition 20 Let f be a prc and t1; :::; tn be �nite traces. Then [[f ]](t1; :::; tn)also is �nite.5.3 RegularityThe regularity intuitively means that, in a computation, a cell may not be accessedbefore the previous cells have been accessed. Regularity is called safety in [2].De�nition 21 Let t be a trace. A letter x is regular in t if for all n � n0 such thatxn0 occurs in Br(t), xn also occurs in Br(t) and the �rst occurrence of xn is earlierthan the �rst occurrence of xn0 :Proposition 22 Let f be a prc and t1; :::; tn be traces. Assume that a letter x isregular in each of the ti, then x also is regular in [[f ]](t1; :::; tn).Comment and examples� x is regular in e[x] for every element e. x is not regular neither in (?; x1 x0)nor in (?; x0 x2):� Assume that x is regular in t: It is clear then that the function Nb(t; x; n) isde�ned on an initial segment of N and is increasing. Since it is impossiblethat Nb(t; x; n) < n for all n, x is de�cient in t i�, for some n, Nb(t; x; n) = n.5.4 RestrictionsDe�nition 23 1. Let w be a word. w # xn = w if xn does not occur in w andotherwise w0+xn where w0 is the longest pre�x of w that does not contain anoccurrence of xn:2. Let t be a trace. t # xn is de�ned by :� (?; w) # xn = (?; w # xn).� (0; w) # xn = (?; w # xn) if xn occurs in w and otherwise (0; w):� h(S;w) ti # xn = (?; w # xn) if xn occurs in w and otherwise h(S;w) t #xni:Comment and examples1. w # xn is the word obtained by truncating w after the �rst occurrence (if any)of xn: t # xn is the trace obtained by truncating t at the �rst node where xnoccurs.2. S![x] # xn = Sn(?)[x]:Proposition 24 Let f be a prc, x be a letter, k 2 N and t1; :::; tn be traces. Then[[f ]](t1; :::; tn) # xk = [[f ]](t1 # xk ; :::; tn # xk)11



Proposition 25 Let f be a prc, r = e[x]; s = e0[x] and �!t be a sequence of elementsof N with names distinct from x. Assume j is accessible both in e and e0. Then1. [[f ]](r;�!t ) # xj = [[f ]](s;�!t ) # xj :2. Assume xj does not occur in Br([[f ]](r;�!t )). Then [[f ]](r;�!t ) = [[f ]](s;�!t )5.5 CompatibilityDe�nition 26 Let s; t be traces. A letter x is compatible with s in t if x is regularin t and, for each n,1. If xn occurs in Br(t) then n 2 Acc(s).2. If V al(s)(n) = ?, then t = t # xn.Comment and examples1. The intuition for the clause (2) in the de�nition is the following : if a cell nis �lled with ? in s (this means a lack of information) and the informationof this cell is needed in a computation (this means that xn occurs), then thecomputation has to stop.2. x is compatible with s intuitively means that t can be seen as a computationusing an argument e[x] where e = V al(s) i.e. the occurrences of x in t arecompatible with the value of t.3. Let e be an element, �1 and �2 be labelling functions for e. A letter x iscompatible with (e; �1) in t i� x is compatible with (e; �2) in t.4. Let s = (e; �): Then x is compatible with s in e[x]: Let t = (?; Pk�0xk): Thenx compatible with (S!; �) in t but, because clause (1) is not satis�ed, x is notcompatible with (Sn(0); �) in t for any n: Because clause (2) is not satis�ed,x is not compatible with (S(?); �) in (?; x0x1x0).Proposition 27 Let f be a prc.1. Assume x is compatible with s in each of the ti. Then x is compatible with sin [[f ]](t1; :::; tn):2. For each i, xi is compatible with ei[xi] in [[f ]](e1[x1]; :::; en[xn]):Proposition 28 Let f be a prc. Assume that, for each n, f(Sn(?)) = Sg(n)(?)and g is not eventually constant. Then, for each n, g(n) = Nb(t; x; n) where t =[[f ]](S!(x)).Proof. x is unbounded in t because, otherwise, by proposition 25, V al(tn)would be eventually constant where tn = [[f ]](Sn(?)(x)). By proposition 25, t #xn = tn # xn. By proposition 27 and de�nition 26, clause (2) tn = tn # xn and thust # xn = tn. The result follows then from the de�nition of Nb(t; x; n).
12



5.6 SubstitutionsThe notion of composition is crucial when functions are studied but, usually, onlythe results are, in some sense, composed. The notion of traces allows to composealso the computations. The precise meaning of this is given in theorem 30. It needsthe notion of substitutions.De�nition 29 Let t be a trace, (si) = (ei; �i) be a sequence of traces and (xi) be asequence of distinct letters. Assume that, for each i, xi is compatible with si in t.Then t[xi := si=i = 1; :::; n] is the trace obtained by simultaneously replacing each(xi)n by �i(n) in all the words �(m) for m 2 Acc(t).ExampleLet t = (e; �): Then t = e[x][x := t]:Theorem 30 Let f be a prc, t1; :::; tn be traces and, for each i; let ri be the namedelement (with the fresh name xi) such that V al(ti) = V al(ri). Then [[f ]](t1; :::; tn) =[[f ]](r1; :::; rn)[xi := ti = i = 1; :::; n]:Proposition 31 Let t; r be traces and x; y be letters. Assume that x is compatiblewith r in t and let s = t[x := r].Then Nb(s; y; n) =MinfNb(t; y; n); Nb(t; x;Nb(r; y; n)g:Proof. If the least occurrence of yn in Br(s) comes from t, then Nb(s; y; n) =Nb(t; y; n). Otherwise it comes from the substitution of xm by Lab(r)(m) wherem = Nb(r; y; n) and thus Nb(s; y; n) = Nb(t; x;Nb(r; y; n)g .Corollary 32 Let t; r 2 T (Calt), x a letter compatible with r in t. Then s = t[x :=r] 2 T (Calt) and we can compute Desc(s) from Desc(t) and Desc(r).Proof. This follows immediately from proposition 31.Proposition 33 Let t; r 2 T (Cpr) (resp. T (Cmut)), x a letter compatible with rin t. Assume that r; t are ultimately obstinate, then s = t[x := r] 2 T (Cpr) (resp.T (Cmut)) and we can compute Desc(s) from Desc(t) and Desc(r).Proof. First note that, if it is true that Cpr and Cmut are closed by minimum(see the open question in section 3) , the result would follow immediately fromproposition 31.The informations concerning bounded letters are easily computed. Assume y isunbounded in s and let r = (e; �).1. Assume x is bounded in t and let n be the maximum index of x in Br(t):(a) If e(n) 6= ? then �(n) is �nite and, then for p large enough (and easilycomputed) Nb(s; y; p) = Nb(t; y; p).(b) If e(n) = ? then, by de�nition 26, t = t # xn and �(n) is a �nal segmentof Br(s). Thus, for p large enough, Nb(s; y; p) = n.2. Assume x is unbounded in t. Since t is ultimately obstinate, y is bounded int. It follows immediately that y must be unbounded in r and then it is easyto check that for n large enough Nb(s; y; n) = Nb(t; x;Nb(r; y; n)):
13



