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Abstract Among the various possible criteria guiding
eye movement selection, we investigate the role of posi-
tion uncertainty in the peripheral visual field. In partic-
ular, we suggest that, in everyday life situations of ob-
ject tracking, eye movement selection probably includes
a principle of reduction of uncertainty. To do so, we con-
front the movement predictions of computational mod-
els with human results from a psychophysical task. This
task is a freely moving eye version of the Multiple Object
Tracking task with the eye movements possibly compen-
sating for lower peripheral resolution. We design several
Bayesian models of increasing complexity, whose layered
structures are inspired by the neurobiology of the brain
areas implied in eye movement selection. Finally, we com-
pare the relative performances of these models with re-
gard to the prediction of the recorded human movements,
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and show the advantage of taking explicitly into account
uncertainty for the prediction of eye movements.

1 Introduction

We usually make a few saccades per seconds. Saccades,
and other eye movements, may result from a decision on
where to look next, in order to gain information about
the visual scene by driving the fovea towards regions of
interest. However, the sensitivity and spatial resolution
decays towards the periphery of the visual field. As a re-
sult, we are uncertain about what we expected to learn
from an eye movement towards a more peripheral posi-
tion. The uncertainty is a common issue for both percep-
tion – because we can not be sure of what we perceive
– and action – because we can not be sure of the conse-
quences of our action. In this paper, we investigate the
possible role of uncertainty evaluation in selection pro-
cesses related to active perception. We build a Bayesian
model inspired by the neurophysiology of eye movement
selection related brain regions, in order to investigate eye
movements selection during freely moving eye Multiple
Object Tracking task (MOT).

Bayesian methodology

In order to handle and reason taking into account un-
certainty, we use the Bayesian Programming framework
(Lebeltel et al 2004; Bessière et al 2008). This frame-
work provides a systematic procedure to build and use
a Bayesian model. A Bayesian model uses probability
distributions to represent knowledge with uncertainty. It
then reasons about this knowledge by applying the prob-
abilistic rules. More precisely, starting from a joint prob-
ability distribution, marginalization, and Bayes’ rules al-
low to compute any conditional or marginal probability
distribution. As this joint probability is usually of very
high dimensionality, we use conditional independence hy-
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potheses to decompose the joint distribution in a simpler
product of smaller distributions.

In the end, a Bayesian programmer specifies a set of
variables, a decomposition of the joint probability dis-
tribution and a mathematical expression for each factor
that appears in this decomposition. At that point, any
distribution on the variables can be computed. The pro-
grammer is usually interested on one particular distribu-
tion, which is called a question. The inference can be au-
tomatically computed through the use of both marginal-
ization and Bayes rules.

Eye movement circuitry

Even if we do not have the pretension to build a com-
plete model of the neurophysiology of the eye move-
ment selection related brain regions, the structure of our
model is inspired by their anatomy and electrophysiol-
ogy. Saccadic and smooth pursuit circuitry share a large
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Fig. 1 Premotor and motor circuitry shared by saccade and
smooth pursuit movement (Macaque monkey). BG: basal
ganglia, BON: brainstem oculomotor nuclei, FEF: frontal eye
fields, LIP: lateral bank of the intraparietal sulcus, SC: supe-
rior colliculus, SEF: supplementary eye fields, TH: thalamus,
Verm: cerebellar vermis. In red: regions using retinotopic ref-
erence frames to encode visual, memory and motor activity,
refer to text for more details. Adapted from (Krauzlis 2004).

part of their functional architecture (Krauzlis 2004).
Among those regions containing saccadic and smooth
pursuit subcircuits (Fig. 1), the superior colliculus (SC),
the frontal eye fields (FEF) and the lateral bank in the
intraparietal sulcus (LIP) in the posterior parietal cor-
tex have a number of common points. They all receive
information concerning the position of points of interest
in the visual field (visual activity), memorize these posi-
tions (delay activity) and are implied in the selection of
the gaze targets among these points (presaccadic activ-
ity) (Moschovakis et al 1996; Wurtz et al 2001; Scudder
et al 2002). These positions are encoded by cells with
receptive/motor fields defined in a retinotopic reference

frame. Our model is based on retinotopic probability dis-
tributions encoding similar informations (observations,
memory of target positions, motor decision).

In the SC, these cells are clearly organized in topo-
graphic maps, in various species (Robinson 1972; McIl-
wain 1976, 1983; Siminoff et al 1966; Herrero et al
1998). In primates, these maps have a complex loga-
rithmic mapping (Fig. 2) (Robinson 1972; Ottes et al
1986), similar to the mapping found in the striate cortex
(Schwarz 1980). Concerning the FEF, mapping studies
clearly show a logarithmic encoding of the eccentricity of
the position vector (Sommer and Wurtz 2000), however
complementary studies are necessary to understand how
its orientation is encoded. Finally, the structure of the
LIP maps is still to be deciphered, even if a continuous
topographical organization seems to exist, with an over
representation of the central visual field (Ben Hamed
et al 2001). Given the lack of quantitatively defined FEF
and LIP mappings, we assume that they share similar
properties with the SC one and thus use the log complex
mapping of the SC for all the position encoding variables
of our model.
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Fig. 2 Macaque collicular mapping. The angular position of
targets in the visual field (right) are mapped onto the SC
surface (left) using a logarithmic mapping. The grey areas
represent the same part of the visual field in both represen-
tations.

