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Abstract

The paper proposes and analyzes two prototype structures of coupled generalized van der Pol equations able

to describe self-excitation of simultaneous oscillations with distinct frequencies. These structures are relevant for

describing oscillations phenomena which may be encountered on systems subject to control. These structures

are analyzed using the Krylov-Bogoliubov averaging method. This analysis allows to establish conditions for the

occurrence of the various operation regimes. The usefulness of the results is illustrated by their application to the

straightforward analysis of the properties of a combustion instability model.
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1 Introduction

Presence of oscillatory phenomena in control systems is well acknowledged. One can distinguish two basic situations:

• Oscillatory phenomena are inherent to the plant to be controlled.

• Oscillatory phenomena occurs in the feedback control system.

These phenomena are generated by feedback (existing inside the plant or through the feedback control) and they are

described by nonlinear equations 1. It is important to note that in many systems to be controlled these phenomena

are often considered as ”disturbances” to be attenuated by the control system and the generating model of these

oscillations is ignored.

Such an example is in mechanical systems where in many situations these oscillations have the generic term ”vi-

brations” and for which a large variety of control strategies have been developed in order to reduce them [2]. Similarly

∗ Corresponding author, Phone:0033476826391, Fax:0033476826388, E-mail:landau@lag.ensieg.inpg.fr.
1linear models neglect important nonlinear phenomena as saturation phenomenon which explain steady oscillation with fixed amplitude
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in combustion systems where thermo-acoustic oscillations may occurs (generic term: combustion instability), a num-

ber of control strategies have been developed by considering these oscillations as disturbances to be attenuated [1]

(and ignoring the model behind the generation of these oscillations). However in many cases a total different approach

can be considered:

• one can model the oscillatory phenomena,

• one can investigate strategies for quenching the oscillatory phenomena taking advantage of the nonlinear feature

of the model describing the phenomena.

Nevertheless, the first stage in this approach is to establish a relevant model (which of course is nonlinear) and analyze

its various operation regimes (i.e understanding when and how oscillations occurs).

From the point of view of modelling of such phenomena one have to combine two approaches:

1. The model should reflect the phenomena encountered in practice.

2. The basic mathematical models for describing oscillatory phenomena are van der Pol (Rayleigh, Duffing) type

equations.

As a consequence these models will be often built by using modified and coupled van der Pol (Rayleigh, Duffing)

equations (in order to capture simultaneous oscillatory phenomena with distinct frequencies) [6, 8, 10, 15, 16, 18]. For

building such modified and coupled equations one has to remark that van der Pol equations correspond to a nonlinear

feedback path around a pure linear resonator. The modifications will be done essentially in the feedback path which

may become very complex by combining static nonlinearities with linear dynamics. These models can be subject to

external excitations or control inputs which enter linearly or multiplicatively.

The resulting nonlinear equations describing such oscillatory systems do not have in general an exact solution and

therefore the problem of the analytical analysis of their behavior is fundamental.

Numerical investigation while used sometimes [14] is not a satisfactory approach because on one hand the phe-

nomena should be understood and on the other hand it is difficult to cover all range of possible variations of the

parameters (one may skip some critical combination of parameters values). What is needed, is an analytical study

of the behavior of these oscillatory system which is also fundamental for developing in a later stage a ”quenching”

policy.

The theory of oscillatory systems is a well established field. See for example [3, 9, 11, 12]. A number of ap-

proximation methods have been proposed for studying the properties of the equations describing oscillatory systems.

However among all these methods, it seems that the averaging method of Krylov and Bogoliubov (in short K-B

method) is one of the most efficient and with probably the most widely application range [3, 12].

The objective of this paper is to analyze two classes of coupled oscillatory systems relevant for describing systems

which can feature self-excitation of single or multiple simultaneous oscillations of distinct frequencies and may be

subject to an external excitation. This investigation will be done using the K-B method which will be briefly reviewed

from the perspective of problems encountered in control.

The major original contributions of this paper are:
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1. Introduction of two prototype structures of coupled generalized van der Pol equations.

2. Analysis of the behavior of these structures using the K-B method.

3. Application of the results to the straightforward analysis of a model used for describing combustion instabilities.

This paper will not discuss the problem of ”quenching” of oscillations through a control strategies. This will be

the object of a distinct paper. Preliminary results can be found in [4].

The paper is organized as follows: In Section 2 the K-B approximation method for autonomous multi-resonator

systems is briefly reviewed and its use is illustrated in Section 3 for the analysis of the generalized van der Pol

equation. In section 4 a first structure of coupled generalized van der Pol equations is analyzed using the K-B method.

The various regimes of operation are emphasized and conditions for their occurrence are provided. The case when this

system is driven by an external periodic excitation is examined in Section 5. In Section 6 a further generalization of the

coupling between two resonators is considered. This structure can feature simultaneous non-harmonic oscillations.

Finally in Section 6 it is shown that a model for combustion instabilities can be brought to the prototype structure

considered in this section and therefore the existence of simultaneous non harmonic oscillations observed in practice

receives a theoretical explanation. Some concluding remarks are presented in Section 7.

2 K-B approximation for autonomous multi-resonators systems

Consider a system with n resonators described by differential equations of the form,

d2x j

dt2
+ω2

j x j = ε f j

(

x,
dx

dt

)

, ( j = 1,2, . . . ,n), (1)

where x = {x1, . . . ,xn}, dx
dt

= {dx1

dt
, . . . , dxn

dt
} and ε is a small parameter. The systems governed by (1) belong to near

conservative system class, where function f j is called perturbation term of equation j. For the jth resonator, the first

K-B approximation (for more details see Chapter 2 of [12]) proposes the solution

x j = a j cos(ψ j), (2)

where ψ j = ω jt +θ j, a j and θ j are slowly time-varying functions obeying the equations






da j

dt
= − ε

2ω j
H j j(a1, . . . ,an,θ1, . . . ,θn),

dθ j

dt
= − ε

2ω ja j
G j j(a1, . . . ,an,θ1, . . . ,θn),

(3)

with H j j and G j j obtained from the function f j

(

x, dx
dt

)

by substituting

{

xk = ak cos(ωkt +θk),
dxk

dt
= −akωk sin(ωkt +θk),

(k = 1,2, . . . ,n) (4)

and by setting it in the form

f j (a1 cos(ω1t +θ1), . . . ,an cos(ωnt +θn),−a1ω1 sin(ω1t +θ1), . . . , −anωn sin(ωnt +θn))

= H j j sin(ω jt +θ j)+G j j cos(ω jt +θ j)+
r

∑
ω j 6≈ωℓ

(

Hℓ j sin(ωℓt +θℓ)+Gℓ j cos(ωℓt +θℓ)
)

, (5)
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Figure 1: Generalized van der Pol equation in feedback structure with multiplicative control

where ωℓ and θℓ are integer linear combinations of ω1, . . . ,ωn and θ1, . . . ,θn, respectively, and r is the number of

possible integer linear combinations of ω1, . . . ,ωn different from ω j. For x j the coefficients of the fundamental term

in (5) are used and the all other terms are eliminated.

3 Generalized van der Pol equation

In nonlinear oscillating systems control field, the determination of plant model is a fist step of control tuning. Estab-

lishing a relevant model for nonlinear oscillating systems requires good knowledge of the physical phenomenon at

the same time as the availability of mathematical tools allowing the analysis of the model. The Krylov-Bogoliubov

(K-B) method (detailed in [3, 9, 11, 12, 13]) is such an analytical method allowing an efficient analysis of nonlinear

oscillating systems. The effectiveness of this method combined with relevant models may be considered as a major

step forward in modelling self-oscillating systems.

