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Ships Hull Corrosion Diagnosis From Close Measurements of
Electric Potential in the Water

A. Guibert���, O. Chadebec�, J.-L. Coulomb�, and C. Rannou�

G2Elab (UMR 5269 INPG-UJF-CNRS), ENSIEG, 38402 Grenoble, France
DGA/GESMA-Département DDBF, 29240 Brest Armees

We present here an original method to search the corroded zones of an underwater steel structure. Nowadays, after a defined naviga-
tion period, a vessel is placed in dry dock, to examine its hull state, find the damaged areas and then paint them. This step of identification,
very long and relatively inefficient, could be replaced by a series of electrical measurements which would be processed to get clues about
the state of the hull. Those results are obtained thanks to the study of the cathodic protection system equipped on the hull. This new
method allows a great timesaving but also a precision never reached before.

Index Terms—Boundary elements method, cathodic protection, inverse problems, regularization techniques.

I. INTRODUCTION

A DVANCED techniques in electrochemistry allow the ef-
fective protection of ships hull through cathodic protec-

tion. Without that, each damaged area would form with the
noble parts of the hull a galvanic couple in the seawater, leading
to a natural corrosion phenomenon. This reaction consists in
currents circulation from the damaged areas (anodes) to the no-
bles parts (propellers, etc., ). This would aggravate the state of
the damaged areas with a loss of material. One solution, called
sacrificial anodes cathodic protection, consists in placing metals
on the hull with a more negative electrochemical potential than
the structure we have to protect (some steel here). They become
the new anodes of the system and are oxidized. The other solu-
tion is to distribute active anodes in noble metals (often made of
platinum) on the hull. They are connected to a dc power source
and will generate electric currents in the seawater, placing the
damaged areas in their electrochemical immunity domain. This
method, called impressed current cathodic protection (ICCP)
creates currents lines and so an electromagnetic field in the sea-
water (see Fig. 1), measurable. The location and current densi-
ties of the anodes are known in this case.

Some mathematical methods exist to find a corrosion damage
coefficient of the inner parts of pipelines [1] for example
or in other inner cases, based on boundary elements methods
[2]. These methods start most of the time with measurements
on bounds. Our study deals with extern problems, an approach
not so widespread [3], predicting electromagnetic fields in the
seawater created by underwater steel structure, and an original
inverse method to make a diagnosis of the corrosion they en-
counter. More precisely, it will be based on the second cathodic
protection explained before and will stand in underwater elec-
trical measurements and their processing to find the damaged
areas.

First, a forward modeling based on a boundary element
method will be presented. Then, from the knowledge of the
boundary conditions obtained, a calculation of electric po-
tential anywhere in the sea water will be tackled. Finally, an
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Fig. 1. Impressed current cathodic protection principle.

extrapolation of this potential calculation will be at the origin
of an original inverse method. This method permits to make a
diagnosis (find the unknown boundary conditions) of the hull
from electric measurements in the seawater.

II. FORWARD MODELING

As said previously, the main goal here is to predict the elec-
tric potential in an infinite electrolyte (seawater) created by an
underwater structure whose part of the boundary conditions are
known. Remembering our aim is to later develop an inverse
method, we choose to use a boundary element method (BEM).
Indeed, inversing with a finite-elements method (FEM) is very
difficult. Its other advantages are that we do not have to mesh
the volumes and an infinite limit representation is not necessary.

A. BEM Method in Extern Problem

In the seawater, without additional charges, the electric po-
tential verifies the Laplace equation

(1)

Green’s first identity gives

(2)
Replacing by the electric potential and by Green’s func-

tion in 3-D

(3)
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Fig. 2. Schematic representation of the boundary problem.

