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PASSAGE TIME FROM FOUR TO TWO BLOCKS OF OPINIONS

IN THE VOTER MODEL

IRINA KURKOVA AND KILIAN RASCHEL

Abstract. We consider a voter model in which there are two candidates and initially,
in the population Z, four connected blocks of same opinions. We assume that a citizen
changes his mind at a rate proportional to the number of its neighbors that disagree with
him, and we study the passage from four to two connected blocks of same opinions. More
precisely, we make explicit the generating function of the probabilities to go from four to
two blocks in a given time, and we find the asymptotic of these probabilities when the
time goes to infinity.

Keywords. Voter model; Random walk in the quarter plane; Hitting times; Integral
representations
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1. Introduction

Context. Random walks with small steps in the quarter plane Z2
+ = {0, 1, 2, . . .}2 spatially

homogeneous in the interior and on each of the two axes are now rather well studied. The
analytic approach [7] elaborated by Fayolle, Iasnogorodski and Malyshev provided the
generating function, say H(x, y), of the stationary probabilities in the ergodic case, and
also that of the Green functions in the transient case. Further analysis allowed to compute
the asymptotic of these quantities along any path in Z

2
+, see [10, 12, 15, 18, 19].

This article is an attempt to incorporate the parameter z of time into this approach, in
order to derive the trivariate generating function H(x, y; z) of the probabilities hi,j,k that
the walk is in state (i, j) at time k. This is actually particularly important to be able to
deal with this time variable z, for combinatorics (e.g., to count certain numbers of walks
confined to the quarter plane, see [11]) and for probability as well (e.g., to compute the
distribution of some hitting times). Our work is one of the first attempts, after [3, 8], to
undertake the study of the function z 7→ H(x, y; z) and to derive asymptotic results from
it. This finds application for the voter model: indeed, this completes results of [2, 16] about
the hitting time of the so-called Heaviside configuration in the voter model with initially
four blocks of opinions.

Voter model. By the voter model we mean a continuous-time process on {0, 1}Z (here
and throughout, Z = {. . . ,−1, 0, 1, . . .}) that can be interpreted as follows: initially, there
is zero or one particle at each site of Z, then a particle appears (resp. disappears) at an
empty (resp. occupied) site x according to an exponential law with a rate proportional
to the number of nearest neighbors of x which are occupied (resp. empty). Moreover, we
assume that the initial state appertains to the set of configurations having a finite number
of empty (resp. occupied) sites on the left (resp. right) of the origin 0. In particular,
this implies that at any time the process will belong to this set of configurations. As a
consequence there is, at any time, a finite number of “01” (resp. “10”), i.e., a finite number
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of pairs of sites (x, x + 1) with zero (resp. one) particle at x and one (resp. zero) particle
at x+ 1.

The underlying discrete-time voter model is a Markov chain with the following dynamic:
denote by Ck the configuration at time k (and remember that according to the previous
paragraph, there is only a finite number of “01” and “10” in Ck); next, in order to construct
Ck+1, one first chooses with a uniform distribution one of these “01” and “10” in Ck, then
one replaces it, with probability 1/2, by “00” or “11”.

If the voter model starts from the Heaviside configuration, i.e., the configuration having
only occupied (resp. empty) sites on the left (resp. right) of the origin, then at any time, the
process will be a translation of it. This fact suggests to consider the following equivalence
relation: two configurations are said to be equivalent if they are translations the one of the
other.

From now on, we shall work on the underlying quotient space, the equivalence classes
of which being identified by finite sets of positive integers (X1, Y1, . . . ,XN , YN ):

(1.1) . . . 111

X1︷ ︸︸ ︷
000000

Y1︷ ︸︸ ︷
11111

X2︷ ︸︸ ︷
00000

Y2︷ ︸︸ ︷
11111 . . . . . .

XN︷︸︸︷
000

YN︷︸︸︷
1111 000 . . . ,

N being the number of finite blocks of zeros (or ones) and Xℓ (resp. Yℓ), ℓ ∈ {1, . . . , N},
the size of the ℓth block of zeros (resp. ones). The number N of finite blocks of zeros is
a non-increasing function of the time; furthermore, N = 0 corresponds to the class of the
Heaviside configuration.

We refer to [13] for additional details on the voter model and, more generally, for further
information about interacting particle systems.

