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Rayleigh-Plateau instability is known to impose a stability limit for the length of a liquid bridge in weightless conditions. This fundamental limit may be exceeded by using a light field to form and stabilize dielectric fluid bridges [A. Casner and J. P. Delville, Europhys. Lett. 65, 337 (2004)]. Using both new experimental data as well as a new theoretical approach, we show that both the size and the stability of such light-sustained dielectric bridge can be qualitatively explained. We present a ray optics model that encompass the competition between surface tension effects and optical radiation pressure arising from total internal reflection inside the bridge. A critical power below which a liquid bridge can no longer be sustained by light is predicted and confirmed experimentally. The observed power dependence of the bridge diameter also agrees with the proposed stabilization mechanism.

Introduction. -Liquid bridges are freestanding fluid cylinders of finite volume surrounded by a second fluid and stabilized between two solid surfaces by surface tension. They play an important role in many different areas of science going from crystal growth by the floating zone method [1], to micro total analysis system applications [2]. However, control and stabilization of large aspect ratio liquid bridges is very challenging [3]. Beyond a certain aspect ratio Λ = /2R, where is the height and 2R the diameter, liquid columns are known to break into droplets due to the Rayleigh-Plateau instability [4]. This behavior, investigated for more than a century [5] is still under intense research because up to now, advanced methods used to bypass the Rayleigh-Plateau limitation almost failed in stabilizing liquid columns with large aspect ratios. In weightless conditions, a cylindrical liquid column becomes unstable and breaks when its length exceeds its circumference (i.e. Λ > π); buoyancy even lowers this value of the aspect ratio onset. Gravity was then compensated by magnetic fields [6]. Further increase of the instability onset was investigated under axial and radial electric fields for both dielectric [7] and conducting [8] liquids. Passive [9] and active [10] control by acoustic radiation pressure was also demonstrated. Despite a large amount of efforts, the largest value reached was Λ = 5 [11]. In a recent work [12], we experimentally demonstrated that the optical radiation pressure was able to stabilize liquid bridges well above the Rayleigh-Plateau onset (a picture was given for Λ = 14). Aside from this fundamental fluid mechanics aspect, the method also seems promising in microtechnologies because laser-sustained liquid columns are tunable in aspect ratio, adjustable in direction and totally reconfigurable. Consequently, the range of appli-cations is very wide, going from micro-optics (i.e. liquid columns behave as soft optical fibers) to microfluidic pipes, as fluid transfer can be optically controlled and directed in three dimensions [13]. This investigation needed nevertheless theoretical insights in order to understand why light beams are able to stabilize liquid columns so easily while classical electric and acoustic fields are unable to do so. This is the purpose of the present work.

We study the size and the stability of dielectric fluid bridges sustained by light and propose a simple geometrical model that grasp the main features of the observations. The main idea is to balance the competing radial effects of surface tension, which tends to break the bridge through Rayleigh-Plateau instability, and optical radiation pressure arising from total internal reflection inside the bridge that helps to keep the bridge open. We predict the existence of a threshold power below which a liquid bridge can no longer be sustained by light, as is seen in the experiments. The power dependence of the bridge diameter also agrees with the proposed stabilization mechanism.

Experiments and Results. -The experimental set-up is depicted in Fig. 1. It consists of a phase-separated nearcritical liquid mixture contained in a thermo-regulated glass cell at temperature T , for which a very low surface tension can be obtained. Details on the preparation of the solution can be found in [14]. Above the critical temperature T c 35 • C, two distinct phases ϕ 1 and ϕ 2 of different composition coexist. The densities and refractive indices satisfy ρ 1 > ρ 2 and n 1 < n 2 , respectively. Therefore the phase ϕ 1 , of lowest refractive index, is at the bottom of the cell. In addition, the phase ϕ 2 completely wets the cell walls close to T c , forming a wetting layer at the bottom of the cell. A vertical downward TEM 00 Gaussian beam from a CW Ar + laser operating at wavelength λ = 514.5 nm is focused at normal incidence onto the fluid-fluid interface, along the z-axis, as shown in Fig. 1. The intensity profile at the unperturbed interface is

I(r) = 2P πw 2 0 exp -2r 2 /w 2 0 , (1) 
where r is the radial distance from the centerline of the laser beam, P is the total beam power and w 0 is the beam waist. Since n 1 < n 2 , the raditation pressure exerted by the laser beam deforms the interface downward [15] [Fig. 2(a)]. When the laser power exceeds a critical value P jet , the interface deforms into a fluid jet, with droplets emitted from the end of the jet [see inset of Fig. 2(a)] [16].

