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Abstract

Consider K ≥ 2 independent copies of the random walk on the symmetric group SN starting
from the identity and generated by the products of either independent uniform transpositions or
independent uniform neighbor transpositions. At any time n ∈ N, let Gn be the subgroup of SN

generated by the K positions of the chains. In the uniform transposition model, we prove that
there is a cut-off phenomenon at time N ln(N)/(2K) for the non-existence of fixed point of Gn and
for the transitivity of Gn, thus showing that these properties occur before the chains have reached
equilibrium. In the uniform neighbor transposition model, a transition for the non-existence of
a fixed point of Gn appears at time of order N1+ 2

K (at least for K ≥ 3), but there is no cut-off
phenomenon. In the latter model, we recover a cut-off phenomenon for the non-existence of a fixed
point at a time proportional to N by allowing the number K to be proportional to ln(N). The
main tools of the proofs are spectral analysis and coupling techniques.
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1 Introduction

The cut-off phenomenon usually describes the fast transition of the time-marginal distributions
of a Markov chain from being far from the equilibrium to being close to it. This subject has
been introduced and investigated by Persi Diaconis and his coauthors, see for instance [1, 5, 6]
and the references therein. Here we will study the cut-off phenomenon not for the convergence
to stationarity, which requires to consider all possible events, but only for particular events such
as the transitivity of the subgroup generated by some elements from a symmetric group obtained
by a Monte-Carlo Markov chain procedure. In general this kind of property occurs before the
underlying Markov chain reaches equilibrium and we will see that depending on how the Markov
chain is generated, there will be or not a cut-off phenomenon.

Let us describe more precisely the kind of questions we are interested in. Let µ be a probability
measure on SN the set of permutations of EN ≔ {1, ..., N}, with N ∈ N \ {0, 1} which corresponds
to the size of the problem. We consider Z ≔ (Zn)n∈N a corresponding random walk starting from
the identity. The simplest way to construct such a Markov chain is to use a family (Z̃n)n∈N∗ of
independent random variables distributed according to µ and to begin with Z0 = ι, the identity
element of SN , and next to take iteratively for any n ∈ N, Zn+1 = Z̃n+1Zn. For K ∈ N \ {0, 1},
which we will sometimes call the multiplicity of the problem, let Z(1), ..., Z(K) be K independent
chains distributed as Z (the possibility K = 1 is excluded from our study, indeed the following

results are not true in this case). Our main object of investigation is the subgroup G
(K)
n of SN

generated by Z
(1)
n , ..., Z

(K)
n at time n ∈ N, and we are particularly interested in two features of its

natural action of G
(K)
n on EN : transitivity and the existence of a fixed point. The latter property

asks for the existence of x ∈ EN such that for any g ∈ G
(K)
n , g(x) = x, while the former property

means that for any x ∈ EN , there exists g ∈ G
(K)
n such that g(1) = x (i.e. the permutation g has

moved the element at position 1 to position x and the product of permutations will be interpreted
as the composition of the corresponding mappings), in particular there is no fixed point. Let us

denote respectively A
(K)
n and B

(K)
n the events that G

(K)
n acts transitively on EN and that G

(K)
n

admits at least one fixed point. The purpose of this paper is to study the mappings

N ∋ n 7→ P[A(K)
n ] and N ∋ n 7→ P[B(K)

n ] (1)

(where P is the underlying probability measure) as N grows to infinity. This will be done for two
particular choices of µ, or more precisely of sequences of such probability distributions, since for
any N ∈ N \ {0, 1} we have to be given a probability measure µ on SN . We don’t know a priori
if these mappings are monotonous in n ∈ N, contrary to the quantities of interest in the study
of convergence to equilibrium, such as the total variation distance between the time marginal
distribution and the invariant measure. Indeed, if the support of µ is a generating set for the
group SN and if it contains ι, then Z is an irreducible and aperiodic Markov chain, so its invariant
measure ν has SN for support. Applying the ergodic theorem to the Markov chain (Z(1), ..., Z(K)),
which admits ν⊗K for its attracting measure, it follows that almost surely,

lim inf
n→∞

1I
A

(K)
n

= 0

lim sup
n→∞

1I
A

(K)
n

= 1

so we cannot assert in a deterministic way that the subgroup will eventually become transitive.

In addition, for n large, P[A
(K)
n ] will converge to the probability that K independent elements

sampled according to ν generate a transitive subgroup of SN , a quantity which is strictly less than 1
(similar remarks hold for the existence of a fixed point). Nevertheless, we conjecture that the above

mappings are respectively increasing and decreasing under our assumption that (Z
(1)
0 , ..., Z

(K)
0 ) =

(ι, ..., ι). Of course such monotonicity properties depend on the initial configuration, for instance
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the situation would have been completely different if we had started with (σ, ..., σ) where σ is a
cycle of order N .

For any size N ∈ N \ {0, 1}, multiplicity K ∈ N \ {0, 1} and time n ∈ N, let CK,n be either A
(K)
n

or the complementary event of B
(K)
n . We say there is a cut-off phenomenon for (CK,n)n∈N, if we

can find a time T (N, K) ∈ R+ such that

∀ α ∈ [0, 1), lim
N→∞

P
[
CK,αT (N,K)

]
= 0

∀ α ∈ (1, +∞), lim
N→∞

P
[
CK,αT (N,K)

]
= 1

where for any t ∈ R+ \ N, we took CK,t ≔ CK,⌊t⌋, with ⌊·⌋ designating the integer part (this
convenient embedding of discrete time into continuous time will be implicitely enforced in the
whole paper to simplify notations). Such a result would give a rigorous probabilistic meaning to

the assertion that the subgroup G
(K)
n becomes transitive at time T (N, K). Of course such a time

T (N, K) can only be defined up to an equivalence relation as N becomes large.
More generally, we say that a transition phenomenon occurs at times of order T (N, K) ∈ R

∗
+,

if

lim
α→0+

lim sup
N→∞

P
[
CK,αT (N,K)

]
= 0

lim
α→+∞

lim inf
N→∞

P
[
CK,αT (N,K)

]
= 1

A priori this definition does not forbid that several transition phenomena can occur at times of
different orders. So to avoid this possibility, we will speak of a unique transition phenomenon at
times of order T (N, K) ∈ R

∗
+, if furthermore for any sequence of positive numbers (αN )N∈N\{0,1}

converging to zero, we have

lim
N→∞

P
[
CK,αNT (N,K)

]
= 0 (2)

and for any sequence of positive numbers (αN )N∈N\{0,1} diverging to infinity, we have

lim
N→∞

P
[
CK,αNT (N,K)

]
= 1 (3)

The cut-off phenomenon is an example of a transition phenomena, but at the opposite side of this
notion, we will speak of a flared transition phenomenon if there is a transition at times of order
T (N, K) ∈ R

∗
+ which is not sharp: we can find a non-empty interval (α∗, α

∗) ⊂ R
∗
+ such that for

any α ∈ (α∗, α
∗), we have

lim inf
N→∞

P
[
CK,αT (N,K)

]
> 0

lim sup
N→∞

P
[
CK,αT (N,K)

]
< 1

However there is still hope for a cut-off phenomenon in this situation, if we allow the number
of chains K to depend on N . So we will say there is as (K, T )-sharp transition, if we can find a
sequence (K, T ) ≔ (K(N), T (N))N∈N\{1,2} from N \ {0, 1} × R+ such that

∀ α ∈ [0, 1), lim
N→∞

P[CK(N),αT (N)] = 0

∀ α ∈ (1, +∞), lim
N→∞

P[CK(N),αT (N)] = 1

The first case we will investigate is that of uniform generating transpositions, which corresponds
to

µ =
2

N(N − 1)

∑

i<j∈EN

δ(i,j)
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where (i, j) is the transposition exchanging i and j. The probability µ does not satisfy the assump-
tion that ι belongs to its support and in fact the Markov chain Z is periodic of period 2, going
from even to odd permutations and vice-versa. But this is not important for our purposes and if µ
is replaced by (1 − ǫN )µ + ǫNδι with limN→∞ ǫN = 0 (if one considers for instance the probability
measure µ̃ ≔ 1

N2

∑
i,j∈EN

δ(i,j), with (i, i) = ι for any i ∈ EN ), then the next result remains true
(see Remark 12 at the end of Section 3 for the links with the continuous time setting).

Theorem 1 In the above model of uniform generating transpositions, there is a cut-off for tran-
sitivity as well as for the non-existence of a fixed point at time

T (N, K) ≔
1

2K
N ln(N)

The fact that the cut-off occurs at the same time for both events suggests that a fixed point is the
last resort against transitivity in this model. This will be confirmed by the simulations of Section 6.
Let us recall (see for instance the book of Diaconis [5]), that for the model of uniform generating
transpositions with µ̃ as distribution of the increments of the random walk, the cut-off phenomenon
for the convergence to equilibrium in the total variation sense occurs at time 1

2N ln(N). This is

valid for the Markov chain Z but also for its K-product (Z(1), ..., Z(K)). So for the latter Markov
chain, the properties of transitivity and of the non-existence of a fixed point appear strictly before

the equilibrium is reached. Nevertheless, note that for any time n ∈ N, Z
(1)
n Z

(2)
n · · ·Z(K)

n has the
same law as ZKn. It follows that for any α > 1,

lim
N→∞

P[G
(K)
αT (N,K) = SN or AN ] = 1

where AN is the alternating group (knowing that Gn,K is either SN or AN , to decide between this

two possibilities it is sufficient to check if there exists an odd permutation among {Z(1)
n , ..., Z

(K)
n } or

not). Indeed, this a consequence of a result due to  Luczak and Pyber [13], stating that the minimal
transitive subgroup containing a permutation chosen uniformly in SN (role essentially played here

by the product Z
(1)
αT (N,K)Z

(2)
αT (N,K) · · ·Z

(K)
αT (N,K)) is either SN or AN with probability going to 1 as

N goes to infinity.

The second case we will investigate is that of neighbor generating transpositions, which corre-
sponds to

µ =
1

N

∑

i∈EN

δ(i,i+1)

where EN has to be seen as Z/NZ, so that N + 1 = 1.
The situation is now different from the previous one, since we have:

Theorem 2 At least as soon as K ≥ 3, there is a flared transition for the non-existence of a fixed
point in the model of neighbor generating transpositions, at times of order

T (N, K) ≔ N1+ 2
K

Replacing µ by µ̃ ≔ (δι +
∑

i∈Z/(NZ) δ(i,i+1))/(N + 1), it is known that the convergence to equilib-

rium occurs at times of order N3 ln(N) (see for instance the survey of Jonasson [10] for a precise
statement), so again the property of non-existence of a fixed point appears before equilibrium is
reached.

One may consider both the uniform generating transpositions and the neighbor generating
transpositions as Monte-Carlo ways to sample sets of K generators of subgroups of the symmetric
group without fixed point (even if we don’t know which laws one would get by following these pro-
cedures) and hopefully of transitive subgroups. Assuming that it is possible to sample according
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to µ within a time of order 1, the complexity of these algorithms (namely the required compu-
tational time) is heuristically KT (N, K). So for the uniform generating transposition chain we

get N ln(N)/2 as complexity, while we get KN1+ 2
K for neighbor generating transposition chain.

Optimizing the latter expression in K ∈ N\{0, 1}, it appears that the better choice is K = 2 ln(N),
so we get a complexity of the same order in both cases (if one wants to be more precise at the level
of constant factor, one should first remember that at each elementary step, to sample uniformly
over a set of cardinality N2 asks a priori twice the time necessary to sample uniformly over a set
of cardinality N). One may think that the first algorithm has the advantage that it admits a
cut-off phenomenon, which enables to stop more sharply the algorithm. But this is also true for
the second algorithm: consider the decreasing function defined by

J : R+ ∋ α 7→
∫ 1

0
exp(−2α(1 − cos(2πs))) ds (4)

which is going from 1 to 0. Let α̃ ∈ R
∗
+ be the unique value such that J(α̃) = exp(−1/2). Then

we have

Theorem 3 In the model of neighbor generating transpositions, there is a (K, T )-sharp transition
for the non-existence of a fixed point with

K(N) ≔ 2 ln(N)

T (N) ≔ α̃N

We conjecture that both Theorems 2 and 3 (with another constant α̃, see Section 6) hold for
transitivity. We have not yet been able to prove them, but this is also suggested by simulations,
see Section 6.

