
HAL Id: hal-00384490
https://hal.science/hal-00384490

Submitted on 15 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging dielectric fluids by light: a ray optics approach
Robert D. Schroll, Etienne Brasselet, Wendy W. Zhang, Jean-Pierre Delville

To cite this version:
Robert D. Schroll, Etienne Brasselet, Wendy W. Zhang, Jean-Pierre Delville. Bridging dielectric fluids
by light: a ray optics approach. European Physical Journal E: Soft matter and biological physics,
2008, 26, pp.405-409. �10.1140/epje/i2008-10336-1�. �hal-00384490�

https://hal.science/hal-00384490
https://hal.archives-ouvertes.fr


Bridging dielectric fluids by light: a ray optics approach

Robert D. Schroll,1 Etienne Brasselet,2 Wendy W. Zhang,1 and Jean-Pierre Delville3

1Physics Department and the James Franck Institute,

University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
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Rayleigh-Plateau instability is known to impose a stability limit for the length of a liquid bridge
in weightless conditions. This fundamental limit may be exceeded by using a light field to form
and stabilize dielectric fluid bridges [A. Casner and J. P. Delville, Europhys. Lett. 65, 337 (2004)].
Using both new experimental data as well as a new theoretical approach, we show that both the size
and the stability of such light-sustained dielectric bridge can be qualitatively explained. We present
a ray optics model that encompass the competition between surface tension effects and optical
radiation pressure arising from total internal reflection inside the bridge. A critical power below
which a liquid bridge can no longer be sustained by light is predicted and confirmed experimentally.
The observed power dependence of the bridge diameter also agrees with the proposed stabilization
mechanism.

PACS numbers: 47.20.Ma,42.25.Gy,42.50.Wk,82.70.Kj

Introduction. – Liquid bridges are freestanding fluid
cylinders of finite volume surrounded by a second fluid
and stabilized between two solid surfaces by surface ten-
sion. They play an important role in many different ar-
eas of science going from crystal growth by the floating
zone method [1], to micro total analysis system appli-
cations [2]. However, control and stabilization of large
aspect ratio liquid bridges is very challenging [3]. Be-
yond a certain aspect ratio Λ = `/2R, where ` is the
height and 2R the diameter, liquid columns are known to
break into droplets due to the Rayleigh-Plateau instabil-
ity [4]. This behavior, investigated for more than a cen-
tury [5] is still under intense research because up to now,
advanced methods used to bypass the Rayleigh-Plateau
limitation almost failed in stabilizing liquid columns with
large aspect ratios. In weightless conditions, a cylindri-
cal liquid column becomes unstable and breaks when its
length exceeds its circumference (i.e. Λ > π); buoyancy
even lowers this value of the aspect ratio onset. Grav-
ity was then compensated by magnetic fields [6]. Fur-
ther increase of the instability onset was investigated un-
der axial and radial electric fields for both dielectric [7]
and conducting [8] liquids. Passive [9] and active [10]
control by acoustic radiation pressure was also demon-
strated. Despite a large amount of efforts, the largest
value reached was Λ = 5 [11]. In a recent work [12],
we experimentally demonstrated that the optical radi-
ation pressure was able to stabilize liquid bridges well
above the Rayleigh-Plateau onset (a picture was given
for Λ = 14). Aside from this fundamental fluid mechan-
ics aspect, the method also seems promising in micro-
technologies because laser-sustained liquid columns are
tunable in aspect ratio, adjustable in direction and to-
tally reconfigurable. Consequently, the range of appli-

cations is very wide, going from micro-optics (i.e. liq-
uid columns behave as soft optical fibers) to microfluidic
pipes, as fluid transfer can be optically controlled and di-
rected in three dimensions [13]. This investigation needed
nevertheless theoretical insights in order to understand
why light beams are able to stabilize liquid columns so
easily while classical electric and acoustic fields are un-
able to do so. This is the purpose of the present work.

We study the size and the stability of dielectric fluid
bridges sustained by light and propose a simple geomet-
rical model that grasp the main features of the observa-
tions. The main idea is to balance the competing radial
effects of surface tension, which tends to break the bridge
through Rayleigh-Plateau instability, and optical radia-
tion pressure arising from total internal reflection inside
the bridge that helps to keep the bridge open. We pre-
dict the existence of a threshold power below which a
liquid bridge can no longer be sustained by light, as is
seen in the experiments. The power dependence of the
bridge diameter also agrees with the proposed stabiliza-
tion mechanism.