The neurons related to the spatial working memory in
SC (Mays and Sparks 1980), FEF (Goldberg and Bruce
1990) and LIP (Gnadt and Andersen 1988; Barash et al
1991a,b) – also called quasi-visual cells or QV – are capa-
ble of dynamic remapping. These cells can be activated
by a memory of the position of a target, even if the tar-
get was not in the cell’s receptive field at the time of
presentation. They behave as if they were included in a
retinotopic memory map, integrating a remapping mech-
anism allowing the displacement of the memorized activ-
ity when an eye movement is performed. Neural network
models of that type of maps, either in the SC or the FEF,
have already been proposed (Droulez and Berthoz 1991;
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Bozis and Moschovakis 1998; Mitchell and Zipser 2003).
Such a mechanism, adapted to Bayesian programming,
is used in the representation and memory layers of our
model.

To summarize, though not strictly neuromimetic, the
layered structure of our Bayesian model is based on log
complex retinotopic maps with remapping capabilities,
encoding the filtered visual input, the memorized posi-
tion of targets of interests, and the generation of motor
commands.

Experimental protocol

In order to study selection of eye movement in a con-
trolled task, we use eye movement recordings from a
freely moving eye version (Tanner et al 2007) of the
classical MOT task (Pylyshyn and Storm 1988). Eye
movements in MOT have only recently attracted interest
(Tanner et al 2007; Fehd and Seiffert 2008; Zelinsky and
Neider 2008). The original task was designed to investi-
gate the distribution of covert attention with eye move-
ments constrained by a fixation cross (Cavanagh and Al-
varez 2005), while we looked at how free eye movements
might optimize the tracking. Figure 3 illustrates this ex-
periment in which participants are presented with a set
of targets among a number of distractors. All of these ob-
jects are indiscernible 1◦ large discs and move in a quasi-
random pattern. The task is to remember which of these
objects are the targets (see appendix A for a complete de-
scription). With this experimental paradigm, the visual
scene is composed of simple geometric features therefore
allowing for a study of the eye movement selection that
occurs in this context.

Fixation

Cueing 
1.08sec

Tracking 
5sec

Response 
max 20sec

Fig. 3 Typical Multiple Object Tracking experiment. A set
of simple objects is presented, the targets are identified as the
flashing ones, then the flashing stops and all the objects move
around independently. After they stop moving, the subject
must identify the targets.

First we describe the Bayesian models we propose.
Then we present the global results indicating that un-
certainty is useful and some specific situations shedding
light on the differences between the models.

2 Methods

The model we propose is composed of two parts. The
first part deals with the perception and memory of the vi-
sual scene (representation model). The second part deals
with the actual selection of where to look next (decision
model).

Both models are expressed in a retinal reference
frame, with a logcomplex mapping as explained above.

2.1 Representation

The representation part of our model is a dynamic retino-
topic map of the visual environment. This representation
is structured in two different layers. The first layer is con-
cerned only with the integration of the visual input, i.e.
the occupancy of the visual scene without any discrimi-
nation between targets and distractors (occupancy grid),
it is the model homologous to the visual cells.

The second layer is a memory of the position of the
targets, reminiscent of the QV cells. It represents the
knowledge of the observer about the position of the tar-
gets, based on the occupancy representation.

Occupancy grid Occupancy grids are a standard way to
represent the state of an environment. They were orig-
inally introduced for the representation of obstacles in
robotics applications (Elfes 1989). The general idea is to
discretize the environment into a grid and to assign a
variable in each cell of the grid stating whether there is
an obstacle or not. The occupancy grid is therefore the
collection of probability distributions over each variable
in the grid.

We apply this model to the presence of objects in
the visual field. More precisely, we introduce a collec-
tion O of binary variables Ot

(x,y), one for each timestep

t ∈ [[0, tmax]] and location (x, y) ∈ G where G is a regular
grid in the retino-centered logcomplex reference frame.1

We also assume that we have visual inputs in this same
reference frame, represented by a collection V of binary
variables V t

(x,y) for t ∈ [[1, tmax]] indicating if an object

(either target or distractor) is perceived in the corre-
sponding cell. Finally, we include some past eye move-
ment information M t in order to model the remapping

1 Omission of an index or exponent in the variable name in-
dicates the conjunction of all of those variables for the missing
index varying in its full range: O = O0→tmax =

∧tmax

t=0
Ot =

∧tmax

t=0

∧

(x,y)∈G
Ot

(x,y)
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capability exhibited by cortical and subcortical retino-
centered memories.