Hitting time of the Heaviside configuration. Let τ denote the hitting time of the
Heaviside configuration. It is proved in [2] that

E[τ3/2−ǫ] <∞, ∀ǫ > 0,(1.2)

E[τ3/2+ǫ] = ∞, ∀ǫ > 0.(1.3)

The statement (1.2) is proved by an adequate use of some Lyapunov functions. To show
(1.3), it suffices to do it only for initial states with N = 1 in (1.1); that is done in [2], by
applying results of [1].

With the notations (1.1), consider the process starting from an initial state with N = 1:
(X1, Y1) = (X1(k), Y1(k))k>0. We rename it here (X,Y ) = (X(k), Y (k))k>0:

. . . 111

X︷ ︸︸ ︷
000000

Y︷ ︸︸ ︷
11111 000 . . . .

The process (X,Y ) is a Markov chain on Z
2
+ which is absorbed as it reaches the boundary,

since the Heaviside configuration is an absorbing state for the voter model. Moreover, using
the dynamic of the discrete-time voter model explained above, we obtain that (X,Y ) has
homogeneous transition probabilities in the interior of Z2

+ equal to (with obvious notations)

p1,0 = p1,−1 = p0,−1 = p−1,0 = p−1,1 = p0,1 = 1/6

and the others to 0, see Figure 1. Further, the hitting time τ can be expressed as

(1.4) τ = inf{k > 0 : X(k) = 0 or Y (k) = 0}.

Define also the hitting times of the horizontal and vertical axes:

(1.5) S = inf{k > 0 : Y (k) = 0}, T = inf{k > 0 : X(k) = 0},

so that τ , defined in (1.4), is equal to inf{S, T}.
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Figure 1. Transitions of the process (X,Y )

Main results. In this work, we find the probabilities that the process is absorbed at some
site of the boundary in a given time, namely, P(i0,j0)[S = k] and P(i0,j0)[T = k], for any

k > 0 and any (i0, j0) ∈ Z
2
+. For this we use Proposition 5 of Section 2, taken from [19,

Chapter F], which even gives an integral representation of the generating functions

hi0,j0(x; z) =
∑

i>1

∑

k>0

P(i0,j0)[(X,Y ) hits (i, 0) at time k]xizk,(1.6)

h̃i0,j0(y; z) =
∑

j>1

∑

k>0

P(i0,j0)[(X,Y ) hits (0, j) at time k]yjzk.(1.7)

Then P(i0,j0)[S = k] and P(i0,j0)[T = k] can be expressed from hi0,j0(1; z) and h̃i0,j0(1; z)
via the Cauchy formulas. Note, besides, that we also find the trivariate function

(1.8) H i0,j0(x, y; z) =
∑

i,j>1

∑

k>0

P(i0,j0)[(X(k), Y (k)) = (i, j)]xi−1yj−1zk

thanks to the functional equation (2.1).
The main result of this paper is the following.

Theorem 1. As the time k → ∞, we have

(1.9) P(i0,j0)[S = k] ∼ 9

16

(
3

π

)1/2 i0j0(i0 + j0)

k5/2
.

It will be a simple consequence of Proposition 8 and of classical singularity analysis [9,
Sections 6.2–6.4], see Section 3.

Since the transition probabilities of the walk are such that P(i0,j0)[S = k] = P(j0,i0)[T =
k], see Figure 1, the asymptotic of P(i0,j0)[T = k] is exactly the same. Also,

(1.10) P(i0,j0)[τ = k] = P(i0,j0)[S = k] +P(i0,j0)[T = k],

so that Theorem 1 entails the following corollary that completes the results of [2, 16].

Corollary 2. The result (1.3) proved in [2] for ǫ > 0 also holds for ǫ = 0.

Finally, the precision of the asymptotic result (1.9) implies Corollary 3 below that
compares two typical ways on conditioning the process (X,Y ) to never reach the axes.
Define h(i0, j0) = i0j0(i0+ j0)—it is the unique positive harmonic function associated with
the walk (X,Y ) absorbed at the boundary of Z2

+.