Experiments and Results. – The experimental set-up is
depicted in Fig. 1. It consists of a phase-separated near-
critical liquid mixture contained in a thermo-regulated
glass cell at temperature T , for which a very low surface
tension can be obtained. Details on the preparation of
the solution can be found in [14]. Above the critical tem-
perature Tc ' 35◦C, two distinct phases ϕ1 and ϕ2 of
different composition coexist. The densities and refrac-
tive indices satisfy ρ1 > ρ2 and n1 < n2, respectively.
Therefore the phase ϕ1, of lowest refractive index, is at
the bottom of the cell. In addition, the phase ϕ2 com-
pletely wets the cell walls close to Tc, forming a wetting
layer at the bottom of the cell. A vertical downward
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TEM00 Gaussian beam from a CW Ar+ laser operating
at wavelength λ = 514.5 nm is focused at normal inci-
dence onto the fluid-fluid interface, along the z-axis, as
shown in Fig. 1. The intensity profile at the unperturbed
interface is

I(r) =
2P

πw2
0

exp
(

−2r2/w2
0

)

, (1)

where r is the radial distance from the centerline of the
laser beam, P is the total beam power and w0 is the beam
waist. Since n1 < n2, the raditation pressure exerted
by the laser beam deforms the interface downward [15]
[Fig. 2(a)]. When the laser power exceeds a critical value
Pjet, the interface deforms into a fluid jet, with droplets
emitted from the end of the jet [see inset of Fig. 2(a)]
[16].

The jet structure results from an opto-hydrodynamic
instability whose proposed mechanism is the destabi-
lization of the small amplitude surface deformation as
the beam experiences total internal reflection at the in-
flexion point location, where the local incidence angle
of light θinc at the interface is the largest [16]. In-
deed, as n2 > n1, light incident from phase ϕ2 is to-
tally reflected and directed toward the deformation tip
if θinc > θc = arcsin(n1/n2). The dynamical scenario of
the jetting instability is illustrated in Figs. 2(b,c) with
snapshots at time t = 1.2 s (a) and t = 7.2 s (b) when
laser is switched-on at t = 0 with P > Pjet. When power
is decreased a hysteresis loop is observed and the large
deformation is sustained at power P < Pjet until it sud-
denly switches back to the small amplitude deformation
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FIG. 1: Sketch of the experimental set-up. The TEM00 mode
of a CW Argon ion laser operating at 514.5 nm is focused at
the fluid-fluid interface of the phase separated liquid mixture
whose temperature is regulated above the critical tempera-
ture Tc. The less refractive phase ϕ1 (density ρ1, refractive
index n1) is the denser one. The cell thickness is e = 2 mm
and the working thickness is ` = 200 µm, which is calibrated
by introducing a glass slab of thickness L = 800 µm at the
bottom of the cell.

regime. Then, if the initial thickness of the phase ϕ1 is
smaller than the jet length h, a bridge forms between the
interface and the wetting layer.

For our purpose, we want to obtain bridges instead of
jet for all laser power values P > Pc. This is ensured by
choosing the working thickness ` to lie below the switch-
off height, which corresponds to h/w0 ∼ 60 (Fig. 2(a)).
In practice we chose ` = 200 µm, which is calibrated
introducing a glass slab of thickness L = 800 µm at
the bottom of the cell of thickness e = 2 mm contain-
ing the phase ϕ1 for a height of 1 mm (Fig. 1). This
corresponds to `/w0 ∼ 30 for the experimental data pre-
sented here, where w0 = 6.95 µm (except for Fig. 2 where
w0 = 3.5 µm), and therefore we shall refer to Pbridge in-
stead of Pjet for clarity in what follows. Experiments
were carried out at fixed temperature T − Tc = 4 K
(except for Fig. 2 where T − Tc = 5 K) for which we
have n1 = 1.442, n2 = 1.462 and a surface tension value
σ = 4.20 × 10−7 J/m2 [17]. The power dependence of
the bridge diameter d is obtained by analyzing the cen-
tral part of the bridge picture. It is illustrated in Fig. 3
where filled (open) symbols correspond to increasing (de-
creasing) power. Let us note finally that laser beams are
indeed able to stabilize bridges which would be unstable
otherwise. This can easily be demonstrated by removing
the optical excitation; Rayleigh-Plateau rupture occurs
systematically.