We write the joint probability distribution over all
these variables by assuming the occupancy of the cells
are independent one from another conditionally to the
past eye movement and the former state of the grid. We
also assume that the observation corresponding to a cell
is independent on all other variables conditionally to the
current occupancy in this cell. This is summarized by the
following factorization of the joint distribution:

P (O V M)

= P (O0)

tmax
∏

t=1

P (Ot V t M t | Ot−1)

=
∏

(x,y)∈G

P (O0
(x,y))

×

tmax
∏

t=1





P (M t)

×
∏

(x,y)∈G

[

P (Ot
(x,y) | M t Ot−1)

×P (V t
(x,y) | Ot

(x,y))

]





In this expression, P (O0
(x,y)) is an arbitrary prior on

the occupancy of the visual scene, P (M t) is a distribu-
tion over the eye movement that can be chosen arbitrar-
ily as the results of the inference do not depend on it,
as far as it is non zero for the actual eye movements
observed. The relation between the occupancy and the
observation, P (V t

(x,y) | Ot
(x,y)), is a simple probability

matrix chosen to state that there is a high probability of
observing an object when there is one and conversely of
not observing anything when there is nothing.

The evolution of the grid, with the remap-
ping capability, is specified by the transition model,
P (Ot

(x,y) | M t Ot−1), which essentially transfers the

probability associated to antecedent cells for the given
eye movements to the corresponding present cell with
an additional uncertainty factor (see appendix B.1 for
details).

With this description, updating the knowledge over
the occupancy of the visual field corresponds to the fol-
lowing question for each time t:

P (Ot | V 1→t M1→t) (1)

where V 1→t is the conjunction of all variables V u for u ∈
[[1, t]]. This expression can be computed in an iterative
manner using Bayesian inference:

P (Ot | V 1→t M1→t)

∝
∏

(x,y)∈G

P (V t
(x,y) | Ot

(x,y))

×
∑

Ot−1

[∏

(x,y)∈G
P (Ot

(x,y) | M t Ot−1)

×P (Ot−1 | V 1→t−1 M1→t−1)

]

However, this expression comprises a summation over
all possible grid states, which is computationally inten-
sive. Therefore we approximate the inference over the

whole grid by a set of inferences for each cell that de-
pend only on a subset of the grid:

P (Ot
(x,y) | V 1→t M1→t)

∝ P (V t
(x,y) | Ot

(x,y))

×
∑

O
t−1
A(x,y)

[

P (Ot
(x,y) | M t Ot−1

A(x,y))

×
∏

A(x,y) P (Ot−1
(x′,y′) | V 1→t−1 M1→t−1)

]

where A(x, y) is the subset of the cells (x′, y′) of the grid
that are the antecedent of the cell (x, y) by the current
eye movement M t.

Positions of the targets The previous model allows for
the description of the visual scene without differentiat-
ing between targets and distractors. In order to introduce
this difference, we add a set of variables T t

i to repre-
sent the location of each target i ∈ [[1, N ]] at each time
t ∈ [[0, tmax]] in the logcomplex retino-centered reference
frame.

This representation is the standard way to represent
the location of some objects and serves a different pur-
pose than the occupancy grid, which is only the repre-
sentation of the visual scene.

The model is extended with this additional vari-
ables by adding a new factor in the joint distribution,
P (T t

i | T t−1
i Ot M t), that represents the dynamic model

of targets:

P (O V M T )

=
∏

(x,y)∈G

P (O0
(x,y))

N
∏

i=1

P (T 0
i )

×

tmax
∏

t=1









P (M t)

×
∏

(x,y)∈G

[

P (Ot
(x,y) | M t Ot−1)

×P (V t
(x,y) | Ot

(x,y))

]

×
∏N

i=1 P (T t
i | M t Ot T t−1

i )









The additional factors P (T 0
i ) are priors over the po-

sitions of the targets that can be set according to the
starting position of the targets as shown in the cueing
phase.

The dynamic model of targets is very similar to the
dynamic model of objects but with the occupancy grid
on objects as observation (see appendix B.2 for details).

At each time step, the relevant state of the represen-
tation can be summarized by the following question for
each target i ∈ [[1, N ]] at each timestep t ∈ [[1, tmax]]:

P (T t
i | V 1→t M1→t) (2)

Bayesian inference leads to the following expression
for this question:

P (T t
i | V 1→t M1→t)

∝
∑

T
t−1
i





∑

Ot

[

P (T t
i | M t Ot T t−1

i )
×P (Ot | V 1→t M1→t)

]

×P (T t−1
i | V 1→t−1 M1→t−1)
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where P (T t−1
i | V 1→t−1 M1→t−1) is the result

of the same inference at the preceding timestep,
P (Ot | V 1→t M1→t) the result of question 1 at the same
timestep. The summation of the whole grid, which is
still computationally intensive, can be approximated as
above, by separating the cells.

Both questions 1 and 2 are the current knowledge
about the visual scene that can be inferred from the past
observations and movements and the hypotheses of our
model.

2.2 Decision models

Based on this knowledge, we decide where to look next
in order to solve the task. We propose different models
in order to test different hypotheses. First, we make the
hypothesis that this representation model is useful for
producing eye movements. To test this hypothesis, we
compare a model that does not use the representation
with one that does.