Corollary 3. The Doob h-process of (X,Y ) coincides in distribution with the limit, as

k → ∞, of the process conditioned on {τ > k}.
The proof relies on the following precise asymptotic, as k → ∞,

P(i0,j0)[τ > k] ∼ 27

16

(
3

π

)1/2 i0j0(i0 + j0)

k3/2
,

which is a direct consequence of Theorem 1 and (1.10). It is carried out then by a standard
reasoning as in [19, Chapter F].
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Other approaches. We close this introduction by mentioning other possible approaches
for analyzing asymptotic tail distribution of hitting times for random walks in cones of Zd.
First, as already quoted, methods using Lyapunov functions in [1, 2, 16] show the finiteness
or infiniteness of hitting times’ moments. A series of tail distribution estimates for hitting
times is presented in [22], by using potential theory. In a very recent work [4] the tail
asymptotic of the hitting time up to a multiplicative factor is obtained by comparison with
Brownian motion. All these methods are powerful for rather general random walks in conic
domains of Zd, but do not give as much accurate results as the analytic approach in this
paper. Finally, let us mention the paper [5], where an approach based on an extension of
the Karlin-McGregor formula is applied to the family of the so-called non-colliding random
walks. The latter leads to precise results, but it exploits a particular independence property
of this family, and therefore seems to be restricted to this class of models.

2. Exact distribution of the hitting times of both axes

A functional equation and the kernel of the walk. With the notations (1.6), (1.7) and
(1.8) of Section 1, we can state on {(x, y; z) ∈ C

3 : |x|, |y|, |z| 6 1} (here and throughout,
C denotes the complex plane) the following crucial functional equation:

(2.1) K(x, y; z)H i0,j0(x, y; z) = hi0,j0(x; z) + h̃i0,j0(y; z) − xi0yj0 ,

where K(x, y; z) is the following polynomial—called the kernel of the walk—, depending
only on the walk’s transition probabilities:

(2.2) K(x, y; z) = xyz[
∑

−16i,j61 pi,jx
iyj − 1/z].

For z = 0, Equation (2.1) simply becomes P(i0,j0)[(X(0), Y (0)) = (i0, j0)] = 1. For z = 1,
it becomes a functional equation between the Green functions generating function and the
absorption probabilities generating functions, studied in [12, 18, 19]. For the proof of (2.1),
we exactly use the same arguments as in [19, Chapter F].

We now study the set of the zeros of the kernel K(x, y; z) defined in (2.2). For this we
start by remarking that it can be written alternatively

(2.3) K(x, y; z) = a(x; z)y2 + b(x; z)y + c(x; z) = ã(y; z)x2 + b̃(y; z)x+ c̃(y; z),

where a(x; z) = z(x + 1)/6, b(x; z) = zx2/6 − x + z/6, c(x; z) = zx(x + 1)/6, ã(y; z) =

z(y + 1)/6, b̃(y; z) = zy2/6 − y + z/6 and c̃(y; z) = zy(y + 1)/6. Next, we introduce the
algebraic function Y (x; z) defined by K(x, Y (x; z); z) = 0. Note that K(x, y; z) = 0 is
equivalent to [b(x; z) + 2a(x; z)y]2 = d(x; z), where

d(x; z) = b(x; z)2 − 4a(x; z)c(x; z),

so that the construction of the function Y (x; z) is equivalent to that of the square root of
the polynomial d(x; z). For this we need the following:

Lemma 4. Let z ∈]0, 1[. The four roots of x 7→ d(x; z) are positive and mutually distinct.

We call them x1(z) < x2(z) < x3(z) < x4(z). They satisfy x1(z)x4(z) = x2(z)x3(z) = 1.
In particular, x1(z), x2(z) ∈]0, 1[ and x3(z), x4(z) ∈]1,∞[. Further, x1(0) = x2(0) = 0,

x3(0) = x4(0) = ∞, x2(1) = x3(1) = 1 and x1(1) = 7− 4
√
3, x4(1) = 7 + 4

√
3.

Proof. As we can easily verify, the polynomial d(x; z) is reciprocal, in other words it satisfies
x4d(1/x; z) = d(x; z). This property allows us to write it as a second degree polynomial in
the variable x + 1/x. Following this way we obtain the explicit expression of its roots: if
s1(z) = 3/z+1 and s2(z) = (6/z+3)1/2 , then x1(z) = s1(z)+s2(z)+[(s1(z)+s2(z))

2−1]1/2

and x2(z) = s1(z)− s2(z)+ [(s1(z)− s2(z))2 − 1]1/2, x3(z) = 1/x2(z) and x4(z) = 1/x1(z).
All the properties of Lemma 4 follow immediately from these explicit expressions. �
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There are two branches of the square root of d(x; z). Each determination leads to a
single valued and meromorphic function on the complex plane C appropriately cut, that
is, in our case, on C \ ([x1(z), x2(z)] ∪ [x3(z), x4(z)]). We have

Y (x; z) =
−b(x; z) ± d(x; z)1/2

2a(x; z)
,

and we fix the notations of the branches Y0(x; z) and Y1(x; z) by (arbitrarily) choosing that
|Y0(x; z)| < |Y1(x; z)| on the whole of C \ ([x1(z), x2(z)] ∪ [x3(z), x4(z)]). For more details
about the construction of algebraic functions, see, e.g., [20].

