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Abstract— The paper presents a methodology for feedback
adaptive control of active vibration systems in the presence of
time varying unknown multiple narrow band disturbances. A
direct adaptive control scheme based on the internal model
principle and the use of the Youla-Kucera parametrization
is proposed. This approach is comparatively evaluated with
respect to an indirect adaptive control scheme based on the
estimation of the disturbance model. The evaluation of the
methodology is done in real time on an active suspension system
and on an active vibration control system using an inertial
actuator.

Index Terms— direct adaptive control, internal model prin-
ciple, Youla-Kucera parametrization, adaptive disturbance re-
jection, multiple narrow band disturbances

I. I NTRODUCTION

One of the basic problems in control is the attenuation
(rejection) of unknown disturbances without measuring them.
The common framework is the assumption that the distur-
bance is the result of a white noise or a Dirac impulse passed
through the ”model of the disturbance”. While in general
one can assume a certain structure for such ”model of distur-
bance”, its parameters are unknown and may be time varying.
This will require to use an adaptive approach. To be more
specific, the disturbances considered can be defined as ”finite
band disturbances”. This includes single or multiple narrow
band disturbances or sinusoidal disturbances. Furthermore
for robustness reasons the disturbances should be located in
the frequency domain within the regions where the plant has
enough gain (see explanation in section III).

Solutions for this problem, provided that an ”image” of
the disturbance can be obtained by using an additional
transducer, have been proposed by the signal processing com-
munity and a number of applications are reported ([12], [13],
[6], [17]). However, these solutions (inspired by Widrow’s
technique for adaptive noise cancellation ([32])) ignore the
possibilities offered by feedback control systems and require
an additional transducer. The principle of thissignal process-
ing solutionfor adaptive rejection of unknown disturbances
is that a transducer can provide a measurement, highly
correlated with the unknown disturbance. This informationis
applied to the control input of the plant through an adaptive
filter (in general a Finite Impulse Response - FIR) whose
parameters are adapted such that the effect of the disturbance

upon the output is minimized. The disadvantages of this
approach are:

• It requires the use of an additional transducer.
• Difficult choice for the location of this transducer (it is

probably the main disadvantage).
• It requires the adaptation of many parameters.
To achieve the rejection of the disturbance (at least asymp-

totically) without measuring it, afeedback solutioncan be
considered. As mentioned earlier, the common framework
is the assumption that the disturbance is the result of a
white noise or a Dirac impulse passed through the ”model of
the disturbance”1. Several problems have been considered
within this framework leading to adaptive feedback control
solutions:

1) Unknown plant and disturbance models ([14]).
2) Unknown plant model and known disturbance ([29],

[33]).
3) Known plant and unknown disturbance model ([8], [2],

[3], [31], [28], [11], [18], [19], [22]).
The present paper will focus on the last case, since this is
the situation encountered in many applications. Among the
various approaches considered for solving this problem, the
following ones may be mentioned:

1) Use of the internal model principle ([16], [20], [5],
[30], [31], [2], [3], [18], [19], [22]).

2) Use of an observer for the disturbance ([28], [11]).
3) Use of the ”phase-locked” loop structure considered in

communication systems ([8], [7]).
Of course, since the parameters of the disturbance model
are unknown, all these approaches lead to an adaptive
implementation which can be ofdirect or indirect type.

From the user point of view and taking into account the
type of operation of existing adaptive disturbance compen-
sation systems one has to consider two modes of operation
of the adaptive schemes:

• Self-tuningoperation (the adaptation procedure starts
either on demand or when the performance is unsat-
isfactory and the current controller is frozen during the
estimation/computation of the new controller parame-
ters).

1Throughout the paper it is assumed that the order of the disturbance
model is known but the parameters of the model are unknown (the order
can be estimated from data if necessary).



Fig. 1. Indirect adaptive control scheme for rejection of unknown
disturbances
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Fig. 2. Direct adaptive control scheme for rejection of unknown distur-
bances

• Adaptiveoperation (the adaptation is performed contin-
uously and the controller is updated at each sampling).

Using the internal model principle, the controller should
incorporate the model of the disturbance ([16], [20], [5],
[30]). Therefore the rejection of unknown disturbances raises
the problem of adapting the internal model of the controller
and its re-design in real-time.