Then, the main hypothesis is that uncertainty, explic-
itly taken into account, can help in the decision of eye
movement. Therefore, we compare a model that does not
take into account explicitly the uncertainty with one that
does.

In the end, we need to specify three models: one that
does not use the representation model (πA), one that uses
the representation model without explicitly taking into
account uncertainty (πB), and finally one that uses the
representation model and explicitly takes into account
uncertainty (πC). Each model πk will infer a probability
distribution on the next eye movement represented by a
new variable Ct ∈ G at each time t ∈ [[1, tmax]]:

P (Ct | V 1→t M1→t πk)

This variable is the model’s homologous to the motor
cells found in LIP, FEF and SC.

Constant model This constant model is a baseline for
the other models. We need the best static probabilistic
distribution that can account for the experimental eye
movement. Formally it is specified as being independent
on time and on the observations:

∀t ∈ [[1, tmax]], P (Ct | V 1→t M1→t πA)

= P (Ct | πA) = P (C1 | πA)

In these conditions, it can be shown that the best
distribution P (C1 | πA), according to the measure de-
fined section 3.1, assigns the probability of each individ-
ual discretized motion to be equal to its frequency in the
experimental data.2 Therefore, we learned this distribu-
tion from our experimental data, using only a randomly
selected subset in order not to overfit our models.

2 When restricted to time independence and assuming a
uniform prior over such models, our measure is a multinomial
likelihood which leads to a Dirichlet distribution according to
the experimental frequencies. The maximum of this Dirichlet
distribution is the histogram of the experimental frequencies.

Targets positions The second model we propose uses the
knowledge from the representation layer to determine its
eye movements. More precisely, it tends to look at loca-
tions where targets are near, in a kind of fusion pro-
cess. Its prior will follow the statistical distribution of
eye movements and the likelihood will be based on the
distributions on the targets location inferred in the rep-
resentation layer.

The decomposition is as follows:

P (C V M T | πB)

=

tmax
∏

t=1





P (V t M t | πB)

×
∏N

i=1 P (T t
i | V 1→t M1→t πB)

×P (Ct | T t πB)





where:

– P (V t M t | πB) is an arbitrary prior that is not used
in the inference,

– P (T t
i | V 1→t M1→t πB) is the result of inference 2,

– P (Ct | T t πB) is the result of the inference in a fusion
submodel over the targets that yields:

P (Ct | T t πB) ∝ P (Ct | πA)

N
∏

i=1

P (T t
i | Ct)

where P (Ct | πA) is the prior taken from the con-
stant model and P (T t

i | Ct) a distribution centered
on Ct that expresses a proximity between Ct and T t

i

(concretely a Gaussian distribution centered on Ct).

With this model, the distribution on eye movement
can be computed with the following expression:

P (Ct | V 1→t M1→t πB)

∝ P (Ct | πA)

×
N
∏

i=1

∑

T t
i

[

P (T t
i | V 1→t M1→t πB)

×P (T t
i | Ct)

]

In short, this model is the product between the prior
on eye movement and each distribution on the targets
convolved by a Gaussian distribution. This expression
shows that this model is attracted towards the targets
but without necessarily looking at one in particular as
balance between the distributions on the targets can lead
to a peak in some weighted sum of their locations.

Uncertainty model The behaviour of the preceding
model is influenced by uncertainty insofar as the incen-
tive to look near a given target is higher for a more cer-
tain location of this target. As for any Bayesian model,
uncertainty is handled as part of the inference mecha-
nism: as a mean to describe knowledge.

In this third model, we propose to include uncertainty
as a variable to reason about: as the knowledge to be
described. The rationale is simply that it is more efficient
to gather information when and where it lacks than when
and where there is less uncertainty.
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Therefore, we introduce a new set of variables It
(x,y) ∈

[0, 1], representing an index of the uncertainty at cell
(x, y) ∈ G at time t ∈ [[1, tmax]]. Any index can fit as
long as we can correlate the value of this uncertainty
index with the actual uncertainty.

To simplify, as we represent occupancy as binary vari-
ables, we choose our uncertainty indices to be equal to
this probability of occupancy. The relation between this
uncertainty index (probability distribution) and uncer-
tainty is such as a probability near 1

2 represents a high
uncertainty whereas a probability near 0 or 1 represent
a low uncertainty. Other spaces can be chosen for these
variables, such as entropy, but we keep the probability
distribution to simplify our computations.

As above, this model is structured around a prior
probability of motion which is filtered by these uncer-
tainty variables so as to enhance probability of eye move-
ment towards uncertain regions. The prior probability is
the result of the preceding model πB .3

The decomposition of this model is as follows:

P (C V M I | πC)

=

tmax
∏

t=1





P (V t M t | πC)
×P (Ct | V 1→t M1→t πB)
×

∏

(x,y)∈G
P (It

(x,y) | Ct πC)





where:

– P (V t M t | πC) is an arbitrary prior that is not used
in the inference,

– P (Ct | V 1→t M1→t πB) is the result of the previous
model,

– P (It
(x,y) | Ct πC) is a beta distribution that ex-

presses that for a given eye movement proposal Ct,
It
Ct is more likely near 1

2 and distribution on It
(x,y)

for (x, y) 6= Ct is uniform.