The multiplicative control leads in general to some difficulties in analysis. However in some situations, this

control presents important advantages since the multiplicative input often acts directly on the system part which cause

instability. For unstable nonlinear resonators cases, the instability can be caused by negative stiffness or damping.

The negative stiffness situation is encountered in inverted pendulum problem driven by vertical excitation [17], and

the negative damping situation is encountered combustion instabilities models [7, 4].

The van der Pol equation is one of most known nonlinear self-oscillatory system characterized by a negative

damping. The basic van der Pol equation is the following:

ẍ+ω2x = ε d
dt

{

x− 1
3
x3

}

, (6)

where ε is a small parameter and ω is the frequency of oscillation. If we generalize the form of the right hand of (6),

one obtains

ẍ+ω2x = d
dt

{

ϕ0 +ϕ1x− ϕ3

3
x3

}

, (7)
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where ϕ1 and ϕ3 are arbitrary positive constants and ϕ0 is arbitrary constant.

The self-oscillatory nature is due to the right hand of (7) corresponding to a nonlinear damping with negative

values about the origin. Therefore, for control one proposes to introduce the multiplicative action u on the nonlinear

damping which causes the system instability. Moreover, an additive input v can be introduced. This input can be

considered as noise excitation.

ẍ+ω2x = d
dt

{

(1+u)
(

ϕ0 +ϕ1x− ϕ3

3
x3

)}

+ v, (8)

The generalized van der Pol equation, can be seen as a system having a closed loop structure. The feedforward path

is characterized by one linear resonator in feedback with a nonlinear path which creates a negative damping leading

to the excitation of oscillations. The nonlinear path represents the differentiation of a nonlinear static function with a

drift equal to ϕ0, a slope about the origin equal to ϕ1 and a level of saturation phenomenon illustrated by ϕ3. Figure 1

presents the closed loop system structure with multiplicative control associated to equation (8).

We will proceed next to the analysis of equation (7) using the K-B method. The analysis is not new, but it will

illustrate how the methodology will be used for more complex systems which will be considered in the subsequent

sections.

3.1 K-B analysis

The application of K-B approximation need to consider that structure (7) belong to near conservative system class

(form (1) in mono-resonator case), where the perturbation term is the following function (with ε = 1)

f =
d

dt

{

ϕ0 +ϕ1x− ϕ3

3
x3

}

, (9)

Introducing a structure for the solution of the form

{

x = acos(ωt +θ),
dx
dt

= −aω sin(ωt +θ),
(10)

into (9), one gets

f = −ωϕ1a
(

1−ϕ3 (acos(ωt +θ))2
)

sin(ωt +θ), (11)

To approximate the solution of (7), it is necessary to set (11) in the form (5) (in mono-resonator case). The application

of trigonometric simplifications on (11) yields

f = −ϕ1ωa

(

1− ϕ3

4ϕ1

a2

)

sin(ωt +θ)− ϕ3

4
a3 sin(3ωt +3θ), (12)

From this expression one can deduces easily







H1 = −ϕ1ωa
(

1− ϕ3

4ϕ1
a2

)

,

G1 = 0,
(13)
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Figure 2: Two coupled generalized van der Pol equations

By applying the rules (3) on (13), one obtains finally







da
dt

= ϕ1a

2

(

1− ϕ3

4ϕ1
a2

)

,

dθ
dt

= 0,
(14)

The equations (14) possesses two steady-state solutions. The first at the origin is unstable (since ϕ1 > 0). The

second steady-state solution which corresponds to amplitude as = 2
√

ϕ1

ϕ3
is stable. This implies a periodic oscillation

with frequency equal to ω and amplitude which will converge necessarily to 2
√

ϕ1

ϕ3
. The result is predictable by

examination of the right hand of (14). Indeed, one sees that for initial value a < as, the damping is negative so

oscillation will grow. But once a = as, the damping is equal to zero so this will correspond to oscillations of constant

amplitude. On the other hand, for the initial value a > as, the damping is positive and the oscillations will decrease

till the right hand of (14) will become zero for a = as.

4 Two coupled generalized van der Pol equations

In this section the interaction of two self-oscillatory systems will be analyzed. By such analysis, we will answer two

important questions:

• What happen if two self-oscillatory systems such as van der Pol equations are associated with same coupled

term ?

• In what conditions, the oscillations of both equations coexist ?
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We consider the two coupled generalized van der Pol equations structure presented in Figure 2 and described by the

following differential equations














d2x1

dt2 +ω2
1 x1 = d

dt

(

ϕ0 +ϕ1y− ϕ3

3
y3

)

,

d2x2

dt2 +ω2
2 x2 = d

dt

(

ϕ0 +ϕ1y− ϕ3

3
y3

)

,

y = x1 + x2.

(15)

where ω1 and ω2 are the natural radian frequencies of the first and second resonators respectively and which can have

arbitrary values with some modest provisions to be developed.

4.1 K-B analysis

Consider the equations system (15) and the form (1) (with ε = 1), in this case

f1 = f2 = f =
d

dt

(

ϕ0 +ϕ1(x1 + x2)−
ϕ3

3
(x1 + x2)

3
)

= ϕ1

(

1− ϕ3

ϕ1

(x1 + x2)
2

)(

dx1

dt
+

dx2

dt

)

. (16)

Introducing

{

xi = ai cos(ωit +θi),
dxi

dt
= −aiωi sin(ωit +θi),

(i = 1,2) (17)

into (16) and using trigonometric simplifications, one gets

f = ϕ1

{

−ω1a1

(

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

))

sin(ω1t +θ1)−ω2a2

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

sin(ω2t +θ2)

+
ϕ3

ϕ1

[

ω1

a3
1

4
sin(3(ω1t +θ1))+ω2

a3
2

4
sin(3(ω2t +θ2)) +(2ω1 +ω2)

a2
1a2

4
sin((2ω1 +ω2)t +2θ1 +θ2)

+(ω1 +2ω2)
a1a2

2

4
sin((ω1 +2ω2)t +θ1 +2θ2)+(2ω1 −ω2)

a2
1a2

4
sin((2ω1 −ω2)t +2θ1 −θ2)

+ (2ω2 −ω1)
a2

2a1

4
sin((2ω2 −ω1)t +2θ2 −θ1)

]}

. (18)

from which one can see the existence of the frequency set

W = {ω1,ω2,3ω1,3ω2,2ω1 +ω2,ω1 +2ω2,2ω1 −ω2,2ω2 −ω1} . (19)

This set is very important for finding the possible operation regimes of the system, i.e. for x1 (respectively x2), the

remaining terms from (18) after application of the K-B approximation will only be the terms with the frequency ω

from W such as ω ≈ω1 (respectively ω2). Consequently, one has the following classification, which will be elaborated

and explained shortly :

1. ω1 6≈
{

ω2,3ω2,
ω2

3

}

-two generators with competitive quenching

2. ω1 ≈ ω2-mutual synchronization with close frequencies

3. ω1 ≈ 3ω2 (respectively ω2 ≈ 3ω1)-mutual synchronization with multiple harmonics
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Figure 3: Simulation test of the system (15) and the approximations (21) and (22) with ω1 =

2π × 210, ω2 = 2π × 740, ϕ1 = 1.78× 102, ϕ3 = 1.24× 107, a1(0) = 4× 10−3 and

a2(0) = 2×10−3.