One way for solving this problem is to try to estimate
in real time the model of the disturbance and re-compute
the controller, which will incorporate the estimated modelof
the disturbance (as a pre-specified element of the controller).
While the disturbance is unknown and its model needs to be
estimated, one assumes that the model of the plant is known
(obtained for example by identification). The estimation
of the disturbance model can be done by using standard
parameter estimation algorithms (see for example [25], [27]).
This will lead to an indirect adaptive control scheme. The
principle of such a scheme is illustrated in figure 1. The
time consuming part of this approach is the redesign of
the controller at each sampling time. The reason is that
in many applications the plant model can be of very high
dimension and despite that this model is constant, one has
to re-compute the controller because a new internal model
should be considered. This approach has been investigated
in [8], [18], [19].

However, by considering the Youla-Kucera parametriza-
tion of the controller (known also as the Q-parametrization),

it is possible to insert and adjust the internal model in the
controller by adjusting the parameters of theQ polynomial
(see figure 2). It comes out that in the presence of unknown
disturbances it is possible to build a direct adaptive control
scheme where the parameters of theQ polynomial are
directly adapted in order to have the desired internal model
without recomputing the controller (polynomialsR0 and S0

in figure 2 remain unchanged). The number of the controller
parameters to be directly adapted is roughly equal to the
number of parameters of the denominator of the disturbance
model. In other words, the size of the adaptation algorithm
will depend upon the complexity of the disturbance model.

This paper focuses on the direct feedback adaptive control
for the case of unknown and time-varying frequency narrow
band disturbances. The direct adaptive control scheme to
be presented([22]) takes advantage of the Youla-Kucera
parametrization for the computation of the controller. For
evaluation purposes (complexity and performance) an indi-
rect adaptive control scheme based on the Internal Model
Principle will be also presented.

The paper is organized as follows. Section II is dedicated
to a brief review of the plant, disturbance and controller rep-
resentation as well as of the Internal Model Principle. Some
robustness issues are addressed in section III. The direct
and the indirect adaptive control schemes for disturbance
rejection are presented in sections IV and V, respectively.
The application to an active suspension system, including
the real-time results, is presented in VI. The application to
the active vibration control system using an inertial actuator,
including real time results is presented in section VII . Some
concluding remarks are given in section VIII.

II. PLANT REPRESENTATION AND CONTROLLER

STRUCTURE

The structure of a linear time invariant discrete time model
of the plant (used for controller design) is:

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−d−1B∗(z−1)

A(z−1)
, (1)

with:

d = the plant pure time delay in

number of sampling periods

A = 1+a1z
−1 + · · ·+anAz−nA ;

B = b1z−1 + · · ·+bnBz−nB = q−1B∗ ;

B∗ = b1 + · · ·+bnBz−nB+1
,

whereA(z−1), B(z−1), B∗(z−1) are polynomials in the com-
plex variablez−1 and nA, nB and nB − 1 represent their
orders2. The model of the plant may be obtained by system
identification. Details on system identification of the models
considered in this paper can be found in [26], [9], [23], [21],
[1], [10].

2The complex variablez−1 will be used for characterizing the system’s
behavior in the frequency domain and the delay operatorq−1 will be used
for describing the system’s behavior in the time domain.



Since in this paper we are focused on regulation, the
controller to be designed is a RS-type polynomial controller
([24], [26]) - see also figure 5.

The output of the planty(t) and the inputu(t) may be
written as:

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p1(t) ; (2)

S(q−1) ·u(t) = −R(q−1) ·y(t) , (3)

whereq−1 is the delay (shift) operator (x(t) = q−1x(t + 1))
and p1(t) is the resulting additive disturbance on the output
of the system.R(z−1) and S(z−1) are polynomials inz−1

having the ordersnR andnS, respectively, with the following
expressions:

R(z−1) = r0 + r1z−1 + . . .+ rnRz−nR = R′(z−1) ·HR(z−1) ;(4)

S(z−1) = 1+s1z−1 + . . .+snSz−nS = S′(z−1) ·HS(z
−1) , (5)

whereHR andHS are pre-specified parts of the controller
(used for example to incorporate the internal model of a
disturbance or to open the loop at certain frequencies).

