N
N

N

HAL

open science

Recognizing Regular Expressions by Means of Dataflow
Networks

Pascal Raymond

» To cite this version:

Pascal Raymond. Recognizing Regular Expressions by Means of Dataflow Networks. Automata,
Languages and Programming, 23rd International Colloquium (ICALP’96), 1996, Paderborn, Germany.

pp.336-347. hal-00384443

HAL Id: hal-00384443
https://hal.science/hal-00384443
Submitted on 16 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00384443
https://hal.archives-ouvertes.fr

Recognizing Regular Expressions
by means of Dataflow Networks

Pascal Raymond
email: Pascal. Raymond@imag.fr

VERIMAG *
Miniparc ZIRST, 38330 Montbonnot-St Martin, France

Abstract. This paper addresses the problem of building a Boolean
dataflow network (sequential circuit) recognizing the language described
by a regular expression. The main result is that both the construction
time and the size of the resulting network are linear with respect to the
size of the regular expression.

Introduction

“Grep” machine: Let X be a vocabulary, L be a regular language on Y. A “grep”
machine is a machine receiving a sequence Sg, S1,.. ., Sn, ... of symbols (s; € X)
and computing a sequence bg, b1, ...,b,,... of Booleans, such that b, is true if
and only if the word sgsi ... s, belongs to L.

This paper addresses the problem of building a “grep” machine for languages
described by regular expressions. This problem is rather classical [4,11, 10,3, 1,
2]. We propose a solution which, to our knowledge, is new: Informally, it con-
sists of building, from a regular expression E, a “circuit” (or Boolean data-flow
network) exploring all the branches of a non-deterministic automaton recogniz-
ing L(E). The relations between regular languages and sequential circuits are
also studied [5, 7]. But the important point here, is that the automaton is never
explicit (it is represented implicitly by a system of Boolean equations) nor de-
terministic. As a consequence, both the construction time and the size of the
circuit are linear with respect to the size of the expression F.

Our method is presented in a general framework based on linear systems of
equations. We first review the classical methods (deterministic finite automaton,
non-deterministic finite automaton without or with empty-labelled transitions),
by expressing them in this framework. We show that this classification coincides
with the classes of complexity (exponential, quadratic and linear).

* Verimag is a joint laboratory of CNRS, Institut National Polytechnique de Grenoble,
Université J. Fourier and VERILOG S.A. associated with IMAG.

! The “grep L” unix command is slightly different: in this case, b, is true if and only
if it exists some ¢ such that s;s;+1 ... s, belongs to L, but this problem is equivalent
to the initial one with L' = X*L

1 Regular expressions

1.1 Regular languages

Let X be a finite set of symbols; X* denotes the set of all finite strings of symbols
in X. The empty string (string of length 0) in X* is denoted by €. A language
over X is any subset of X*. The empty language is denoted by (). The set of
regular languages over Y is the least class of languages containing all the finite
languages over X, and closed by union, concatenation (denoted by -) and Kleene
star operator (denoted by *). Any regular language can be denoted by a regular
expression:

E:=0|la| E-E|E+FE|FE"

The semantics of regular expressions is given by a function L which associates
to each expression E the language described by E?:

L) =
L(E-F

L(a) = {a} L(E+F) = L(E)UL(F)
LE)-L(F) L(E") = plde} U (¢~ L(E))

N
”St

We note ~ the semantic equivalence over regular expressions, i.e.:

E~F & L(E) = L(F)

1.2 More “useful” regular expressions

We are interested in “non trivial” regular languages, i.e. any language £ which is
neither empty (£ # @) nor reduced to the empty string (£ # {e}). We will then
use a more useful syntax, which forbids the representation of trivial languages:

Eu=a| E-E|E+E|E*| E°

The semantic of the power-¢ operator is given by: L(E€) = U L(E).

We note R1§ , the set of regular expressions, and we also define a function
A R]§\/ — IB = {true, false}, such that A(FE) is true if and only if the empty
string belongs to L(E).