In fact our motivation for the above results comes from the design of algorithms for bivari-
ate polynomials factorization, relying on combinatorial invariants attached to union of random
Riemann surfaces. Let us briefly sketch the link with the transitivity of subgroups generated by
products of transpositions. The set of zeros of a “generic” bivariate polynomial f ∈ C[x, y] of
degree N defines a smooth Riemann surface X ⊂ C

2, let π : X → C denote the first projection
(x, y) 7→ x. In this case, X has N(N − 1) points with a vertical tangent and their projections by π
form a subset ∆ of N(N − 1) points in C called the discriminant. Then, π : X \ π−1(∆) → C \ ∆
is a connected N -covering, i.e. for each a ∈ C \∆ the fiber above a, namely {y ∈ C : f(a, y) = 0},
consists of N distinct points. Suppose 0 6∈ ∆ and denote by E := {y1, . . . , yN}, the fiber above 0.
Now consider a loop γ ⊂ C\∆ starting and ending at 0, and lift it by π−1 to N paths in X\π−1(∆).
Each path starts at some yi ∈ E and ends at another (possibly the same) yj ∈ E and this process
defines a permutation pγ on E; this permutation only depends on the homotopical class of γ in
C \ ∆. The subgroup of SN generated by all such permutations is called the monodromy group
of X, with respect to π. When γ is a “small” loop circling around only one discriminant point,
then the permutation pγ is a transposition. Furthermore, some numerical calculations, reinforced
by heuristic arguments, suggest that there exists an ordening of E such that these transpositions
are close to uniform neighbor transpositions when N is large and when the discriminant point is
chosen uniformly. Anyway when γ is a “large” loop circling around a set of n discriminant points,
then γ is homotopic to the concatenation of n “small” loops, and the permutation pγ is equal to the
product of the corresponding transpositions. The question is to predict when a subgroup generated
by K permutations of type pγ has the same connecting effect on E as the whole monodromy group.
See e.g. [3] and [15].

The plan of the paper is as follows. In the next two sections we investigate the uniform
generating transposition model, first by establishing the cut-off phenomenon for the non-existence

of a fixed point for G
(K)
n in Section 2 and next for transitivity in Section 3. The two main underlying
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tools of this proof of Theorem 1 are spectral analysis and coupling techniques, which enable to come
back to Markov chains whose spectral decomposition is well-known. The following two sections
concerns the neighbor generating transposition model. In Section 4 we prove Theorem 2, namely
we show that there is a flared transition for the non-existence of a fixed point. We try to follow
the approach developped in Section 2, but the lack of strong symmetries leads to more involved
computations. Section 5 is devoted to the proof of Theorem 26, which is an extension of Theorem 3.
It will be a relatively direct consequence of the estimates deduced in Section 4. Finally to illustrate
the obtained results and to support our conjectures, we give some simulations in the last Section 6.

2 Fixed points for the uniform generating transposi-

tions

We prove here the simplest part of Theorem 1, namely we investigate the cut-off phenomenon for the
non-existence of a fixed point for the generated subgroup, in the uniform generating transposition
model.

Since in this section and the two following ones the multiplicity K ∈ N\{0, 1} won’t depend on
the size N of the problem, we remove it from our notation when this doesn’t lead to confusion. Thus

for instance for any time n ∈ N, Gn designates the subgroup of SN generated by Z
(1)
n , · · · , Z

(K)
n ,

where recall that Z(1), · · · , Z(K) are K independent random walks on SN whose increments are
uniform transpositions as described in the introduction. For any x ∈ EN , consider

Bn(x) ≔ {∀ i ∈ J1, KK, Z(i)
n (x) = x}

the event saying that x is a fixed point for the action of Gn on EN , so we can write Bn =
∪x∈EN

Bn(x). As it was announced, our goal here is to prove the

Proposition 4 In the model of uniform generating transpositions, starting with (Z
(1)
0 , ..., Z

(K)
0 ) =

(ι, ..., ι), we have

∀ α ∈ [0, 1), lim
N→∞

P[BαT (N,K)] = 1

∀ α > 1, lim
N→∞

P[BαT (N,K)] = 0

where

T (N, K) ≔
1

2K
N ln(N)

The second convergence is the easiest to prove, since it is a consequence of the rough bound

∀ n ∈ N, P[Bn] ≤
∑

x∈EN

P[Bn(x)]

= NP[Bn(1)]

= NP[Zn(1) = 1]K

where (Zn)n∈N is a random walk starting from ι and whose increments are uniform transpositions.
Indeed, the next result is quite immediate:

Lemma 5 If T (N, K) is as in the previous proposition, we have, for any α ≥ 0,

lim
N→∞

NP[ZαT (N,K)(1) = 1]K =





+∞ , if α < 1
1 , if α = 1
0 , if α > 1
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Proof

Let us denote for any n ∈ N, Xn ≔ Zn(1). It appears that (Xn)n∈N is a Markov chain on EN ,
starting from 1 and whose transition matrix P is given by

P =
2

N − 1
M +

(
1 − 2

N − 1

)
Id

where M is the transition matrix whose all entries are 1/N and Id is the identity matrix. It follows
that for any n ∈ N,

Pn =

(
1 − 2

N − 1

)n

Id +

(
1 −

(
1 − 2

N − 1

)n)
M

(as it is usual in Markovian semi-group theory, we rather denote by Pn the n-th power Pn of matrix
P ), so we get that

P[Zn(1) = 1] = Pn(1, 1)

=

(
1 − 2

N − 1

)n

+

(
1 −

(
1 − 2

N − 1

)n) 1

N

=
1

N
+

N − 1

N

(
1 − 2

N − 1

)n

We deduce that

NP[ZαT (N,K)(1) = 1]K = N

(
1

N
+

N − 1

N

(
1 − 2

N − 1

)⌊αN ln(N)/2K⌋
)K

Note that for α > 0, we have for N large

(
1 − 2

N − 1

)⌊αN ln(N)/2K⌋

∼ 1

N
α
K

(this is even true for α = 0). The announced result follows at once since K ≥ 2.
�

We now come to the first convergence of Proposition 4. For α = 0, it is obvious because
G0 = {ι}. So let us fix some α ∈ (0, 1) and to simplify notations, denote nN = ⌊αT (N, K)⌋. We
furthermore introduce

SnN
=

∑

x∈EN

1IBnN
(x)

The idea of the proof is to get a concentration result on SnN
. More precisely we will show that

lim
N→∞

Var(SnN
)

E[SnN
]2

= 0 (5)

where Var(SnN
) = E[(SnN

− E[SnN
])2] = E[S2

nN
] − E[SnN

]2 is the variance of SnN
. Then we can

deduce that

P[Bc
nN

] = P[SnN
= 0]

≤ P[|SnN
− E[SnN

]| ≥ E[SnN
]]

≤ Var(SnN
)

E[SnN
]2
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and the desired convergence would follow.
To work out this program, we have to evaluate the expectation and the variance of SnN

. The
first of these two tasks is easy, since we have for N large

E[SnN
] = NP[BnN

(1)]

= NP[ZnN
(1) = 1]K

∼ N−(α−1) (6)

according to the above proof of Lemma 5.
But to evaluate the variance of SnN

, it won’t be sufficient to consider the Markov chain (Xm)m∈N

introduced in this proof and we will need the stochastic chain (Xm, Ym)m∈N = (Zm(1), Zm(2))m∈N.
Indeed, we have

E[S2
nN

] = 2
∑

x<y∈EN

P[BnN
(x) ∩ BnN

(y)] +
∑

x∈EN

P[BnN
(x)]

= N(N − 1)P[BnN
(1) ∩ BnN

(2)] + E[SnN
]

= N(N − 1)P[XnN
= 1, YnN

= 2]K + E[SnN
]

So to insure the validity of (5), in view of (6), it is enough to show that for N large

P[XnN
= 1, YnN

= 2] ∼ N−2 α
K (7)

To go in this direction, we first note that the stochastic chain (Xm, Ym)m∈N takes values in E
(2)
N ≔

E2
N \ {(x, x) : x ∈ EN}. It is not difficult to convince oneself that it is Markovian and that its

transition matrix P (2) is given by

∀ (x, y), (x′, y′) ∈ E
(2)
N , P (2)((x, y), (x′, y′)) =





2
N(N−1) , if x′ 6= x and y′ = y

2
N(N−1) , if x′ = x and y′ 6= y

2
N(N−1) , if x′ = y and y′ = x

1 − 4N−6
N(N−1) , if x′ = x and y′ = y

0 , otherwise

A spectral approach to (7) would then consist in diagonalizing this matrix (see next section), but
we will present here a more probabilistic proof, which will also serve as a guide for Section 4. In
fact the form of the matrix P (2) leads us to consider another transition matrix P̃ (2) on E2

N given
by

∀ (x, y), (x′, y′) ∈ E2
N , P̃ (2)((x, y), (x′, y′)) =





2
N(N−1) , if x′ 6= x and y′ = y

2
N(N−1) , if x′ = x and y′ 6= y

1 − 4
N , if x′ = x and y′ = y

0 , otherwise

Let (X̃m, Ỹm)m∈N be a Markov chain on E2
N admitting P̃ (2) as transition matrix and starting from

(1, 2). The fact that P (2) and P̃ (2) are close implies the same property for the law L(XnN
, YnN

) of

(XnN
, YnN

) and that of (X̃nN
, ỸnN

):

Lemma 6 There exists a constant c > 0 such that for any N ∈ N \ {0, 1}, we have in total
variation

∥∥∥L(XnN
, YnN

) − L(X̃nN
, ỸnN

)
∥∥∥

tv
≤ c

ln(N)

N
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Proof

By coupling the trajectories (Xp, Yp)p∈J0,mK and (X̃p, Ỹp)p∈J0,mK, for any m ∈ N, we will show the
stronger result that for any N ∈ N \ {0, 1}, we have in total variation

∥∥∥L((Xp, Yp)p∈J0,mK) − L((X̃p, Ỹp)p∈J0,mK)
∥∥∥

tv
≤ 1 −

(
1 − 2

N(N − 1)

)m

(8)

Taking m = nN ≤ N ln(N)/4, the bound announced in the lemma easily follows.

So let (x, y) ∈ E
(2)
N , we compute that (with the convention that P (2)((x, y), (x′, y′)) = 0 for (x′, y′) 6∈

E
(2)
N ),

∑

(x′,y′)∈E2
N

∣∣∣P (2)((x, y), (x′, y′)) − P̃ (2)((x, y), (x′, y′))
∣∣∣

= P (2)((x, y), (y, x)) + P̃ (2)((x, y), (x, x)) + P̃ (2)((x, y), (y, y))

+
∣∣∣P (2)((x, y), (x, y)) − P̃ (2)((x, y), (x, y))

∣∣∣

=
4

N(N − 1)

This implies we can construct a law Q((x, y), (x, y), ·) on E
(2)
N × E2

N , such that the first marginal

on E
(2)
N is P (2)((x, y), ·), the second marginal on E2

N is P̃ (2)((x, y), ·) and we have

Q(((x, y), (x, y)), {((x′, y′), (x′, y′)) : (x′, y′) ∈ E
(2)
N }) =

2

N(N − 1)

(see for instance the book of Lindvall [12]). For (x, y) ∈ E
(2)
N and (x′, y′) ∈ E2

N with (x, y) 6= (x′, y′),

let us define Q((x, y), (x′, y′), ·) ≔ P (2)((x, y), ·)⊗ P̃ (2)((x′, y′), ·). Next consider (Xp, Yp, X̃p, Ỹp)p∈N

a Markov chain starting from (1, 2, 1, 2) and admitting Q as a transition kernel. Then (Xp, Yp)p∈N

is a Markov chain starting from (1, 2) and admitting P (2) as transition matrix and (X̃p, Ỹp)p∈N is

a Markov chain starting from (1, 2) and admitting P̃ (2) as transition matrix. Let τ = inf{p ∈ N :
(Xp, Yp) 6= (X̃p, Ỹp)}, then we have for any m ∈ N,

∥∥∥L((Xp, Yp)p∈J0,mK) − L((X̃p, Ỹp)p∈J0,mK)
∥∥∥

tv
≤ P[τ ≤ m]

= 1 −
(

1 − 2

N(N − 1)

)m

(as soon as N(N − 1) ≥ 2, which is satisfied under our assumptions).
�

In particular, we deduce that

∣∣∣P[XnN
= 1, YnN

= 2] − P[X̃nN
= 1, ỸnN

= 2]
∣∣∣ ≤ c

ln(N)

N

so to prove (7), since ln(N)/N is negligible with respect to N−2 α
K , it is sufficient to see that for

large N ,

P[X̃nN
= 1, ỸnN

= 2] ∼ N−2 α
K (9)

The advantage of (X̃p, Ỹp)p∈N is that we can describe explicitely its time-marginal distribution.