We define the following sensitivity functions:

• Output sensitivity function (the transfer function be-
tween the disturbancep1(t) and the output of the system
y(t)):

Syp(z
−1) =

A(z−1)S(z−1)

P(z−1)
; (6)

• Input sensitivity function (the transfer function between
the disturbancep1(t) and the input of the systemu(t)):

Sup(z
−1) = −

A(z−1)R(z−1)

P(z−1)
, (7)

where

P(z−1) = A(z−1)S(z−1)+z−dB(z−1)R(z−1)

= A(z−1)S′(z−1) ·HS(z
−1)+z−dB(z−1)R′(z−1) ·HR(z−1) (8)

defines the poles of the closed loop ( roots ofP(z−1)). In
pole placement design,P(z−1) is the polynomial specifying
the desired closed loop poles and the controller polynomials
R(z−1) andS(z−1) are minimal degree solutions of (8) where
the degrees ofP, R andS are given by:nP ≤ nA+nB+d−1,
nS= nB+d−1 andnR = nA−1. Using the equations (2) and
(3), one can write the output of the system as:

y(t) =
A(q−1)S(q−1)

P(q−1)
· p1(t) = Syp(q

−1) · p1(t) . (9)

For more details on RS-type controllers and sensitivity
functions see [26].

Suppose thatp1(t) is a deterministic disturbance, so it can
be written as

p1(t) =
Np(q−1)

Dp(q−1)
·δ (t) , (10)

where δ (t) is a Dirac impulse andNp(z−1), Dp(z−1) are
coprime polynomials inz−1, of degreesnNp and nDp, re-
spectively. In the case of stationary disturbances the roots of
Dp(z−1) are on the unit circle. The energy of the disturbance
is essentially represented byDp. The contribution of the

terms ofNp is weak compared to the effect ofDp, so one
can neglect the effect ofNp.

Internal Model Principle: The effect of the disturbance
given in (10) upon the output:

y(t) =
A(q−1)S(q−1)

P(q−1)
·

Np(q−1)

Dp(q−1)
·δ (t) , (11)

where Dp(z−1) is a polynomial with roots on the unit circle
and P(z−1) is an asymptotically stable polynomial, converges
asymptotically towards zero if and only if the polynomial
S(z−1) in the RS controller has the form:

S(z−1) = Dp(z
−1)S′(z−1) . (12)

In other terms, the pre-specified part ofS(z−1) should be
chosen asHS(z−1) = Dp(z−1) and the controller is computed
using (8), whereP, Dp, A, B, HR andd are given3.

Using the Youla-Kucera parametrization (Q-
parametrization) of all stable controllers ([4], [30]),
the controller polynomialsR(z−1) andS(z−1) get the form:

R(z−1) = R0(z
−1)+A(z−1)Q(z−1) ; (13)

S(z−1) = S0(z
−1)−z−dB(z−1)Q(z−1) . (14)

The (central) controller(R0,S0) can be computed by poles
placement (but any other design technique can be used).
Given the plant model(A,B,d) and the desired closed-loop
poles specified by the roots ofP one has to solve:

P(z−1) = A(z−1)S0(z
−1)+z−dB(z−1)R0(z

−1) . (15)

Equations (13) and (14) characterize the set of all stabilizable
controllers assigning the closed loop poles as defined by
P(z−1) (it can be verified by simple calculations that the
poles of the closed loop remain unchanged). For the purpose
of this paperQ(z−1) is considered to be a polynomial of the
form:

Q(z−1) = q0 +q1z
−1 + . . .+qnQz−nQ . (16)

To computeQ(z−1) in order that the controller incorporates
the internal model of the disturbance one has to solve the
diophantine equation:

S′(z−1)Dp(z
−1)+z−dB(z−1)Q(z−1) = S0(z

−1) , (17)

whereDp(z−1), d, B(z−1) andS0(z−1) are known andS′(z−1)
andQ(z−1) are unknown. Equation (17) has a unique solution
for S′(z−1) et Q(z−1) with: nS0 ≤ nDp + nB + d− 1, nS′ =
nB+d−1, nQ = nDp −1 . One sees that the ordernQ of the
polynomial Q depends upon the structure of the disturbance
model.