We obtain Green’s third identity, linking the potential and its
normal derivative on the whole surface

(4)

where is the solid angle seen by the element of . Extrapo-
lating (4) for on the boundaries of the problem (non singular,
i.e., on a plane boundary) and introducing a virtual potential
for the infinity bound (see Fig. 2), we have

(5)

Equation (5) is applied on all the surfaces of the problem. By
meshing the whole surface, making a point matching approach
of our unknowns at each elements barycenter, we get the fol-
lowing system:

(6)

with

(7)

The boundary conditions available are as follows.
• An anode region (non-polarizable electrode), whose cur-

rent density is known. is linked to by mul-
tiplying it by , the conductivity of the electrolyte.

• A cathode region (polarizable electrode), whose polariza-
tion law is known and most of the time
nonlinear.

• An insulator region, whose current density is null on it:
.

Fig. 3. Geometry meshed of an existing model.

Fig. 4. Result obtained, � � 1.3762 V.

The system in (6) can be written by separating known and un-
known variables, adding a new line (the last one) which ensures

(8)

where is the area of the element . The conditions on the in-
sulators are known. So is the polarization law
linking and , so that we can send in the second
member and the system becomes square. It is possible to solve
it thanks to a Newton–Raphson algorithm based on the vari-
able [5].

Assumed that we have meshed the geometry in elements,
the system (8) has equations for unknowns.
Therefore, it can be linearly solved so that the resolution of the
Newton–Raphson algorithm will be easier. The model used here
is a real underwater model meshed in 1052 elements (see Fig. 3):

• 3 uniform active anodes: 6 elements;
• 4 different cathodes (damaged areas): 31 elements;
• the rest of the hull completely isolated: 1015 elements.
The result obtained with our algorithm is presented in Fig. 4,

the anodes having naturally the highest potential (in white), the
cathodes having the lowest ones (in black). The scale, for the
whole article, is in volts.

B. Electric Potential and Field Computation

The electric potential in the electrolyte can easily be com-
puted with (4), which amounts to make the same numerical ap-
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Fig. 5. Electric potential measurements principle.

proach with mesh elements (solid angle is now equal to ;
potential is set null in the structure)

(9)

The infinite potential is not necessary here: indeed it is a vir-
tual offset (1.3762 V in Fig. 4), so that we can remove its term:
the results obtained will be centered on zero.

III. DIAGNOSIS: USE OF AN INVERSE METHOD

A. Principle

Contrary to the previous part, we want here to get the
boundary conditions through a series of electric measurements,
with only one type of data from the hull which are the current
densities delivered by the anodes. In this paragraph,
we will keep the same model example from the previous part,
with 1052 elements, so that we have 2098 unknowns, noted .
The measurements vector will then be noted and an influence
matrix A will be built so that we can write the equation

(10)

We decide to base our inverse method on electric potential
measurements: indeed the electric field decreases faster in an
electrolyte than the electric potential, so with potentials, the
significant measurements space is bigger. Such measurements
could be made by passing a ship above a perpendicular poten-
tial sensor line, as in Fig. 5.

First, the forward modeling is used to create the virtual mea-
surements explained on Fig. 5 on a grid. Some random noise is
added with maximum value equal to 5% of the maximum poten-
tial calculated. The following figure presents a potential compu-
tation from the 20 sensors shown in Fig. 5 with 70 measurement
abscissas on the passing way of the ship at a 0.855 meter deep
d which gives a B vector with 1400 components (see Fig. 6).

The influence matrix A contains the interactions between
each mesh element and the measurements location points. It
will be built with (9). With our example we have an A matrix
with 1400 rows and 2098 columns which places us in an
under-determined case. Solving the normal equation aims to

Fig. 6. Result of electric potential measurements.

Fig. 7. Boundary conditions obtained on the hull with a direct inversion.

find that minimizes the residual norm . This
amounts to solve . The main problem is
that is most of the time very bad conditioned. Indeed, the
different number of columns and rows implies a bad condition
number. And more specifically the two different unknowns’
types (potentials and their normal derivatives) lead to values in
A with different scales. Matrix A being bad conditioned,
will be worse conditioned, giving to catastrophic results. Here,
matrix A has a huge condition number equal to 4.1279 ,
however, we directly inverse the system (see Fig. 7).