More precisely, let P̂ be the transition matrix on EN defined by

P̂ =
4

N − 1
M +

(
1 − 4

N − 1

)
Id

9



where, as in the proof of Lemma 5, M is the transition matrix all whose entries are 1/N and Id is
the identity matrix. The evolution according to P̃ (2) can be described in the following way: first
we choose one of the factor of E2

N with a chance one half each, next we make the corresponding

coordinate evolve according to P̂ . So conditioning on the number of times the first factor has been
chosen, we get

∀ m ∈ N, ∀ (x, y), (x′, y′) ∈ E2
N , P̃ (2)

m ((x, y), (x′, y′)) =
1

2m

m∑

p=0

(
m

p

)
P̂p(x, x′)P̂m−p(y, y′)

In particular, if x′ = x and y′ = y, it appears that

P̃ (2)
m ((x, y), (x, y)) =

1

2m

m∑

p=0

(
m

p

)
P̂p(1, 1)P̂m−p(1, 1)

Note that by computations similar to those of Lemma 5, we have

∀ p ∈ N, P̂p(1, 1) =
1

N
+

N − 1

N

(
1 − 4

N − 1

)p

so for the quantity we are interested in, we get,

P[X̃nN
= 1, ỸnN

= 2]

= P̃ (2)
nN

((1, 2), (1, 2))

=
1

2nN

nN∑

p=0

(
nN

p

)(
1

N
+

N − 1

N

(
1 − 4

N − 1

)p)( 1

N
+

N − 1

N

(
1 − 4

N − 1

)nN−p
)

=
1

N2
+ 2

N − 1

N2

1

2nN

nN∑

p=0

(
nN

p

)(
1 − 4

N − 1

)p

+

(
N − 1

N

)2(
1 − 4

N − 1

)nN

=
1

N2
+ 2

N − 1

N2

1

2nN

(
1 + 1 − 4

N − 1

)nN

+

(
N − 1

N

)2(
1 − 4

N − 1

)nN

=
1

N2
+ 2

N − 1

N2

(
1 − 2

N − 1

)nN

+

(
N − 1

N

)2(
1 − 4

N − 1

)nN

∼ N−2 α
K

(since α < 1, K ≥ 2 and nN = αN ln(N)/(2K)). This is just (9) and that ends the proof of
Proposition 4.

Remark 7 As it was noticed by a referee, there is a shortest proof for the first convergence of
Proposition 4, based on the coupon collector theorem. Its statement is the following. Let (Xn)n∈N

be independent variables uniformly distributed on J1, NK and let τN be the first time n ∈ N such
that {X0, ..., Xn} = J1, NK. Then for any ǫ > 0, we have

lim
N→∞

P[(1 − ǫ)N ln(N) ≤ τN ≤ (1 − ǫ)N ln(N)] = 1 (10)

(see for instance Theorem 3.8 of the book of Motwani and Raghavan [14] for a more precise result).
Consider now the case where the law of the increments of Z is the probability µ̃ described above
Theorem 1 (it is equivalent to prove Proposition 4 with µ or with µ̃, see Remark 12 below). For

any n ∈ N and k ∈ J1, KK, denote (I
(k)
n , J

(k)
n ) the transposition enabling to pass from Z

(k)
n to Z

(k)
n+1.

Next define

∀ n ∈ N, ∀ k ∈ J0, 2K − 1K, X2Kn+k ≔

{
I

(1+⌊k/2⌋)
n , if k is even

J
(1+⌊k/2⌋)
n , if k is odd

10



The variables (Xn)n∈N are independent and uniformly distributed on J1, NK and let τN as above.

Clearly for n < ⌊τN/(2K)⌋, G
(k)
n admits a fixed point, since there is a point which has not been

touched by any of the transpositions used up to this time. The first convergence of Proposition 4
then follow from (10).

It is not so immediate to deduce the second part of Proposition 4 from the coupon collector
theorem. It is also interesting to remark that this argument will not be sufficient in the situa-
tion of successive transpositions: some fixed points will exist for quite a long time after all the
positions have been touched by the random successive transpositions used to construct the chains
Z(1), ..., Z(K).

�

3 Transitivity for the uniform generating transposi-

tions

Our goal here is to complete the proof of Theorem 1 by establishing the cut-off phenomenon for
transitivity. The basic ingredient will be the knowledge of whole spectra of the exclusion process
associated to a complete graph random walk.

First we note that if Gn admits a fixed point, it cannot be transitive, so with the notations of
the previous section, we have P[An] ≤ P[Bc

n]. Proposition 4 then implies that

∀ α ∈ [0, 1), lim
N→∞

P
[
AαT (N,K)

]
= 0

and to prove Theorem 1 it remains to show that

∀ α > 1, lim
N→∞

P
[
AαT (N,K)

]
= 1 (11)

To simplify notations, we assume for the remaining part of this section that α > 1 is fixed and we
denote nN ≔ ⌊αT (N, K)⌋.

The proof of (11) begins with very simple bounds. Let R be the set of nonempty subsets of
EN whose cardinality is less than N/2. We have

Ac
nN

= {∃ R ∈ R : ∀ k ∈ J1, KK, Z(k)
nN

(R) = R}

so by symmetry (see the proof of Lemma 8 below for a formal justification of the last identity) we
get

P[Ac
nN

] ≤
∑

R∈R

P[∀ k ∈ J1, KK, Z(k)
nN

(R) = R]

=
∑

R∈R

P[ZnN
(R) = R]K

=

⌊N/2⌋∑

r=1

(
N

r

)
P[ZnN

({1, ..., r}) = {1, ..., r}]K (12)

This leads us to introduce, for r ∈ J1, ⌊N/2⌋K, the set E
(r)
N of subsets of EN whose cardinality is r

and the E
(r)
N -valued stochastic chain (R

(r)
m )m∈N defined by

∀ m ∈ N, R(r)
m ≔ Zm({1, ..., r}) (13)

11



(for r = 2, these objects do not coincide exactly with E
(2)
N and (Xm, Ym)m∈N considered in the

previous section, because the latter were related to ordered pairs and not to subsets of cardinality
two).

It is not difficult to see that (R
(r)
m )m∈N is a Markov chain, whose transition matrix P (r) is given by

∀ A, B ∈ E
(r)
N , P (r)(A, B) =





2
N(N−1) , if |A ∩ B| = r − 1
N(N−1)−2(N−r)r

N(N−1) , if A = B

0 , otherwise

Thus we can write

P (r) =
2

N(N − 1)
M (r) +

N(N − 1) − 2(N − r)r

N(N − 1)
Id

where M (r) is the E
(r)
N × E

(r)
N -matrix given by

∀ A, B ∈ E
(r)
N , M (r)(A, B) =

{
1 , if |A ∩ B| = r − 1
0 , otherwise

This is the adjacency matrix of a distance transitive graph (called the Johnson graph J(N, r)), so
its spectrum is known: the eigenvalues are the quantities (r − l)(N − r − l) − l, for l ∈ J0, rK, with
multiplicities

(
N
l

)
−
(

N
l−1

)
(with

(
N
−1

)
= 0), cf. the book of Bannai and Ito [2] (see also Diaconis [8] and

Donnelly, Lloyd and Sudbury [9]). It follows that the eigenvalues of P (r) are the θl = 1− 2l(N−l+1)
N(N−1)

for l ∈ J0, rK with multiplicities
(
N
l

)
−
(

N
l−1

)
.

This knowledge and the fact that P (r) admits a lot of symmetries enables us to give an explicit
formula for the quantity we are interested in:

Lemma 8 For any time n ∈ N, we have

P[Zn({1, ..., r}) = {1, ..., r}] =

(
N

r

)−1 ∑

l∈J0,rK

((
N

l

)
−
(

N

l − 1

))
θn
l

≤
(

N

r

)−1 ∑

l∈J0,rK

((
N

l

)
−
(

N

l − 1

))
exp

(
−n

2l(N − l + 1)

N(N − 1)

)

Proof

A one-to-one mapping g : E
(r)
N → E

(r)
N is called a symmetry for P (r) if

∀ x, y ∈ E
(r)
N , P (r)(g(x), g(y)) = P (r)(x, y)

The set of all such symmetries is a group under the composition law. In our situation this group

acts transitively on E
(r)
N , since it contains all mappings of the form gh, where h is a one-to-one

mapping h : EN → EN and where gh is defined by

∀ A ≔ {x1, ..., xr} ∈ E
(r)
N , gh(A) ≔ {h(x1), ..., h(xr)}

Note that for any n ∈ N, the symmetries for P (r) are also symmetries for P
(r)
n , so we get that for

any A, B ∈ E
(r)
N , P

(r)
n (A, A) = P

(r)
n (B, B) and finally

P[Zn({1, ..., r}) = {1, ..., r}] =
1∣∣∣E(r)
N

∣∣∣
tr(P (r)

n )

=

(
N

r

)−1 ∑

l∈J0,rK

((
N

l

)
−
(

N

l − 1

))
θn
l

≤
(

N

r

)−1 ∑

l∈J0,rK

((
N

l

)
−
(

N

l − 1

))
exp

(
−n

2l(N − l + 1)

N(N − 1)

)

12



where the last bound is a consequence of the concavity inequality ln(1 − x) ≤ −x, valid for any
x < 1.

�

Now via (12), to end the proof of (11), we have to show that

lim
N→∞

⌊N/2⌋∑

r=1

(
N

r

)

(

N

r

)−1 ∑

l∈J0,rK

((
N

l

)
−
(

N

l − 1

))
exp

(
−nN

2l(N − l + 1)

N(N − 1)

)


K

= 0 (14)

To do so, let η ∈ (0, 1) be small enough so that γ ≔ (1 − η)α > 1 (recall that α > 1 is the fixed
number entering in the definition of nN ), we denote β ≔ (γ + 1)/2 > 1, p ≔ ⌊(β − 1)−1⌋ + 1 and
rN ≔ ⌊ηN⌋. For r ∈ J1, ⌊N/2⌋K, we introduce the quantities

HN (r) ≔

(
N

r

)−1 ∑

l∈J0,p∧rK

((
N

l

)
−
(

N

l − 1

))
exp

(
−nN

2l(N − l + 1)

N(N − 1)

)

IN (r) ≔

(
N

r

)−1 ∑

l∈J(p∧r)+1,rN∧rK

((
N

l

)
−
(

N

l − 1

))
exp

(
−nN

2l(N − l + 1)

N(N − 1)

)

JN (r) ≔

(
N

r

)−1 ∑

l∈J(rN∧r)+1,rK

((
N

l

)
−
(

N

l − 1

))
exp

(
−nN

2l(N − l + 1)

N(N − 1)

)

(of course such a quantity is null if the domain of the corresponding sum is empty). We also
consider

H(N) ≔

⌊N/2⌋∑

r=1

(
N

r

)
HK

N (r)

I(N) ≔

⌊N/2⌋∑

r=1

(
N

r

)
IK
N (r)

J(N) ≔

⌊N/2⌋∑

r=1

(
N

r

)
JK

N (r)

Taking into account with p = 3 the bound

∀ p ∈ N
∗, ∀ (ti)i∈J1,pK ∈ R

p
+,



∑

i∈J1,pK

ti




K

≤ pK−1
∑

i∈J1,pK

tKi (15)

the next three technical results complete the proof of Theorem 1.