III. ROBUSTNESS CONSIDERATIONS

As it is well known, the introduction of the internal model
for the perfect rejection of the disturbance (asymptotically)
will have as effect to raise the maximum value of the
modulus of the output sensitivity functionSyp. This may
lead to unacceptable values for the modulus and the delay
margins if the controller design is not appropriately done

3Of course it is assumed thatDp andB do not have common factors.



(see [26]). As a consequence, a robust control design should
be considered assuming that the model of the disturbance is
known, in order to be sure that for all situations an acceptable
modulus margin and delay margin are obtained.

On the other hand at the frequencies where perfect rejec-
tion of the disturbance is achieved one hasSyp(e

− jω) = 0
and

∣

∣Sup(e
− jω)

∣

∣ =

∣

∣

∣

∣

A(e− jω)

B(e− jω)

∣

∣

∣

∣

. (18)

Equation(18) corresponds to the inverse of the gain of the
system to be controlled. The implication of equation(18) is
that cancellation (or in general an important attenuation)of
disturbances on the output should be done only in frequency
regions where the system gain is large enough. If the gain
of the controlled system is too low,|Sup| will be large at
these frequencies. Therefore, the robustness vs additive plant
model uncertainties will be reduced and the stress on the
actuator will become important. Equation (18) also implies
that serious problems will occur ifB(z−1) has complex
zeros close to the unit circle (stable or unstable zeros) at
frequencies where an important attenuation of disturbances is
required. It is mandatory to avoid attenuation of disturbances
at these frequencies.

Since on one hand we would not like to react to very high
frequency disturbances and on the other hand we would like
to have a good robustness it is often wise to open the loop at
0.5 fs ( fs is the sampling frequency) by introducing a fixed
part in the controllerHR(q−1) = 1+q−1 (for details see [26]
and section II).

IV. D IRECT ADAPTIVE CONTROL FOR DISTURBANCE

ATTENUATION

The objective is to find an estimation algorithm which
will directly estimate the parameters of the internal model
in the controller in the presence of an unknown disturbance
(but of known structure) without modifying the closed loop
poles. Clearly, the Q-parametrization is a potential option
since modifications of theQ polynomial will not affect the
closed loop poles. In order to build an estimation algorithmit
is necessary to define anerror equationwhich will reflect the
difference between the optimalQ polynomial and its current
value.

In [30], such an error equation is provided and it can
be used for developing a direct adaptive control scheme.
This idea has been used in [31], [2], [3], [22]. Using the
Q-parametrization, the output of the system in the presence
of a disturbance can be expressed as:

y(t) =
A(q−1)[S0(q−1)−q−dB(q−1)Q(q−1)]

P(q−1)
·

Np(q−1)

Dp(q−1)
·δ (t)

=
S0(q−1)−q−dB(q−1)Q(q−1)

P(q−1)
·w(t) , (19)

where w(t) is given by (see also figure 2):

w(t) =
A(q−1)Np(q−1)

Dp(q−1)
·δ (t)

= A(q−1) ·y(t)−q−d ·B(q−1) ·u(t) . (20)

In the time domain, the internal model principle can be in-
terpreted as findingQ such that asymptoticallyy(t) becomes
zero. Assume that one has an estimation ofQ(q−1) at instant
t, denotedQ̂(t,q−1). Defineε0(t +1) as the value ofy(t +1)
obtained withQ̂(t,q−1). Using (19) one gets:

ε0(t +1) =
S0(q−1)

P(q−1)
·w(t +1)−

q−dB∗(q−1)

P(q−1)
Q̂(t,q−1) ·w(t) . (21)

One can define now thea posteriori error (using Q̂(t +
1,q−1)) as:

ε(t +1) =
S0(q−1)

P(q−1)
·w(t +1)−

q−dB∗(q−1)

P(q−1)
Q̂(t +1,q−1) ·w(t) . (22)

ReplacingS0(q−1) from the last equation by (17) one
obtains

ε(t +1) = [Q(q−1)− Q̂(t +1,q−1)] ·
q−dB∗(q−1)

P(q−1)
·w(t)+v(t +1) , (23)

where

v(t) =
S′(q−1)Dp(q−1)

P(q−1)
·w(t) =

S′(q−1)A(q−1)Np(q−1)