4.1.1 Two generators with competitive quenching

In the case where the frequencies ω1 and ω2 respect Condition 1 above, there is no interconnection effect between

the both frequencies and the K-B approximation uses only the fundamental oscillations terms of f (., .). Furthermore,

K-B approximation gives the result presented in the following lemma.

Lemma 1

Consider the case where the frequencies ω1 and ω2 satisfy the condition

ω1 6≈
{

ω2,3ω2,
ω2

3

}

. (20)

Consequently the approximated solutions of (15) are

xi = ai cos(ωit +θi), (i = 1,2) (21)

with


























da1

dt
= ϕ1

2
a1 − ϕ3

2
a1

(

a2
1

4
+

a2
2

2

)

,

da2

dt
= ϕ1

2
a2 − ϕ3

2
a2

(

a2
2

4
+

a2
1

2

)

,

dθ1

dt
= 0,

dθ2

dt
= 0.

(22)
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The steps leading to this lemma are presented in Appendix A. Let us find steady-state solutions of (22). In this

case, (22) possesses four steady-state solutions

a1s = 0 and a2s = 0, (23)

a1s = 2√
3

√

ϕ1

ϕ3
and a2s = 2√

3

√

ϕ1

ϕ3
, (24)

a1s = 2
√

ϕ1

ϕ3
and a2s = 0, (25)

a1s = 0 and a2s = 2
√

ϕ1

ϕ3
. (26)

Both former solutions (23) and (24) are unstable, and both latter solutions (25) and (26) are stable. Therefore, the

amplitudes of x1 and x2 converge to one of both possible stationary states (25) and (26). Depending on the initial

condition, one of the generators is excited, while the oscillations of the other generator are entirely quenched. Such

quenching of the oscillations of one of the generators, caused by the sufficiently large non-linear coupling between

them, is known as competitive quenching.

It was noted that, if a1(0) > a2(0), x1 is excited and the oscillations of x2 are entirely quenched, and the converse

effect occurs when a1(0) < a2(0). Figure 3 presents a simulation test of competitive quenching phenomenon, the

upper part shows the outputs of (15) and lower part shows the outputs approximated by (21) and (22).

4.1.2 Mutual synchronization with close frequencies

In the case where the frequencies ω1 and ω2 are close, an important interaction exist between resonators. For x1

(respectively x2), one has the properties

ω1 ≈ {ω2, |2ω1 −ω2|, |2ω2 −ω1|} , (27)

ω1 6≈ {3ω1,3ω2,2ω1 +ω2,ω1 +2ω2} , (28)

The application of K-B approximation implies the conservation of all coefficients of sinusoidal terms in fi with a

frequency close to ω1 (respectively ω2) and the elimination of all other terms. Therefore, only the sinusoidal terms

with frequencies ω1, ω2, 2ω1 −ω2 and 2ω2 −ω1 will be employed in K-B approximation.

Lemma 2

Consider the case where the frequencies satisfy ω1 ≈ ω2. Consequently the approximated solutions of (15) are

xi = ai cos(ωit +θi), (i = 1,2) (29)

with a1, a2, θ1 and θ2 governed by






























da1

dt
= ϕ1

{

a1

2

(

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

))

+
[

a2ω2

2ω1

(

1− ϕ3

ϕ1

a2
1+a2

2

4

)

− ϕ3

ϕ1

a2a2
1

4

]

cos(∆ψ)+ ϕ3

ϕ1

(ω1−2ω2)a1a2
2

8ω1
cos(2∆ψ)

}

,

da2

dt
= ϕ1

{

a2

2

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

+
[

a1ω1

2ω2

(

1− ϕ3

ϕ1

a2
1+a2

2

4

)

− ϕ3

ϕ1

a1a2
2

4

]

cos(∆ψ)+ ϕ3

ϕ1

(ω2−2ω1)a2a2
1

8ω2
cos(2∆ψ)

}

,

dθ1

dt
= ϕ1

{

ϕ3

ϕ1

(2ω2−ω1)a
2
2

8ω1
sin(2∆ψ) −

[

a2ω2

2a1ω1

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

+ϕ3

ϕ1

(2ω1−ω2)a2a1

8ω1

]

sin(∆ψ)
}

,

dθ2

dt
= ϕ1

{

ϕ3

ϕ1

(ω2−2ω1)a
2
1

8ω2
sin(2∆ψ) +

[

a1ω1

2a2ω2

(

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

))

+ϕ3

ϕ1

(2ω2−ω1)a2a1

8ω2

]

sin(∆ψ)
}

.

(30)

where

∆ψ = ψ1 −ψ2 = (ω1 −ω2)t +θ1 −θ2. (31)
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Figure 4: Simulation test of the system (15) and the approximations (29) and (30) with ω1 =

ω2 = 2π ×210, ϕ1 = 1.78×102, ϕ3 = 1.24×107, a1(0) = 2×10−3, a2(0) = 10−3 and

θ1(0) = θ1(0) = 0.

The proof of this lemma is presented in Appendix B. This result is very important, because in parallel with differential

equation (15), it is possible to compute from (30) the amplitude and the phase evolutions of the output and to compare

both to signals measured in practice.

The integration and study of stationary solutions of (30) are very difficult. However, to find the stationary solutions

when ω1 = ω2 = ω , one can adopt the following steps. Using y = x1 + x2, if we add the both equations of (15) we

obtain

d2(x1 + x2)

dt2
+ω2(x1 + x2) =

d

dt

(

ϕ0 +ϕ1(x1 + x2)−
ϕ3

3
(x1 + x2)

3
)

⇒ d2y

dt2
+ω2y =

d

dt

(

ϕ0 +ϕ1y− ϕ3

3
y3

)

. (32)

It is seen that (32) corresponds to generalized van der Pol equation (7) approximated in section 3 as follows

y = 2

√

ϕ1

ϕ3

cos(ωt +θ) ⇒ x1 + x2 = 2

√

ϕ1

ϕ3

cos(ωt +θ), (33)

where θ is the arbitrary instantaneous phase, which satisfies

a2
1s +a2

2s +2a1sa2s cos(∆ψs) = 4
ϕ1

ϕ3

(34)
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One notes that there exist an infinity of steady-state points and that the convergence of the amplitude and phase

depends essentially on the initial state of x1 and x2. Therefore, to get the same result between (15) and (30), one must

initialize (30) with the appropriate values of initial amplitude and phase.

Figure 4 shows a simulation test of mutual synchronization with close frequencies phenomenon, the upper part

are the outputs of (15) and lower part are the outputs approximated by (29) and (30).