Lemma 9 We have

lim
N→∞

H(N) = 0

Proof

Since p is a fixed integer, by using (15), we can write that for any r ∈ J1, ⌊N/2⌋K,

HK
N (r) ≤



(

N

r

)−1 ∑

l∈J0,p∧rK

(
N

l

)
exp

(
−nN

2l(N − l + 1)

N(N − 1)

)


K

≤ pK−1

(
N

r

)−K ∑

l∈J0,p∧rK

(
N

l

)K

exp

(
−KnN

2l(N − l + 1)

N(N − 1)

)

13



Since β < α, there exists a N0 ∈ N\{0, 1} (depending only on α, β and slightly on K) large enough
such that for all integers N ≥ N0,

∀ l ∈ J0, pK, KnN
2l(N − l + 1)

N(N − 1)
≥ lβ ln(N)

Thus for such N , we get

H(N) ≤ pK−1

⌊N/2⌋∑

r=1

(
N

r

)1−K ∑

l∈J0,p∧rK

(
N

l

)K

N−βl

= pK−1
∑

l∈J0,pK

(
N

l

)K

N−βl
∑

r∈J1∨l,⌊N/2⌋K

(
N

r

)1−K

To go on, we need to evaluate the last sum and the simplest way seems to divide it into two parts.

Consider first
∑

r∈J⌊N/4⌋+1,⌊N/2⌋K

(
N
r

)1−K
. Using Stirling’s formula, it appears that we can find a

constant h > 0 independent from N such that for any r ∈ J⌊N/4⌋ + 1, ⌊N/2⌋K,
(
N
r

)
≥ exp(hN), so

we get

∑

r∈J⌊N/4⌋+1,⌊N/2⌋K

(
N

r

)1−K

≤ N exp(−(K − 1)hN)

For the remaining sum, we note that since for any r ∈ J0, NK, we have
(

N
r+1

)
= N−r

r+1

(
N
r

)
, it appears

that for N large enough and r ∈ J0, ⌊N/4⌋K,
(

N
r+1

)
≥ 2
(
N
r

)
, so we get

∑

r∈J1∨l,⌊N/4⌋K

(
N

r

)1−K

≤
(

N

1 ∨ l

)1−K ∑

r∈J1∨l,⌊N/4⌋K

2−(r−1∨l)(K−1)

≤ 2

(
N

1 ∨ l

)1−K

Since for N large the quantity N exp(−(K − 1)hN) is negligible with respect to
(

N
1∨l

)1−K
, we get

that the whole sum
∑

r∈J1∨l,⌊N/2⌋K

(
N
r

)1−K
is also of order

(
N
1∨l

)1−K
. By consequence to obtain the

convergence announced in the above lemma, it is sufficient to show that

lim
N→∞

(
N

1

)1−K

+
∑

l∈J1,pK

(
N

l

)
N−βl = 0

and this is immediate because for any fixed l,
(
N
l

)
is of polynomial order N l and β > 1.

�

Lemma 10 We have

lim
N→∞

I(N) = 0

Proof

Applying the Hölder inequality to the probability on J0, rK given by

((
N

r

)−1((N

l

)
−
(

N

l − 1

)))

l∈J0,rK
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we obtain that for any r ∈ J1, ⌊N/2⌋K,

IK
N (r) ≤

(
N

r

)−1 ∑

l∈J(p∧r)+1,rN∧rK

((
N

l

)
−
(

N

l − 1

))
exp

(
−KnN

2l(N − l + 1)

N(N − 1)

)

≤
(

N

r

)−1 ∑

l∈J(p∧r)+1,rN∧rK

(
N

l

)
exp

(
−KnN

2l(N − l + 1)

N(N − 1)

)

Due to our choice of β, for N large enough, we have

∀ l ∈ J1, rN K, KnN
2l(N − l + 1)

N(N − 1)
≥ βl ln(N)

and thus we get for N such that rN ≥ p,

I(N) ≤
∑

r∈J1,⌊N/2⌋K

∑

l∈J(p∧r)+1,rN∧rK

(
N

l

)
exp (−βl ln(N))

≤ ⌊N/2⌋
∑

l∈Jp+1,rN K

aN (l)

with aN (l) ≔
(
N
l

)
N−βl. We compute that for l ∈ Jp + 1, rN K,

aN (l + 1)

aN (l)
=

N − l

l + 1
N−β

≤ N1−β

≤ 1

2

again for N large enough. It follows that for all such N ,

I(N) ≤ N

2
2aN (p + 1)

≤ N
Np+1

(p + 1)!
N−β(p+1)

and the wanted convergence follows from the fact that (β − 1)(p + 1) > 1.
�

Lemma 11 We have

lim
N→∞

J(N) = 0

Proof

Let χ ∈ (0, αη(1 − η)) be fixed (recall that η ∈ (0, 1)), we have for all N large enough,

∀ l ∈ JrN , ⌊N/2⌋K, KnN
2l(N − l + 1)

N(N − 1)
≥ KnN

2rN (N − rN + 1)

N(N − 1)

= 2K⌊αN ln(N)

2K
⌋⌊ηN⌋(N + 1 − ⌊ηN⌋)

N(N − 1)

≥ χN ln(N)

15



Thus we get that for all such N and all r ∈ J1, ⌊N/2⌋K, JN (r) ≤ exp(−χN ln(N)) (JN (r) is even
null if r ≤ rN ). It follows that

J(N) ≤ exp(−χN ln(N))

⌊N/2⌋∑

r=1

(
N

r

)

≤ exp(−χN ln(N))
∑

r∈J0,NK

(
N

r

)

= 2N exp(−χN ln(N))

and the announced convergence is immediate.
�

We end this section with three remarks.

Remark 12 Note that the last expression in Lemma 8 is the one we would have got if we had
decided to work with continuous time Markov processes (where the time periods [n, n + 1], n ∈ N

are replaced by independent exponential waiting times) instead of discrete time Markov chains.

More precisely, for k ∈ J1, KK, let (ξ
(k)
n )n∈N∗ be independent sequences of independent exponential

variables of parameter 1 (which are furthermore assumed to be independent from the chains Z(1),
..., Z(K)). We denote

∀ k ∈ J1, KK, ∀ n ∈ N, τ (k)
n ≔

∑

m∈J1,nK

ξ(k)
m

(in particular τ
(k)
0 = 0) and we consider the Markov processes Z̄(1), ..., Z̄(K) constructed via

∀ k ∈ J1, KK, ∀ t ≥ 0, Z̄
(k)
t ≔ Z(k)

n if t ∈ [τ (k)
n , τ

(k)
n+1)

All notions discussed in the introduction can be extended to this continuous time setting and then
Theorems 1 and 2 are also satisfied. Indeed it is easy to pass directly from discrete to continuous
times (and conversely), using the strong law of large numbers which asserts that a.s.

∀ k ∈ J1, KK, lim
n→∞

τ
(k)
n

n
= 1

The same kind of considerations enables us to justify the assertion made before Theorem 1.
Assume more generally that Theorem 1 is satisfied with some times T (N, K) by the chains con-
structed with the help of some probability measures µ. Next modify the latters through the
transformations µ̃ ≔ (1 − ǫN )µ + ǫNδι with ǫN ∈ [0, 1). Suppose that the limit l ≔ limN→∞ ǫN

exists in [0,1). Then Theorem 1 is also valid for the chains constructed by rather using µ̃, but
with the times T̃ (N, K) ≔ T (N, K)/(1 − l). In particular if l = 0, we obtain what was announced
before Theorem 1 for the slightly slowed down uniform transposition generating chains.

�

Remark 13 To estimate the quantity (12), we used the E(r)-valued Markov chains defined in
(13). But a priori one could have thought of simpler Markov chains: for r ∈ J1, ⌊N/2⌋K define

∀ n ∈ N, V (r)
n ≔ card({1, ..., r} ∩ Zn({1, ..., r}))

It is a birth and death chain on J(2r − N)+, rK and let Q(r) be its transition matrix. Then the
quantity we are interested in can be written as

P[ZnN
({1, ..., r}) = {1, ..., r}] = P[V (r)

nN
= r]

= Q(r)
nN

(r, r)

16



Unfortunately, due to the lack of symmetry of this chain, the latter term is not so easy to evaluate

in term of the spectrum of Q(r), in particular it is not equal to tr(Q
(r)
nN

)/N , at least if 2r ≤ N . To be
convinced by this assertion, note that since Q(r) is an irreducible birth and death transition matrix,
it is diagonalizable and its eigenvalues have multiplicity one. Furthermore since the Markov chain
V (r) is a function of the Markov chain R(r), the eigenvalues of Q(r) are also eigenvalues of P (r). It
follows that if 2r ≤ N , the r + 1 eigenvalues of Q(r) are exactly those of P (r).

�

Remark 14 The arguments given in this section and in the previous one can be slightly extended
to show that the cut-off phenomena for the non-existence of a fixed point and transitivity are
indeed unique transitions in the sense given in (2) and (3).

�

4 Fixed points for the neighbor generating transposi-

tions

The goal of this section is to prove Theorem 2, namely that there is a flared transition phenomenon
for the existence of a fixed point in the neighbor generating transposition model. Even if this
behavior is different from the sharp transition taking place for the uniform generating transposition
model, we will first adapt the approach of Section 2 to this new situation, i.e. we will try to extract
as much information as possible from the evaluation of the expectation and the variance of the
sum of the indicator functions associated to fixed points. This won’t be sufficient to prove that
the transition is flared, but similar estimates will enable us to conclude.

Thus with the notations of Section 2, the sums defined by

∀ n ∈ N, Sn ≔

∑

x∈EN

1IBn(x)

will play an important role here. Their expectations are not difficult to compute:

Lemma 15 We have at any time n ∈ N,

E[Sn] = N


 1

N

∑

l∈J0,N−1K

(
1 +

2

N

(
cos

(
2πl

N

)
− 1

))n



K

and in particular for N ≥ 4, the mapping N ∋ n 7→ E[Sn] is nonincreasing.

Proof

By definition, we have

E[Sn] =
∑

x∈EN

P[Bn(x)]

=
∑

x∈EN

P[Zn(x) = x]K

Fix x ∈ EN and consider the stochastic chain (Xn)n∈N ≔ (Zn(x))n∈N. It is indeed a Markov chain
on Z/(NZ) starting from x and whose transition matrix P is given by

∀ x, y ∈ EN , P (x, y) ≔





1
N , if d(x, y) = 1
1 − 2

N , if x = y
0 , otherwise
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where d is the natural graph distance on the discrete circle Z/(NZ). So we can write P =
2
N M + (1 − 2

N )Id where M is the transition matrix of the usual random walk on Z/(NZ). Its
spectral decomposition is well-known (see for instance the book of Diaconis [5]): the eigenvalues
are the quantities cos

(
2πl
N

)
, for l ∈ J0, ⌊N/2⌋K. For l 6= 0, N/2, the corresponding multiplicity is

2 and the eigenspace is generated by the real and imaginary parts of the complex-valued function
EN ∋ x 7→ exp(i2πlx/N). For l = 0 and l = N/2 (which occurs only if N is even, then M is periodic
with period 2), the multiplicity is 1. We deduce that the eigenvalues of P , with multiplicity, are
the numbers 1 + 2

N

(
cos
(

2πl
N

)
− 1
)
, for l ∈ J0, N − 1K.