6 Proof of theorem 14(1)The proof is by induction on the de�nition of f . The only non trivial case is whenf is de�ned by recursion. By theorem 30 and proposition 33, I may assume that t1;..., tn are named elements. Let �!r = t2; ..., tn.(Case 1 : t1 is �nite) I only consider t1 = Sk(0)[x]. The proof is similar for t1 =Sk(?)[x]. This is done by induction on k.- k = 0 : trivial.- k = p + 1 : let t = [[f ]](t1;�!r ) = x0 + [[h]]([[f ]](s;�!r ); s;�!r ) where t1 =h(S; x0) si: Let � = Sp(0)[z] where z is a fresh variable and t0 = [[h]]([[f ]](�;�!r ); �;�!r ):By the induction hypothesis, Desc(t0) is computable. It is easy to check that, forevery letter y in �!r , Nb(t; y; n) = Nb(t0; y; n) and that, for n � 1; Nb(t; x; n) =Nb(t0; z; n� 1):(Case 2 : t1 is in�nite) The idea is the following : let t1 = S![x] = h(S; x0) siand t = [[f ]](t1;�!r ) = x0 + [[h]]([[f ]](s;�!r ); s;�!r ). Let y be a fresh letter and� = x0 + [[h]](S![y]; s;�!r ): By the induction hypothesis, � 2 T (Cpr) and we cancompute Desc(� ). I will show (this is point (1) in each of the sub-cases below)that, if y is not de�cient in � then V al(t) = V al(�) and, otherwise, V al(t) = Sn(?)where n is the least such that Nb(� ; y; n) = n. The computation of Desc(t) andthe proof that Desc(t) 2 T (Cpr) is quite simple (this is point (2) in each of thesub-cases below).Let e = V al(t) and v = x0 + [[h]](e[y]; s;�!r ). Since s = t1hx + 1i, t satis�esthe equation t = v[y := thx + 1i]. It is thus not diÆcult to prove that t = Lim(vi)where vi is de�ned by v0 = v and vi+1 = vi[y := vhx+ i+1i]. For a complete proofsee [9]. Note that V al(t) = V al(v) = V al(vi) for each i. I need �rst the followingresult.Claim 34 Assume ym occurs in � and y is not de�cient in � # ym. Then V al(v) �Sm+1(?).Proof. Note that the hypothesis means that, for every n < m, yn does notoccur in Pk�n�(k): The proof is by induction on m.m = 0 : by proposition 25, v # y0 = � # y0. By the hypothesis Nb(� ; y; 0) > 0and so V al(v) � S(?).m = p+1 : by the induction hypothesis, V al(v) � Sm(?). Thus (by proposition25) v # ym = � # ym. By the hypothesisNb(� ; y;m) > m and so V al(v) � Sm+1(?).(Case 2.a) Assume �rst that y is de�cient in � and let n be the least such thatNb(� ; y; n) = n. Note that, since the function n 7�! Nb(� ; y; n) belongs to Cpr,we can decide whether y is de�cient in � and, in this case, determine n. Let�i = Lab(vi): It is easy to check (by induction on i) that for each i , Nb(vi; y; n) = n:1. By claim 34, V al(t) � Sn(?): Since t = Lim(vi); both V al(t) = Sn(0) andV al(t) � Sn+1(?) are impossible : this would contradict the fact yn occursin �i(n): Thus V al(t) = Sn(?).2. For a letter z in �!r it is easy to see that the maximum index of z in t is theone it has in v # yn = � # yn: The only variable which is unbounded in t is xand Nb(t; x; p) = n for p large enough.(Case 2.b ) Assume next that y is bounded and not de�cient in � .14



1. Let n be the greatest such that yn occurs in � . SinceDesc(�) can be computed,this n can be determined. By claim 34, V al(t) � Sn+1(?). But then, byproposition 25, v = � and thus V al(t) = V al(v) = V al(�).2. t is obtained from v by �nitely many substitutions and the result follows fromproposition 33.(Case 2.c ) Assume �nally that y is unbounded and not de�cient in � .1. Since y is not de�cient, V al(�) = S!. By claim 34, V al(t) � Sn(?) for everyn and thus V al(t) = S!.2. Since V al(t) = S!, v = � . Again, since t = Lim(vi), it is clear that the onlyunbounded letter in t is x and the maximum index of the other variables isthe one they have in v. Since we know that v is ultimately obstinate, x isbounded in v. Let k be the maximum index of x in v. Since t = v[y := thx+1i],by proposition 31, Nb(t; x; n + 1) = MinfNb(v; x; n + 1); Nb(v; y;Nb(thx +1i; x; n + 1))g. It is clear that Nb(thx + 1i; x; n + 1) = Nb(t; x; n). For n >k, xn+1 does not occur in Br(v) and thus the previous equation becomesNb(t; x; n+1) = Nb(v; y;Nb(t; x; n)): Since y is not de�cient in v, Nb(v; y; j) >j for all j, and thus this equation �nishes the proof since it shows that thefunction n 7�! Nb(t; x; n) belongs to Cpr.7 Proof of theorem 14(2)By induction on f . I only check the diÆcult case where t1 = S![x] and f is de�nedby mutual recursion.Assume thus that f1; :::; fk are de�ned by mutual recursion by : fi(Sn;�!r ) =hi(f1(n;�!r ); :::; fk(n;�!r ); n;�!r ; ). Let ei = [[fi]](S![x];�!r ) and ai = V al(ei): I mustshow that, if �!r are named elements, the ei are in T (Cmut) and I can computeDesc(ei).The ei satisfy the equations ei = x0 + [[hi]](e1hx+1i; :::; ekhx+1i; �;�!r ) wheret1 = h(S; x0) �i (recall that � = t1hx + 1i). In the following the eihx + 1i will becalled "the recursive calls".7.1 Computation of ai : introductionThe algorithm given in the next section computes the ai. It is essentially the same asin the proof of theorem 14(1), though the mutual recursive calls make the detectionof de�ciency (corresponding here to loops) harder. If this algorithm had to beimplemented, many points could be done in a more eÆcient way. I chose not to doso because it would be more diÆcult to understand how it works.� We keep the informations we already have in two sets : known results andknown facts. aj 2 known-results means that we know aj = Sp(0), aj =Sp(?) or aj = S!. known facts is a �nite set of informations of the formaj � Sp(?).� The expression "aj � Sp(?) is known" means that either aj � Sp(?) 2known facts or aj = S! 2 known results.� ri is what we can compute of ei using the informations we have at the presenttime : if aj 2 known-results the recursive call ejhx + 1i is replaced byaj [y(j)] and otherwise by S![y(j)] where y(j) is a fresh name. Each time wehave found the real value ai, we have to recompute the ri since we startedwith aj = S! and we have discovered it is something else. Lab(ri) will bedenoted by �i. 15