A(a) = false A(E®) = true A(E*)
ME+F) = AE)VAF) AE-F) = AE)A A(F)

2 1ul.f(£) denotes the least fixpoint of the equation £ = f(¢)

2 Linear systems of equations

In this section we show that the problem of building a grep machine from a regu-
lar expression can be expressed as follows: build a system of language equations
of the form “X =t; + ... +t,”, where each t; is a language term of a “special”
form. The various known methods for building grep machines can be related to
the form of the terms. This classification is largely inspired by [5, 6].

In this paper, we use the following notations: let 6 be a system of equations,
we note V() the set of language identifiers defined in 0, A(f) € V(6) the main
language (the axiom), and for each X € V(0), 6(X) the set of terms ¢; defining
X in 0. We note £(#) the solution (if it exists) of 6, i.e. the language denoted by
the axiom A(6).

2.1 Suffix-linear systems

In such systems, a term is either €, or of the form a-Y, where a is a symbol and
Y is a language identifier. More precisely, each equation is of the form:

X:al-Yl—i—...—i—an-Yn [+E]
Such a system 6 is equivalent to a finite automaton (@, I, F, Ts;), where:
— Q = V(0) is the set of states,
I = A(6) is the (unique) initial state,
F={X€eV(9)|e€b(X)} is the set of final states,

— Ty € @ x X xQ is the set of symbol-labelled transitions, with:
(X,0,Y)eTs < (a-Y) €0(X).

Deterministic automaton (DFA): Moreover, if in each equation X = ay-Y; +...+
an Yy, [+ €], all the symbols a; are different, the automaton is deterministic, and
each Y; is said to be the a;-derivative of X. Such a deterministic system can be
built by computing derivatives of regular expressions. Brzozowski has formally
defined this construction [4]. The size of the resulting deterministic automaton
(and thus the cost of the construction) is, in the worst case, exponential with
respect to the size of the regular expression (number of operators in the regular
expression).

Non-deterministic automaton (NFA): If in each equation X = a1 - Y7 + ... +
an - Yy, [+ €], some a; are equal, the resulting automaton is non-deterministic.
McNaughton and Yamada defined the construction of such an automaton [10].
Berry and Sethi gave an efficient algorithm to build such an automaton from a
regular expression [3]. Antimirov defined a notion of partial derivatives, which
generalizes the notion of derivative for non-deterministic automata [2]. For those
algorithms, the size of the resulting non-deterministic automaton (and thus the
cost of the construction) is, in the worst case, quadratic with respect to the size
of the regular expression. More precisely, the number of states is linear, but the
number of transitions can be quadratic.

Non-deterministic automaton with e-transitions: The previous definition can
be extended with terms of the form Y. Such systems are equivalent to a non-
deterministic automaton with e-transitions: (Q, I, F, T, Tt), where:

—Te e QxQ={(X,Y)|Y € 0(X)}

Thompson has defined the construction of such machines from regular expres-
sions [11]. The main result is that both the size of the automaton and the cost
of its construction are linear with respect to the size of the regular expression.

Our goal is to define a linear algorithm that builds a grep machine from
a regular expression, so we choose the third kind of linear systems (i.e. non-
deterministic automaton with e-transitions).

2.2 Prefix-linear systems

A completely dual definition can be given by using terms of the form Y -a instead
of a-Y. Let us see the example of a non-deterministic prefix-linear system with e-
transitions. Such a system 6 is equivalent to a finite automaton (Q, I, F, T, T¢),
where:

Q = V(0) is the set of states,
-I={X¢e V(Q) |e € 6(X)} is the set of initial states,
F = A(0) is the (unique) final state,
— Ty € @Q x X xQ is the set of symbol-labelled transitions,
with: (Y,a,X) €Ty < (Y -a) € G(X)
- Te €@ x Q ={(X,Y)|Y € 0(X)} is the set of e-labelled transitions.
In this paper, we chose to build prefix-linear systems. Indeed, the problems of
building prefix- or suffix-linear systems are completely equivalent, but, as we will

show in a following section, prefix-linear systems are “equivalent” to sequential
circuits, and then, in some sense, directly “executable”.