Note furthermore that P is space-homogeneous (namely, is invariant by the translations of
Z/(NZ)), so we get that for any n ∈ N and x ∈ EN ,

P[Zn(x) = x] = Pn(x, x)

=
1

N

∑

y∈EN

Pn(y, y)

=
1

N
tr(Pn)

=
1

N

∑

l∈J0,N−1K

(
1 +

2

N

(
cos

(
2πl

N

)
− 1

))n

and this leads to the formula of the above lemma. The monotonicity is a consequence of the fact
that the eigenvalues of P are nonnegative for N larger than 4.

�

Next result shows that it is at times n of order N1+ 2
K that something interesting is happening for

E[Sn].

Lemma 16 Let fix α ∈ (0, +∞) and define nN ≔ ⌊αN1+ 2
K ⌋. Then we have

lim
N→∞

E[SnN
] = IK(α)

with

I(α) ≔
1

2
√

πα

Proof

According to the previous lemma, we have to show that

lim
N→∞

1

N1− 1
K

∑

l∈J0,N−1K

(
1 +

2

N

(
cos

(
2πl

N

)
− 1

))nN

= I(α)

Reinterpreting J0, N − 1K as Z/(NZ), we decompose the above sum into

I1(N) ≔
1

N1− 1
K

∑

l∈Z1(N)

(
1 +

2

N

(
cos

(
2πl

N

)
− 1

))nN

I2(N) ≔
1

N1− 1
K

∑

l∈Z2(N)

(
1 +

2

N

(
cos

(
2πl

N

)
− 1

))nN

with

Z1(N) ≔ {l ∈ Z/(NZ) : d(0, l) ≤ ǫNN}
Z2(N) ≔ {l ∈ Z/(NZ) : d(0, l) > ǫNN}

18



where the sequence (ǫN )N∈N\{0,1} has been chosen such that

lim
N→∞

ǫN = 0

lim
N→∞

ǫNN
1
K = +∞

The first condition insures that for large N , I1(N) is equivalent to

1

N1− 1
K

∑

l∈Z1(N)

exp(−4π2αl2N
2
K
−2)

and we recognize a Riemann type sum. More precisely, we bound this sum below and above
respectively by

1

N1− 1
K

+ 2

∫ (⌊ǫNN⌋+1)N
1
K

−1

N
1
K

−1
exp(−4π2αs2) ds

and

1

N1− 1
K

+ 2

∫ ⌊ǫNN⌋N
1
K

−1

0
exp(−4π2αs2) ds

Due to our second assumption on the sequence (ǫN )N∈N\{0,1}, both quantities converge for large
N toward

∫

R

exp(−4π2αs2) ds =
1

2
√

πα

So to prove the announced result, it is sufficient to see that

lim
N→∞

I2(N) = 0

Using the concavity inequality ln(1 + s) ≤ s, valid for all s ∈ (−1, +∞) and the fact that there
exists a constant c > 0 such that cos(s) − 1 ≤ −cs2 for all s ∈ [0, π], we have

I2(N) ≤ 2
∑

l∈J⌊ǫNN⌋+1,⌊N/2⌋+1K

exp(−8π2αcl2N
2
K
−2)

≤ 2

∫ +∞

⌊ǫNN⌋N1− 1
K

exp(−8π2αcs2) ds

and it is clear that the latter integral goes to zero as N becomes large.
�

We deduce the following result on the existence of a fixed point at large times with respect to the
order N1+ 2

K , which corresponds to the easy part of Theorem 2:

Corollary 17 Consider for N ∈ N\{0, 1}, times of the type nN ≔ ⌊αNN1+ 2
K ⌋, with αN > 0, and

denote α ≔ lim infN→∞ αN . Then we have

lim sup
N→∞

P[BnN
] ≤ IK(α)

with the convention I(+∞) = 0, so that limN→∞ P[BnN
] = 0 if α = +∞. Furthermore under the

assumption α > α′
≔

1
4π , we get

lim sup
N→∞

P[BnN
] < 1
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Proof

Since we have for any time n ∈ N,

P[Bn] ≤
∑

x∈EN

P[Bn(x)]

= E[Sn]

the first bound will be proven if we show that

lim
N→∞

E[SnN
] ≤ IK(α) (16)

Consider α < α and define nN (α) ≔ αN1+ 2
K . Due to Lemma 16 and to the monotonicity property

alluded to in Lemma 15, we have

lim sup
N→∞

E[SnN
] ≤ lim sup

N→∞
E[SnN (α)]

= IK(α)

Next letting α → α by below, (16) follows.
Concerning the last assertion, it comes from the fact that defining

α′
≔ inf{α > 0 : I(α) = 1} =

1

4π

we have I(α) < 1 for any α > α′.
�

To proceed with our program, we also need to evaluate the variance of Sn and this amounts to get
estimates on P[Zn(x) = x, Zn(y) = y] for x 6= y ∈ EN . Indeed, we have for any time n ∈ N,

Var(Sn) = E[S2
n] − E

2[Sn]

=
∑

x,y∈EN

P[Bn(x) ∩ Bn(y)] − E
2[Sn]

=
∑

x 6=y∈EN

P[Bn(x) ∩ Bn(y)] +
∑

x∈EN

P[Bn(x)] − E
2[Sn]

=
∑

x 6=y∈EN

P
K [Zn(x) = x, Zn(y) = y] + E[Sn] − E

2[Sn] (17)

Contrary to the uniform generating transposition model, the quantity P[Zn(x) = x, Zn(y) = y]
now depends on x 6= y ∈ EN , but only through the distance d(x, y), due to the underlying space
homogeneity of our present model.

First we try to obtain a bound via a coupling argument similar to the one used in Section 2. So
fix x 6= y ∈ EN and denote (Xn, Yn)n∈N ≔ (Zn(x), Zn(y))n∈N which is a stochastic chain starting

from (x, y) and taking values in E
(2)
N ≔ E2

N \ {(x, x) : x ∈ EN}. Recalling that Zn(x) = z means
that x is in position z, it appears that (Xn, Yn)n∈N is a Markov chain whose transition matrix P (2)

is given by

∀ (x, y), (x′, y′) ∈ E
(2)
N , P (2)((x, y), (x′, y′)) =





1
N , if d(x, x′) = 1 and y′ = y
1
N , if x′ = x and d(y, y′) = 1
1
N , if d(x, y) = 1, x′ = y and y′ = x
1 − 4

N , if d(x, y) > 1, x′ = x and y′ = y
1 − 3

N , if d(x, y) = 1, x′ = x and y′ = y
0 , otherwise
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The form of this matrix suggests to consider another transition matrix P̃ (2) where the main inter-
action between the two components has been removed, namely

∀ (x, y), (x′, y′) ∈ E2
N , P̃ (2)((x, y), (x′, y′)) =





1
N , if d(x, x′) + d(y, y′) = 1
1 − 4

N , if x′ = x and y′ = y
0 , otherwise

Its interest is that we can evaluate its powers:

Lemma 18 We have for any N ≥ 9, any (x, y) ∈ E2
N and n ∈ N,

(
1 +

144

N2

)−n(
E[Sn]

N

) 2
K

≤ P̃ (2)
n ((x, y), (x, y)) ≤

(
E[Sn]

N

) 2
K

In particular in the time scale we are interested in, since K ≥ 3, we have for any given α > 0, as
N goes to infinity,

P̃
(2)

⌊αN1+ 2
K ⌋

((x, y), (x, y)) ∼ I2(α)
1

N
2
K

Proof

As it was explained at the end of Section 2, the lack of interaction between the components enables
to compute explicitely the powers of P̃ (2): for any m ∈ N, we have

∀ (x, y), (x′, y′) ∈ E2
N , P̃ (2)

n ((x, y), (x′, y′)) =
1

2n

n∑

p=0

(
n

p

)
P̂p(x, x′)P̂n−p(y, y′)

where now,

∀ x, y ∈ EN , P̂ (x, y) ≔





2
N , if d(x, y) = 1
1 − 4

N , if x = y
0 , otherwise

and with the convention P̂0 ≔ Id. In particular, for any m ∈ N and (x, y) ∈ E2
N ,

P̃ (2)
n ((x, y), (x, y)) =

1

2n

n∑

p=0

(
n

p

)
P̂p(x, x)P̂n−p(y, y)

Due to the space-homogeneity of the transition matrix P̂ (with EN identified with Z/(NZ)), for
any p ∈ N, the quantity Pp(x, x) does not depend on the choice of x ∈ Z/(NZ) and thus we have

∀ x ∈ Z/(NZ), P̂p(x, x) =
1

N
tr(P̂p)

=
1

N

∑

l∈J0,N−1K

θ̂p
l

where (θ̂l)l∈J0,N−1K are the eigenvalues (with multiplicities) of P̂ . The proof of Lemma 15 shows
that we can take

∀ l ∈ J0, N − 1K, θ̂l = 1 +
4

N

(
cos

(
2πl

N

)
− 1

)

21



Putting together these considerations, it appears that for any n ∈ N and (x, y) ∈ E2
N ,

P̃ (2)
n ((x, y), (x, y)) =

1

2n

n∑

p=0

(
n

p

)
1

N2

∑

k,l∈J0,N−1K

θ̂p
kθ̂

n−p
l

=
1

N2

∑

k,l∈J0,N−1K

1

2n

n∑

p=0

(
n

p

)
θ̂p
kθ̂

n−p
l

=
1

N2

∑

k,l∈J0,N−1K

(
θ̂k + θ̂l

2

)n

For l ∈ J0, N − 1K, let λl ≔ 2(cos(2πl/N) − 1)/N , so that θ̂l = 1 + 2λl. These quantities are
nonpositive, so we get that for any k, l ∈ J0, N − 1K, 1 + λk + λl ≤ (1 + λk)(1 + λl) and

P̃ (2)
n ((x, y), (x, y)) =

1

N2

∑

k,l∈J0,N−1K

(1 + λk + λl)
n

≤


 1

N

∑

l∈J0,N−1K

(1 + λl)
n




2

=

(
E[Sn]

N

) 2
K

according to Lemma 15.
Furthermore, since we have for any l ∈ J0, N − 1K, − 4

N ≤ λl ≤ 0, it appears that for any k, l ∈
J0, N − 1K,

(1 + λk)(1 + λl) = 1 + λl + λk + λkλl

≤ 1 + λl + λk +
16

N2

≤
(

1 +
16

N2

(
1 − 8

N

)−1
)

(1 + λl + λk)

≤
(

1 +
16 × 9

N2

)
(1 + λl + λk)

and the wanted lower bound follows.
The announced equivalence is an immediate consequence of Lemma 16 and of the fact that for
fixed K ≥ 3 and α > 0,

lim
N→∞

(
1 +

144

N2

)⌊αN1+ 2
K ⌋

= 1

�

Note that if in (17) we could replace the term P[Zn(x) = x, Zn(y) = y] = P
(2)
n ((x, y), (x, y)) by

P̃
(2)
n ((x, y), (x, y)), we could bound below and above the variance by

−
(

1 − N(N − 1)(N − 8)

N3

)
E

2[Sn] + E[Sn] ≤ Var(Sn) ≤ −
(

1 − N(N − 1)

N2

)
E

2[Sn] + E[Sn]

(at least for N ≥ 9). Taking into account Lemma 16, we could then conclude to the
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Proposition 19 Take K ≥ 3 and consider times of the kind nN ≔ ⌊αNN1+ 2
K ⌋, where (αN )N∈N\{0,1}

is a sequence of positive numbers converging to α ∈ [0, +∞). Assume that

lim
N→∞

αNN
2(K−2)

(4K−1)K = +∞ (18)

(in particular this is automatic if α > 0), then we have

lim
N→∞

Var(SnN
)

E2[SnN
]

= I−K(α)

with the convention I−K(0) = 0.

This result will be the crucial estimate to complete the proof of the transition phenomenon alluded
to in Theorem 2.