� If w is a word, the expression "aj is suÆciently known for w" means that{ either aj 2 known-results{ or y(j) is bounded in w and, for all p such that y(j)p occurs in w,aj � Sp+1(?) is known.� The algorithm calls a procedure denoted by Next. When Next(i,n) is calledai � Sn(?) is known but ai � Sn+1(?) is not known and we try to knowmore on ai.� Restart is a Label of the main program. Going to Restart means that wehave found a new information and we look if there are some other values tocompute.� Loops correspond to de�ciency in the proof of theorem 14(1). Two kindsof loops may occur. The �rst one corresponds to unbounded use of recur-sive calls. It is detected when the following holds for every i such that ai =2known-results (this is case (3) of the main program) :{ For every j such that y(j) is bounded in ri, aj is suÆciently known forBr(ai).{ For some j such that y(j) is unbounded in ri, aj is not suÆciently knownfor Br(ai). Since ri is ultimately obstinate this j is unique. In such acase I will say that fi recursively calls fj :Since there are �nitely many simultaneously de�ned functions there is a loop :fi1 recursively calls fi2 ... that recursively calls fin that recursively calls fi1 :� The second one corresponds to bounded use (this is case (3.a) of the procedureNext). The set rec calls of pairs (j; p) is used to detect these loops. (j; p) 2rec calls means that we are "inside" the computation of aj at a point wherewe know that aj � Sp(?) and we try to know more on aj . A loop is detectedwhen there is a sequence (i1; p1); :::; (in; pn) such that the computation ofai1(p1) needs the computation of ai2(p2) that himself needs ... ain(pn) thatneeds the computation of ai1(p1).� When, in the description of algorithm, I say, for example, "compute Desc(ri)"or "let n be the least such that g(n) = n" this can e�ectively be done : thisfollows immediately from the induction hypothesis and the properties (seeproposition 18) of Cmut.7.2 The algorithmProcedure Next (i, n)Begin1. If V al(ri) � Sn+1(?) and for all j, aj is suÆciently known for Pm�n�i(m),then Add ai � Sn+1(?) to known facts and Goto Restart.2. If V al(ri) = Sn(0) (resp. Sn(?)) and for all j, aj is suÆciently known forBr(ri), then Add ai = Sn(0) (resp. ai = Sn(?)) to known results and GotoRestart.3. Otherwise, let y(j)p be the least token in Pm�n �i(m) such that aj � Sp+1(?)is not known. 16



(a) If (j; p) 2 rec calls, then Add aj = Sp(?) to known results and GotoRestart.(b) Otherwise, add (i; n) to rec calls and Call Next (j,p).End (of procedure Next).Main ProgramBeginLet known facts := ; and known results := ;.Label : RestartLet rec calls := ;.If every aj is known then Exit else doFor j = 1; :::; k do : let s(j) = aj [y(j)] if aj 2 known results and s(j) = S![y(j)]otherwise ; let ri = x0 + [[hi]](s(1); :::; s(k); S![x]hx + 1i;�!r ) ; compute Desc(ri):1. If there is an i such that ai =2 known-results and for all j, aj is suÆcientlyknown for Br(ri) : choose such an i; add ai = V al(ri) to known results andGoto Restart.2. If there is an i such that ai =2 known-results and j such that y(j) is boundedin ri and aj is not suÆciently known for Br(ri) : choose such an i. Let nbe maximal such that ai � Sn(?) 2 known facts. Let y(j)p be the leasttoken in Pm�n �i(m) such that aj � Sp+1(?) is not known.Let rec calls :=f(i; n)g and Call Next (j; p).3. Otherwise, a loop is detected. Choose one. To simplify the notations assumethe loop is : f1 recursively calls f2 that recursively calls ... fm that recursivelycalls f1:For j = 1 to m, let Gj be the function n 7�! Nb(rj ; y(j + 1); n) and letg = G1 ÆG2 Æ ::: ÆGm where I consider that y(m+ 1) = y(1).� If g(n) > n for every n; then Add a1 = S! to known results and GotoRestart.� Otherwise, let n be the least such that g(n) = n. Add a1 = Sn(?) toknown results and Goto Restart.End (of main program)7.3 Proof of the algorithmThe proof is essentially the same as the one of theorem 14(1) and uses extensivelyproposition 25. Two things have to be shown : the informations on the ai computedby the algorithm are correct and the algorithm terminates.The following results will be useful.Claim 35 Assume that, at some point of the algorithm, ai � Sp+1(?) is known.Then we can compute �i(n) for all n � p.Proof. Immediate.Claim 36 rec calls cannot contain both (i; n) and (i;m) for n 6= m.
17