4.1.3 Mutual synchronization with multiple harmonics

For the case where the frequency ω1 is close to 3ω2, the terms with frequencies ω1 and 3ω2 are used for x1 approx-

imation, and the terms with frequencies ω2 and (2ω2 −ω1) are used for x2 approximation. Therefore, one finds the

result presented in following lemma

Lemma 3

Consider the case where the frequencies ω1 and ω2 satisfy

ω1 ≈ 3ω2, (35)

the K-B approximation of (15) gives

xi = ai cos(ωit +θi), (i = 1,2) (36)

with


























da1

dt
= ϕ1

[

a1

2

(

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

))

− ϕ3

ϕ1

ω2a3
2

8ω1
cos(∆ψ)

]

,

da2

dt
= ϕ1

[

a2

2

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

− a1a2
2

8ω2

ϕ3

ϕ1
(ω1 −2ω2)cos(∆ψ)

]

,

dθ1

dt
= ϕ3

ω2a3
2

8ω1a1
sin(∆ψ),

dθ2

dt
= −ϕ3

a1a2

8ω2
(ω1 −2ω2)sin(∆ψ),

(37)

where

∆ψ = ψ1 −3ψ2 = (ω1 −3ω2)t +θ1 −3θ2. (38)

The proof of this lemma is given in appendix C. Let us find steady-state solution of (37). One stable steady-state point

can be computed analytically from (37)

a1s = 2

√

ϕ1

ϕ3

and a2s = 0. (39)

Others points which concern synchronization phenomenon need numerical solution of (37). Furthermore, one intro-

duces

ρ =
∣

∣

∣

ω1−3ω2

ω2

∣

∣

∣
. (40)

For instance, in the case where ω1 = 3ω2 = 6π × 210 (correspond to ρ = 0), ϕ1 = 1.78× 102 and ϕ3 = 1.24× 107,

the second steady state solution is given by

a1s = 2.25×10−3, a2s = 8.09×10−3 and ∆ψs = π. (41)
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Figure 5: Simulation test with ω1 = 3ω2 = 6π ×210, ϕ1 = 1.78×102, ϕ3 = 1.24×107, a1(0) =

10−3, a2(0) = 6×10−3 and θ1(0) = θ1(0) = 0

.

For ρ 6= 0, it exists one other stable steady-state point which depend from the value of p and ω2 (or ω1). It was noted

that the amplitude a1 decrease when ρ increase.

From this, one can see that if ω1 is close to 3ω2 (respectively ω2

3
), it is possible to have two phenomena depending

on the initial condition. In the first phenomenon, the generator with frequency ω1 is excited and the other generator

with frequency ω2 is quenched. In the second phenomenon, one has synchronization regime. By a synchronization

regime is meant that the oscillation frequency of the second generator, which is equal to ω2 + θ̇2, is exactly a third of

the oscillation frequency of the first generator, which is equal to ω1 + θ̇1. This phenomenon is illustrated by simulation

test presented in Figure 5, the upper part are the outputs of (15) and lower part are the outputs approximated by (36)

and (37).

4.2 Summary of the analysis results

We have identified three situations relating the proximity of the natural frequencies of the individual oscillators. From

a practical point of view one can say that the system is characterized in steady state either by a single oscillating

frequency (which corresponds to one of the resonance frequencies of the linear oscillators) or by stable simultaneous

oscillations (which correspond to synchronized oscillations of both generators).

This single oscillation phenomena which is known as competitive quenching phenomena, occurs when the ratio

of resonance frequencies of the two resonators are different from 3, 1 and 1
3
, and occurrence of one of the frequencies

12



(among the two) will depend upon the initial conditions.

Stable simultaneous oscillations with two distinct frequencies will occur only when ω1 ≈ 3ω2 or ω2 ≈ 3ω1 and

the initial condition is sufficiently good so that both generators are excited.

5 Two coupled generalized van der Pol equations driven by periodic force

In order to complete the analysis of two coupled generalized van der Pol equations we deal in this section with non-

autonomous case. We consider here the structure presented in (15) and introduce an additive force v at input of linear

resonators. This modification leads to following differential equations















d2x1

dt2 +ω2
1 x1 = d

dt

(

ϕ0 +ϕ1y− ϕ3

3
y3

)

+ v,

d2x2

dt2 +ω2
2 x2 = d

dt

(

ϕ0 +ϕ1y− ϕ3

3
y3

)

+ v,

y = x1 + x2.

(42)

This structure will be analyzed for the case where the ratio of natural frequencies are different from 3, 1 and 1
3
, and

for periodic force

v = Bv cos(ωvt), (43)

where Bv and ωv are amplitude and radian frequency of periodic force, respectively. From system standpoint, this

structure can be seen as a system driven by noise and the analysis allows estimation of noise effects. Generally, the

outputs are affected differently depending on proximity between forced frequency and natural frequencies. Using

K-B analysis, we will examine the cases where this input affects the dynamic characteristics and estimate the induced

modifications (quench or excite oscillations). Let’s use the following notation in the remaining of the paper

{

△1 =
(

ω2
1 −ω2

v

)

△2 =
(

ω2
2 −ω2

v

)
(44)

These parameters can be used to measure the distance between natural frequencies and the external frequency .

Depending on frequency ωv, two situations are possible. In the first, we have an asynchronous situation which occurs

when ωv is different from natural frequencies. The second corresponds to a synchronous situation, which occurs when

ωv is close to one of the two natural frequencies.

5.1 Asynchronous force

Consider the case where the forced frequency is different form the both natural frequencies, which verified the condi-

tion (20). In this case, there is no interconnection effect between the three frequencies. For solving (42), we propose

the following substitution

xi = zi +
Bv

△i

cos(ωvt), (i = 1,2) (45)
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which leads to following deferential equations

{

d2z1

dt2 +ω2
1 z1 = f

d2z2

dt2 +ω2
2 z2 = f

(46)

f = ϕ1

[

1− ϕ3

ϕ1

(

z1 + z2 +
(

Bv

△1
+ Bv

△2

)

cos(ωvt)
)2

]

(

dz1

dt
+ dz2

dt
−

(

Bv

△1
+ Bv

△2

)

ωv sin(ωvt)
)

. (47)

With the new equations system, the periodic force have indirect effects on outputs z1 and z2 which can be measured

using K-B approximation.

Lemma 4

Under conditions (20) and

ωv 6≈ {ω1,ω2}

The solutions of (46) can be approached by

zi = ai cos(ωit +θi), (i = 1,2) (48)

with


































da1

dt
= ϕ1a1

2

(

1− ϕ3

2ϕ1

(

Bv

△1
+ Bv

△2

)2

− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

)

)

,

da2

dt
= ϕ1a2

2

(

1− ϕ3

2ϕ1

(

Bv

△1
+ Bv

△2

)2

− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

)

)

,

dθ1

dt
= 0,

dθ2

dt
= 0.

(49)

The steps leading to this are presented in Appendix D. Comparing to autonomous case, one notes some modifications

on amplitudes dynamic. The same amplitudes dynamic can be obtained in autonomous case by the substitution of ϕ1

by ϕ1 − ϕ3

2

(

Bv

△1
+ Bv

△2

)2

, respectively. Consequently, this modification affects the value of steady amplitudes but does

not change the two generators with competitive quenching behavior. Figure 6 shows a simulation test of (42) with

asynchronous periodic force.