But let us first prove the above proposition by comparing the powers of P (2) with those of P̃ (2).
To go in this direction, it is convenient to introduce (X̃n, Ỹn)n∈N a Markov chain on E2

N starting

from (x, y) and admitting P̃ (2) as transition matrix. Consider

τ̃ ≔ inf{n ∈ N : d(X̃n, Ỹn) ≤ 1} and τ ≔ inf{n ∈ N : d(Xn, Yn) ≤ 1}

Since P (2) and P̃ (2) coincide on the lines corresponding to couples (x′, y′) ∈ E2
N such that d(x′, y′) >

1 and since the chains (Xn, Yn)n∈N and (X̃n, Ỹn)n∈N start from the same couple (x, y), the laws of
(τ, (Xn, Yn)n<τ ) and (τ̃ , (X̃n, Ỹn)n<τ̃ ) are the same. It follows that

∑

(x′,y′)∈E2
N

∣∣∣P (2)
n ((x, y), (x′, y′)) − P̃ (2)

n ((x, y), (x′, y′))
∣∣∣

=
∑

(x′,y′)∈E2
N

∣∣∣P[(Xn, Yn) = (x′, y′)] − P[(X̃n, Ỹn) = (x′, y′)]
∣∣∣

=
∑

(x′,y′)∈E2
N

∣∣∣P[(Xn, Yn) = (x′, y′), τ ≤ n] − P[(X̃n, Ỹn) = (x′, y′), τ̃ ≤ n]
∣∣∣

≤
∑

(x′,y′)∈E2
N

P[(Xn, Yn) = (x′, y′), τ ≤ n] + P[(X̃n, Ỹn) = (x′, y′), τ̃ ≤ n]

= P[τ ≤ n] + P[τ̃ ≤ n]

= 2P[τ̃ ≤ n] (19)

The next result enables to evaluate the r.h.s. in the time scale we are interested in:

Lemma 20 There exists a universal constant c > 0 such that τ̃ is stochastically bounded below by
an exponential random variable of parameter c/(L2N), where N ≥ 8 and L ≔ d(x, y) ≥ 2.

Proof

Define for n ∈ N, Vn ≔ d(X̃n, Ỹn). It appears easily that V ≔ (Vn)n∈N is a birth and death Markov
chain on J0, ⌊N/2⌋K, starting from L ≥ 2. If N ≥ 8 is even, its transition matrix P̌ is given by

∀ x, y ∈ J0, N/2K, P̌ (x, y) ≔





2
N , if x 6∈ {0, N/2} and |y − x| = 1
4
N , if x ∈ {0, N/2} and |y − x| = 1
1 − 4

N , if x = y
0 , otherwise

(if N ≥ 8 is odd, this transition matrix has to be slightly modified: P̌ ((N −1)/2, (N −3)/2) = 2/N
and P̌ ((N − 1)/2, (N − 1)/2) = 1 − 2/N). Then we have

τ̃ ≔ inf{n ∈ N : Vn = 1}
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To come back to a well-known absorbing problem, consider the new transition matrix P̆ on J1, LK
given by

∀ x, y ∈ J1, LK, P̆ (x, y) ≔





2
N , if x 6∈ {1, L} and |y − x| = 1
4
N , if x = L and y = L − 1
1 − 4

N , if x = y 6= 1
0 , otherwise

Let U ≔ (Un)n∈N be a corresponding Markov chain starting from L (note that it is absorbed at
1). It is not difficult to construct a coupling of V and U such that

∀ n ≤ τ̃ , Un ≤ Vn

This shows that τ̃ is stochastically bounded below by

τ̆ ≔ inf{n ∈ N : Un = 1}

The advantage of the latter absorbtion time is that its distribution is well-known (see Karlin and
McGregor [11]): let (θ̆l)l∈J1,L−1K be the nonzero eigenvalues of P̆ , if they are all nonnegative then
τ̆ is distributed as a sum of independent geometric random variables of respective parameters the
family (θ̆l)l∈J1,L−1K. In our situation these eigenvalues are known (see for instance the last example
of Diaconis and Miclo [7]):

∀ l ∈ J1, L − 1K, θ̆l = 1 +
4

N

(
cos

(
π(2l − 1)

2(L − 1)

)
− 1

)

It follows that τ̆ is stochastically bounded below by τ̆1 geometric random variable of parameter θ̆1,
which means that

∀ n ∈ N
∗, P[τ̆1 = n] = (1 − θ̆1)θ̆n−1

1

The random variable τ̆1 is itself stochastically bounded below by an exponential random variable
of parameter ln(1/θ̆1).
The result announced in the above lemma then comes from the existence of a constant c > 0 such
that for any N ≥ 8 and L ≥ 2,

ln(1/θ̆1) ≤ c

L2N

�

The next result gives an evaluation of the error made by replacing P (2) by P̃ (2) on the time interval
we are interested in.

Lemma 21 Let c > 0 be the constant defined in the previous lemma and let n ∈ N and L ∈
J2, ⌊N/2⌋K be given. For N ≥ 8, we have

max
m∈J0,nK, x,y∈Z/(NZ) : d(x,y)≥L

∣∣∣P (2)
m ((x, y), (x, y)) − P̃ (2)

m ((x, y), (x, y))
∣∣∣ ≤ 2cn

NL2

Consider times of the kind nN ≔ ⌊αNN1+ 2
K ⌋, where (αN )N∈N\{0,1} is a sequence of positive num-

bers, and take LN ≔ α
1
4
NN

1
2
+ 1

K . Assume either that limN→∞ αN = 0 or that K ≥ 3 and that the
sequence (αN )N∈N\{0,1} converges to some α > 0, then we have for large N ,

∑

x,y∈Z/(NZ) : d(x,y)≥LN

(P (2)
nN

((x, y), (x, y)))K ∼
∑

x 6=y∈Z/(NZ)

(P̃ (2)
nN

((x, y), (x, y)))K
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Proof

According to (19), we have for any m ∈ J0, nK and any x, y ∈ Z/(NZ) such that d(x, y) ≥ L,
∣∣∣P (2)

m ((x, y), (x, y)) − P̃ (2)
m ((x, y), (x, y))

∣∣∣ ≤ 2P[τ̃ ≤ m]

≤ 2P[τ̃ ≤ n]

≤ 2P

[
L2

NN

c
E ≤ n

]

where the constant c > 0 is defined in Lemma 20 and where E is an exponential random variable
of parameter 1. So the latter probability is

P

[
E ≤ c

L2
NN

n

]
= 1 − exp

(
− c

L2
NN

n

)

≤ c

L2
NN

n

where we used the convexity inequality exp(−s) ≥ 1 − s valid for any s ∈ R, and this leads to the
announced bound.
Concerning the wanted equivalence, recall that in the r.h.s. the quantity P̃

(2)
nN

((x, y), (x, y)) does
not depend on the couple (x, y) ∈ E2

N . Lemma 18 shows that for large N ,

P̃ (2)
nN

((x, y), (x, y)) = P̃ (2)
nN

((0, 0), (0, 0))

∼
(

E[SnN
]

N

) 2
K

By our assumption on the times nN , for N ∈ N \ {0, 1}, we can find a constant a > 0 such that for

any N ∈ N \ {0, 1}, nN ≤ aN1+ 2
K , and Lemma 15 and Lemma 16 imply that

lim inf
N→∞

N
2
K P̃ (2)

nN
((0, 0), (0, 0)) = lim inf

N→∞
E

2
K [SnN

]

≥ lim inf
N→∞

E
2
K

[
S

aN1+ 2
K

]

= I2(a)

Thus by the choice of LN ≔ α
1
4
NN

1
2
+ 1

K , our assumptions implies that for large N ,

P̃ (2)
nN

((0, 0), (0, 0)) ≫ c

L2
NN

nN

so that uniformly in x, y ∈ Z/(NZ) such that d(x, y) ≥ LN , we have

P (2)
nN

((x, y), (x, y)) ∼ P̃ (2)
nN

((x, y), (x, y))

The announced equivalence is then a consequence of

card({(x, y) : d(x, y) ≥ LN}) ∼ N2

because our assumptions also imply that limN→∞ LN/N = 0.
�

So in the time scale we are interested in, we can replace in (17) most of the terms P[Zn(x) =

x, Zn(y) = y] by P̃
(2)
n ((x, y), (x, y)). To end the proof of Proposition 19, it remains to show that,

with the notations of Lemma 21 and under the assumptions of Proposition 19,

lim
N→∞

∑

x 6=y∈EN : d(x,y)≤LN

(P (2)
nN

((x, y), (x, y)))K = lim
N→∞

2N
∑

x∈J1,LN K

(P (2)
nN

((0, x), (0, x)))K

= 0 (20)
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To do so, we will produce a direct bound on P
(2)
nN

((x, y), (x, y)), but it won’t be so sharp. The
underlying idea is to use heat kernel type estimates deduced from isoperimetric information (for
a well-written introduction to this subject, see for instance Coulhon [4]). So let us consider the

transition kernel Q(2) which is defined by the same formulas as P (2), except that E
(2)
N is replaced

by V(2)
≔ Z

2 \ △(Z2) (where △(Z2) ≔ {(x, x) : x ∈ Z} is the diagonal of Z
2). We endow V(2)

with a graph structure by introducing the set of edges

E(2)
≔ {{x, y} : x 6= y ∈ V(2) and Q(2)(x, y) > 0}

We denote respectively by λ and λ∂ the counting measures on V(2) and on E(2). Let us also
designate by R the set of nonempty finite subsets of V(2). If R ∈ R, its boundary is the finite
subset of E(2) defined by

∂R ≔ {{x, y} ∈ E(2) : x ∈ R and y 6∈ R} (21)

Lemma 22 There exists a constant c > 0 such that the 2-dimensional isoperimetric inequality is
satisfied:

∀ R ∈ R,
λ∂(∂R)√

λ(R)
≥ c

Proof

The typical example of a 2-dimensional isoperimetric inequality is that of V̄ ≔ Z
2 endowed with

its traditional nearest neighborhood graph structure. More rigorously, consider the set of edges
Ē ≔ {{x, y} ⊂ Z

2 : |x − y| = 1} and denote respectively by λ̄ and λ̄∂ the counting measures on V̄
and on Ē . For any R ∈ R̄, the set of nonempty finite subsets of V̄, we define the boundary set ∂̄R
by the same formula (21), with E(2) replaced by Ē . It is well-known (see for instance Coulhon [4]),
that there exists a constant c̄ > 0 such that

∀ R ∈ R̄,
λ̄∂(∂R)

λ̄
1
2 (R)

≥ c̄

(more generally and with obvious notations, a similar result is true for the d-dimensional lattice

Z
d, with d ∈ N

∗, except that in the l.h.s., λ̄
1
2 (R) has to be replaced by λ̄

d−1
d (R), this corresponds

to the d-dimensional isoperimetric inequality).
Let us come back now to the graph (V(2), E(2)) which can be seen (from “far away”) as a

slight modification of (V̄, Ē). First consider R ∈ R which is symmetrical, in the sense that if
x = (x1, x2) ∈ R then x̃ ≔ (x2, x1) also belongs to R. Define

R̄ ≔ R ⊔ {(x1, x1) ∈ Z
2 : ∃ x2 ∈ Z with |x1 − x2| = 1 and (x1, x2) ∈ R}

and let us show that

λ∂(R) ≥ λ̄∂(R̄)

2
(22)

Indeed, let {x, y} ∈ ∂̄R̄ be given, with x ∈ R and y 6∈ R and consider the different possibilities
which can occur:
• If x ∈ V(2) and y ∈ V(2), then {x, y} ∈ ∂R.
• If x = (x1, x1) ∈ △(Z2) and y = (y1, y2) ∈ V(2), for instance if y1 = x1 and y2 = x1 + 1. By
definition of R̄, it is easy to check that either {(x1 − 1, x1), (x1 − 1, x1 + 1)} ∈ ∂R or {(x1 − 1, x1 +
1), (x1, x1 + 1)} ∈ ∂R (depending on the belonging or not of the point (x1 − 1, x1 + 1) to R).
• The possibility y ∈ △(Z2) is not permitted by our definition of R̄.
So to any edge of ∂̄R̄, we can associate an edge of ∂R and through this relation any edge of ∂R

26



can be associated only twice to an edge of ∂̄R̄. The bound (22) then follows.
Note that trivially we also have λ(R) ≤ λ̄(R̄), so we get

λ∂(∂R)

λ
1
2 (R)

≥ 1

2

λ̄∂(∂R̄)

λ̄
1
2 (R̄)

and

∀ R ∈ R̃,
λ∂(∂R)√

λ(R)
≥ c̄

2

where R̃ is the subset of R consisting of symmetrical sets.
Next consider R ∈ R and let R̃ ∈ R̃ be its symmetrized set:

R̃ ≔ {x ∈ V(2) : x ∈ R or x̃ ∈ R}

We will show that

λ∂(∂R)

λ
1
2 (R)

≥ 1

2

λ∂(∂R̃)

λ
1
2 (R̃)

so the above lemma will be proven with c ≔ c̄/4.