Proof. I have to show that the following cannot appear, where I assume, for sim-plicity of notations, that (i;m) is put in rec calls after two calls of Next : the mainprogram set rec calls= f(i; n)g and calls Next(j; p) which adds (j; p) in rec callsand calls Next(i;m) which goes in case (3.b) and adds (i;m) to rec calls.Assume, towards a contradiction, that this situation does appear. This meansthat ai � Sn(?) is known but ai � Sn+1(?) is not and aj � Sp(?) is known butaj � Sp+1(?) is not. If Next(j; p) calls Next(i;m); this means that ai � Sm(?) isknown but ai � Sm+1(?) is not and thus n = m. Then, Next(i; n) does not go incase (3.b) but in case (3.a) since (i; n) 2rec calls. Contradiction1. Proof of correctness. The fact that each time the algorithm adds an informa-tion to known facts or known results, this information is correct is provedas in the proof of theorem 14(1), using proposition 25. The only di�erent caseis when a loop is detected : case (3.a) of the procedure Next and case (3) ofthe main program. In the proof of theorem 14(1), both cases correspond to yde�cient in � . Recall that, in this case, we showed that if n is the least suchthat Nb(� ; y; n) = n then V al(t) = Sn(?):� The unbounded case.Assume again, for simplicity of notations that the loop is f1 recur-sively calls f2 and f2 recursively calls f1. At this point, y(2) (resp.y(1)) is the only unbounded letter in r1 (resp. r2). Moreover, all theother letters are suÆciently known and, in particular, y(1) (resp. y(2))is suÆciently known in r1 (resp. r2). By claim 35, let s1; s2 be �-nite traces such that e1 = x0 + [[h1]](s1; e2hx + 1i; �;�!r ) and e2 =x0 + [[h2]](e1hx+ 1i; s2; �;�!r ) where � = S![x]hx + 1i.Let �1 = x0 + [[h1]](s1; S![y(2)]; �;�!r ) and �2 = x0 + [[h2]](S![y(1)], s2,�, �!r ). Let � 1 = �1[y(2) := �2] and �2 = �2[y(1) := �1]. It is clearthat e1 = � 1[y(1) := e1hx + 2i] and e2 = �2[y(2) := e2hx + 2i]. Formore details, see the proof of the ultimate obstination theorem in caseof mutual recursion in [9]. For i = 1; 2 let Gi(n) = Nb(�i; y(i); n): Itfollows from proposition 33 that Nb(� 1; y(1); n) = G1 ÆG2(n):The fact that, if y(1) is not de�cient in � 1 then a1 = S! and otherwisea1 = Sn(?) where n is the least such that Nb(�1; y(1); n) = n is provedexactly as in the proof of theorem 14(1).� The bounded case.Assume again, for simplicity of notations, that the loop has length 2.By claim 36, assume the loop is (1; n)! (2; p)! (1; n). I have to showthat a1 = Sn(?). As in the previous unbounded case, I can �nd �1 suchthat e1 = �1[y(1) := e1hx + 2i] and show that n is the least such thatNb(� 1; y(1); n) = n. The results follows then exactly as in the proof oftheorem 14(1).2. Proof of terminaison :� By claim 36, the procedure Next can call itself at most k many times.� Thus, when the main program calls Next the program always returnto Restart with a new information, i.e. some new ai � Sn(?) 2known facts or some new ai 2 known results.� In cases 1 and 3 of the main program, the algorithm adds some new ai inknown results. It is thus enough to check that it cannot always stay incase 2. This case corresponds to bounded letters : since there is a �nitenumber of traces and letters, there is only a �nite set of informations18



needed about bounded letters. The result follows then again from thefact that each time the algorithm goes back to Restart it has got a newinformation.7.4 ei 2 T (Cmut) and computation of Desc(ei)Let ri = x0 + [[hi]](s(1); :::; s(k); �;�!r ) where s(j) = aj [y(j)]: We know that ei =ri[y(j) := ejhx+ 1i = j = 1; :::; k].The only non immediate case is the one when there is a loop (of length p) ofrecursive calls, e.g. f1 recursively calls f2 that recursively calls ... that recursivelycalls f1. In this case the only letter with unbounded index in the ei (i = 1; :::; p) isx. The informations concerning the other variables are easy to get.Assume again, for simplicity of notations, that the loop has length 2. As in theproof of correctness, I can �nd traces � i such that :� the only letters occurring in � i are : x; y(i) and the letters in �!r :� the only letter which is unbounded in � i is y(i):� � i 2 T (Cmut) and Desc(� i) can be computed by using proposition 33.� ei = � i[y(i) := � ihx+ 2i]:� y(i) is not de�cient in � i.It is then not diÆcult to check (this in done as in the proof of theorem 14(1))that for n large enough Nb(ei; x; n + 2) = Nb(� i; y(i); Nb(ei; x; n)) and thus thefunction n 7! Nb(ei; x; n) is in Cmut.8 Proof of theorem 14(3)The proof is essentially the same as the one of theorem 14(1). The diÆcult case iswhen f is de�ned by alternate recursion. For simplicity of notations, I assume the re-cursion is made only on two arguments. The main case is : t = [[f ]](S![x]; S![y];�!r ).Let v = x0+y0+[[h]](V al(t)[z]; �; � ;�!r ) where � = S![x]hx+1i and � = S![y]hy+1iand z is a fresh letter. Let � = x0 + y0 + [[h]](S![z]; �; � ;�!r )I show, exactly as in the proof of theorem 14(1), that if z is not de�cient in �then V al(t) = V al(�) and otherwise that V al(t) = Sn(?) where n is the least suchthat Nb(�; z; n) = n.It is clear that t = v[z = thx+1; y+1i]. It follows easily that in the non trivialcase i.e. V al(t) = S! :� If G1 is the function : n 7! Nb(t; x; n) then G1(n + 1) = MinfNb(v; x; n+1); Nb(v; z;G1(n))g. Similarly for G2 : n 7! Nb(t; y; n).� If G� is the function : n 7! Nb(t; �; n) where � is a letter in �!r , thenG�(n) = Nb(v; �; n).Thus t 2 T (Calt):9 The undecidability resultThis section uses the general notion of trace where the data type of lists is allowed.I do not recall here the corresponding notions. More details can be found in [9].19