We obtain non physic boundary conditions with maximum
potential values reaching (The target values are shown in
Fig. 4). We need to work on this system before inversing it to
get a better solution.

B. Injection of Information

Having under-determined problems leads to inversing diffi-
culties. A solution is to add information through other equations.
A smart and original method here is to reinject Green’s equa-
tions from (5). Those equations link each element to the others.
It contributes to get physic compatibility between elements of
the model. Indeed our problem is composed of 1052 elements
so we can add 1052 equations to A (1052 lines). The problem
becomes overdetermined (2452 equations for 2098 unknowns)
and simpler to solve: the solution space is smartly reduced and
we have to find the best one. Moreover, since it is simpler to
solve an overdetermined problem, the number of measurements
required can be reduced by a previous counting of our unknowns
and the Green’s equations we can inject.

C. Tikhonov Regularization

Having added Green’s equations, a regularization method is
necessary to choose the best solution in the space evoked be-
fore. An interesting one is the Tikhonov regularization method,
which introduces a regularization matrix L and a regularization
parameter . The expression to minimize is now

[6].
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Fig. 8. Example of a L-curve with its corner.

Fig. 9. Result obtained after inversion with Tikhonov regularization.

The regularization matrix L is square, has a dimension equal
to the number of unknowns and represents the regularization
type we impose. To get a minimum norm solution, L will be the
identity matrix (order 0); an order 1 will favor a regular solution
on the bounds The addition of Green’s equations giving a
continuous solution, L matrix order chosen is 0. Solution norm

will be the sum of the solution values, which has to be
as small as possible [7].

The regularization parameter is the importance given to the
regularization. It defines the compromise between the residual
norm (precision of the solution) and the solution
norm . The L-curve shown in Fig. 8, corresponding to
our ship hull problem, is the graphical representation of this
compromise. Its name comes from the form the curve has in
many cases, meaning that the best (or best compromise) stands
in the corner of the L-curve. It must be mentioned that this curve
can have other forms, so, according to the problem data (values
of the residual norm expected), choice has to be made smartly.
In most of these cases choice is made empirically by testing
different values and observing the results.

D. Final Result and Comparison With the Target

Remembering the target values set in Fig. 4, the system is
inversed with a equal to 0.02, corresponding to the L-Curve
corner (see Fig. 8). The result obtained is shown in Fig. 9.

The darkest zones (corroded areas) correspond to the ones in
Fig. 4, the method is assumed validated. It should be noticed
that this inverse method algorithm do not need a virtual infinity
potential to work, which explains the different offset with Fig. 4:
the result is here centered in zero.

Moreover, some other methods have been tested such as
the spectrum truncation of the singular value decomposition
(TSVD) or the generalized cross validation (GCV) but they
give less accuracy to the solution and do not permit the choice
of the regularization order (for the TSVD).

IV. CONCLUSION

We have presented here an original method to make a diag-
nosis of ships hull corrosion from electric measurements in the
electrolyte and not on the bounds. We have seen that, through
Green’s equations, a few data and an appropriate series of elec-
tric potential measurements, we can get clues and even pre-
cise locations of damaged areas on the hull. Those results are
obtained with efficiency and a great time saving, compared to
current methods. To validate our numerical processing, a par-
allelepipedic bowl in PMMA (Plexiglas) has been built with
a system of electric potential measurement on it. Models can
be flown in it such as some painted steel with damaged areas
and an appropriate cathodic protection on it. Electric potential
measurements on strategic points in the bowl permit the vali-
dation of the presented algorithms, imposing current densities
injected through a PC with appropriate software and an elec-
trolyte whose salinity is controlled. These tests are in work,
giving matching results and will be presented in future articles.
It should be noticed that not only ships could get advantages
from this method, but also pipelines, oil rigs, or any underwater
steel structure.
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