This model computes the posterior probability dis-
tribution on next eye movement using the following ex-
pression:

P (Ct | V 1→t M1→t I1→t πC)

∝ P (Ct | V 1→t M1→t πB) × P (It
Ct | Ct πC)

where:

∀(x, y), t ∈ G × [[1, tmax]],

It
(x,y) = P (Ot

(x,y) | V 1→t M1→t)

as computed by equation 1.
This model filters the eye movement distribution

computed by the second model, in order to enhance the
probability distribution in the locations of high uncer-
tainty.

3 This is a matter of presentation of the model. The com-
plete expression of πC can be written without reference to
model πB but the addition of uncertainty would be less clear.

3 Results

The output of our models is a probability distribution
over the eye position at each timestep. For such complex
objects, there is no significance tests or sensitivity anal-
ysis and the comparison is done using their respective
likelihood. However the likelihood is highly dependent
on the size of the data set. Therefore we first introduce
a comparison method that does not depend on the size
of the data set. Then we present their results and com-
ment them with respect to the specific behaviour of each
model. Finally, we illustrate the main differences between
the various models by giving examples of specific situa-
tions.

3.1 Comparison method

The decision models compute a probability distribution
over the possible eye movements at one moment, based
on past observations and their respective hypotheses (fig-
ure 4). We can therefore compute, for each model, the
probability of the actual eye movements recorded from
subjects in a given situation, as well as the probability
of the whole set of recordings with an additional inde-
pendency assumption.

Probability values in themselves are not really signifi-
cant as, when the possibilities are numerous, they tend to
be very small. However, their comparison across models
(which share the same number of possibilities) indicates
which model is a better predictor of the recorded eye
movements. This process is known as Maximum Likeli-
hood method.

However, except in very special cases, the likelihood
of a model would decrease exponentially toward zero, and
the likelihood ratio between two models will diverge or
converge exponentially toward zero with the number of
trials. Therefore, we compare our decision models using
the geometric mean of the likelihood of the observed eye
movements over each trial. The geometric mean allows
to be a substitute for the complete likelihood, as it is
its Nth root where N is the total number of trial, while
providing a measure converging to a non-zero value as
the number of trial grows.

More precisely, let ct
n be the tth eye movement recor-

ded during trial n. The likelihood of a model π for trial
n is:

tmax
∏

t=1

P ([Ct = ct+1
n ] | v1→t

n c1→t
n π)

The global likelihood of model π is:

N
∏

n=1

tmax
∏

t=1

P ([Ct = ct+1
n ] | v1→t

n c1→t
n π)
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(a)

(b)

(c)

(d)

Fig. 4 Example of probability distributions computed by
each decision model in the same configuration. The two halves
of the representations are drawn side by side. The plain cyan
lines are the iso-eccentricities and the cyan dotted lines are
the iso-directions. The color of the cell indicates the proba-
bility of the associated eye movement: a dark cell for a low
probability and a white cell for a high probability for the eye
movement toward this cell. ⋄: position of a target; +: posi-
tion of a distractor; ⊗: next eye displacement. Panel (a) is the
probability distribution of constant model. Panel (b) shows
the probability distribution for the target model that shows
a preference for the targets. Panel (c) shows the probability
distribution for the uncertainty model that highlights some
of the targets. Panel (d) shows the position of the targets
and distractors in the visual field. Note that the probability
distributions for model (c) favors the next eye movement.

Finally we define our measure µ to be the geometric
mean of the likelihood over all the trials:

µ(π) = N

√

√

√

√

N
∏

n=1

tmax
∏

t=1

P ([Ct = ct+1
n ] | v1→t

n c1→t
n π) (3)

3.2 Results and analysis

The data set is gathered from 11 subjects with 110 trials
each for a total of 1210 trials (Tanner et al 2007). Each
trial was regularly discretized in time in tmax = 24 ob-
servations (with a timestep of 200ms) for a grand total
of 29040 data points. The eye movement variable M t is
build from the difference in gaze position between two
successive timesteps. Part of the data set (124 random
trials) was used to determine the parameters of the vari-
ous models and the results are computed on the remain-
ing N = 1089 trials.

Constant Target Uncertainty
✥
✥
✥
✥
✥
✥
✥
✥
✥✥Model

Model
1 280 320 Constant

3.5 × 10−3 1 1.14 Target
3.1 × 10−3 0.87 1 Uncertainty

Table 1 Ratio of the measures for each pair of models.

Table 1 presents the ratio of the measure for each pair
of our three decision models computed for this data set.
It shows that the model which generates motion with the
empiric probability distribution but without the repre-
sentation layer is far less probable than the other two
(by respectively a factor 280 and 320). This shows that,
as expected, the representation layer is useful in deciding
the next eye movement.