In a similar way, the functional equation (2.1) defines also an algebraic function X(y; z).
But it turns out that K(x, y; z) = K(y, x; z), see (2.2), so that X(y; z) = Y (y; z); in
particular, all properties proved for Y (x; z) immediately result in similar ones for X(y; z).

Explicit expression of distributions. They are obtained in the result that follows.

Proposition 5. The function hi0,j0(x; z) is equal to

hi0,j0(x; z) = xi0Y0(x; z)
j0

+

∫ x2(z)

x1(z)
ti0µj0(t; z)

[
∂tw(t; z)

w(t; z) − w(x; z)
− ∂tw(t; z)

w(t; z) − w(0; z)

]
[−d(t; z)]1/2dt,(2.4)

where

(2.5) µj0(t; z) =
1

[2a(t; z)]j0

(j0−1)/2∑

k=0

(
2k + 1

j0

)
d(t; z)k[−b(t; z)]j0−(2k+1),

and

(2.6) w(t; z) =
t(1 + t)

(t− x2(z))(t − x3(z)1/2)2
.

Equations (2.4) and (2.5) are obtained in [19, Chapter F], while (2.6) is found in [17].
It is worth noting that Equations (2.4) and (2.5) are valid not only for our random walk
under consideration, but in fact for all random walks with jumps to the eight nearest
neighbors, see [7] and [19, Chapter F]. On the other hand, finding an expression for the
function w(t; z) happens to be quite complex in general, and dependent on the particular
model. Further, in general, there is no reason for this function to be rational (in t) as in
(2.6), or even algebraic. To be complete, we note that for our model, w(t; z) is rational
because a certain group of automorphisms is finite. We refer to [6, 7, 11, 12, 17, 18, 19]
for any details on this group, and more generally on how finding such expressions.

Now, using the partial fraction expansion (direct consequence of (2.6))

∂tw(t; z)

w(t; z) − w(x; z)
− ∂tw(t; z)

w(t; z) − w(0; z)
=

x

t(t− x)
+

1

t−X1(Y0(x; z); z)
+

1

t−X1(Y1(x; z); z)
− 1

t+ 1
,

we immediately obtain the following.



6 IRINA KURKOVA AND KILIAN RASCHEL

Corollary 6. Function hi0,j0(x; z) can be split as hi0,j0(x; z) = hi0,j01 (x; z) + hi0,j02 (x; z) +

hi0,j03 (x; z), where

h1(x; z) = xi0Y0(x; z)
j0 ,(2.7)

h2(x; z) =
x

π

∫ x2(z)

x1(z)

tn0−1

t− x
µj0(t; z)[−d(t; z)]1/2dt,(2.8)

h3(x; z) =
1

π

∫ x2(z)

x1(z)
ti0

[
1

t−X1(Y0(x; z); z)
+(2.9)

1

t−X1(Y1(x; z); z)
− 1

t+ 1

]
µj0(t; z)[−d(t; z)]1/2dt.

The end of Section 2 aims at obtaining an expression of hi0,j0(1; z) which is efficient—in
the sense of computing the asymptotic of its coefficients. In order to achieve this, we are

going to make the change of variable b̂(t; z) = b(t; z)/[4a(t; z)c(t; z)]1/2 in the integrals
(2.8) and (2.9) of Corollary 6. The main reason of this is that using (2.5) yields

(2.10) µj0(t; z)[−d(t; z)]1/2 =

(
c(t; z)

a(t; z)

)j0/2

Uj0−1(−b̂(t; z))[1 − b̂(t; z)2]1/2,

where the (Un)n∈Z+
are the Chebyshev polynomials of the second kind, see [21]. We recall

that they are the orthogonal polynomials associated with the weight t 7→ [1−t2]1/21]−1,1[(t)
and that their explicit expression is

Un(u) =
(u+ [u2 − 1]1/2)n+1 − (u− [u2 − 1]1/2)n+1

2[u2 − 1]1/2
, ∀u ∈ C, ∀n ∈ Z+.