5.2 Synchronous force

Consider a periodic force with frequency ωv close to one of the natural frequencies ω1 and ω2. Let’s analyze the case

where

ωv ≈ ω2 (50)

For first resonator x1, there is no interconnection effect with the forced frequency . Therefore, K-B approximation of

x1 gives the same result of asynchronous force case. However due to proximity of ωv and ω2, an important interaction

exists between the oscillations of x2 and periodic force. This interaction leads to synchronization of x2 by the periodic

force that means an oscillation frequency in x2 close to ωv. Therefore, we consider a solution of the form

x2 = a2 cos(ωvt +θ2) (51)
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Figure 6: Simulation test of (42) with asynchronous periodic force, ω1 = 2π×210, ω2 = 2π×740,

ωv = 2ω2, Bv = 104, ϕ0 = 0.5, ϕ1 = 1.78×102 and ϕ3 = 1.24×107.
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Figure 7: Simulation test of (42) with synchronous force, ω1 = 2π × 210, ω2 = ωv = 2π × 740,

Bv = 1000, ϕ0 = 0.5, ϕ1 = 1.78×102 and ϕ3 = 1.24×107

Lemma 5

Under conditions (50), the outputs of system (42) can be approximated by

{

x1 = a1 cos(ω1t +θ1)+ Bv

△1
cos(ωvt)

x2 = a2 cos(ωvt +θ2)
(52)

with






























da1

dt
= ϕ1a1

2

(

1− ϕ3

2ϕ1

(

Bv

△1

)2

− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

)

)

,

da2

dt
= ϕ1a2

2

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

− Bv

2ωv
sin(θ2),

dθ1

dt
= 0,

dθ2

dt
= − Bv

2ωva2
cos(θ2)+ △2

2ωv
.

(53)

The proof of this lemma is presented in Appendix E. Comparing with approximations obtained in the autonomous

case, one observes coupling terms between the amplitude a2 and the phase θ2, which implies the modification of

steady-state solutions particulary on a2. Tacking in account the differential equation of θ2, one concludes that ampli-

tude a2 can not be equal to zero. Consequently, the existence of synchronous periodic force leads to excitation of the
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Figure 8: Two coupled resonators with different coupled terms

synchronized resonator.

In the high frequencies cases (ωv >> 1), the quantities Bv

2ωv
and Bv

△1
are small and synchronous periodic force leads

to small modifications on stable steady-state solutions which can be easily approximated. One stable steady-state so-

lution can be approached by (26). The convergence of amplitude meant the excitation of second resonator oscillations

and the quenching of first resonator oscillations. The second stable steady-state solution can be approached by the

following expression (neglecting a2
2 and

B2
v

△2
1

)

as1 ≈ 2

√

ϕ1

ϕ3

, as2 ≈
Bv

ωvϕ1

1
√

1+
(

△2

ωvϕ1

)2
and θs2 ≈−arctan

(

ωvϕ1

△2

)

. (54)

Consequently, on can concludes that through synchronous periodic force the system outputs are more affected than

in the asynchronous cases. The oscillations of both resonators can coexist but with one small amplitude for high

frequencies cases. Figure 7 shows the stationary part of a simulation test example in the case of synchronous periodic

excitation.

6 Two coupled resonators with different coupled terms

The previous analysis shows that simultaneous oscillations with two distinct frequencies can not occurs when the ratio

of resonance frequencies of the two resonators are different from 3, 1 and 1
3
. In order to go further in the analysis of

coupled oscillators, we define here another nonlinear coupled resonators structure















ẍ1 +ω2
1 x1 = d

dt

{

η10 +η11y− η13

3
y3

}

,

ẍ2 +ω2
2 x2 = d

dt

{

η20 +η21y− η23

3
y3

}

,

y = α1x1 +α2x2.

(55)
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where η10, η20, η11, η21, η13 and η23 are arbitrary constants, α1 and α2 are arbitrary positive constants. The cor-

responding block diagram is depicted in Figure 8. Comparing to previous structure (15), the specification of this

structure is that the van der Pol equations can have in general different nonlinear feedback characteristics (drift, slope,

level of saturation).

6.1 K-B analysis

Consider the system (55) and the form (1) (with ε = 1). Therefore, for the K-B approximation one may consider the

following choice

fi =
d

dt

{

ηi0 +ηi1y− ηi3

3
y3

}

= ηi1

{

1− ηi3

ηi1

(α1x1 +α2x2)
2

}

(α1ẋ1 +α2ẋ2) , (i = 1,2) (56)

Introducing (17) in (56) and after trigonometric simplifications, one obtains the expression

fi=−ω1α1ηi1a1

[

1− ηi3

ηi1

(

(α1a1)
2

4
+

(α2a2)
2

2

)]

sin(ω1t +θ1)−ω2α2ηi1a2

[

1− ηi3

ηi1

(

(α2a2)
2

4
+

(α1a1)
2

2

)

]

sin(ω2t +θ2)+
ηi3

4
{ω1(α1a1)

3 sin(3ω1t +3θ1)+α2
1 α2a2

1a2[(2ω1 +ω2)sin((2ω1 +ω2)t +2θ1 +θ2)

+(2ω1 −ω2)sin((2ω1 −ω2)t +2θ1 −θ2)]+α1α2
2 a1a2

2 [(ω1 +2ω2)sin((ω1 +2ω2)t +θ1 +2θ2)

+(2ω2 −ω1)sin((2ω2 −ω1)t +2θ2 −θ1)]+ω2(α2a2)
3 sin(3ω2t +3θ2)}. (57)

from this expression one observes the existence of same frequency set W defined in (19). Consequently, one gets

the same classification presented in section 4.1. However, we limit our study here to case where condition (20) is

satisfied. This is new and more practically interesting when compared with section 4.

Lemma 6

Consider the condition (20) and the result (57). The application of K-B approximation gives

xi = ai cos(ωit +θi), (i = 1,2) (58)

with


























ȧ1 = α1η11

2
a1

[

1− η13

η11

(

(α1a1)
2

4
+ (α2a2)

2

2

)]

,

ȧ2 = α2η21

2
a2

[

1− η23

η21

(

(α2a2)
2

4
+ (α1a1)

2

2

)]

,

θ̇1 = 0,

θ̇2 = 0,

(59)

By adopting the same procedure presented in Appendix A on function (57), one finds the result of lemma 6. From

(59), one can see that the coupled parameters are a1 and a2. Therefore, the system dynamics depend essentially on

the evolution of amplitudes a1 and a2. The analytical determination of equilibrium points as1 and as2 gives

as1 = 0 and as2 = 0, (60)

as1 = 2
α1

√

η11

η13
and as2 = 0, (61)

as1 = 0 and as2 = 2
α2

√

η21

η23
, (62)

as1 = 2
α1

√

2η21

3η23
− η11

3η13
and as2 = 2

α2

√

2η11

3η13
− η21

3η23
. (63)
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The stability of each equilibrium point leads to a particular regime. Consequently, one distinguishes five operation

regimes, which will be elaborated and explained shortly :

1. Asymptotically stable system,

2. Two generators with competitive quenching,

3. One generator of van der Pol,

4. Simultaneous self-sustained oscillations,

5. Total instability.

For stability study one can apply the Lyapunov’s indirect method, which consist to use the stability property of the

linearized system around the equilibrium point. The computation of the general linearized matrix M and characteristic

polynomial P(λ ) leads to the following results

M =





α1η11

2
− α1η13

2

(

3
(α1as1)

2

4
+ (α2as2)

2

2

)

−η13α1α2
2

2
as1as2

−η23α2α2
1

2
as1as2

α2η21

2
− α2η23

2

(

3
(α2as2)

2

4
+ (α1as1)

2

2

)



 (64)

P(λ ) = λ 2 − 1

2

{

α1η11 +α2η21 −α1η13

(3(α1as1)
2

4
+

(α2as2)
2

2

)

−α2η23

(3(α2as2)
2

4
+

(α1as1)
2

2

)}

λ

+
α1α2

4

[

η11 −η13

(3(α1as1)
2

4
+

(α2as2)
2

2

)][

η21 −η23

(3(α2as2)
2

4
+

(α1as1)
2

2

)]

−η13η23(α1α2)
3(as1as2)

2

4
. (65)

The characteristic polynomial obtained is a second order polynomial. Therefore, the stability can be verified by testing

the sign of polynomial coefficients (should be positive).