Table 1 further shows that the model taking explicitly
into account uncertainty is better than the model that
does not by 14%. This is in favor of our hypothesis that
taking explicitly into account uncertainty is helpful in
deciding the next eye movement.

As explained above, the choice of the geometric mean
prevents the measure to converge toward zero and pre-
vents their ratios to raise exponentially as the number
of trials grows. In our case, the likelihood ratio between
the model with explicit uncertainty and the one without
is 4.9× 1063. With half the trials, this likelihood ratio is
the square root, that is only 7.0× 1031. This shows that
the likelihood ratio is indeed not a stable measure with
respect to the number of trials. We preferred a stable
measure in order to have a more meaningful value.

3.3 Typical situations

These results show a global agreement of the model with
the actual eye movements of the human participants.
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However, there are some configurations where the models
can have different relative performances. The analysis of
such examples can shed a light on the behaviour of the
various decision models we proposed.

Examples where πC is better than πB The global result
shows that it is better to take into account uncertainty
explicitly for the choice of the eye movement. We can
further investigate by looking at the frames where the
difference in the likelihood is greatest.

We isolated two different categories of configurations
where model πC was especially better than model πB , ex-
emplified in figure 5. The first category consists in scenes
where a target and a distractor are in a close vicinity and
the eye movement of the participant is around those ob-
jects (Fig. 5a). In these case, the target model is simply
attracted by the target whereas the uncertainty model
is, in addition, attracted by both objects due to their
uncertainty.

The second category consists in occurrences of an eye
movement towards a distractor (see Fig. 5b). In this case,
the target model has no incentive for looking at this lo-
cation whereas there is always some uncertainty to in-
vestigate for model πC .

(a)

(b)

Fig. 5 Examples of eye movements better predicted by
model πC than model πB . The scene is presented in an eye
centered reference frame. ⋄: position of a target; +: position
of a distractor; ⊗: next eye displacement. (a) The actual eye
movement occurs towards both a target and a distractor. (b)
The actual eye movement occurs towards an isolated distrac-
tor.

Examples where πB is better than πC Even if the global
results are in favor of the model with explicit uncertainty,
there are cases where the target model better predicts the
eye movements. This happen mainly when the eye move-
ment happen in the middle of several targets but not on
a particular one (example Fig. 6a). In this case, the fu-
sion on the targets operated by model πB can present a
maximum in a center of mass of the targets, whereas the
absence of objects – and therefore the low uncertainty –
will lower the probability of this particular eye movement
by model πC .

Fig. 6b illustrates a second interesting case. The eye
movement occurs in between a target and a distractor.
However, the occupancy grid at that time (Fig. 6c) shows
that the target is moving and the eye movement is near
the previous position of the target shown by a peak of
occupancy in the corresponding cell. Therefore the eye
movement is near the representation of the target. On
the other hand, there is also a great patch near the cen-
ter of the visual field with a moderate level of uncertainty
where, consequently, model πC predicts a high probabil-
ity of eye movement.

Examples where πA is better than πB or πC Finally, the
best model can be the constant one for some particular
configurations and movements. This occurs mostly for
fixations that are not directed to objects (for example
Fig. 7a). Indeed model πA is simply the global distribu-
tion of eye movements that are mostly of low amplitude
(see Fig. 4a) and the other models are mostly attracted
to targets or the uncertainty attached to objects.

Fig. 7b shows another occurrence of this situation
with a group of target on the right towards which the
other models predict a high probability of movement. It
happens that, on the next frame, shown Fig. 7c, for which
the situation is similar, the participant looked towards
this group of targets, as predicted by both models πB

and πC .

4 Conclusion and discussion

As a conclusion, we propose a Bayesian model with two
parts: a representation of the visual scene, and a deci-
sion model based on the state of the representation. The
representation both tracks the occupancy of the visual
scene as well as the locations of the targets. Based on this
representation, we tested several decision models and we
have shown that the model that takes explicitly into ac-
count the uncertainty better fitted the eye movements
recorded from subjects participating a psychophysics ex-
periment.

In addition, the eye movement frequency shows that,
most of the times, the eye movements are of low am-
plitude, indicating either fixation or slow pursuit of an
object. In these cases, the constant model has a likeli-
hood comparable with or even sometimes greater than
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(a)

(b)

(c)

Fig. 6 Examples of eye movements better predicted by
model πB than model πC . The scene is presented in an eye
centered reference frame. ⋄: position of a target; +: position
of a distractor; ⊗: next eye displacement. (a) The actual eye
movement occurs in between several targets. (b) The actual
eye movement occurs towards an isolated distractor. (c) Oc-
cupancy grid for the same configuration depicted in (b) show-
ing the eye movement is near the past location of the target.

the other two. Thus the difference is due to the saccadic
events, when the target and uncertainty model have a
good likelihood contrary to the constant one which as-
signs a lower probability as the eccentricity grows. The
difference between the target model and the uncertainty
model, on the other hand is due to the filtering of the
eye movements distribution from the target model by
the uncertainty. The difference is less important than for
the constant model as the uncertainty associated to the
targets are often similar (isolated targets with compara-
ble movement profiles). It could be interesting to enrich
the stimuli in order to manipulate uncertainty more pre-
cisely.