We also recall two properties of the Chebyshev polynomials of the second kind that we will
especially use here (see [21] for their proof):

— They have the parity of their order, in other words, for all u ∈ C and all n ∈ Z+,
Un(−u) = (−1)nUn(u);

— Their expansion in the neighborhood of 1 is Un(u) = (n + 1)[1 + n(n + 2)(u −
1)/3 +O(u− 1)2].

Further, function t 7→ b̂(t; z) is clearly a diffeomorphism between ]x1(z), x2(z)[ and ]−1, 1[;

in addition, b̂(t; z) = u implies b(t; z)2−4u2a(t; z)c(t; z) = 0, which, as a polynomial in the
variable t, is reciprocal, so that we can quite easily obtain and write the explicit expression
of its roots, called the tℓ(u; z), ℓ ∈ {1, . . . , 4}. Defining T (u; z) = 3/z+u2−u[2+u2+6/z]1/2,

then t2(u; z) = T (u; z)− [T (u; z)2 − 1]1/2, t3(u; z) = T (u; z) + [T (u; z)2 − 1]1/2, t1(u; z) =
t2(−u; z) and t4(u; z) = t3(−u; z). Notice that we have enumerated the tℓ(u; z) in such a
way that tℓ(1; z) = xℓ(z) for any ℓ ∈ {1, . . . , 4}. Moreover, it turns out that for u ∈ [−1, 1],

b̂(t2(u; z); z) = −u, so that the following result is an immediate consequence of the change
of variable t = t2(u; z) in Corollary 6 as well as of the identity (2.10).

Corollary 7. We have hi0,j0(1; z) = hi0,j01 (1; z) + hi0,j02 (1; z) + hi0,j03 (1; z), where

hi0,j01 (1; z) = [(3− z − 3[(1 − z)(1 + z/3)]1/2)/(2z)]j0 ,

hi0,j02 (1; z) =
1

π

∫ 1

−1

Uj0−1(u)t2(u; z)
i0+j0/2−1

t2(u; z)− 1
∂ut2(u; z)[1 − u2]1/2du,

hi0,j03 (1; z) =
1

π

∫ 1

−1
Uj0−1(u)t2(u; z)

i0+j0/2

[
1

t2(u; z)−X1(Y0(1; z); z)
+

+
1

t2(u; z)−X1(Y1(1; z); z)
− 1

t2(u; z) + 1

]
∂ut2(u; z)[1 − u2]1/2du.
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3. Asymptotic tail distribution of the hitting times

Let D denote the open unit disc: D = {z ∈ C : |z| < 1}. In order to prove Theorem 1,
we are going to prove that hi0,j0(1; z) is holomorphic in (1+ ǫ)D \ [1, 1+ ǫ[ and that in the
neighborhood of 1,

(3.1) hi0,j0(1; z) = (3/4)31/2i0j0(i0 + j0)[1− z]3/2[1 + o(1)] + hi0,j00 (z),

where hi0,j00 is holomorphic at 1; it will then be enough to use the results of [9, Sections
6.2–6.4].

For this, according to Corollary 7, we shall consider successively hi0,j01 (1; z), hi0,j02 (1; z)

and hi0,j03 (1; z) in Proposition 8. Theorem 1 will then be a direct consequence of these
three results.

Proposition 8. The functions hi0,j01 (1; z), hi0,j02 (1; z) and hi0,j03 (1; z) are holomorphic in

(1 + ǫ)D \ [1, 1 + ǫ[. Moreover, in the neighborhood of 1, we have

hi0,j01 (1; z) = −j031/2[1− z]1/2[1 + (3 + 4j0
2)(1 − z)/8 + f i0,j01,1 (z)(z − 1)2] + f i0,j01,2 (z),

hi0,j02 (1; z) =
31/2j0

2
[1− z]1/2[1 + (1/2)(3/4 + j0

2)(1− z) + f i0,j02,1 (z)(1 − z)2]

+
31/2j0
2π

(i0 + j0/2− 1/2) ln(1− z)[1 + (1− z)f i0,j02,2 (z)] + f i0,j02,3 (z),

hi0,j03 (1; z) =
31/2j0
16

(1− z)1/2[8 + (3 + 4j0
2 + 12i0(i0 + j0))(1− z) + f i0,j03,1 (z)(1 − z2)]

− 31/2j0
4π

(2i0 + j0 − 1) ln(1− z)[1 + (1− z)f i0,j03,2 (z)] + f i0,j03,3 (z),

where f i0,j01,1 , f i0,j01,2 , f i0,j02,1 , f i0,j02,2 , f i0,j02,3 , f i0,j03,1 , f i0,j03,2 and f i0,j03,3 are holomorphic at 1.