Geometrical model. – We next show that the main
features associated with the onset of the bridge structure
are captured by a simple model, in which the constricting
effect of surface tension is balanced by the radiation pres-

0.0 0.5 1.0 1.5
0

50

100

150

h
/
w
0

P/P
jet

(b) (c)(a)

h

switch-on

switch-off

0/wl

FIG. 2: (a) The maximum height h of the light-induced de-
formation for increasing (filled circles) and decreasing (open
circles) power. The laser power P is normalized by the value
Pjet. Above Pjet the downward deformation transforms dis-
continously into a fluid jet (inset). The dashed line indicates
the lower-layer depth ` used in the bridge experiment (see
Fig. 1). (b,c) Formation of fluid jet. At t = 0, the laser power
is increased to P = 460 mW, a value above Pjet. The beam
waist is w0 = 3.5 µm and T − Tc = 5 K. (b) At t = 1.2 s,
the interface forms a downward deflection. (c) At t = 7.2 s,
the interface has evolved into a liquid jet and the scattering
of the resulting light guiding by the jet edges is visible.
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sure generated by light reflecting off the bridge surface.
Since the bridge radius is larger than the wavelength of
the light, we adopt here the simplest approach and model
the propagation and the reflection of the light within the
bridge via geometric optics. While this is strictly cor-
rect only when the bridge radius is much larger than the
wavelength of light, it is sufficient to reproduce the main
observed features.

We model the bridge as a cylinder of radius R aligned
with the beam. As the Rayleigh range of the incident
beam, πw2

0/λ, is of the order of or larger than the bridge
length, we can consider the laser light to be shining di-
rectly downwards, without any radial spreading. Thus,
from a geometrical optics view, the light shining directly
into the bridge will not interact with the walls. Light at
a radius larger than R is reflected off the interface and
directed into the bridge. Since the index of refraction in-
side the bridge is larger than the index of the surrounding
fluid, some of this light may be trapped inside the bridge
by total internal reflection. We assume that the total
power trapped in this manner, denoted PA, is equal to
the power shining on the interface at a radius between R
and αR (α > 1). This is illustrated in Fig. 4(a), where
light falling between points A and B is reflected into the
bridge. Thus,

PA = 2π

αR
∫

R

I(r)rdr ,

= Pe
− 2R

2

w2
0

(

1 − e
−

2(α2
−1)R2

w2
0

)

. (2)

The parameter α is defined such that rays impinging on
the funnel at radius αR have an impact angle of θc, the
critical angle for total internal reflection. This parameter
is estimated by analyzing the actual shape of the bridge
funnel. We measure αexp = 2.13 for w0 = 6.95 µm [see
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FIG. 3: (a) Bridge diameter as a function of power for w0 =
6.95 µm for increasing (filled circles) and decreasing (open
circles) power. Pc is the critical power below which the bridge
is no longer stabilized by light. (b) Typical bridge obtained
at 230 mW. The aspect ratio is Λ ≈ 20.

FIG. 4: (Color online) Illustration of the geometrical model
of optical bridge stabilization (a) Rays impinging on the in-
terface at an angle larger than θc, the critical angle for total
internal reflection, participate in stabilizing the bridge struc-
ture. (b) Picture of the funnel shape at the bridge entrance
showing data analysis (white line) from which the parameter
α is estimated. (c) Linear momentum transfer ∆p of a photon
that undergoes total internal reflection inside the bridge.

Fig. 4(b)], which is almost constant within the investi-
gated range of waists.

Once the reflected light enters the bridge, it will bounce
down the bridge at some angle φ > θc to the normal.
Since the optical indices of the two fluids are similar, θc

is close to π/2. More precisely, at T −Tc = 4 K, we have
θc ' 81.4◦. Thus, a reasonable approximation is that all
of the light reflects at the same angle φ and, further, that
this angle can be approximated as

φ =
1

2
(θc +

π

2
) . (3)

As each trapped photon of energy Eγ reflects off of the
bridge interface, its linear momentum changes by

∆p =‖ p
+ − p

− ‖= 2
n2

c
Eγ cosφ . (4)

The bridge interface receives an equal impulse in the out-
wards normal direction [see Fig. 4(c)]. The total radia-
tion pressure on the bridge surface is given by the product
of the momentum change per photon, ∆p, by the num-
ber of reflections per unit area of the bridge wall. For
photons reflecting at an angle φ, this reflection density is
given by the rate of photons PA/Eγ divided by the area
per reflection for a single photon, 4πR2 tanφ. Thus, the
radiation pressure is given by

Πradiation =
PA/Eγ

4πR2 tan φ
∆p =

n2

2c

cosφ

tan φ

PA

πR2
. (5)

Given Eq. 3 and n1 ≈ n2, we can expand in the difference
between the indices to find cosφ/ tanφ ≈ (n2 −n1)/2n2.