Since we have clearly λ(R) ≤ λ(R̃), it is sufficient to see that λ∂(R) ≥ λ∂(R̃)
2 . To do so, let

{x, y} ∈ ∂R̃, with x ∈ R̃ and y 6∈ R̃. If x ∈ R then we have {x, y} ∈ ∂R, because R̃c ⊂ Rc. If
x̃ ∈ R, then {x̃, ỹ} ∈ ∂R, because we also have ỹ ∈ R̃c ⊂ Rc. Thus an argument similar to the one
leading to (22) enables us to conclude the desired result.

�

Let us define a new transition kernel Q̃(2) on V(2), by imposing that

∀ x 6= y ∈ V(2), Q̃(2)(x, y) ≔

{
1
4 , if {x, y} ∈ E(2)

0 , otherwise

The link with the boundary measure λ∂ is that

∀ x 6= y ∈ V(2), λ∂({x, y}) = 4λ(x)Q̃(2)(x, y)

The isoperimetric inequality of the above lemma then implies the following upper bound on the
diagonal (see Theorem 4.2 of Coulhon [4]): there exists a constant c′ > 0 such that

∀ x ∈ V(2), ∀ n ∈ N, Q̃(2)
n (x, x) ≤ c′

1 + n

(a d-dimensional isoperimetric inequality will lead to a Gaussian bound of the type c′(1 + n)−d/2).
Note that for N ≥ 4, the kernel Q(2) is strongly related to Q̃(2): with probability 4/N the transition
is the same and otherwise the current state does not make a move. In particular we get that

∀ x ∈ V(2), ∀ n ∈ N, Q(2)
n (x, x) =

∑

p∈J0,nK

(
n

p

)(
4

N

)p(
1 − 4

N

)n−p

Q̃(2)
p (x, x)

≤ c′
∑

p∈J0,nK

(
n

p

)(
4

N

)p(
1 − 4

N

)n−p 1

p + 1

=
c′N

4(n + 1)

∑

p∈J0,nK

(
n + 1

p + 1

)(
4

N

)p+1(
1 − 4

N

)n−p

≤ c′
N

n + 1

By comparison, this bound enables to evaluate P (2) on the diagonal:
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Lemma 23 There exists a constant c′′ > 0 such that for N ≥ 4,

∀ x ∈ Z/(NZ), ∀ n ∈ N, P (2)
n ((0, x), (0, x)) ≤ 1 ∧

(
c′′
(

N

1 + n
+

n

N3

))

Proof

By symmetry of the problem, we can assume that x ∈ J0, ⌊N/2⌋K (where Z/(NZ) was naturally
identified with J0, N − 1K) and consider (Xn, Yn)n∈N be a Markov chain starting from (0, x) and
admitting P (2) as transition kernel. Let y ≔ (x + N)/2, if x + N is even we define τX (respectively
τY ) as the first time (Xn)n∈N (resp. (Yn)n∈N) reaches y and if x+N is odd, let τX (respectively τY )
be the first time (Xn)n∈N (resp. (Yn)n∈N) reaches either (x + N + 1)/2 or (x + N − 1)/2. Next we
“cut” the discrete circle Z/(NZ) at y. This means that now, if x+N is even (respectively odd), we
identify Z/(NZ) with Jy−N +1,−1K⊔J0, yK (resp. with Jy−N +1/2,−1K⊔J0, y− 1

2K). Then up to

the time τ ≔ τX ∧ τY , (Xn, Yn)n∈N behaves like a Markov chain (X̃n, Ỹn)n∈N on V(2) starting from
(0, x) and admitting Q(2) as transition matrix (more rigorously this means there exists a coupling
between these two chains so that for any n ≤ τ , (X̃n, Ỹn) = (Xn, Yn)). It follows that for any
n ∈ N, we have

P (2)
n ((0, x), (0, x)) ≤ Q(2)

n ((0, x), (0, x)) + P[τ ≤ n]

≤ Q(2)
n ((0, x), (0, x)) + P[τX ≤ n] + P[τY ≤ n]

= Q(2)
n ((0, x), (0, x)) + 2P[τX ≤ n]

≤ Q(2)
n ((0, x), (0, x)) + 2P[τ̃ ≤ n]

with

τ̃ ≔ inf{n ∈ N : d(0, Xn) ≥ y ∧ (N − y) − 1/2}

Arguments similar to those used in the proof of Lemma 20 enable to see that there exists a univeral
constant c′′′ > 0 such that τ̃ is stochastically bounded below by an exponential random variable of
parameter c′′′N−1(y ∧ (N − y)− 1/2)−2. But for N ≥ 4, we have y ∧ (N − y) ≥ N/4, so we deduce
that for any time n ∈ N,

P[τ̃ ≤ n] ≤ 1 − exp(−82c′′′n/N3)

≤ 82c′′′
n

N3

The announced result then follows from the bound given above the lemma on Q
(2)
n ((0, x), (0, x)).

�

The proof of (20) is now clear: by the previous estimate, we have

N
∑

x∈J1,LN K

(P (2)
nN

((0, x), (0, x)))K ≤ NLN

(
c′′
(

N

1 + nN
+

nN

N3

))K

and taking into account the form of nN , this expression will vanish for large N if

lim
N→∞

N−1LN
1

αK
N

= 0

and

lim
N→∞

N−2K+3LNαK
N = 0

28



Remembering that LN ≔ α
1
4
NN

1
2
+ 1

K and that the sequence (αN )N∈N\{0,1} is bounded, the latter
convergence is a consequence of the fact that −2K + 7/2 + 1/K is negative for K ≥ 3. Concerning
the former convergence, it amounts to the condition (18) of Proposition 19, and this ends its proof.
Taking into account Corollary 17, we can now complete the proof of the transition phenomenon of
Theorem 2, which is based on the following observation: for any time n ∈ N, we have

P[Bc
n] = P[Sn = 0]

≤ Var(Sn)

E2[Sn]

Let α > 0 be fixed, Proposition 19 implies that

lim inf
N→∞

P[B
αN1+ 2

K
] ≥ 1 − 1

IK(α)
(23)

so as announced,

lim
α→0+

lim inf
N→∞

P[B
αN1+ 2

K
] = 1

Remark 24 We strongly believe that the condition (18) of Proposition 19 is only technical
and that a further investigation should enable to remove it. It would follow that the transition
phenomenon for the non-existence of a fixed point is unique in the sense given in the introduction.

�

To complete the proof of Theorem 2, it remains to show that the transition for the non-existence
of a fixed point is flared, namely to find a non-empty interval (α∗, α

∗) ⊂ R+ such that for any
α ∈ (α∗, α

∗),

0 < L(α) ≤ L(α) < 1 (24)

where

L(α) ≔ lim inf
N→∞

P

[
B

αN1+ 2
K

]

L(α) ≔ lim sup
N→∞

P

[
B

αN1+ 2
K

]

Corollary 17 already shows that L(α) < 1 for α ∈ (α′, +∞). Unfortunately, (23) only informs us
that L(α) > 0 for α ∈ (0, α′). To go beyond α′, we use Bonferroni inequalities (also known under
the name of exclusion-inclusion principle) which in our context say that at any time n ∈ N: for
any odd p ≥ 1,

P(∪x∈EN
Bn(x)) ≤

p∑

l=1

(−1)l−1
∑

x1<x2<···<xl∈EN

P
[
∩j∈J1,lKBn(xj)

]

and for any even p ≥ 2,

P(∪x∈EN
Bn(x)) ≥

p∑

l=1

(−1)l−1
∑

x1<x2<···<xl∈EN

P
[
∩j∈J1,lKBn(xj)

]

Consider the case p = 2, we get

P[Bn] ≥
∑

x∈EN

P[Bn(x)] −
∑

x<y∈EN

P[Bn(x) ∩ Bn(y)]
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According to (17), the last sum is equal to (Var(Sn) − E[Sn] + E
2[Sn])/2 and it follows that

P[Bn] ≥ 3

2
E[Sn] − 1

2
E

2[Sn] − 1

2
Var(Sn)

Let α > 0 be fixed, for K ≥ 3, Lemma 16 and Proposition 19 imply that

lim inf
N→∞

P[B
αN1+ 2

K
] ≥ 3

2
IK(α) − 1

2
I2K(α) − 1

2
IK(α)

= IK(α)

(
1 − 1

2
IK(α)

)

We deduce that L(α) > 0 for α ∈ (α′′, +∞) with

α′′
≔ inf{α > 0 : IK(α) ≤ 2}

=
1

22+ 2
K π

< α′

Together with (23), this implies that L(α) > 0 for any α ∈ (0, +∞). Thus (24) holds with α∗ = α′

and α∗ = +∞.

We end this section with the observation that the interval on which we know that L(α) < 1
can be improved as K becomes larger and larger:

Remark 25 The study of the flared transition relative to the non-existence of a fixed point in the
neighbor generating transposition model can be pushed further, as it is suggested by the Bonferroni
inequalities.
For p ≥ 3 and x1 < x2 < · · · < xp ∈ EN , the p-tuple process (Zn(x1), ..., Zn(xp))n∈N is a Markov
chain, let P (p) be its transition matrix. As it was done in this section for the case p = 2, we can
consider P̃ (p) the transition matrix on Z/(NZ) where the main interaction of exchange between
two components has been removed from P̃ (p). Considerations similar to those of Lemma 18 enable
to see that for N large

P̃
(p)

⌊αN1+ 2
K ⌋

((x1, ..., xp), (x1, ..., xp)) ∼ Ip(α)
1

N
p

K

Furthermore, arguments similar to those which have led to Proposition 19 show that for any given
α > 0, the quantity

∑

x1<x2<···<xp

P

[
∩j∈J1,pKB

αN1+ 2
K

(xj)
]

=
∑

x1<x2<···<xp

(P
(p)

⌊αN1+ 2
K ⌋

((x1, ..., xp), (x1, ..., xp)))K

has the same behavior for large N as

∑

x1<x2<···<xp

(P̃
(p)

⌊αN1+ 2
K ⌋

((x1, ..., xp), (x1, ..., xp)))K

at least if K > (p + 2)/2. Thus if p is odd, we get that

L(α) ≤
p∑

l=1

(−1)l−1 I lK(α)

l!

while if p is even, we have

L(α) ≥
p∑

l=1

(−1)l−1 I lK(α)

l!
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Note that as α → 0+, the latter r.h.s. goes to −∞, so none of these lower bounds enables to recover
the fact that limα→0+ L(0) = 1. Of course, one would like to forget the condition K > (p + 2)/2
and let p go to infinity to obtain

lim
N→∞

P

[
B

αN1+ 2
K

]
= 1 − exp(−IK(α)) (25)

Heuristically this is what we will do in next section by allowing the multiplicity K to depend on
the size N .