Proof of Proposition 8. The proof of the facts dealing with hi0,j01 (1; z) follows directly from
the expression of this function written in Corollary 7.

Let us now focus on hi0,j02 (1; z). We recall from Corollary 7 that

(3.2) hi0,j02 (1; z) =
1

π

∫ 1

−1

Uj0−1(u)t2(u; z)
i0+j0/2−1

t2(u; z) − 1
∂ut2(u; z)[1 − u2]1/2du,

where t2(u; z) = T (u; z) − [T (u; z)2 − 1]1/2 and T (u; z) = 3/z + u2 − u[2 + u2 + 6/z]1/2.

In particular, the fact that hi0,j02 (1; z) is holomorphic in (1 + ǫ)D \ [1, 1 + ǫ[ is clear, since
making the change of variable u 7→ −u in (3.2) allows us to write it as the integral on
[0, 1] of some function holomorphic in D × ((1 + ǫ)D \ [1, 1 + ǫ[)—note that any function
symmetrical in (T (u; z), T (−u; z)) is holomorphic w.r.t. z.

Let us now study the behavior of hi0,j02 (1; z) in the neighborhood of 1. For this, we are
first going to transform (3.2), until obtaining an expression that makes clearly appear the

singularities of hi0,j02 (1; z).
An easy calculation entails that ∂ut2 = ∂uT/(1 − t23). Moreover, by definition of the tℓ

(see Section 2), (z2/36)
∏4

ℓ=1(t−tℓ(u; z)) is equal to b(t; z)2−4u2a(t; z)c(t; z). In particular,∏4
ℓ=1(1− tℓ(u; z)) = (36/z2)(1 − z(1 + 2u)/3)(1 − z(1− 2u)/3). So we have

(3.3)
∂ut2(u; z)

t2(u; z) − 1
=

z2∂uT (u; z)(1 − t1(u; z))(1 − t4(u; z))(1 − t2(u; z))

18(1 − z(1− 2u)/3)(t2(u; z) − t3(u; z))(1 − z(1 + 2u)/3)
.

Let us now expand the quantity (1 − t2(u; z))t2(u; z)
i0+j0/2−1 according to the powers

of [T (u; z)2 − 1]1/2, say (1− t2(u; z))t2(u; z)
i0+j0/2−1 =

∑
k>0 F

i0,j0
k (u; z)[T (u; z)2 − 1]k/2.
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With these notations, (3.2) and (3.3), we get

(3.4) hi0,j02 (1; z) =
∑

k>0

∫ 1

−1

z2∂uT (u; z)(1 − t1(u; z))(1 − t4(u; z))

18(1 − z(1− 2u)/3)
F i0,j0
k (u; z)×

× [T (u; z)2 − 1]k/2

(t2(u; z) − t3(u; z))(1 − z(1 + 2u)/3)
Uj0−1(u)[1 − u2]1/2du.

Below, we are going to study the behavior near 1 of each integral in the sum (3.4).

Integrals corresponding to k ∈ {0, 1, 2} in the sum (3.4). First, note that

F i0,j0
0 = T i0+j0/2−1(1− T ),

F i0,j0
1 = T i0+j0/2−2[T − (i0 + j0/2− 1)(1 − T )],

F i0,j0
2 = T i0+j0/2−3(i0 + j0/2− 1)[(1 − T )(i0 + j0/2− 2)/2 − T ].

Now we set F j0(u; z) = −z2∂uT (u; z)(1 − t1(u; z))(1 − t4(u; z))Uj0−1(u)/(36(1 − z(1 −
2u)/3)) and

Gi0,j0
0 (u; z) = [F j0(u; z)F i0,j0

0 (u; z)z2[T (−u; z)2 − 1]1/2]/[3(z + 3)(1 − z(1− 2u)/3)1/2],

Gi0,j0
1 (u; z) = F j0(u; z)F i0,j0

1 (u; z),

Gi0,j0
2 (u; z) = [F j0(u; z)F i0,j0

2 (u; z)3(z + 3)(1 − z(1 − 2u)/3)1/2]/[z2[T1(−u; z)2 − 1]1/2].