6.1.1 Asymptotic stable system

The system is asymptotically stable around the origin, if and only if the equilibrium point (60) is asymptotically

stable. Introducing (60) in the general characteristic polynomial (65), one obtains

P(λ ) = λ 2 − 1

2

{

α1η11 +α2η21

}

λ +
α1η11α2η21

4
, (66)

which has two stable zeros if the following conditions are satisfied







−
{

α1η11 +α2η21

}

> 0

α1η11α2η21 > 0
⇐⇒

{

η11 < 0

η21 < 0
(67)

Provided (67) is satisfied and the initial states are close to the origin, the amplitudes of both oscillations converge

to the equilibrium point (60). The satisfaction of conditions (67) imply positives damping effect about the origin.

Figure 9 shows an example of a simulation test of the system (55), where the conditions (67) are satisfied.
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Figure 9: Asymptotic stable system - Simulation test with α1 = ω1 = 2π ×210, α2 = ω2 = 2π ×
740, η10 = η20 = 0.5, η11 = −0.142, η21 = −8.5× 10−2, η13 = −5× 10−3 and η23 =

−3×10−3.

6.1.2 Two generators with competitive quenching

The two generators with competitive quenching regime occurs when both equilibrium points (61) and (62) are locally

stable. Substituting (61) into (65), one gets

P(λ ) = λ 2 +
1

2

{

2α1η11 +2α2η23
η11

η13

−α2η21

}

λ +
α1α2η11

2

{

2η23
η11

η13

−η21

}

(68)

The local stability of (61) is satisfied if and only if






2α1η11 +2α2η23
η11

η13
−α2η21 > 0

α1α2η11

{

2η23
η11

η13
−η21

}

> 0
⇐⇒

{

η11 > 0

2η23
η11

η13
−η21 > 0

(69)

By symmetry, for the equilibrium point (62) one finds the same conditions.
{

2η13
η21

η23
−η11 > 0

η21 > 0
(70)

Provided that the conditions (69) and (70) are satisfied, the amplitudes of x1 and x2 converge to one of both possible

equilibrium points (61) and (62). Depending on the initial states, one of the generators is excited, while the oscillations

of the other generator are entirely quenched. This situation is more general than situation encountered in two coupled

generalized van der Pol equations case described in section 4.1.1.

6.1.3 One van der Pol generator

This regime occurs when one of the equilibrium points (61) and (62) is stable and the other is unstable. For example,

if conditions (69) are satisfied and at least one condition of (70) is not satisfied, this implies that only equilibrium

point (61) is stable and for any initial states the generator x1 is excited and the generated x2 is quenched (the converse

is correct). The main difference between this regime and two generators with competitive quenching regime, is that

the excitation of one of the two generators does not depend only on initial condition, but depend also on satisfying of

stability conditions, and than the system behaves as one equation of van der Pol type.
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6.1.4 Simultaneous self-sustained oscillations

Simultaneous and persistent oscillation of both resonators occurs when the equilibrium point (63) is stable. Introduc-

ing (63) in (65), one obtains

P(λ ) = λ 2 +
1

3

{

α1η13

[

2η21

η23

− η11

η13

]

+α2η23

[

2η11

η13

− η21

η23

]

}

λ − α1α2η13η23

3

[

2η21

η23

− η11

η13

][

2η11

η13

− η21

η23

]

(71)

The equilibrium point (63) is locally stable if and only if







α1η13

[

2η21

η23
− η11

η13

]

+α2η23

[

2η11

η13
− η21

η23

]

> 0

α1α2η13η23

[

2η21

η23
− η11

η13

][

2η11

η13
− η21

η23

]

< 0
(72)

Knowing that for the existence of equilibrium point (63), the following conditions must be satisfied

{

2η11

η13
− η21

η23
> 0

2η21

η23
− η11

η13
> 0

=⇒







α1η13

[

2η21

η23
− η11

η13

]

+α2η23

[

2η11

η13
− η21

η23

]

> 0

η13η23 < 0
(73)

By satisfying (73), it is possible to have simultaneous self-sustained oscillations. The amplitudes of x1 and x2 converge

to the equilibrium point (63). By self-sustained oscillations it is meant that both oscillators are excited without

synchronization. Figure 10 shows the stationary part of a simulation test example of simultaneous self-sustained

oscillatory regime, where the upper part shows the simulated outputs (55) and the lower part shows the approximated

outputs (58) and (59).

6.1.5 Total instability

When conditions (67), (69), (70) and (73) are not satisfied, there does not exist a stable equilibrium point. Therefore,

there is no stable limit cycle and the amplitudes of both oscillations diverge. By total instability it is meant that for

any non-equilibrium initial state, the state of the system diverges.

6.2 Summary of the analysis results

The results demonstrate the existence of five operation regimes when the ratio of natural frequencies is different from

1,3 and 1
3
. The occurrence of each operation regime depends on the satisfaction of some conditions. The simulations

confirm the quality of estimated amplitudes using K-B approximation.

The absence of self excited oscillations in both resonators occurs when η11 and η21 are positive. Two generators

with competitive quenching regime occurs when both conditions (69) and (70) are satisfied, which is possible if η11

and η21 are negative. The excitation of one of both resonator depend on initial amplitudes. The excitation of only

one resonator independently on initial amplitudes occurs if one of these conditions is satisfied while the other is not

satisfied. Stable simultaneous oscillations with two distinct frequencies and without synchronization which is known

as Simultaneous self-sustained oscillations operates when conditions (73) are verified, which implies η13 and η23 with

different signs. The divergence of oscillations occurs when none of the conditions cited previously is satisfied.
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Figure 10: Simultaneous self-sustained oscillations - Simulation test with α1 = ω1 = 2π × 210,

α2 = ω2 = 2π × 740, η10 = η20 = 0.5, η11 = −7.4× 10−2, η21 = 6.3× 10−2, η13 =

−2×10−3 and η23 = 3×10−3.

6.3 Equivalence with a combustion instability model

Combustion instabilities phenomena are without doubt very important in practice [1]. These phenomena are highly

nonlinear phenomena, sometimes characterized by coexistence of oscillations at several distinct non-harmonic fre-

quencies that makes the modelling of such phenomena extremely difficult. In order to explain the coexistence of two

non-harmonic modes in combustion instabilities, an attractive model has been proposed in [5]. The model has two

linear coupled resonator. The feedback path includes a nonlinear static characteristic, a delay and a filter. The model

is represented in Figure 11. The equations associated with this model are:







ẍ1 +ω2
1 x1 = d

dt
LPF

{

ϕv0 +ϕv1 ṗτ − ϕv3

3
ṗ3

τ

}

,

ẍ2 +ω2
2 x2 = d

dt
LPF

{

ϕv0 +ϕv1 ṗτ − ϕv3

3
ṗ3

τ

}

,
(74)

where ϕv0 is an arbitrary constant, ϕv1 and ϕv3 are arbitrary negative constants, τ is a transport time delay from nozzle

to flame surface, LPF is a transfer operator of the low pass filter, p = x1 +x2 is the downstream pressure perturbation

at the burning plane and ṗτ is the output of the delay-plus-differentiator block.