Then, from Eq. (5), we can calculate the bridge radius
as a function of the laser power by balancing the radiation
pressure Πradiation, which tends to expand a cylindrical
bridge outwards, against the inward constricting stresses
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exerted by surface tension. Finally the equilibrium equa-
tion writes

σ

R
=

n2 − n1

4c

PA

R2
. (6)

In Fig. 5 we plot the Laplace pressure ΠLaplace = σ/R due
to surface tension and the radiation pressure Πradiation

as a function of the bridge radius R. As one can de-
duce graphically from Fig. 5, the model predicts that
there is (i) no equilibrium radius for the bridge be-
low a critical power Pc, (ii) a unique solution R =
Rc at P = Pc, and (iii) a pair of equilibrium radii
(R−

eq, R
+
eq), with R−

eq < R+
eq, when P > Pc. In the lat-

ter case, surface tension is larger than radiation pres-
sure for small R, since the area gathering light is so
small, and also for large R, since the light is only be-
ing gathered from the dim tails of the intensity pro-
files. For R−

eq < R < R+
eq, enough light is captured

that radiation pressure dominates. For the static bal-
ance to be stable against variation in the bridge radius,
we must have (∂RΠradiation)(Req) < (∂RΠLaplace)(Req).
This is only satisfied at R = R+

eq. Therefore, any bridge
R−

eq < R < R+
eq in this regime would be widened up to

R+
eq, the stable equilibrium and R−

eq represents an unsta-
ble solution.

Discussion. – We plot the model’s prediction of bridge
diameter as a function of the laser power and compare
them against the measured bridge diameters in Fig. 6.
To faciliate the comparison, we have rescaled the bridge
diameter by the size of the beam waist w0 and the laser
power by Pc, the power below which no bridge exists.
The simple model successful captures all the qualitative
features of bridge formation. In particular, it demon-
strates the onset of a stable bridge when the laser power
is sufficiently large, as well as a gradual widening of the
bridge radius with power above Pc. However, there is
a discrepancy in the size of the bridge. The measured
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FIG. 5: (Color online) Laplace pressure (solid line) and radi-
ation pressure for P < Pc (dotted line), P = Pc (dashed line)
and P > Pc (dash-dotted line), as a function of the bridge
radius R.
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FIG. 6: Comparison between the model and experimental
results for w0 = 6.95 µm and T − Tc = 4 K. Solid (dashed)
line corresponds to stable (unstable) states and circles are the
experimental results.

bridge is slightly wider than that predicted by our model.
In addition, with the measured value αexp, we can use the
model to estimate the value of the critical power Pc. By
definition, the later is determined from Πradiation(Rc) =
ΠLaplace(Rc) and (∂RΠradiation)(Rc) = (∂RΠLaplace)(Rc),
where Rc is the equilibrium radius at P = Pc. Then,
the dependence of Pc on the beam waist w0 is numer-
ically calculated and compared to the measurements in
Fig. 7. The critical power scales linearly with the beam
waist, consistently with the model, but there is again a
quantitative offset. The model estimate is about a factor
2.5 larger than the experimental value. These quanti-
tative discrepancies suggest that the crude assumptions
employed in our simple model, i.e. that light propagation
can be modelled by geometric optics and that all the light
rays are reflected off the bridge surface with the same an-
gle, are unable to capture the quantitative evolution of
the bridge structure, although it suceeds in capturing the
main qualitative features of the bridge formation.

Before concluding, we comment the influence of possi-
ble viscous stress on the bridge stability. In a previous
work, we have shown that that when ∆T is small, so
that the experimental system is near the second-order
phase transition, light scattering off the density fluctu-
ations in the liquid imparts momentum to the liquid in
the lit region, driving a flow inside the jet [13]. In the
bridge regime, the scattering-driven flow is still present
and exerts a viscous stress on the interface. We can
estimate the viscous stress as follows. From our prior
work, we know that a laser beam of power P gives rise
to a downward flow within the jet with typical velocity
uz. Estimates of uz from the experiments give values
in the range 10–100 µm/s. Because a liquid bridge is
not perfectly cylindrical along its entire length in prac-
tice, the downward light-driven flow is accompanied by
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FIG. 7: The scaling of the critical power Pc with the beam
width w0 at T − Tc = 4 K. Inset shows the predicted scaling
from the geometric optics model. The linear trend is correctly
predicted, although the overall scale is off.