Since t2(u; z) − t3(u; z) = −2[T (u; z)2 − 1]1/2 and since (t2(u; z) − t3(u; z))(t1(u; z) −
t4(u; z)) = 12(z+3)2[(1− z(1+2u)/3)(1− z(1− 2u)/3)]1/2/z2, the sum of the three terms
for k ∈ {0, 1, 2} in (3.4) is equal to

(3.5)

2∑

k=0

∫ 1

−1

Gi0,j0
k (u; z)[1 − u2]1/2

[1− z(1 + 2u)/3](3−k)/2
du.

Using now the expansion of the Chebyshev polynomials at 1 [21], we obtain the expansion

Gi0,j0
0 (u; z) = −2j0(u − 1)/9 − j0(z − 1)/3 +

∑
k+l>2G

i0,j0
0,k,l (u − 1)k(z − 1)l. Then, with a

repeated use of (A.7) of Lemma 10, we get
∫ 1

−1

Gi0,j0
0 (u; z)[1 − u2]1/2

[1− z(1 + 2u)/3]3/2
du = j03

1/2 ln(1− z)[(1 − z)/4 + (1− z)2gi0,j00 (z)] + f i0,j00 (z),

f i0,j00 and gi0,j00 being holomorphic at 1.

In the same way, Gi0,j0
1 (u; z) =

∑
k+l>2G

i0,j0
1,k,l (u−1)k(z−1)l−j0/3−j0(6j02+35−48i0−

24j0)(u − 1)/54 + j0(−53 + 48i0 + 24j0)(z − 1)/36. A repeated application of Lemma 9
gives then that

∫ 1

−1

Gi0,j0
1 (u; z)[1 − u2]1/2

1− z(1 + 2u)/3
du = f i0,j01 (z) + j03

1/2[1− z]1/2 ×

× [1/2 + (3/4 + j0
2)(1 − z)/4 + (1− z)2g1(z)],

f i0,j01 and gi0,j01 being holomorphic at 1.

At last, we have Gi0,j0
2 (u; z) = 2j0(i0 + j0/2 − 1)/3 +

∑
k+l>1G

i0,j0
2,k,l (u− 1)k(z − 1)l. So

with a repeated use of (A.6) of Lemma 10, we get
∫ 1

−1

Gi0,j0
2 (u; z)[1 − u2]1/2

[1− z(1 + 2u)/3]1/2
du = f i0,j02 (z) + j0(i0 + j0/2− 1)31/2 ×

× ln(1− z)[(1 − z)/2 + (1− z)2gi0,j02 (z)],

f i0,j02 and gi0,j02 being holomorphic at 1.
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Integrals corresponding to k > 3 in the sum (3.4). Note first that if k is odd and larger
than 3, then the associated function in (3.4) is in fact holomorphic in the neighborhood of

1: indeed, for this it is enough to notice that t2(u; z)− t3(u; z) = −2[T (u; z)2 − 1]1/2. For
this reason, all the terms associated in (3.4) with values of k odd and larger than 3 don’t
have any singularity at 1.

On the other hand, if k is even and larger than 3, then the underlying term in the sum
(3.4) can be written as

∫ 1

−1
[1− z(1 + 2u)/3](k−3)/2H i0,j0

k (u; z)[1 − u2]1/2du,

where H i0,j0
k (u; z) is some function holomorphic in the neighborhood of (1, 1). The last

integral is obviously equal to
∫ 1

−1
[1− z(1 + 2u)/3](k−2)/2H i0,j0

k (u; z)[1 − u2]1/2[1− z(1 + 2u)/3]−1/2du.

Then, expanding [1− z(1+2u)/3](k−2)/2H i0,j0
k (u; z) w.r.t. the powers of (u− 1)k(z− 1)l

and using (A.6) of Lemma 10, we obtain that the integral above equals ln(1 − z)(z −
1)k−2gi0,j0k (z) + f i0,j0k (z), f i0,j0k and gi0,j0k being holomorphic at 1.

Finally, the sum of all the terms corresponding in (3.4) to even k larger than 3 can be
written, in the neighborhood of 1, as ln(1− z)(1− z)2gi0,j0(z) + f i0,j0(z), where f i0,j0 and
gi0,j0 are holomorphic at 1.