This model has been successfully analyzed using K-B method and two realistic assumptions on delay and filter-

ing [5]. The analysis reveals for the case where the ratio of natural frequencies is different from 1,3 and 1
3
, that the
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Figure 11: A combustion instability model.

amplitudes of oscillations can be approached by







ȧ1 = ω1ϕv1G(ω1)sin[ω1τ+φ(ω1)]
2

a1

[

1− ϕv3

ϕv1

(

(ω1a1)
2

4
+ (ω2a2)

2

2

)]

,

ȧ2 = ω2ϕv1G(ω2)sin[ω2τ+φ(ω2)]
2

a2

[

1− ϕv3

ϕv1

(

(ω2a2)
2

4
+ (ω1a1)

2

2

)]

.
(75)

where G(ωi) and φ(ωi) (i = 1,2) are the gain and the phase at frequency ωi introduced by the low pass filter. Equa-

tion (75) corresponds in fact to equation (59) if we consider the following substitutions

{

α1 = ω1, η11 = ϕv1G(ω1)sin [ω1τ +φ(ω1)] , η13 = ϕv3G(ω1)sin [ω1τ +φ(ω1)] ,

α2 = ω2, η21 = ϕv1G(ω2)sin [ω2τ +φ(ω2)] , η23 = ϕv3G(ω2)sin [ω2τ +φ(ω2)] ,
(76)

Therefore, the model (74) can be represented by structure (55) and the coexistence of two non-harmonic modes occurs

in the case when the conditions (73) are verified.

Comparing now Figure 11 with Figure 8 one can conclude that the presence of the delay in the feedback common

path of the combustion instability model is equivalent to having two coupled resonators each with a different feedback

path but without delay when the natural frequencies are different from 1,3 and 1
3
.

7 Conclusion

Simultaneous oscillations of distinct frequencies are encountered in a number of real systems subject to self-excitation

of oscillations. The prototype model structures proposed in this paper can display such behavior. One of the proposed

model structure can feature co-existence of two non harmonic oscillations. These models have been analyzed using

the Krylov-Bogoliubov method and conditions for the occurrence of various operation regimes have been established.

The results provided are generic in the sense that if a model can be equivalently transformed to one of the proposed

forms, its properties will result straightforwardly from the results given in the paper. This is illustrated for the case of

a combustion instability model.
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8 Appendix

A K-B approximation for two generators with competitive quenching case of struc-

ture (15)

Let’s compute the K-B approximation of x1 when condition (20) is verified. In this case, we have the following

propriety

ω1 6≈ {ω2,3ω1,3ω2,2ω1 +ω2,ω1 +2ω2, |2ω1 −ω2|, |2ω2 −ω1|} . (77)

Consequently, one can consider that (18) is exactly in the form (5) with

H11 = −ω1ϕ1a1

(

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

))

,

G11 = 0. (78)

Using (78) and (3), one finds

x1 = a1 cos(ω1t +θ1) (79)

with






da1

dt
= ϕ1

a1

2

(

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

))

,

dθ1

dt
= 0.

(80)

Symmetrically, by adopting the same procedure for x2, one obtains

x2 = a2 cos(ω2t +θ2) (81)

with






da2

dt
= ϕ1

a2

2

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

,

dθ2

dt
= 0.

(82)

Assembling (2), (80) and (82), yielding at the end the result of lemma 1.

B K-B approximation for mutual synchronization with close frequencies case

Let’s compute the K-B approximation of x1 when the frequencies ω1 and ω2 are close. By using the notation (31),

one has the relations














ω2t +θ2 = ω1t +θ1 −∆ψ,

(2ω1 −ω2)t +2θ1 −θ2 = ω1t +θ1 +∆ψ,

(2ω2 −ω1)t +2θ2 −θ1 = ω1t +θ1 −2∆ψ.

(83)
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Taking account properties (27), (28) and (83), the function (18) can be set in the form (5) as follows

f = ϕ1

{

−ω1a1

[

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

)]

sin(ω1t +θ1)−ω2a2

[

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

)]

sin(ω1t +θ1 −∆ψ)

+ϕ3

ϕ1

[

(2ω1−ω2)a
2
1a2

4
sin(ω1t +θ1 +∆ψ)+

(2ω2−ω1)a
2
2a1

4
sin(ω1t +θ1 −2∆ψ)

]

}

+∑4
ω1 6≈ωℓ

(Hℓ1 sin(ωℓt +θℓ)+Gℓ1 cos(ωℓt +θℓ)) .

= −ϕ1

{

ω1a1

[

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

)]

+
[

ω2a2

(

1− ϕ3

ϕ1

a2
1+a2

2

4

)

− ω1ϕ3a2a2
1

2ϕ1

]

cos(∆ψ)

+
ϕ3(ω1−2ω2)a

2
2a1

4ϕ1
cos(2∆ψ)

}

sin(ω1t +θ1)+ϕ1

{[

ω2a2

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

+
ϕ3(2ω1−ω2)a

2
1a2

4ϕ1

]

sin(∆ψ)

−ϕ3(2ω2−ω1)a
2
2a1

4ϕ1
sin(2∆ψ)

}

cos(ω1t +θ1)+∑4
ω1 6≈ωℓ

(Hℓ1 sin(ωℓt +θℓ)+Gℓ1 cos(ωℓt +θℓ)) .

From which one can deduce

H11 = −ϕ1

{

ω1a1

[

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

)]

+
[

ω2a2

(

1− ϕ3

ϕ1

a2
1+a2

2

4

)

− ω1ϕ3a2a2
1

2ϕ1

]

cos(∆ψ)+
ϕ3(ω1−2ω2)a

2
2a1

4ϕ1
cos(2∆ψ)

}

,

G11 = ϕ1

{[

ω2a2

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

+
ϕ3(2ω1−ω2)a

2
1a2

4ϕ1

]

sin(∆ψ)− ϕ3(2ω2−ω1)a
2
2a1

4ϕ1
sin(2∆ψ)

}

.
(84)

Using (84) and (3), one finds






da1

dt
= ϕ1

{

a1

2

[

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

)]

+
[

a2ω2

2ω1

(

1− ϕ3

ϕ1

a2
1+a2

2

4

)

− ϕ3a2a2
1

4ϕ1

]

cos(∆ψ)+
ϕ3(ω1−2ω2)a1a2

2

8ϕ1ω1
cos(2∆ψ)

}

,

dθ1

dt
= ϕ1

{

ϕ3(2ω2−ω1)a
2
2

8ϕ1ω1
sin(2∆ψ)−

[

a2ω2

2a1ω1

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

+ ϕ3(2ω1−ω2)a2a1

8ϕ1ω1

]

sin(∆ψ)
}

.
(85)

Symmetrically, by adopting the same procedure for x2, one obtains






da2

dt
= ϕ1

{

a2

2

[

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

)]

+
[

a1ω1

2ω2

(

1− ϕ3

ϕ1

a2
1+a2

2

4

)

− ϕ3a1a2
2

4ϕ1

]

cos(∆ψ)+
ϕ3(ω2−2ω1)a2a2

1

8ϕ1ω2
cos(2∆ψ)

}

,

dθ2

dt
= ϕ1

{

ϕ3(ω2−2ω1)a
2
1

8ϕ1ω2
sin(2∆ψ)+

[

a1ω1

2a2ω2

(

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

))

+ ϕ3(2ω2−ω1)a2a1

8ϕ1ω2

]

sin(∆ψ)
}

.
(86)

Assembling (85) and (86), yields at the end the equations system (30).