3 From regular expressions to prefix-linear systems

3.1 Abstract syntax for left-linear systems

We propose here a “functionnal-like” syntax which allows a system of equations
to be represented by a single equation:

system = X = terms
terms == e | X | X-a | terms+ terms |
let X = terms interms | recX = terms

Note that rec X = terms is a macro-notation for let X = terms in X.

The semantic function £ is naturally extended to this new syntax: L(o) is
the language denoted by the system o. We also extend the semantic function for
terms, which are, in some sense, “partially built” systems: £(7) is (if it exists) the
language denoted by the system X = 7, where X is any identifier not appearing
in 7.

3.2 The basic algorithm

The idea is to define a function @ which transforms a regular expression into a
prefix-linear system, i.e. which verifies:

L(E) = L(O(E))

Moreover, we want the cost of the translation to be linear with respect to the
size of the regular expression; the translation should also introduce few variables.

For that purpose, we introduce a recursive function I'(X, E) whose parame-
ters are a regular expression (E) and a language identifier (X) representing the
“prefixes” of E. The result of I" is a partially built system of equations (i.e. a
“terms” according to the previously defined abstract syntax). This will allow us
to introduce variables only when needed.

The meaning of I" is quite simple: intuitively, I'(X, E) “denotes” the same
language as “X - E”. More formally, let Lx be the language denoted by X:

L(D(X,E)) = Lx - L(E)

The definition of I" is given by induction on the structure of regular expressions:

I'X,a)=X-a (1)
IN'X,E°)=X+TI'(X,E) (2)
I'NX,E+F)=T'X,E)+I'(X,F) (3)

Let Y be a new identifier:
I'X,E-F)=letY =I'(X,E)in I'(Y,F) (4)
I'X,E*)=recY =X+ IT'(Y,E) (5)

The system corresponding to the regular expression F is obtained by computing
I'(Z,E) with Z = ¢, and then, by naming the result; let X be a new identifier:

OFE)=X=(letZ=¢inl'(Z,F))

3.3 Example

Let us consider the expression (a* + b)* - a:

[(Z,(a* +b)* -a) =let Y = I'(Z,(a* +b)*) in I'(Y,a)
—let Y =I(Z (a* +b)*) in Y-a
I(Z (a*+b)*)=rec T=Z+T(T,a* +0)
(T, a* +b) = I'(T,a*) + I'(T,b)
=(rec W=T+IT'(W,a))+T-b
=(rec W=T+W-a)+T-b

A classical system of equations is obtained by extracting the sub-equations
and naming the axiom with X:

X=Ya Y=T T=Z4+W+T-0b W=T+W-a Z =c¢

3.4 Automaton size and comparison

The size of O(E) (or of the equivalent NFA (Q, I, F, T, T¢)) can be easily related
to the size of E: let o be the number of symbol occurrences, d be the number of
dots, e be the number of power-coperators, and k the number of Kleene stars,
we have:

Q=d+k+2 |Ts|=0 |Te|=k+e

The two additional states are the initial state introduced by the starting rule
(“let Z=¢€in...”), and a final state corresponding to the axiom.

It is interesting to compare this solution where the states correspond to the
dot and star operators, to the McNaughton and Yamada automata (or normal-
ized NFA’s) where the states correspond to the symbol occurences (in a normal-
ized NFA, we have |Q| = 0+ 1) [10, 3].

The same notion of states (attached to dots and stars) exists in the An-
timirov’s work: the algorithm can then be viewed as a simple way to compute
Antimirov’s partial derivatives [2]. However, Antimirov’s algorithm does not pro-
duce e-transitions, so the resulting automaton is, in the worst case, quadratic
with respect of the size of the regular expression.

The use of e-transitions makes this algorithm close to the Thompson’s one.
But the basic Thompson NFA is, in general, bigger: between r and 2r states, and
between r and 4r transitions, where r is the length of the regular expression. Our
algorithm can be viewed as a way to directly produce an optimized Thompson
NFA.