Theorem 37 There is no algorithm to compute f(S!) from a description of f , inthe following cases :1. f is a prc using integers and lists of integers as data types.2. f is a prc using only integers as data types but allowing the following recursionscheme : f(Sx; y) = h(f(x; Sy); x; y):Proof. Note again that these schemata de�ne new algorithms but the functionsthey compute are primitive recursive functions.It is enough to show that, from a description of a Turing machine, I can computea prc f such that the Turing machine halts if and only if f(S!) = S!.Assume (without loss of generality) that the �nal state has number 0 and thatwhen the �nal state is entered, the machine remains in this state for ever. It is quiteusual (and easy) to show that the internal description (the state, the positions ofthe scanned cells and the symbols in the cells) of the machine at the step n areprimitive recursive functions of n. Notice that this de�nition is usually made byuse of mutual recursion but primitive recursive functions are -extensionally- closedby mutual recursion. It is then not diÆcult to �nd a prc state depending on oneargument such that, for every integer n, state(Sn(0)) is the number of the state ofthe machine at time n.1. De�ne incr and g by : incr(nil) = nil, incr(cons(a; l)) = cons(Sa; incr(l)),g(0) = cons(0; nil) and g(n + 1) = cons(0; incr(g(n))). Then g(S!) is thein�nite list [0; 1; 2; :::]. De�ne h by: h(nil) = 0; h(cons(a; l)) = if state(a) = 0then Sh(l) else h(l) and let f = h Æ g. It is easy to check that f(S!) = S! i�the machine enters the �nal state.2. De�ne g and f by g(0; y) = 0, g(Sn; y) = if state(y) = 0 then Sg(n; Sy) elseg(n; Sy). f(x) = g(x; 0). It is again easy to check that f(S!) = S! i� themachine enters the �nal state.10 Appendix10.1 Proof of proposition 18 for CprBy simultaneous induction on the construction of f .1. For the base functions and �nite change, the result is trivial2. Composition :� if f and g are are either constant or strictly increasing, then so is f Æ g.{ if f and g are linear then so is f Æ g.{ if f(n) = an+ b and g(n) � dnc then f(g(n)) � dnac+ b � dne (forsome e) for n large enough and g(f(n)) � dan+bc .{ if f(n) � abn and g(n) � dnc: Since d � 2, g(n) � n for n largeenough and then f(g(n)) � bnc for n large enough .3. Iteration : since for all n, f(n) > n, g(n+ 1) = f Æ g(n) > g(n).� if f(n) = cn+ d and g(n+ 1) = f(g(n)) :{ c cannot be 0 since f cannot be constant.{ If c = 1, then d � 0 and g(n+ 1) = g(n) + d and so g(n) = dn+ b.20



{ If c > 1 then g(n0+n) = d+c(d+c(d+ :::))) = d(cn+1�1)=(c�1) �cne (for some e) for n large enough.� if f(n) � dnc then for some n0 and all n > n0 f(n) � 2n and sog(n0 + n) � 2ng(n0).10.2 Proof of proposition 18 for CmutBy simultaneous induction on the construction of f .1. For the base functions and �nite change, the result is trivial.2. Composition : the only problem is to check that the composition of two quasi-linear functions is quasi-linear. Assume f(n+ q) = f(n) + p and f 0(n+ q0) =f 0(n) + p0: Then f Æ f 0(n+ qq0) = f(f 0(n) + qp0) = f Æ f 0(n) + pp0.3. Multi-step iteration : the only diÆcult case is when f is quasi-linear and h isde�ned by iteration from f . Assume f(n+ q) = f(n) + p.� if q > p : it is easy to check that for some n, f(n) � n. So this case doesnot occur.� if q < p : it is easy to check that for some a > 1 and for n large enoughf(n) � an and thus h is exponential.� if p = q : this is given by the next lemma.Lemma 38 Assume that f is increasing, for all n large enough, f(n+p) = f(n)+pand h(n+ r) = f Æ h(n). Then h is quasi-linear for n large enough.Proof. The idea is the following : since h is obtained by iterating f and thevalue of f(n) depends essentially of the remainder of n in the division by p, wehave to study, for each i, the sequence de�ned by a(0; i) = i and a(n+ 1; i) = theremainder of f(a(n; i)) in the division by p. Since the number of possible remaindersis �nite this sequence is eventually cyclic. The main diÆculty of the proof is thefact (see lemma 43) that the form of these cycles is essentially independent of i.I have to show that h is quasi-linear on some �nal segment ofN and to determinethis segment. For simplicity, I will assume the hypothesis of the lemma hold for alln. For the general case I should, in the following, replace everywhere "for all n" by"for n large enough" and check that the �nal segment of N on which the mentionedproperty is true can be e�ectively determined. This is easily done and I will notcare about this.The result follows immediately from lemmas 42 and 43 below. I need �rst somede�nitions.Claim 39 f(0) � f(1) � ::: � f(p� 1) � f(0) + p.Proof. This immediately follows from the fact that f is increasing and f(p) =f(0) + p.Claim 40 I may assume without loss of generality, that 0 � f(0) < p.Proof. Let k = [f(0)=p] and de�ne f 0 by : f 0(n) = f(n) � kp. Clearly, f 0 isincreasing, 0 � f 0(0) < p and, for all n, f 0(n+ p) = f 0(n) + p. De�ne h0 by h0(i) =h(i) for 0 � i < r and h0(n+ r) = f 0(h0(n)): Assume h0(n+ a) = h0(n) + b for somea; b. Let f (l)denotes f Æ f::: Æ f , l times. It is easy to check (by induction on l) thatfor all l; i; h(lr+ i) = f (l)(h(i)),h0(lr+ i) = f 0(l)(h0(i)) and f (l)(i) = f 0(l)(i)+ lkp. Itfollows that, for all n, h(n) = h0(n)+ [n=r]kp and thus h(n+ar) = h(n)+ rb+ kap:21