P(q−1)
·δ (t)

is a signal which tends asymptotically towards zero.
Define the estimated polynomialQ̂(t,q−1) as:Q̂(t,q−1) =

q̂0(t)+ q̂1(t)q−1 + . . .+ q̂nQ(t)q−nQ and the associated esti-
mated parameter vector :θ̂ (t) = [q̂0(t) q̂1(t) . . . q̂nQ(t)]T . De-
fine the fixed parameter vector corresponding to the optimal
value of the polynomialQ as:θ = [q0q1 . . .qnQ]T . Denote:

w2(t) =
q−dB∗(q−1)

P(q−1)
·w(t) (24)

and define the following observation vector:

φT(t) = [w2(t) w2(t −1) . . . w2(t −nQ)] . (25)

Equation (23) becomes

ε(t +1) = [θ T − θ̂ T(t +1)] ·φ(t)+v(t +1) . (26)

One can remark thatε(t) corresponds to an adaptation error
([24]).

From equation (21) one obtains thea priori adaptation
error:

ε0(t +1) = w1(t +1)− θ̂ T(t)φ(t) ,

with

w1(t +1) =
S0(q−1)

P(q−1)
·w(t +1) ; (27)

w2(t) =
q−dB∗(q−1)

P(q−1)
·w(t) ; (28)

w(t +1) = A(q−1) ·y(t +1)−q−dB∗(q−1) ·u(t) ,(29)

whereB(q−1)u(t +1) = B∗(q−1)u(t).
The a posterioriadaptation error is obtained from (22):

ε(t +1) = w1(t +1)− θ̂ T(t +1)φ(t) .



For the estimation of the parameters ofQ̂(t,q−1) the
following parameter adaptation algorithm is used ([24]):

θ̂(t +1) = θ̂ (t)+F(t)φ(t)ε(t +1) ; (30)

ε(t +1) =
ε0(t +1)

1+ φT(t)F(t)φ(t)
; (31)

ε0(t +1) = w1(t +1)− θ̂ T(t)φ(t) ; (32)

F(t +1) =
1

λ1(t)



F(t)−
F(t)φ(t)φT(t)F(t)

λ1(t)
C) + φT(t)F(t)φ(t)



 .(33)

1 ≥ λ1(t) > 0;0≤ λ2(t) < 2 (34)

whereλ1(t),λ2(t) allow to obtain various profiles for the
evolution of the adaption gainF(t) (for details see [24], [26]
and section VI).

In order to implement this methodology for disturbance
rejection (see figure 2), it is supposed that the plant model
z−dB(z−1)

A(z−1)
is known (identified) and that it exists a controller

[R0(z−1),S0(z−1)] which verifies the desired specifications in
the absence of the disturbance. One also supposes that the
degreenQ of the polynomialQ(z−1) is fixed, nQ = nDp −1,
i.e. the structure of the disturbance is known.

The following procedure is applied at each sampling time
for adaptiveoperation:

1) Get the measured outputy(t + 1) and the applied
control u(t) to computew(t +1) using (29).

2) Computew1(t +1) andw2(t) using (27) and (28) with
P given by (15).

3) Estimate theQ-polynomial using the parametric adap-
tation algorithm (30) - (33).

4) Compute and apply the control (see figure 2):

S0(q
−1) ·u(t +1) = −R0(q

−1) ·y(t +1)− Q̂(t,q−1) ·w(t +1) . (35)

For theself tuningoperation of the adaptive scheme, the
estimation of theQ- polynomial starts once the level of the
output is over a defined threshold. A parameter adaptation
algorithm (30)-(33) withdecreasing adaption gainis used
and the estimation is stopped when the adaption gain is
below a pre-specified level4. During estimation of the new
parameters, the controller is kept constant. The controller is
updated once the estimation phase is finished. For a stability
analysis of this scheme see [22].

V. I NDIRECT ADAPTIVE CONTROL FOR DISTURBANCE

ATTENUATION

Indirect adaptive control for the attenuation of unknown
disturbances consists in two steps: (1) Identification of the
disturbance model; (2) Computation of a digital controller
using the identified disturbance model as internal model.
Details on this approach can be found in [22].