4 Boolean networks

We present here a simple model for sequential circuits. It consists of a Boolean
operator network, together with a simple data-flow semantics. The networks
are built with classical Boolean operators (true, false, not, and, or) and a delay
binary operator fby, whose first argument is the initial value, and the second the
Boolean value to be delayed.

4.1 Syntax

We define a syntax that allows the representation of a network (a cyclic graph
in general) by a simple syntactic tree. This is done by using a “functional-like”
syntax (X stands for any identifier):

net := X | true | false | not net | net and net | net or net | net fby net

| let X =netin net| rec X =net

Just like for the linear systems of equations (§ 3.1), a network can also be de-
scribed by a set of equations. For instance, the system of Boolean equations:

s=wxandnoty x =aorb y =falsefby(zory)

wn

and =

=
s I

fby not

or

y
let (x = a or b) in (x and not (rec y = false fby (x or y)))

Fig. 1. A Boolean network and the corresponding expression

is equivalent to the network shown (in both syntactic and graphic form) in Fig. 1.

We only consider networks without combinational loop: recursive definitions
can only appear under a fby operator. The set of correct networks is denoted by

N.

4.2 Synchronous semantics

The set of free variables (inputs) of a network n is denoted by Free(n). A valua-
tion of Free(n) is a function which associates a Boolean value to each variable of
Free(n): p : Free(n) — IB. A trace over Free(n) is a finite sequence of valuation:
V=p1,. Pk-

The synchronous semantics models the behavior of idealized sequential cir-
cuits: given an input trace v of length k, a network n produces a sequence of
k Boolean values. More precisely, each sub-network (each node in the network)
produces a sequence of k Boolean values. For instance, the constant true pro-
duces a sequence of k “true”. Let v = pq, ..., pr be the input trace, the input x
produces the sequence p1 (), ..., px(x). The classical operators operate pointwise
on sequences; for instance, if n produces the sequence by, ...,b; and n’ the se-
quence b}, ..., b, then norn’ produces by V b}, ..., by V.. At last, the fby operator
delays its second operand, while its first operand defines the initial value: n fby n’
produces b1,b, ..., b} _4.

The absence of combinational loops in the network n is a sufficient property
for this semantics to be operational. In other terms, if n has no combinational
loop, then for any input trace p, the corresponding output sequence is completely
determined. We then consider that any network n without combinational loop
is a function from traces to Boolean sequences, and we note n(v) the output
sequence corresponding to the trace v.

4.3 Language recognized by a Boolean network

A trace is said to be recognized by the network n if the corresponding output
Boolean sequence ends with “true”. The set of traces recognized by n is called
the behavior recognized by n, denoted by B(n):

B(n) ={v | n(v) =by,..., true}

In terms of languages, the set of valuation can be viewed as an alphabet X, a
trace as a word in X*, and a behavior as a language over Y. Since a network is
clearly a finite state machine (with at most 2™ states, where m is the number of
fby operators in the network), the behavior recognized by a network is a regular
language over X.

5 Prefix-linear systems and networks

In this section, we will map a prefix-linear system of equations € to an Boolean
network n = 2(6).

5.1 Encoding

A prefix-linear system describes a language over some alphabet X, while the
networks describe behaviors over a set of Boolean variables. So the initial al-
phabet has to be encoded using Boolean variables. We consider here a “trivial”
one-to-one encoding (i.e. we identify the alphabet to a set of Boolean variables).
Indeed, the method can easily be adapted for more powerful encoding such as
logarithmic encoding.

5.2 Empty trace

As they are defined, the networks cannot recognize the empty trace, so the
resulting network cannot be “completely equivalent” to the source system. Let
6 be a prefix-linear system, the resulting network 2(6) simply verifies:

B(£2(8)) = £(6) \ {e}

5.3 Initial states

Intuitively, each term in a system of equations will be replaced by a network
recognizing its non-empty traces. In order to treat terms of the form X - a, we
need to know if the empty string belongs to X, since, if £ € L(X):

LX-a)\{e} = (LX) \{e}) -ata

The set of variables X such that e € £(X) is called the set of initial states
(referring to the terminology of NFA’s). This set is denoted by Z(60) and is
recursively defined by:

XeI0)=(ec0(X)) v Y eI®)]Y €d(X))

In fact, this set can be computed during the construction of the system, using
the function A (§ 1.2) and this computation has a linear cost (with respect to
the size of the regular expression).