De�nition 41 � Let I = fi = 0 � i < pg. For i 2 I, let q(i) be the quotientand r(i) the remainder, in the division of f(i) by p. Note that q is increasingon i and, by claims 39 and 40, q(i) = 0 or 1.� Say that i is a right (resp. left) point if q(i) = 1 (resp. q(i) = 0). Thisterminology will be easily understood by looking at the example below.� For j 2 I; de�ne a(n; j) and b(n; j) by : a(0; j) = j, a(n + 1; j) = r(a(n; j))and b(n; j) = q(a(n; j)). Thus f(a(n; j)) = b(n; j)p+ a(n+ 1; j).� Let lg(j) be the least such that a(n+ lg(j); j) = a(n; j), for some n. Say thata(n; j) ! a(n + 1; j) ! ::: ! a(n + lg(j) � 1; j) ! a(n + lg(j); j) = a(n; j)is a cycle for j. The function lg is clearly de�ned since I is �nite. It is alsoclear that, for n � p, a(n+ lg(j); j) = a(n; j).� Let S(j) = Cardfm = n � m < n+ lg(j) and b(m; j) = 1g. It is easy to checkthat S(j) does not depend on n, if n � p.The role of S and the cycles is given by lemma 42 below.Example i 0 1 2 3 4 5 6 7 8 9 10 11f(i) 4 4 5 5 8 9 9 9 10 13 14 14r(i) 4 4 5 5 8 9 9 9 10 1 2 2q(i) 0 0 0 0 0 0 0 0 0 1 1 1In this example (where p = 12) : 1! 4! 8! 10! 2! 5! 9! 1 is a cyclefor 1. lg(1) = 7 and S(1) = 2. There is, in fact, only one cycle : for example, 6 hasthe same cycle since 6! 9 and 9 belongs to the cycle of 1. This is however not thegeneral case.Lemma 42 For all n � pr, h(n+ lr) = h(n) + pS where l = lg(i), S = S(i) andi = rh(n� pr) is the remainder of h(n� pr) in the division by p.Proof. Let n = pr+n0, i = rh(n0), l = lg(i) and S = S(i). Then h(n0) = pk+ ifor some k: Since f(a(m; i)) = pb(m; i)+a(m+1; i); it is easy to check (by inductionon q) that f (q)(h(n0)) = a(q; i) + p(k + q�1Pm=0 b(m; i)). Since a(p + l; i) = a(p; i) itfollows that f (p+l)(h(n0)) = f (p)(h(n0)) + p p+l�1Pm=p b(m; i) = f (p)(h(n0)) + pS. Thus,h(n0 + (p+ l)r) = f (p+l)(h(n0)) = f (p)(h(n0)) + pS = h(n0 + pr) + pS.Lemma 43 The functions lg and S are constant on I.Proof. This is done in several steps, according to various situations. Claim 46gives the easy cases. Claims 48 to 50 prove the most diÆcult case. Claims 44 and45 will be useful.Claim 44 There are no n;m and i; j such that b(n; i) = 0; b(m; j) = 1 and a(n+1; i) < a(m+ 1; j).Proof. Otherwise, we have f(0) + p � f(a(n; i)) + p = a(n + 1; i) + p <a(m+ 1; j) + p = f(a(m; j)) � f(p� 1) and this contradicts claim 39.Claim 45 1. Assume b(n; i) = 1 and a(n+ 1; i) � a(n; i): Then, for all m � n,b(m; i) = 1: Similarly, if b(n; i) = 0 and a(n + 1; i) � a(n; i) then, for allm � n, b(m; i) = 0: 22



2. Assume that for n large enough b(n; i) = 1 (resp. b(n; i) = 0). Then, for somem; a(m+ 1; i) = a(m; i):3. Assume a(m + 1; i) = a(m; i) and b(m; i) = 1 (resp. b(m; i) = 0). Then foreach j, there is an n such that a(n + 1; j) = a(n; j) and b(n; j) = 1 (resp.b(n; i) = 0).Proof.1. Since b(n; i) = 1 and a(n + 1; i) � a(n; i), then b(n + 1; i) = 1: I prove, byinduction on m that for all m � n; a(m + 1; i) � a(m; i) and b(m; i) = 1:Since f is increasing p + a(m + 1; i) = b(m; i)p + a(m + 1; i) = f(a(m; i)) �f(a(m + 1; i)) = b(m + 1; i)p + a(m + 2; i) = p + a(m + 2; i) and the resultfollows.2. Assume that, for m � n; b(m; i) = 1 and, for example, a(n + 1; i) � a(n; i):It is easy to prove by induction as in the previous case that for m � n;a(m+ 1; i) � a(m; i). The result follows immediately from the fact that I is�nite.3. � Assume that for some n0, a(n0; j) � a(m; i). It is easy to check byinduction as in the previous cases that for n � n0, a(n; j) � a(m; i) andb(n; j) = 1: The result follows then from (2).� Assume for all n, a(n+ 1; j) < a(m+ 1; i): Then, by claim 44, for all n,b(n; j) = 1 and again the result follows from (2).Claim 46 1. One of the following situation holds :(a) All the cycles are uniquely made of right points.(b) All the cycles are uniquely made of left points.(c) For all i; n if b(n; i) = 1 then b(n+ 1; i) = 0:(d) For all i; n if b(n; i) = 0 then b(n+ 1; i) = 1:2. In case (a) lg(i) = S(i) = 1 for each i. In case (b) lg(i) = 1 and S(i) = 0for each i: In case (c) and (d) hold simultaneously lg(i) = 2 and S(i) = 1 foreach i.Proof.1. Assume neither case (c) nor case (d) holds. Let b(n; i) = b(n + 1; i) = 0 andb(m; j) = b(m + 1; j) = 1. If a(n; i) � a(n + 1; i) then, claim 45 impliesthat we are in case (a). Similarly if a(m+ 1; j) � a(m; j) we are in case (b).Otherwise, we have a(n; i) < a(n + 1; i) < a(m + 1; j) < a(m; j) and thiscontradicts claim 44.2. If (a) or (b) holds the result follows immediately from claim 45. Assume(c) and (d) hold simultaneously and, for all n, a(n + 2; i) 6= a(n; i). Say, forexample, a(0; i) < a(2; i). Since b(2n; i) is constant it is immediate to checkthat for all n, a(2(n� 1); i) < a(2n; i) which is impossible.Thus it remains to prove lemma 43 in the following case (the symmetric one issimilar).� For all i; n if b(n; i) = 1 then b(n+ 1; i) = 0.23