The jet structure results from an opto-hydrodynamic instability whose proposed mechanism is the destabilization of the small amplitude surface deformation as the beam experiences total internal reflection at the inflexion point location, where the local incidence angle of light θ inc at the interface is the largest [16]. Indeed, as n 2 > n 1 , light incident from phase ϕ 2 is totally reflected and directed toward the deformation tip if θ inc > θ c = arcsin(n 1 /n 2 ). The dynamical scenario of the jetting instability is illustrated in Figs. 2(b,c) with snapshots at time t = 1.2 s (a) and t = 7.2 s (b) when laser is switched-on at t = 0 with P > P jet . When power is decreased a hysteresis loop is observed and the large deformation is sustained at power P < P jet until it suddenly switches back to the small amplitude deformation regime. Then, if the initial thickness of the phase ϕ 1 is smaller than the jet length h, a bridge forms between the interface and the wetting layer.

For our purpose, we want to obtain bridges instead of jet for all laser power values P > P c . This is ensured by choosing the working thickness to lie below the switchoff height, which corresponds to h/w 0 ∼ 60 (Fig. 2(a)). In practice we chose = 200 µm, which is calibrated introducing a glass slab of thickness L = 800 µm at the bottom of the cell of thickness e = 2 mm containing the phase ϕ 1 for a height of 1 mm (Fig. 1). This corresponds to /w 0 ∼ 30 for the experimental data presented here, where w 0 = 6.95 µm (except for Fig. 2 sure generated by light reflecting off the bridge surface. Since the bridge radius is larger than the wavelength of the light, we adopt here the simplest approach and model the propagation and the reflection of the light within the bridge via geometric optics. While this is strictly correct only when the bridge radius is much larger than the wavelength of light, it is sufficient to reproduce the main observed features.

We model the bridge as a cylinder of radius R aligned with the beam. As the Rayleigh range of the incident beam, πw 2 0 /λ, is of the order of or larger than the bridge length, we can consider the laser light to be shining directly downwards, without any radial spreading. Thus, from a geometrical optics view, the light shining directly into the bridge will not interact with the walls. Light at a radius larger than R is reflected off the interface and directed into the bridge. Since the index of refraction inside the bridge is larger than the index of the surrounding fluid, some of this light may be trapped inside the bridge by total internal reflection. We assume that the total power trapped in this manner, denoted P A , is equal to the power shining on the interface at a radius between R and αR (α > 1). This is illustrated in Fig. 4(a), where light falling between points A and B is reflected into the bridge. Thus,

P A = 2π αR R I(r)rdr , = P e -2R 2 w 2 0 1 -e -2(α 2 -1)R 2 w 2 0 . (2) 
The parameter α is defined such that rays impinging on the funnel at radius αR have an impact angle of θ c , the critical angle for total internal reflection. This parameter is estimated by analyzing the actual shape of the bridge funnel. We measure α exp = 2.13 for w 0 = 6.95 µm [see Once the reflected light enters the bridge, it will bounce down the bridge at some angle φ > θ c to the normal. Since the optical indices of the two fluids are similar, θ c is close to π/2. More precisely, at T -T c = 4 K, we have θ c 81.4 • . Thus, a reasonable approximation is that all of the light reflects at the same angle φ and, further, that this angle can be approximated as

φ = 1 2 (θ c + π 2 ) . (3) 
As each trapped photon of energy E γ reflects off of the bridge interface, its linear momentum changes by

∆p = p + -p -= 2 n 2 c E γ cos φ . ( 4 
)
The bridge interface receives an equal impulse in the outwards normal direction [see Fig. 4(c)]. The total radiation pressure on the bridge surface is given by the product of the momentum change per photon, ∆p, by the number of reflections per unit area of the bridge wall. For photons reflecting at an angle φ, this reflection density is given by the rate of photons P A /E γ divided by the area per reflection for a single photon, 4πR 2 tan φ. Thus, the radiation pressure is given by