The stimulus is adapted from the classical MOT task
used primarily to study attention. Our model uses a set
of variables to track the position of the targets. This set

(a)

(b)

(c)

Fig. 7 Examples of eye movements better predicted by
model πA than models πB or πC . The scene is presented in an
eye centered reference frame. ⋄: position of a target; +: posi-
tion of a distractor; ⊗: next eye displacement. (a) The actual
eye movement is a fixation without object. (b) The actual
eye movement is also a fixation although there is a group of
targets on the right. (c) Situation following (b) where the eye
movement is towards the group of targets.

of variable is fixed and finite, which means our model
can only track as much targets as its number of target
position variables (5). The human subjects, however, are
also informed about the number of targets in the in-
structions. Experimental data suggest that Human per-
formance drops if the number of target gets too high. For
the particular experimental design we used, the maxi-
mum number of targets consistently tracked was 5, which
justifies our choice of the number of target variables.
Other experimental studies suggest that this maximum
number of target is not fixed and and seems to depend on
factors such as speed and spacing of the objects (Alvarez
and Franconeri 2007). In addition, each of our target
variables cover the whole visual field (encoded in the log-
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complex mapping) although there are works indicating
that some representation capacities are separated across
the hemifields (Alvarez and Cavanagh 2005). It could be
interesting to test this in our model with a set of tar-
get variables for the left part and another for the right
part. However, due both to eye movements and targets
movements, the targets sometimes change side, implying
some additional mechanism of communication between
these variables.

Finally, one of the main feature of our model is to
place all computations and representation in the log-
complex mapping found in the neurophysiology of some
retinotopic maps. Unexpectedly, we found in the psy-
chophysical data that the distribution of the objects po-
sitions is quite uniform in the logcomplex mapping. This
suggests a particular strategy for the eye movements.
One interpretation could be that the eye movements are
chosen in order to maximize the use of the representa-
tion: that is, so that the objects are uniformly distributed
in this representation. This seems to be an indirect con-
firmation that eye movements are governed by structures
using this particular mapping.
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A Experimental protocol

This experiment is an adaptation of the classical Multiple
Object Tracking paradigm from Pylyshyn and Storm (1988)
(see Fig. 3) but with eye movements. In the original task,
participants were asked to keep track of a given number of
targets among identical distractors as they all move indepen-
dently on the screen. Participants had to keep their gaze at a
fixating point located on the center of the screen. Therefore
the targets will occasionally be located in the periphery of
the visual field, in the low resolution areas of the visual field.
Therefore we expect eye movements to occur in order to keep
track of targets.

A.1 Material and Methods

Participants Eleven subjects participated in the experiment
with normal or corrected vision. Each session consists of 110
trials.

Apparatus The stimulus is presented on a calibrated 21′′

Sony CPD-500 CRT monitor with a refresh rate of 100 Hz
and a resolution of 1024× 768. Participants are positioned in
front of the monitor at a distance of 65 cm; at this distance

the display subtended a visual angle of 33◦ by 25◦. A chin
rest ensures that no head movement occurs during the ex-
perimental session. All experimental sessions are performed
in a darkened, sound attenuated room. Eye movements are
recorded by an eye tracker system (EyeLink II, SR Research
Ltd.) with a sampling rate of 250 Hz and an accuracy of ca.
0.3◦. The model was simulated offline with a timestep of 200
ms using the difference in eye position between two timesteps.
No analysis of saccades, micro-saccedes, pursuit or fixation
was needed in this respect.

A.2 Procedure

The display consists of ten identical objects, each one a white
circle subtending 1◦ of visual angle, with a luminance of 90
cd/m2 against a black background, in a room illuminated
with diffuse D65 light (70 cd/m2).

Targets and distractors are identical with the exception of
the initial phase in the beginning of each trial. In this phase,
five targets are cued by a series of three flashes, with a to-
tal duration of 1080 ms. After this initial phase, all objects
begin to move in different directions, chosen from among 8
directions of the compass with a mean velocity of 5.1◦ per
second. The objects have random initial locations, directions
and speeds during trials but are constrained to keep a mini-
mum distance of 1.5◦ (Pylyshyn and Storm 1988).

Trials last 5 seconds and on the end of each trial partici-
pants are asked to select targets with a mouse.

More details can be found in the description of experiment
A in (Tanner, in preparation).