� For some i; n b(n; i) = b(n+ 1; i) = 0.Note that the example of de�nition 41 corresponds to this situation. Fix i suchthat b(n; i) = b(n+ 1; i) = 0 for some n and let l = lg(i) and S = S(i). Note thatlg(i) � 3 since there are at least two left points and one right point. Choose j 6= i.I may assume that fa(m; i) = m 2 Ng \ fa(m; j) = m 2 Ng = ; since, otherwise, iand j have the same cycle and thus, lg(j) = l and S(j) = S. I will show that thecycle of j looks like the one of i and thus, again, lg(j) = l and s(j) = S: I needsome more de�nitions. I may assume without loss of generality that :1. a(l; i) = a(0; i) and a(lg(j); j) = a(0; j). This means that, in the cyclescorresponding to j (resp. i), the �rst element of the cycle is j (resp. i).2. b(0; i) = b(0; j) = 1. This means that i and j are right points.3. For all n, if b(n; i) = 1 then a(n; i) � a(0; i). This means that i is the smallestof the right points of its cycle. It follows that a(1; i) is the smallest of the leftpoints of its cycle.4. Let k be such that b(k; i) = 0 and for every m such that b(m; i) = 0, a(m; i) �a(k; i). This means that a(k; i) is the largest of the left points in its cycle. Itfollows that a(k + 1; i) is the largest of the right points in its cycle.5. There is no m such that b(m; j) = 1 and a(m; j) < a(0; i). This means thatthe smallest of the right points of the cycle of i is smaller than the smallestof the right points of the cycle of j. (The opposite case is done in a similarway). It follows that there is no n such that b(n; j) = 0 and a(n; j) < a(1; i).De�nition 47 1. Say that Suc(n;m) if a(n; i) < a(m; i) and there is no q suchthat a(n; i) < a(q; i) < a(m; i). It is convenient to also say that Suc(k+1; 1).2. If Suc(n;m), say j 2]n;m[ if a(n; i) < j < a(m; i) (resp. if n = k + 1,j > a(k + 1; i))Example and comments1. Note that this notion is only de�ned modulo l.2. By the assumption on i and j; we always have Suc(k; 0) and a(m; j) 2 ]k; 0[i� b(m; j) = 0 and a(m; j) > a(k; i).3. In the example of de�nition 41, the cycle corresponding to i = 0 satis�es k = 3and a(1; i) < a(5; i) < a(2; i) < a(6; i) < a(3; i) < a(0; i) = a(7; i) < a(4; i):Thus Suc(1; 5); Suc(5; 2); Suc(2; 6); Suc(6; 3); Suc(3; 0); Suc(0; 4) and Suc(4; 1):Claim 48 Assume Suc(n;m): Then Suc(n+ 1;m+ 1).Proof. The non trivial cases (i.e. the ones that do not immediately follow fromthe fact that f is increasing) are :� n = k+1,m = 1 : �rst note that by claim 44, a(k+2; i) � a(2; i). The equalityis impossible since this would imply lg(i) � k and this contradicts the fact thatthe cycle has at least k + 1 points. Assume that a(k + 2; i) < a(n; i) < a(2; i)for some n. If b(n � 1; i) = 0 then a(n � 1; i) < a(1; i) : contradiction. Ifb(n� 1; i) = 1 then a(n� 1; i) > a(k + 1; i) : contradiction.� b(n; i) = b(m; i) = 0; b(n + 1; i) = 0 and b(m + 1; i) = 1. I prove below that]n+ 1;m+ 1[=]k; 0[ : 24



{ m+1 = l : otherwise a(m+1; i) > a(l; i) and thus a(n; i) < a(l� 1; i) <a(m; i). This contradicts Suc(n;m).{ n + 1 = k : otherwise a(n + 1; i) < a(k; i). If b(k � 1; i) = 0 thena(n; i) < a(k � 1; i) and since Suc(n;m), a(k � 1; i) � a(m; i) and thusb(k; i) = 1. Contradiction. If b(k� 1; i) = 1 then a(k� 1; i) = a(k+1; i)and this contradicts the fact that l � 3.Claim 49 below implies that, for 0 � q < q0 < l, a(q; j) 6= a(q0; j) and b(q; j) =b(q; i): Thus claim 50 shows that lg(j) = l and S(j) = S: This �nishes the proofs oflemmas 43, 38 and thus the proof of proposition 18.Assume that j 2 ]n;m[ for some n;m such that Suc(n;m).Claim 49 For all q, a(q; j) 2 ]n+ q;m+ q[.Proof. Note that if the cycle of i satis�es (as in the example of de�nition41) a(1; i) < a(5; i) < a(2; i) < a(6; i) < a(3; i) < a(0; i) = a(7; i) < a(4; i) andif j > a(4; i), claim 49 implies a(1; i) < a(4; j) < a(5; i) < a(1; j) < a(2; i) <a(5; j) < a(6; i) < a(2; j) < a(3; i) < a(6; j) < a(0; i) < a(3; j) < a(4; i) < a(0; j)and a(7; j) > a(4; i).The proof is by induction on q. Using the fact that f is increasing, the only nontrivial cases are :� ]n+ q;m+ q[=]k+1; 1[ : since a(q; j) > a(k+1; i) we must have a(q+1; j) >a(k + 2; i). By claim 44 and the fact that the cycles of i and j are disjoints,we have a(q + 1; j) < a(2; i).� ]n+ q+1;m+ q+1[=]k; 0[ : b(q+1; j) = 0 because otherwise, since a(q; j) <a(m + q; i), we should have a(q + 1; j) < a(0; i) and this contradicts theassumption on j. Then, since a(q; j) > a(n+ q; i), a(q+1; j) > a(k; i) and weare done.Claim 50 a(l; j) = j.Proof. Claim 49 shows that a(l; j) 2 ]n;m[. Assume a(l; j) 6= j, e.g. a(l; j) < j.It follows from claim 49 by an immediate induction on q that, for every q, a(q:l; j) 2]n;m[ and a(q � 1:l; j) < a(q:l; j). Contradiction.10.3 Proof of proposition 18 for CaltBy induction on f , as for Cpr . The only new case is for f given by mixed iteration.Assume that :� f; g are strictly increasing and linear or exponential, for n large enough.� f(n) > n, for all n.� h(n+1) =Minfg(n+1); f Æh(n)g (and thus h(n) � g(n)) for n large enough.I must prove that :� h is strictly increasing : h(n + 1) > h(n) follows immediately from the factsthat g(n + 1) > g(n) � h(n), f(h(n)) > h(n) and h(n + 1) = Minfg(n +1); f Æ h(n)g.� h linear or exponential on some �nal segment of N .1. Assume that for for n � m, g(n) = an + b and h(n + 1) = Minfg(n+1); ch(n) + dg. 25