4The magnitude of the adaptation gain gives an indication upon the
variance of the parameter estimation error - see for example[24].
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VI. A PPLICATION 1 - ADAPTIVE REJECTION OF NARROW

BAND DISTURBANCES ON AN ACTIVE SUSPENSION

A. The active suspension

The structure of the system (the active suspension) used
in this paper is presented in figure 3. Two photos of the
system are presented in figure 4 (Courtesy of Hutchinson
Research Center and Laboratoire d’Automatique de Greno-
ble). It consists of the active suspension, a load, a shaker
and the components of the control scheme. The mechanical
construction of the load is such that the vibrations produced
by the shaker, fixed to the ground, are transmitted to the
upper side of the active suspension. The active suspension
is based on a hydraulic system allowing to reduce the over-
pressure at the frequencies of the vibration modes of the
suspension.

The controller will act upon the piston (through a power
amplifier) in order to reduce the residual force. The sampling
frequency is 800Hz. The equivalent control scheme is shown
in figure 5. The system input,u(t) is the position of the
piston (see figures 3, 5), the outputy(t) is the residual force

measured by a force sensor. The transfer function (q−d1
C
D

),

between the disturbance force,up, and the residual forcey(t)
is calledprimary path. In our case (for testing purposes), the
primary force is generated by a shaker controlled by a signal

given by the computer. The plant transfer function (q−d B
A

)

between the input of the system,u(t), and the residual force
is called secondary path. The input of the system being a
position and the output a force, the secondary path transfer
function has a double differentiator behavior.

The control objective is to reject the effect of unknown
narrow band disturbances on the output of the system ( the
residual force). The system has to be considered as a ”black
box”.

B. Results obtained on the active suspension

For the active suspension the disturbance will be a time-
varying frequency sinusoid, so we shall considernDp = 2 and
nQ = nDp −1 = 1.

The identification procedure in open and closed-loop op-
eration for the active suspension is discussed in detail in
[23], [21], [1]. The frequency characteristic of the identified



Fig. 4. Active suspension system (photo)
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primary path model (open-loop identification), between the
signal up sent to the shaker in order to generate the distur-
bance and the residual forcey(t), is presented in figure 6. The
first vibration mode of the primary path model is near 32Hz.
The frequency characteristic of the identified secondary
path model (closed-loop identification), is presented alsoin
figure 6. This model has the following complexity:nB = 14,
nA = 16, d = 0. The identification has been done using as
excitation of the piston a PRBS (Pseudo Random Binary
Sequence) with frequency dividerp = 4 (for details on the
PRBS signals see [26]). There exist several very low damped
vibration modes on the secondary path, the first one being at
31.8Hz with a damping factor 0.07. The identified model
of the secondary path has been used for the design and
implementation of the controller.

The central controller (without the internal model of the
disturbance) has been designed using the pole placement
method and the secondary path identified model. The result-
ing nominal controller has the following complexity:nR =
14,nS= 16 and it satisfies the imposed robustness constraints
on the sensitivity functions(for the design methodology
see[26])5.

In order to evaluate the performances of direct and indirect
methods in real time, time-varying frequency sinusoidal

5Any design method allowing to satisfy these constraints canbe used.
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Fig. 6. Frequency characteristics of the primary and secondary paths

disturbances between 25 and 47Hz have been used (the first
vibration mode of the primary path is near 32Hz).

For both direct and indirect adaptive control methods, two
protocols have been defined.

• Protocol 1 : Self-tuning operation
The system operates in closed loop with a frozen
controller. As soon as a change of the disturbance is
detected (by measuring the variance of the residual
output), the estimation algorithm is started with the
last frozen controller in operation. When the algorithm
converges (a criterion has to be defined - see below), a
new controller is computed and applied to the system.
The adaptation algorithm is stopped and one waits for
a change of frequency.

• Protocol 2 : Adaptive operation
The estimation algorithm works permanently (once the
loop is closed) and the controller is recomputed at each
sampling. The adaptation gain in this case does not tend
asymptotically to zero.

• Start up: For comparison purpose the system is started
in open-loop for both protocols. After 5 seconds (4000
samples) a sinusoidal disturbance of 32Hz is applied
on the shaker. The model of the disturbance is es-
timated and an initial controller is computed (same
initial controller for both direct and indirect adaptive
control). In the case of the self-tuning operation the
adaptation algorithm is stopped while in the case of the
adaptive operation the adaptation algorithm continues to
be active.