�

5 Sharp transition for the neighbor generating trans-

positions

Here we give the proof of an extension of Theorem 3. It is based on the estimates of the previous
section, whose arguments indeed simplify in the case we are interested in of multiplicity increasing
with size. The heuristic convergence (25) gives a feeling why it should be true: for large K, the
r.h.s. seen as a function of α ∈ R+ becomes closer and closer to a function whose value is 1 on
[0, α′) and 0 on [α′, +∞), where α′ = 1/(4π) was introduced in Corollary 17. But this picture is
also a little misleading, since the true critical value α̃ appearing in Theorem 3 is not equal to α′,
as it will be checked in Section 6. This comes from the different renormalizations we use: in some
sense the limits that we are considering are not commuting.

Recall that the function J was defined in the introduction by

J : R+ ∋ α 7→
∫ 1

0
exp(−2α(1 − cos(2πs))) ds

and for any β > 0, consider α(β) ∈ R
∗
+ the unique value such that J(α(β)) = exp(−1/β). Theo-

rem 3 can be extended into

Theorem 26 In the model of neighbor generating transpositions, there is a (K, T )-sharp transition
for the non-existence of a fixed point with

K(N) ≔ β ln(N)

T (N) ≔ α(β)N

Let α, β > 0 be given, from now on, we denote for N ≥ 2 ∨ exp(2/β)

KN ≔ ⌊β ln(N)⌋
nN (α) ≔ ⌊αN⌋

As usual our primary object of interest will the random variable counting the number of fixed
points

S(N, α) ≔
∑

x∈EN

1I
B

(KN )

nN (α)
(x)

because the approach presented in Section 2 shows that the above theorem is a consequence of the
following estimates

31



Proposition 27 The crude asymptotical behavior of the expectation of the above sum is

lim
N→∞

E[S(N, α)] =

{
+∞ , if α < α(β)
0 , if α > α(β)

(26)

Furthermore, in the case α < α(β), we have

lim
N→∞

Var(S(N, α))

E2[S(N, α)]
= 0 (27)

The proof of (26) begins with the explicit formula for the expectation given in Lemma 15:

E[S(N, α)] = N


 1

N

∑

l∈J0,N−1K

(
1 +

2

N

(
cos

(
2πl

N

)
− 1

))nN (α)



KN

Note that we can find a universal constant c > 0 such that for any l ∈ J0, N − 1K,

exp
(
− c

N2

)
exp

(
2

N

[
cos

(
2πl

N

)
− 1

])
≤ 1 +

2

N

(
cos

(
2πl

N

)
− 1

)

≤ exp

(
2

N

[
cos

(
2πl

N

)
− 1

])

so since nN (α)KN/N2 goes to zero for large N , we get that

E[S(N, α)] ∼ N


 1

N

∑

l∈J0,N−1K

exp

(
2

N

[
cos

(
2πl

N

)
− 1

]
nN (α)

)


KN

= N


 1

N

∑

l∈J0,N−1K

exp

(
2α

[
cos

(
2πl

N

)
− 1

])


KN

Next recognizing a Riemann type sum, we have

lim
N→∞

1

N

∑

l∈J0,N−1K

exp

(
2α

[
cos

(
2πl

N

)
− 1

])
= J(α)

so it appears that

lim
N→∞

ln(E[S(N, α)])

ln(N)
= 1 + β ln(J(α)) (28)

and the announced convergence (26) follows at once.

Concerning the convergence (27), since for α < α(β), we have limN→∞ E[S(N, α)] = +∞, it is
sufficient (recall (17)) to show that

lim
N→∞

E
−2[S(N, α)]

∑

x 6=y∈EN

P
KN [ZnN (α)(x) = x, ZnN (α)(y) = y] = 1

Using the notations introduced above Lemma 18 and identifying EN with Z/(NZ), this amounts
to

lim
N→∞

E
−2[S(N, α)]N

∑

x 6=0∈Z/(NZ)

(P
(2)
nN (α)((0, x), (0, x)))KN = 1
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and Lemma 18 implies immediately that

lim
N→∞

E
−2[S(N, α)]N

∑

x 6=0∈Z/(NZ)

(P̃
(2)
nN (α)((0, x), (0, x)))KN

= lim
N→∞

E
−2[S(N, α)]

N(N − 1)

2
(P̃

(2)
nN (α)((0, 0), (0, 0)))KN

= 1 (29)

so we are led to show that

lim
N→∞

∑
x 6=0∈Z/(NZ)(P

(2)
nN (α)((0, x), (0, x)))KN

∑
x 6=0∈Z/(NZ)(P̃

(2)
nN (α)((0, x), (0, x)))KN

= 1 (30)

Let (LN )N∈N\{0,1} be a sequence of positive integers diverging to infinity but such that limN→∞ LN/N =
0. We decompose the above numerator into

R1(N, α) ≔
∑

x∈Z/(NZ) : d(0,x)>LN

(P
(2)
nN (α)((0, x), (0, x)))KN

R2(N, α) ≔
∑

x∈Z/(NZ) : 1≤d(0,x)≤LN

(P
(2)
nN (α)((0, x), (0, x)))KN

On one hand, according to Lemma 21, we have, with the constant c > 0 defined there and for
any x ∈ Z/(NZ) such that d(0, x) > LN ,

∣∣∣P (2)
nN (α)((0, x), (0, x)) − P̃

(2)
nN (α)((0, x), (0, x))

∣∣∣ =
∣∣∣P (2)

nN (α)((0, x), (0, x)) − P̃
(2)
nN (α)((0, 0), (0, 0))

∣∣∣

≤ 2cnN (α)

NL2
N

≤ 2cα

L2
N

and on the other hand, (28) and (29) show that

lim inf
N→∞

P̃
(2)
nN (α)((0, 0), (0, 0)) ≥ J2(α)

We deduce that for large N ,

R1(N) ∼
∑

x∈Z/(NZ) : d(0,x)>LN

(P̃
(2)
nN (α)((0, x), (0, x)))KN

= (N − 2LN − 1)+P̃
(2)
nN (α)((0, x), (0, x)))KN

∼
∑

x 6=0∈Z/(NZ)

(P̃
(2)
nN (α)((0, x), (0, x)))KN

Finally, contrary to what we have done in Section 4, we don’t need here isoperimetric estimates
to treat the term R2(N, α), we just write that

R2(N, α) ≤ 2LN + 1

≪ J2(α)(N − 1)

∼
∑

x 6=0∈Z/(NZ)

(P̃
(2)
nN (α)((0, x), (0, x)))KN

to end the proof of (30).

33



Remark 28 We believe that the results obtained in this section and in the previous one also hold
for the transition corresponding to transitivity. But to follow the approach presented in Section 3,
we would need to know the spectra of the exclusion processes associated to the simple random
walk on Z/(NZ). Unfortunately they do not seem to be known and this looks like an interesting
subject to be investigated.

�

6 Simulations

Here we use the computer to evaluate numerically the constant α̃ and to plot Monte Carlo ap-
proximations of the mappings defined in (1) in several situations to illustrate our results and to
support some conjectures.

Usual numerical resolution techniques gives the following approximate value for the constant α̃
defined above Theorem 3:

α̃ ≈ 0.2916614

So as announced at the beginning of Section 5, α̃ is clearly different from α′ = 1/(4π) ≈ 0.0795775.
Note that α̃ is quite close to 0.25, so if we come back to the complexity arguments presented
after Theorem 2, we see that the complexities in the cases of uniform transpositions and neighbor
transpositions (of Theorem 3), respectively N ln(N)/2 and 2α̃N ln(N), are very close (without
taking into account the cost of the underlying uniform samplings). At least for the nonexistence of
a fixed point property, the last picture below suggests that if Theorem 3 holds for the transitivity
property, then the corresponding constant α should be not very far from 2α̃.

Now we come to the pictures of the mappings defined in (1).
We made several experiments with the computer algebra system Maple, using the package

“group” which provides facilities to represent permutations, compute product of permutations,
generate subgroups and compute orbits. Maple also has a command rand(1..N)() which allows to
produce sequences of integers between 1 and N almost following a uniform distribution.

For each case we experimented, we let the program run 100 (independent) times, then we took
the average values as an empirical estimation of the targeted probability. The graphics in Figure 1
picture interpolating curves.

6.1 Cut-off for transitivity in the uniform transposition case

Picture (a) is an illustration of Theorem 1. We fix K = 4 and we consider three values of N . The
empirical probability that the generated subgroup is transitive is plotted against the the time (or
the number of product of uniform transpositions) normalized by N ln(N)/(2K). The three values
for the size of the problem are:
N = 30, in red and thickness 4, at the right of the picture
N = 50, in blue and thickness 2, at the middle of the picture
N = 100 in black and thickness 1, very close to the previous plot.

As expected, a cut-off phenomenon appears around the normalized time 1.

6.2 Comparison of nonexistence of a fixed point and transitivity

in the uniform transposition case

Picture (b) shows that the events of nonexistence of a fixed point and transitivity are very close in
the uniform transposition case, in accordance with Theorem 1 and its proof. The values N = 30
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and K = 4 are fixed and as above the time is divided by N ln(N)/(2K) in the x-axis. The plot of
the empirical probabilities for transitivity (respectively for nonexistence of a fixed point) is in red
with thickness 4 (resp. in black thickness 1).

Of course, the graph for nonexistence of a fixed point is above the one for transitivity, but they
are very close. Indeed, if in Picture (a) we had rather plotted the curves for nonexistence of a fixed
point, we would have ended up with a very similar picture.

6.3 Flared transition for nonexistence of a fixed point in the

neighbor transposition case

Picture (c) is an illustration of Theorem 2. We fix K = 4 and we consider three values of N . The
empirical probability that there is no fixed point for the generated subgroup is plotted against the
time normalized by N1+ 2

K (recall this is just an order, so the value 1 has no real meaning in the
x-axis). The three values for the size of the problem are:
N = 30, in red and thickness 4
N = 50, in blue and thickness 2
N = 80 in black and thickness 1.

The three graphs are quite close, suggesting that there is indeed a fast convergence as N goes
to infinity of the graph of the transitivity probabilities as a function of the renormalized time.

6.4 Flared transition for transitivity in the neighbor transposition

case

Picture (d) suggest that Theorem 2 also holds for the transitivity property. The values are the
same as in Picture (c), except that we have plotted the empirical probabilities for the transitivity
property of the generated subgroup.

Again the three graphs are quite close, this also supports the conjecture there is a flared
transition in this situation. Note the limit graph would be quite different for nonexistence of a
fixed point and transitivity.

6.5 Comparison of nonexistence of a fixed point and transitivity

in the neighbor transposition case

Picture (e) shows that there is a nonnegligeable difference between the events of nonexistence of a
fixed point and transitivity in the neighbor transposition case, contrary to the uniform transposition
situation. The values N = 80 and K = 4 are fixed and the time is still divided by N1+ 2

K in the
x-axis. The plot of the empirical probabilities for nonexistence of a fixed point (respectively
transitivity) is in red with thickness 4 (resp. in blue thickness 2).

As expected, the graph for nonexistence of a fixed point is above the one for transitivity. Their
difference suggests there will be new difficulties if one wants to extend Theorem 2 to the transitive
case or to investigate the limiting graphs.

6.6 Comparison uniform vs neighbor transposition models

Picture (f) is an illustration for Theorem 3 and suggests that in order to extend it to the transitivity
property, α̃ would have to be modified. We consider N = 50 and K = 8 which is close to 2 ln(N). In
the x-axis, the time is renormalized by 0.26N which is also approximatively equal to N ln(N)/(2K).
The empirical probabilities are plotted. In the uniform transposition case, the probabilities for
nonexistence of a fixed point and for transitivity are the same, up to the thickness of the line,
black (and green inside) with thickness 6. On the contrary, in the neighbor case, the graphs of
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nonexistence of a fixed point and of transitivity are clearly distinct, their respective colors are red
and blue, with thickness 4 and 2.

Note that the plots of nonexistence of a fixed point probability are quite similar, this mirrors
the fact that both satisfy a cut-off phenomenon as predicted by Theorem 1 and 3. But the graph
for transitivity becomes also similar to them if its time scale is divided by two.
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