(a) Assume �rst that c > 1. There is n � m such that h(n) = g(n) andg(n+ 1) � cg(n) + d.Proof : otherwise for all n large enough, h(n) < g(n). Then h(n+1) = ch(n)+d. This is impossible since then, for some e, h(n) � cne,for n large enough and this contradicts the assumption h(n) < g(n).End of proof.Then it is easy to see (by simultaneous induction on p) that h(p) =g(p) and g(p+ 1) � cg(p) + d for all p � n:(b) Assume that c = 1 and d > a. There is n � m such that h(n) = g(n).Proof : otherwise for all n � m, h(n) < g(n). Then h(n + 1) =h(n) + d and, for some q, h(m) � dm � q for n � m, and thiscontradicts the assumption h(n) < g(n). End of proof.Then it is immediate to see (by induction on n) that h(n) = g(n)for all n � m.(c) Assume that c = 1 and d � a. If h(m)+d � g(m+1), it is immediateto see (by induction on n) that for all n � m, h(n+1) = h(n)+d andthus h is linear. Otherwise, it is easy to check that h(m+ 1) + d �g(m+ 2) and the result is similar.2. Assume that for for n � m, g(n) � bna and h(n + 1) = Minfg(n +1); ch(n) + dg.(a) Assume �rst that c > b. There is n � m such that h(n) � bna .Proof : otherwise for n � m, h(n) < bna � g(n). Then, h(n+ 1) =ch(n)+d and thus bna > h(n) = cn� q for some q. This contradictsc > b. End of proof.Then, for some r > 1 and some e, h(p) � rpe for all p � n.Proof : show (by simultaneous induction on p, using c > b) that, ifd � 0 then h(p + 1) = ch(p) + d and h(p) � bp+1a for p � n and,otherwise, for p � 0, h(n+ p) � abn+p + cp�1d+ cp�2d+ :::+ d.Endof proof.(b) Assume 1 < c � b. If for all n � m, c:h(n) + d > bn+1a then h isexponential. Otherwise let n � m be such that ch(n) + d � bn+1a.It is easy to see (by simultaneous induction on p) that for all p � n,ch(p) + d � bp+1a and h(p + 1) = ch(p) + d and thus that h isexponential.(c) Assume that c = 1. If for all n � m, h(n) + d > bn+1a then h isexponential. Otherwise let n � m be such that h(n) + d � bn+1a.It is easy to see (by simultaneous induction on p) that for all p � n,h(p) + d � bp+1a and h(p+ 1) = h(p) + d and thus that h is linear.3. Assume g(n) � bna and f(n) � dnc for n large enough. Then, for nlarge enough f(n) � b n. It follows (by induction on n) that for some n0,h(n+ n0) �Minfbn+n0a; bnh(n0)g for all n and thus h is exponential.4. Assume �nally g(n) = an + b and f(n) � dnc for n large enough. Lete = Maxfa; 2g. Let m be such that for n � m, f(n) > en and g(n) =an+ b. There is n � m such that g(n+ 1) � f Æ h(n) .Proof : otherwise for all n � m, h(n+1) = f Æh(n) and thus h(p+m) �2ph(m) which contradicts eh(n) < f Æ h(n) < g(n + 1) = a(n + 1) + b.End of proof.Then it is easy to see (by simultaneous induction on p, using e � a) thatfor all p � n, g(p+ 1) � f Æ h(p) and h(p) = g(p).26



References[1] R. Amadio and P.L. Curien. Domains and Lambda Calculi. Cambridge Uni-versity Press Press, 1998.[2] G. Berry and P.-L. Curien. Sequential algorithms on concrete data structures.Theoretical Computer Science, 20:265-321, 1982.[3] L. Colson. About primitive recursive algorithms. Theoretical Computer Sci-ence, 83 : 57-69, 1991.[4] L. Colson. Repr�esentation intensionnelle d'algorithmes dans les syst�emes fonc-tionnels. Th�ese de doctorat, Universit�e P 7, 1991.[5] L. Colson. A unary representation result for system T . Annals of Mathematicsand Arti�cial Intelligence, 16:385-403, 1996.[6] T. Coquand. Une preuve directe du th�eor�eme d'ultime obstination. CompteRendus de l'Acad�emie des Sciences, 314, Serie I, 1992.[7] R. David. Un algorithme primitif r�ecursif pour la fonction inf. Compte Rendusde l'Acad�emie des Sciences, 317 (S�erie I), 1993.[8] R. David. The inf function in the system F . TCS, 135 : 423-431, 1994.[9] R. David. On the asymptotic behaviour of primitive recursive algorithms. TCS,266 :159-193, 2001.[10] Martin Hotzel Escardo. On lazy natural numbers with applications. SIGACTNews, 24(1), 1993.[11] D. Fredholm. Intentional aspects of function de�nitions. Theoretical ComputerScience, 152 : 1-66, 1995.[12] D. Fredholm. Computing minimum with primitive recursion over lists. Theo-retical Computer Science, 163 : 269-276, 1996.[13] J.-L. Krivine. Un algorithme non typable dans le systeme F . Compt. Rend. del'Acad. des Sci. Paris, 304(5), 1987.[14] Roza Peter. Recursive Functions. Academic Press, 1968.[15] H. Rogers. Theory of recursive functions and e�ective computability. MITPress, 1988.[16] P. Valarcher. A complete characterization of intensional behaviours of primitiverecursive algorithms. Rapport de Recherche du LIR, 96.11, 1996.[17] P. Valarcher. Contribution �a l'etude du comportement intentionel des algo-rithmes: le cas de la r�ecursion primitive. Th�ese de doctorat, Universit�e P 7,1996.[18] P. Valarcher. Intensionality vs extensionality and primitive recursion. ASIANComputing Science Conference - LNCS, 1179, 1996.[19] J.E. Vuillemin. Proof techniques for recursive programs. PhD thesis, Standford,1973.
27