End of the proof of Proposition 8. Putting the latter fact together with (3.5) concludes

the proof of the expansion for hi0,j02 (1; z) stated in Proposition 8.

Finally, the proof of the facts regarding hi0,j03 (1; z), via the repeated use of Lemmas 9

and 10, is totally similar to that for hi0,j02 (1; z), so we omit it. �
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Appendix A.

In order to prove Proposition 8, we need the two following results, that deal with the
behavior of some integrals with parameters near their singularities.

Lemma 9. For any k ∈ Z+, let Pk be the principal part at infinity of [Z2 − 1]1/2(1−Z)k,

i.e., the only polynomial such that [Z2 − 1]1/2(1− Z)k − Pk(Z) goes to zero as |Z| goes to

infinity. Then

∫ 1

−1

(1− u)k[1− u2]1/2

1− z(1 + 2u)/3
du =

3π

2z

[
(1 + z/3)1/2

(−3

2z

)k+1

(1− z)k+1/2 + Pk

(
3

2z
− 1

2

)]
.

Proof. For ǫ > 0, we consider the closed contour A +
ǫ ∪ A −

ǫ ∪ B+
ǫ ∪ B−

ǫ , where A ±
ǫ =

{±1 ∓ iǫ exp(it), t ∈ [0, π]} and B±
ǫ = {±iǫ ∓ t, t ∈ [−1, 1]}. Then we apply on it the

residue theorem at infinity to the function (1− u)k[1− u2]1/2/[1− z(1 + 2u)/3] and we let
ǫ going to zero. �

Lemma 10. For any k ∈ Z+, the integrals written in the left hand side of (A.6) and (A.7)
below are holomorphic in (1 + ǫ)D \ [1, 1 + ǫ[ for ǫ > 0 small enough. In the neighborhood

of 1, they are equal to
∫ 1

−1

(1− u)k[1− u2]1/2

[1− z(1 + 2u)/3]1/2
du = ln(1− z)(1− z)k+1αk(z) + βk(z),(A.6)

∫ 1

−1

(1− u)k[1− u2]1/2

[1− z(1 + 2u)/3]3/2
du = ln(1− z)(1− z)kγk(z) + δk(z),(A.7)

where αk, βk, γk and δk are holomorphic at 1, αk(1) 6= 0 and γk(1) 6= 0. Furthermore,

α0(1) = 33/2/4, γ0(1) = −33/2/2, γ′0(1) = −31/299/32 and γ1(1) = 31/227/8.

Proof. The fact that the integrals written in the left hand side of (A.6) and (A.7) are, for
ǫ > 0 small enough, holomorphic in (1 + ǫ)D \ [1, 1 + ǫ[ is clear from their expression.

Let us now study their behavior near 1 and start by considering (A.6). Replace first
the lower bound −1 by −1/2 in the integral (A.6). This is equivalent to add a function
holomorphic in some (1 + ǫ)D and this will eventually change βk but not αk in the right
hand side member of (A.6). Then, the change of variable v2 = (1 + 2u)/3 gives

(A.8)

∫ 1

−1/2

(1− u)k[1− u2]1/2

[1− z(1 + 2u)/3]1/2
du = 31/2

(
3

2

)k+1 ∫ 1

0

[1− v2]k+1/2

[1− zv2]1/2
[1 + 3v2]1/2vdv.

By using the expansion of v1/2 in the neighborhood of 1, we can develop the function
[1+3v2]1/2v according to the powers of v2− 1: [1+3v2]1/2v = 2+(7/4)[v2 − 1]+ · · · . But
in [19, Chapter F], we have proved, using the elliptic integrals theory, that for any k ∈ Z+
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there exist two functions φk and ψk, holomorphic in the neighborhood of 1 and satisfying
φk(1) 6= 0, such that

(A.9)

∫ 1

0

[1− v2]1/2+k

[1− zv2]1/2
dv = ln(1− z)(z − 1)k+1φk(z) + ψk(z),

we have there also proved that φ0(1) = 1/4. The equality (A.6) is then an obvious outcome

of (A.8), of the expansion of [1 + 3v2]1/2v according to the powers of v2 − 1, and of the
repeated use of (A.9). The fact that α0(1) = 33/2/4 comes from the equality φ0(1) = 1/4.

Likewise, we could prove the equality (A.7) and we could obtain the announced values
of γ0(1), γ

′
0(1) and γ1(1). �
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