Π radiation = P A /E γ 4πR 2 tan φ ∆p = n 2 2c cos φ tan φ P A πR 2 . ( 5 
)
Given Eq. 3 and n 1 ≈ n 2 , we can expand in the difference between the indices to find cos φ/ tan φ ≈ (n 2 -n 1 )/2n 2 . Then, from Eq. ( 5), we can calculate the bridge radius as a function of the laser power by balancing the radiation pressure Π radiation , which tends to expand a cylindrical bridge outwards, against the inward constricting stresses exerted by surface tension. Finally the equilibrium equation writes

σ R = n 2 -n 1 4c P A R 2 . ( 6 
)
In Fig. 5 we plot the Laplace pressure Π Laplace = σ/R due to surface tension and the radiation pressure Π radiation as a function of the bridge radius R. As one can deduce graphically from Fig. 5, the model predicts that there is (i) no equilibrium radius for the bridge below a critical power P c , (ii) a unique solution R = R c at P = P c , and (iii) a pair of equilibrium radii (R - eq , R + eq ), with R - eq < R + eq , when P > P c . In the latter case, surface tension is larger than radiation pressure for small R, since the area gathering light is so small, and also for large R, since the light is only being gathered from the dim tails of the intensity profiles. For R - eq < R < R + eq , enough light is captured that radiation pressure dominates. For the static balance to be stable against variation in the bridge radius, we must have (∂ R Π radiation )(R eq ) < (∂ R Π Laplace )(R eq ). This is only satisfied at R = R + eq . Therefore, any bridge R - eq < R < R + eq in this regime would be widened up to R + eq , the stable equilibrium and R - eq represents an unstable solution.

Discussion.

-We plot the model's prediction of bridge diameter as a function of the laser power and compare them against the measured bridge diameters in Fig. 6. To faciliate the comparison, we have rescaled the bridge diameter by the size of the beam waist w 0 and the laser power by P c , the power below which no bridge exists. The simple model successful captures all the qualitative features of bridge formation. In particular, it demonstrates the onset of a stable bridge when the laser power is sufficiently large, as well as a gradual widening of the bridge radius with power above P c . However, there is a discrepancy in the size of the bridge. The measured bridge is slightly wider than that predicted by our model. In addition, with the measured value α exp , we can use the model to estimate the value of the critical power P c . By definition, the later is determined from

Π radiation (R c ) = Π Laplace (R c ) and (∂ R Π radiation )(R c ) = (∂ R Π Laplace )(R c ),
where R c is the equilibrium radius at P = P c . Then, the dependence of P c on the beam waist w 0 is numerically calculated and compared to the measurements in Fig. 7. The critical power scales linearly with the beam waist, consistently with the model, but there is again a quantitative offset. The model estimate is about a factor 2.5 larger than the experimental value. These quantitative discrepancies suggest that the crude assumptions employed in our simple model, i.e. that light propagation can be modelled by geometric optics and that all the light rays are reflected off the bridge surface with the same angle, are unable to capture the quantitative evolution of the bridge structure, although it suceeds in capturing the main qualitative features of the bridge formation.

Before concluding, we comment the influence of possible viscous stress on the bridge stability. In a previous work, we have shown that that when ∆T is small, so that the experimental system is near the second-order phase transition, light scattering off the density fluctuations in the liquid imparts momentum to the liquid in the lit region, driving a flow inside the jet [13]. In the bridge regime, the scattering-driven flow is still present and exerts a viscous stress on the interface. We can estimate the viscous stress as follows. From our prior work, we know that a laser beam of power P gives rise to a downward flow within the jet with typical velocity u z . Estimates of u z from the experiments give values in the range 10-100 µm/s. Because a liquid bridge is not perfectly cylindrical along its entire length in practice, the downward light-driven flow is accompanied by a secondary flow whose radial component u r satisfies u r ∼ u z R/ . This radial flow gives rise to a typical viscous stress µu r /R = µu z / onto the bridge surface, where µ is the mean shear viscosity (close to T c one has µ 1 µ 2 ). We can gauge the relative importance of the viscous stress to the dominant stress balance keeping the bridge open (Eq. 6) from the dimensionless ratio between the viscous stress and the surface tension pressure. This corresponds to a capillary number

Ca = µu z R σ (7) 
The bridge experiments analyzed here span Ca values from 10 -3 to 10 -2 , thus confirming the basic assumption in our simple model that the bridge observed is governed by a static force balance.