a secondary flow whose radial component ur satisfies
ur ∼ uzR/`. This radial flow gives rise to a typical
viscous stress µur/R = µuz/` onto the bridge surface,
where µ is the mean shear viscosity (close to Tc one has
µ1 ' µ2). We can gauge the relative importance of the
viscous stress to the dominant stress balance keeping the
bridge open (Eq. 6) from the dimensionless ratio between
the viscous stress and the surface tension pressure. This
corresponds to a capillary number

Ca =
µuzR

σ`
(7)

The bridge experiments analyzed here span Ca values
from 10−3 to 10−2, thus confirming the basic assumption
in our simple model that the bridge observed is governed
by a static force balance.

Conclusion. – The main motivation of the present let-
ter was to give some theoretical insights on the mecha-
nism by which radiation pressure allows for liquid bridges
stabilization well above the Rayleigh-Plateau onset, con-
trary to other external forcing. Since the optical speci-
ficity of liquid bridges is to behave intrinsically as waveg-
uides, we suspected this guiding to be at the origin of
the observed stabilization. To check this hypothesis we
used a ray optics description of the light trapped in the
bridge and investigate the competition between the ra-
diation pressure of the guided photons and the Laplace
pressure. This model has then been compared to new
experiments. All predictions of our model are retrieved
experimentally, i.e. (i) existence of equilibrium between
competing radial contributions of optical radiation pres-

sure and surface tension and (ii) emergence of a beam
power onset below which no stabilization is possible. The
quantitative comparison shows a mismatch in the value
of this onset, but we have to remember that our ray op-
tics approach and its subsequent ray selection mechanism
by the funnel of the bridge are only a partial picture of a
more complicated electromagnetism problem. However,
since a simple ray optics description predicts the right
behaviors, it can be considered as the first step toward
a proper analytical description of laser-sustained large
aspect ratio liquid bridges.
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(W.W.Z.).

[1] J. Meseguer, J. M. Perales, I. Martinez, N. A. Bezdene-
jnykh, and A. Sanz, Current Topics in Cryst. Growth
Research 5, 27 (1999).

[2] M. Wu, T. Cubaud, and C.-M. Ho, Phys. Fluids 16, L51
(2004).

[3] W. Wei, D. B. Thiessen, and P. L. Marston, Phys. Rev.
E 72, 067304 (2005).

[4] J. Eggers, Rev. Mod. Phys. 69, 865 (1997).
[5] J. Plateau, Ann. Phys. Chem. 80, 566 (1850).
[6] M. P. Mahajan, S. Zhang, M. Tsige, P. L. Taylor, and C.

Rosenblatt, J. Colloid Interface Sci. 213, 592 (1999).
[7] C. L. Burcham, and D. A. Saville, J. Fluid Mech. 405,

37 (2000).
[8] M. J. Marr-Lyon, D. B. Thiessen, F. L. Blonigen, and P.

L. Martson, Phys. Fluids 12, 986 (2000).
[9] M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston,

Phys. Rev. Lett. 86, 2293 (2001); Erratum ibid 86, 2293
(2001).

[10] M. J. Marr-Lyon, D. B. Thiessen, and P. L. Martson, J.
Fluid Mech. 351, 345 (1997).

[11] H. Gonzales, F. M. J. McCluskey, A. Castellanos, and A.
Barrero, J. Fluid. Mech. 206, 545 (1989).

[12] A. Casner and J. P. Delville, Europhys. Lett. 65 337
(2004).

[13] R. D. Schroll, R. Wunenburger, A. Casner, W. W. Zhang,
and J.P. Delville Phys. Rev. Lett. 98, 133601 (2007)

[14] A. Casner and J. P. Delville, Phys. Rev. Lett. 87 054503
(2001).

[15] R. Wunenburger, A. Casner and J. P. Delville, Phys. Rev.
E 73, 036314 (2006).

[16] A. Casner and J. P. Delville, Phys. Rev. Lett. 90 144503
(2003).

[17] H. Chrabi, D. Lasseux, E. Arquis, R. Wunenburger and
J. P. Delville, European Journal of Mechanics B/Fluids,
in press (2008).