5.4 From prefix-linear systems to networks

The definition of the mapping function {2 is the following:

Q(e) = false 2(X) Qr+71") = 2(r)or 2(1')
(X -a)= (ruefby X)anda if X € Z(9)
(X -a) = (falsefby X)anda if X ¢ Z(9)
et X =71in7’) = (let X = 2(7)in 2(7))

Let us come back to the example of § 3.3 (# = O((a* + b)* - a)). We first
compute Z(6) = {Z,T,Y,W}, then we obtain the network (given as a set of
equations):

X = (falsefbyY)anda

Y=T

T = ZorW or(truefbyT)and b
W = T or (truefby W) anda

Z = false

5.5 Combinational loops and normalization

We have defined a method for building a sequential circuit form a regular ex-
pression: 2(6O(E)).

As it is computed, the intermediate system ©(F) (and then the resulting
network too) may contain combinational loops. For instance, in the example of
§330=0((a"+b)* a)), wehave W € 0(T) and T € (W).

Such combinational loops appear in @(F) if and only if there exists in F a
sub-expression of the form (F*) such that A(F'). In order to avoid combinational
loops, we define a function Norm on regular expressions, which recursively re-
places each sub-expression of the form (F*) by an equivalent expression (G*)
such that -A(G).

Norm(a) = a
Norm(E + F) = Norm(E) + Norm(F')
Norm(E - F) = Norm(E) - Norm(F')
Norm(E®) = Norm(E)®
Norm(E*) = NormBis(E)*

where:

NormBis(E) = Norm(E) if =A(E)

NormBis(E + F) = NormBis(E) + NormBis(F) if A(E+ F)
NormBis(E - F) = NormBis(E) + NormBis(F) if A(E-F)
NormBis(E®) = NormBis(E)
NormBis(E*) = NormBis(E)

The function Norm is a simple parsing which applies the “interesting” func-
tion NormBis to the Kleene star operators.

Notice that this normalization does not replace the expression E* by an
expression F'* such that L(F) = L(E) \ . Such a transformation would have
a quadratic cost since, for all regular languages £ and ¢’ containing the empty
string: (€-0)\e=(\e)-'+L-({'\¢).

The normalization simply replaces the expression E* by an expression F*
such that L(F*) = L(E*) and ~A(F). The correctness of the algorithm is based
on the following lemma: (s € fAe € l') = (£-0) =+)"

Here are some examples of normalization:

Norm((a* +b)*) = (a+b)* Norm(((a™)*)*) = a*
Norm((a® -b* +¢c*)*) = (a+b+c)*

6 From regular expressions to Boolean networks

Finally, let E be a regular expression over an alphabet 3 interpreted as a set of
Boolean variables, we have defined a method which computes a correct “equiv-
alent” network n, i.e. a network without combinational loop recognizing all the
non-empty traces of the language L(E):

B(£2(©(Norm(E)))) = L(E) \ €

This method involves the computation of the function A on each sub-expression
of E, the normalization of F, and also the computation of the initial states in the

system @(Norm(E)). But the main result is that the cost of all those treatments
is linear with respect to the size of the source regular expression.

In order to outline this linear complexity, we define in this section a function
@ which directly produces a network from a regular expression. Like the func-
tion @, the function @ is defined using a recursive function, 7", which takes a
special parameter representing the prefixes. This function takes two parameters
to describe the prefixes:

T:NxBxR|§ —N
(X, b, E) — n

The first parameter (X) is a network which is supposed to recognize the non-
empty traces of the prefixes, while the second one (b) is a Boolean value in-
dicating whether the empty trace belongs to the prefixes. Intuitively, this new

parameter b allows us to directly compute the set of “initial states” (§ 5.3).
The normalization of the regular expression (§ 5.5) is also performed during the
construction. For that purpose, a special recursive function 7* is applied to the
Kleene star operands.