After the start up ends, every 15 seconds (8000 samples)
sinusoidal disturbances of different frequency are applied
(32Hz, 25Hz,32Hz,47Hz,32Hz).

a) Protocol 1 : Self-tuning operation. Real time exper-
imental results: The measured residual force obtained in
self-tuning operation with the direct adaptation method is
presented in figure 7 and with the indirect adaptation method
in figure 8 . We note in general a faster convergence speed of
the direct adaptive control scheme compared to the indirect
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Fig. 7. Time domain results with the direct adaptation method in self-tuning
operation
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Fig. 8. Time domain results with the indirect adaptation method in self-
tuning operation

one (except for 47Hz).
For the self-tuning protocol, the spectral densities of

the residual force obtained in open and in closed loop,
respectively, using the direct adaptation scheme (after the
algorithm converges) are presented in figure 9. The results
are given for the three frequencies used: 25, 32 and 47 Hz.
We remark that the attenuations are larger than 49 dB for all
the frequencies. Similar results are obtained with the indirect
adaptation algorithm. For details see [9].

In self-tuningoperation, one uses an adaptation gainF(t)
with variable forgetting factor, with λ0 = 0.97 and the
initial forgetting factorλ1(0) = 0.97 (the forgetting factor
is given byλ1(t) = λ0λ1(t −1)+ 1−λ0, with 0 < λ0 < 1).
For thevariable forgetting factorthe adaptation gain tends
asymptotically towards zero. The convergence criterion has
been fixed as a threshold on the trace value of the adaptation
gain matrix. For details see [9].
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Fig. 9. Spectral densities of the residual force in open and in closed loop,
with the direct adaptation method in self-tuning operation

The detection of a change of frequency is done using
the variance of the measured residual force computed on
a sliding window of 50 samples.

b) Protocol 2 : Adaptive operation. Real time exper-
imental results: The measured residual force obtained in
adaptive operation is presented in figure 10 for the direct
adaptation method and in figure 11 for the indirect adaptation
method. An adaptation gain withvariable forgetting factor
combined with a constant trace([24], [26]) has been used
in order to be able to track automatically the changes of
disturbance characteristics. The low level threshold of the
trace has been fixed at 3·10−9 for the direct algorithm and at
5·10−7 for the indirect one (note that in the indirect adaptive
scheme there are more parameters to estimate than in the
direct adaptive scheme). The attenuation obtained with the
indirect adaptive scheme in adaptive operation is less good
than in the self tuning operation and less good than the one
obtained with the direct adaptive scheme. We note that the
direct adaptive control scheme in adaptive operation gives
better results than in self tuning operation (compare figures
7 and 10).

The spectral densities of the residual force for the direct
adaptive scheme (after the algorithm converges) are similar
with those obtained inself-tuningoperation (see [9]).

According to the real time results presented above, one can
conclude that the direct adaptive control scheme gives better
results than the indirect adaptive control scheme, from the
point of view of the convergence speed and performance. In
addition the direct adaptation scheme is much simpler than
the indirect one in terms of number of operations.

c) Direct adaptive control scheme under the effect of
sinusoidal disturbances with continuously time varying fre-
quency: Consider now that the frequency of the sinusoidal
disturbance varies continuously and let’s use a chirp dis-
turbance signal (linear swept-frequency signal) between 25
and 47Hz. The tests have been done as follows: Start up in
closed loop att = 0 with the central controller. Once the loop
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Fig. 10. Time domain results with the direct adaptation method in the
adaptive case (trace= 3·10−9)
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Fig. 11. Time domain results with the indirect adaptation method in the
adaptive case (trace= 5·10−7)

is closed, the adaptation algorithm works permanently and
the controller is updated (direct approach) at each sampling
instant. After 5 seconds a sinusoidal disturbance of 25 Hz
(constant frequency) is applied on the shaker. From 10 to 15
seconds a chirp between 25 and 47 Hz is applied. After 15
seconds a 47 Hz (constant frequency) sinusoidal disturbance
is applied and the tests are stopped after 18 seconds. The
time-domain results obtained in open and in closed-loop
(direct adaptive control) are presented in figure 12. We can
remark that the performances obtained are very good.