Conclusion. -The main motivation of the present letter was to give some theoretical insights on the mechanism by which radiation pressure allows for liquid bridges stabilization well above the Rayleigh-Plateau onset, contrary to other external forcing. Since the optical specificity of liquid bridges is to behave intrinsically as waveguides, we suspected this guiding to be at the origin of the observed stabilization. To check this hypothesis we used a ray optics description of the light trapped in the bridge and investigate the competition between the radiation pressure of the guided photons and the Laplace pressure. This model has then been compared to new experiments. All predictions of our model are retrieved experimentally, i.e. (i) existence of equilibrium between competing radial contributions of optical radiation pres-sure and surface tension and (ii) emergence of a beam power onset below which no stabilization is possible. The quantitative comparison shows a mismatch in the value of this onset, but we have to remember that our ray optics approach and its subsequent ray selection mechanism by the funnel of the bridge are only a partial picture of a more complicated electromagnetism problem. However, since a simple ray optics description predicts the right behaviors, it can be considered as the first step toward a proper analytical description of laser-sustained large aspect ratio liquid bridges.
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 21 FIG. 1: Sketch of the experimental set-up. The TEM00 mode of a CW Argon ion laser operating at 514.5 nm is focused at the fluid-fluid interface of the phase separated liquid mixture whose temperature is regulated above the critical temperature Tc. The less refractive phase ϕ1 (density ρ1, refractive index n1) is the denser one. The cell thickness is e = 2 mm and the working thickness is = 200 µm, which is calibrated by introducing a glass slab of thickness L = 800 µm at the bottom of the cell.
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 2 FIG. 2: (a) The maximum height h of the light-induced deformation for increasing (filled circles) and decreasing (open circles) power. The laser power P is normalized by the value Pjet. Above Pjet the downward deformation transforms discontinously into a fluid jet (inset). The dashed line indicates the lower-layer depth used in the bridge experiment (see Fig. 1). (b,c) Formation of fluid jet. At t = 0, the laser power is increased to P = 460 mW, a value above Pjet. The beam waist is w0 = 3.5 µm and T -Tc = 5 K. (b) At t = 1.2 s, the interface forms a downward deflection. (c) At t = 7.2 s, the interface has evolved into a liquid jet and the scattering of the resulting light guiding by the jet edges is visible.
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 3 FIG. 3: (a) Bridge diameter as a function of power for w0 = 6.95 µm for increasing (filled circles) and decreasing (open circles) power. Pc is the critical power below which the bridge is no longer stabilized by light. (b) Typical bridge obtained at 230 mW. The aspect ratio is Λ ≈ 20.
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 4 FIG. 4: (Color online) Illustration of the geometrical model of optical bridge stabilization (a) Rays impinging on the interface at an angle larger than θc, the critical angle for total internal reflection, participate in stabilizing the bridge structure. (b) Picture of the funnel shape at the bridge entrance showing data analysis (white line) from which the parameter α is estimated. (c) Linear momentum transfer ∆p of a photon that undergoes total internal reflection inside the bridge.
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 4 Fig. 4(b)], which is almost constant within the investigated range of waists.Once the reflected light enters the bridge, it will bounce down the bridge at some angle φ > θ c to the normal. Since the optical indices of the two fluids are similar, θ c is close to π/2. More precisely, at T -T c = 4 K, we have θ c 81.4 • . Thus, a reasonable approximation is that all of the light reflects at the same angle φ and, further, that this angle can be approximated as
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 5 FIG.5:(Color online) Laplace pressure (solid line) and radiation pressure for P < Pc (dotted line), P = Pc (dashed line) and P > Pc (dash-dotted line), as a function of the bridge radius R.
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 136 FIG.6: Comparison between the model and experimental results for w0 = 6.95 µm and T -Tc = 4 K. Solid (dashed) line corresponds to stable (unstable) states and circles are the experimental results.
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 7 FIG. 7:The scaling of the critical power Pc with the beam width w0 at T -Tc = 4 K. Inset shows the predicted scaling from the geometric optics model. The linear trend is correctly predicted, although the overall scale is off.
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