P(F) = let Z =falseinT(Z, true, E)

Y(X,b,a) = (bfby X)anda
Y(X,b,E+F)=7(X,b,E)orT(X,b, F)
T(X,b,ES) = Xor T'(X, b, E)
Let Y be a new identifier:
Y(X,b,E.F) =letY =7(X,b, E)inY(y,b A A(E), F)
Y(X,b,E") =recY =XorT*(Y,b, E)

T*(X,b,E) = Y(X,b,E) if ~A(E)
T*(X,b,E+ F) =T*(X,b,E)or T*(X,b,F) if A(E+ F)
T*(X,b,E-F) = T*(X,b,E)or T*(X,b,F) it A(E-F)
T*(X,b,Ef) = T*(X,b, E)
T*(X,b,E*) = T*(X,b,E)

Figure 2 shows the result of 1(false, true, (a* 4+ b)* - a). One can see that the
resulting network has the same structure as the regular expression.

let x = false in O

lety=0in0O

* a
rec z = 0 or x (true fby y) and a
+
O or O
a” b
(true fby z) and a (true fby z) and b

Fig. 2. The network of (a* +b)" - a

7 Implementation and use

The origin of this work takes place in the domain of synchronous program-
ming [8]. Synchronous programming offers an idealized framework for program-
ming reactive systems. For instance, idealized sequential circuits are synchronous
programs. This idealized framework also permits to perform formal verifications
on programs. Critical properties are described by means of Boolean synchronous
programs called observers [9]. Such observers can be expressed with any existing
synchronous language (Lustre, Argos, Esterel), but it appears that the classical
regular constructs (sequence, iteration) are also very useful to describe safety
properties.

The idea was to translate, with a minimal cost, a safety property expressed
with regular constructs into a suitable synchronous program, such as a Boolean
network.

A tool called reglo has been designed for this purpose. This tool translates
a set of regular expressions, describing traces over a set of Boolean variables
(i.e. the input alphabet is supposed to be already Boolean encoded), into an
equivalent Boolean dataflow network, expressed in the language Lustre.

References

1. A. V. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen, edi-
tor, Handbook of theoretical computer science, chapter 5, pages 257-300. Elsevier
Science Publishers B. V., 1990.

2. V. Antimirov. Partial derivatives of regular expressions and finite automata con-
structions. In E. W. Mayr and C. Puech, editors, Proceedings of STACS ’95, pages
455-466, Munich, Germany, March 1995. LNCS 900, Springer Verlag.

3. G. Berry and R. Sethi. From regular expressions to deterministic automata. The-
oretical Computer Science, 48:117-126, 1986.

4. J. A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481-494, October 1964.

5. J. A. Brzozowski and E. Leiss. On equations for regular languages, finite automata,
and sequential networks. Theoretical Computer Science, 10:19-35, 1980.

6. C. H. Chang and R. Paige. From regular expressions to DFA’s using compressed
NFA’s. In Apostolico, Crochemore, Galil, and Manber, editors, Combinatorial
Pattern Matching. Proceedings, pages 88—108. LNCS 644, Springer Verlag, 1992.

7. R. W. Floyd and J. D. Ullman. The compilation of regular expressions into inte-
grated circuits. Journal of the ACM, 29(3):603-622, 1982.

8. N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic
Pub., 1993.

9. N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verifi-
cation of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors,
Third Int. Conf. on Algebraic Methodology and Software Technology, AMAST’93,
Twente, June 1993. Workshops in Computing, Springer Verlag.

10. R. McNaughton and H. Yamada. Regular expressions and state graphs for au-
tomata. IEEE Trans. on Electronic Computers, 9(1):39-47, 1960.

11. K. Thompson. Regular expression search algorithm. Communications of the ACM,
11(6):419-423, June 1968.