C K-B approximation for mutual synchronization with multiple harmonics case

Let’s compute the K-B approximation of x1 when

ω1 ≈ {3ω2} , (87)

⇒ ω1 6≈ {ω2,3ω1,2ω1 +ω2,ω1 +2ω2, |2ω1 −ω2|, |2ω2 −ω1|} . (88)

If we consider notation (38), we have the following relation

3(ω2t +θ2) = ω1t +θ1 −∆ψ. (89)

By substituting (89) and by taking account of properties (87) and (88), the function (18) can be developed as follows

f = ϕ1

{

ϕ3ω2a3
2

4ϕ1
sin(ω1t +θ1 −∆ψ))−ω1a1

(

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

))

sin(ω1t +θ1)
}

+∑6
ω1 6≈ωℓ

(Hℓ1 sin(ωℓt +θℓ)+Gℓ1 cos(ωℓt +θℓ))

= ϕ1

{

ϕ3ω2a3
2

4ϕ1
[sin(ω1t +θ1)cos(∆ψ)− cos(ω1t +θ1)sin(∆ψ)]−ω1a1

(

1− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

))

sin(ω1t +θ1)
}

+∑6
ω1 6≈ωℓ

(Hℓ1 sin(ωℓt +θℓ)+Gℓ1 cos(ωℓt +θℓ))

(90)
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which is in the form (5). Thus for x1 we obtain







H11 = −ϕ1

[

ω1a1

(

1− ϕv3

ϕv1

(

a2
1

4
+

a2
2

2

))

− ϕ3ω2a3
2

4ϕ1
cos(∆ψ)

]

G11 = −ϕ3ω2a3
2

4
sin(∆ψ).

(91)

Let’s now compute the K-B approximation of x2. In the case where ω1 is close to 3ω2, we have the following

proprieties

ω2 ≈ {|2ω2 −ω1|} , (92)

ω2 6≈ {ω1,3ω1,3ω2,2ω1 +ω2,ω1 +2ω2, |2ω1 −ω2|} . (93)

If we consider the notation (38), we have the following relation

(2ω2 −ω1)t +2θ2 −θ1 = −(ω2t +θ2)−∆ψ. (94)

By replacing (94) in (18) and taking into account (92) and (93), one obtains

f = −ϕ1

{

ω2a2

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

sin(ω2t +θ2)+
(2ω2−ω1)ϕ3a2

2a1

4ϕ1
sin(ω2t +θ2 +∆ψ)

}

+∑6
ω2 6≈ωℓ

(Hℓ2 sin(ωℓt +θℓ)+Gℓ2 cos(ωℓt +θℓ))

= −ϕ1

[

ω2a2

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

+
(2ω2−ω1)ϕ3a2

2a1

4ϕ1
cos(∆ψ)

]

sin(ω2t +θ2)

+
(ω1−2ω2)ϕ3a2

2a1

4
sin(∆ψ)cos(ω2t +θ2)+∑6

ω2 6≈ωℓ
(Hℓ2 sin(ωℓt +θℓ)+Gℓ2 cos(ωℓt +θℓ))

(95)

Therefore, one deduces







H22 = −ϕ1

[

ω2a2

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

+
(2ω2−ω1)ϕ3a2

2a1

4ϕ1
cos(∆ψ)

]

G22 =
(ω1−2ω2)ϕ3a2

2a1

4
sin(∆ψ).

(96)

Assembling (91) and (96) and applying the rules (3), yields the approximations given in lemma 3.

D K-B approximation for asynchronous force

The lemma 4 presents results obtained from K-B approximation. Indeed, replacing

{

zi = ai cos(ωit +θi),
dzi

dt
= −aiωi sin(ωit +θi),

(i = 1,2)

in (47), on obtains after simplifications

f = −ϕ1ω1a1

[

1− ϕ3

2ϕ1

(

Bv

△1
+ Bv

△2

)2

− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

)

]

sin(ω1t +θ1)−ϕ1ω2a2

[

1− ϕ3

2ϕ1

(

Bv

△1
+ Bv

△2

)2

−ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

)

]

sin(ω2t +θ2)+∑r
ωℓ 6≈ω1∧ω2

(Hℓ sin(ωℓt +θℓ)+Gℓ cos(ωℓt +θℓ)) .

From which, one deduces easily the approximation of lemma 4.
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E K-B approximation for synchronous force

Consider the case where conditions (20) and (50) are respected. Using substitution (45) with i = 1 (without substitu-

tion of x2), the procedure presented in asynchronous case (of section 5.1) can applied for finding the approximation

of x1

x1 = a1 cos(ω1t +θ1)+ Bv

△1
cos(ωvt) (97)

with










da1

dt
= ϕ1a1

2

(

1− ϕ3

2ϕ1

(

Bv

△1

)2

− ϕ3

ϕ1

(

a2
1

4
+

a2
2

2

)

)

,

dθ1

dt
= 0.

(98)

Other hand for x2, the application of K-B approximation need to modify the second equation of (42) in order to find

solution of the form (51). The modification consists to set equation governed x2 in near conservative system form (1)

with frequency ωv. The substraction of △2x2 in both hand of second equation of (42) yields

d2x2

dt2 +ω2
v x2 = d

dt

(

ϕ0 +ϕ1 (x1 + x2)− ϕ3

3
(x1 + x2)

3
)

−△2x2 +Bv cos(ωvt), (99)

which correspond to perturbation term

f2 = d
dt

(

ϕ1 −ϕ3 (x1 + x2)
2
)(

dx1

dt
+ dx2

dt

)

−△2x2 +Bv cos(ωvt). (100)

By replacing

{

x1 = a1 cos(ω1t +θ1),
dx1

dt
= −ω1a1 sin(ω1t +θ1)

x2 = a2 cos(ωvt +θ2),
dx2

dt
= −ωva2 sin(ωvt +θ2)

(101)

in (100), one obtains

f2 = −ϕ1ωva2

[

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

)]

sin(ωvt +θ2)−△2a2 cos(ωvt +θ2)+Bv cos(ωvt +θ2 −θ2)

+∑r
ωℓ 6≈ω2

(Hℓ sin(ωℓt +θℓ)+Gℓ cos(ωℓt +θℓ))

=
{

Bv sin(θ2)−ϕ1ωva2

[

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

)]}

sin(ωvt +θ2)+{Bv cos(θ2)−△2a2}cos(ωvt +θ2)

+∑r
ωℓ 6≈ωv

(Hℓ sin(ωℓt +θℓ)+Gℓ cos(ωℓt +θℓ))

.

Using this expression and rule (3), one gets the approximation

x2 = a2 cos(ωvt +θ2) (102)

with






da2

dt
= ϕ1a2

2

(

1− ϕ3

ϕ1

(

a2
2

4
+

a2
1

2

))

− Bv

2ωv
sin(θ2),

dθ2

dt
= − Bv

2ωva2
cos(θ2)+ △2

2ωv
.

(103)

Assembling (98) and (103), one finds the approximations enounced in lemma 5.
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