d) Adaptation transients for direct adaptive control:
Figure 13 illustrates the adaptation transients on the input
and output when a step change of the frequency of the
disturbance occurs from 20Hz to 32 Hz respectively. One
notes that the convergence of the output requires less than
0.25s This corresponds roughly to 6 periods for 32Hz. Same
duration of the adaptation transient are obtained for the other
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Fig. 12. Real-time results obtained with the direct adaptive method and a
chirp disturbance: (a) Open loop; (b) Closed loop
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Fig. 13. Adaption transient in the direct adaptive control scheme for a step
change of the disturbance frequency from 32Hz to 20Hz

frequencies step changes. These results have to be compared
with the transients results given in [8], [28], [2], [3].

VII. A PPLICATION 2 - ADAPTIVE REJECTION OF

MULTIPLE NARROW BAND DISTURBANCES ON AN ACTIVE

VIBRATION CONTROL SYSTEM USING AN INERTIAL

ACTUATOR

A. The inertial actuator

In this application a different technological approach is
used for suppressing the effect of vibrational disturbances.
Instead of using an active suspension, one uses an inertial
actuator which will create vibrational forces to counteract
the effect of vibrational distrubances (inertial actuators use
a similar principle as loudspeakers). The structure of the
system is described in figure14. It consists on a standard
passive damper and an inertial actuator fixed to the chassis
where the vibrations should be attenuated. The testing setting
is exactly the same as for the active suspension (see figure



Fig. 14. Active vibration control using an inertial actuator (scheme)

4).
The controller will act on the inertial actuator (through a
power amplifier) in order to reduce the residual force. The
equivalent control scheme is shown in figure 5. The system
input is the position of the mobile part of the actuator. Like
for the active suspension, the secondary path has a double
differentiator behavior. The system has to be considered as
a ”black box” and the control objectives are similar to those
for the active suspension; The sampling frequency is 800Hz.

B. Results obtained with the inertial actuator

The performance of the system for rejecting multiple
unknown time varying narrow band disturbances will be
illustrated using the direct adaptive control scheme presented
in section IV. Since two simultaneous time varying frequency
sinusoids will be considered as disturbances , one should take
nDp = 4 andnQ = nDp −1 = 3
Same procedure for system identification in open and closed
loop, as for the active suspension, has been used. The
frequency characteristics of the primary path (identification
in open loop) and of the secondary path (identification in
closed loop)are shown in Figure 15. The secondary path has
the following complexity:nB = 12, nA = 10, d = 0. The
identification has been done using as excitation a PRBS
( with frequency dividerp = 2 and N = 9). There exist
several low damped vibration modes in the secondary path,
the first vibration mode is at 51.58Hz with a damping of
0.023 and the second at 100.27Hz with a damping of 0.057.
Only the ”adaptive ”operation regime has been considered for
the subsequent results. Figure 16shows the spectral densities
of the residual force obtained in open loop and in closed
loop using the direct adaptation scheme (after the adaptation
algorithm has converged). The results are given for the
simultaneous applications of two sinusoidal disturbances
(70Hz and 100Hz). One can remark a strong attenuation of
the disturbances (larger than 45dB).

Time domain results obtained with direct adaptation
scheme in ”adaptive” operation regime are shown in
Figure17. The disturbances are applied at 1s (the loop has
already been closed) and step changes of their frequencies
occur every 3s.
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(inertial actuator)
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Figure 18 shows the corresponding evolution of the
parameters of the polynomialQ. The convergence of the
output requires less than 0.4s in the worst case.
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Fig. 18. Evolution of the parameters of the polynomialQ during adaptation

VIII. C ONCLUSIONS

It was shown in this paper that the use of the internal
model principle combined with the adaptation of the inter-
nal model implemented in a Youla - Kucera parametrized
controller allows a very good rejection of the unknown time
varying narrow band disturbances without requiring the use
of an additional transducer. Two adaptive approaches (direct
and indirect adaptation) have been presented and tested
comparatively.

The results obtained in real time on active vibration
control (using an active suspension or an inertial actuator)
lead us to conclude that the direct adaptive control scheme
provides better performance and is simpler than the indirect
adaptive control scheme.

A similar approach has been used successfully on a chem-
ical reactor and for noise cancellation in ducts. Extensions
to the multivariable case have been recently done[15]
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