B Dynamic models

B.1 Dynamic object model

This dynamic model provides the transition probability dis-
tribution P (Ot

(x,y) | M t Ot−1) that governs the evolution of
the grid with the remapping capability. In order to stress the
issue of the logcomplex mapping, we explicitly refer to the vi-
sual coordinates (ρ, θ) as well as the logcomplex coordinates
(x, y). We also consider coordinates (ρ, θ)ant and (x, y)ant to
denote coordinates at the previous time step. In the end, the
decomposition is as follows:

P ((x, y) (x, y)ant (ρ, θ) (ρ, θ)ant O
t
(x,y) O

t−1
M

t)

= P ((x, y))P (M t)P (Ot
(x,y))P ((ρ, θ) | (x, y))

×P ((ρ, θ)ant | (ρ, θ) M
t)P ((x, y)ant | (ρ, θ)ant)

×
∏

(x′,y′)

P (Ot−1
(x′,y′) | O

t
(x,y) (x, y)ant)

where:

– P ((x, y)) is an arbitrary unused distribution;

– P (M t) is an arbitrary unused distribution;

– P (Ot
(x,y)) is a uniform distribution;

– P ((ρ, θ) | (x, y)) is a uniform distribution on the inverse
image of the position (x, y) by the logcomplex mapping;

– P ((ρ, θ)ant | (ρ, θ) M t) is a Dirac distribution on the im-
age of (ρ, θ) by eye movement M t;

– P ((x, y)ant | (ρ, θ)ant) is a Dirac distribution on the cell
corresponding to position (ρ, θ)ant;
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– P (Ot−1
(x′,y′) | Ot

(x,y) (x−1, y−1)) is a transition matrix that

states there is a great probability to keep the same occu-
pancy if (x′, y′) = (x, y)ant, and is a uniform distribution
otherwise.

This model is used to compute the question
P (Ot

(x,y) | M t Ot−1) using the following expression:

P (Ot
(x,y) | O

t−1
M

t)

∝
∑

(ρ,θ)

P ((ρ, θ) | (x, y))P (Ot−1
(x̂,ŷ) | O

t
(x,y) (x̂, ŷ))

where (x̂, ŷ) are the coordinates of the cell corresponding to
the image of (ρ, θ) by eye motion M t.

This summation can be implemented by sampling the dis-
tribution P ((ρ, θ) | (x, y)).

B.2 Dynamic target model

This dynamic target model is common to every target and
combines both the prediction of the position of the target
based only on eye movement (remapping) and the update of
this position according to the occupancy grid. It provides the
distribution P (T t

i | T t−1
i Ot M t) used in the representation

model.
The decomposition is as follows:

P (T t
i T

t−1
i (ρ, θ) (ρ, θ)ant M

t
O

t)

= P (T t
i )P (M t)P ((ρ, θ) | T

t
i )

×P ((ρ, θ)ant | (ρ, θ) M
t)P (T t−1

i | (ρ, θ)ant)

×
∏

(x,y)

P (Ot
(x,y) | T

t
i )

where:

– P (T t
i ) is a uniform distribution;

– P (M t): is an arbitrary unused distribution;

– P ((ρ, θ) | T t
i ) is a uniform distribution on the inverse

image of the position T t
i by the logcomplex mapping;

– P ((ρ−1, θ−1) | (ρ, θ) M t) is Dirac distribution on the im-
age of (ρ, θ) by eye movement M t;

– P (T t−1
i | (ρ, θ)ant) is a Dirac on the cell corresponding to

position (ρ, θ)ant;

– P (Ot
(x,y) | T t

i ) states that it is more probable to have

an occupied cell in a neighborhood of T t
i , and that it is

uniform elsewhere.

This model is used to compute the question
P (T t

i | T t−1
i Ot M t) with the following expression:

P (T t
i | T

t−1
i M

t
O

t)

∝
∣

∣E(T t−1
i , M

t)
∣

∣

∏

(x,y)

P (Ot
(x,y) | T

t
i )

where
∣

∣E(T t−1
i , M t)

∣

∣ is the size of the set of the polar posi-

tions (ρ, θ) that are in relation with T t−1
i by the eye move-

ment M t. This set can be obtained by sampling like in the
dynamic model.

C Implementation details

The models presented are implemented in the Java language.
In all the examples, the grid G is composed of 24×29 cells
for each hemifield and we used a timestep of 200 ms for the
representation and decision models.

Additionally, some of the probability distributions de-
scribed as factors in the decompositions are parametric forms
that need precise values to be involved in actual computa-
tions. We explored the parametrical space and evaluated each
parameter set with our measure computed on a subset of the
experimental data.

Finally, in the representation model, the observation
model P (V t

(x,y) | Ot
(x,y)) is a 2×2 matrix with value 0.9 on

the diagonal and 0.1 elsewhere
(

0.9 0.1
0.1 0.9

)

.

The transition matrix of the dynamic model is
(

0.95 0.1
0.05 0.9

)

.

The target observation model P (Ot
(x,y) | T t

i ) is of the

form 0.5 + 0.25

1+

(

d((x,y),T t
i
)

0.02

)2 for an occupied cell and 0.5 −

0.25

1+

(

d((x,y),T t
i
)

0.02

)2 otherwise with d((x, y), T t
i ) the distance be-

tween cell (x, y) and position T t
i in mm. The target fusion

model P (T t
i | Ct) is a mixture between a Gaussian and a

uniform distribution: ∝ 0.25 + exp−
d(T t

i
,Ct)

0.25

2

. In the un-
certainty decision model, the uncertainty fusion distribution
P (It

(x,y) | Ct πC) is a symmetrical beta distribution with pa-
rameter 0.075.
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