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Résumé

En se basant sur la méthode proposée par Kelsey et al. [1], les bornes supérieures et inférieures de la
raideur en cisaillement transverse d’une âme pliée en module à chevrons sont déterminées analytiquement et
comparées au calcul par éléments finis. On observe que ces bornes sont généralement assez larges et qu’il
existe des configurations géométriques pour lesquelles le module à chevrons peut être jusqu’à 40% plus raide
que les nids d’abeille.

Abstract

Using Kelsey et al. [1] unit load method, upper and lower bounds for transverse shear stiffness of a
chevron folded core used in sandwich construction are analytically derived and compared to finite element
computations. It is found that these bounds are generally loose and that some chevron folded cores are 40%
stiffer than honycomb cores.

Mots Clés: panneaux sandwich, âme pliées, module de cisaillement, module à chevrons
Keywords: Sandwich panels, Folded cores, Shear modulus, Chevron pattern

1. Introduction

Sandwich panels made of two thin skins separated by a thick periodic core are commonly used in many
fields. They offer good compromise between strength and weight especially for aeronautics applications.

When bending the sandwich panel, the skins are subjected to in-plane traction and compression whereas
the core is subjected to transverse shear. Many constituents can be used as core materials. Balsa glued be-
tween stiffer pieces of wood was one of the first attempts to make a sandwich panel. Nowadays, phenolic
paper honeycomb is extensively used in aeronautics structures.

Recently, new types of promising cores have emerged. Folded cores are promising because of new
production means [2, 3, 4, 5]. Among them, chevron folded core was probably the first to be machined (Fig. 1).

It seems that Chevron folded cores manufacturing was first considered at the beginning of the 20th cen-
tury. Later, the pattern has been under investigation in Kazan University. More recently, continuous production
and several new techniques emerged [6, 7, 8, 9]. Chevron folded cores strength has been experimentally
investigated in [2, 5, 3] and simulated in [3, 4, 10]. Their transverse shear stiffness is also under investigation
in [5] but to the authors knowledge it seems that no theoretical work has been done yet.

The aim of this paper is to derive bounds for the transverse shear stiffness of chevron folded cores.
Kelsey et al. [1] proposed a method for deriving such bounds for honeycomb cores. One may refer also
to [11] for a detailed description of this method. Many honeycomb geometries have already been assessed
[12, 13], new homogenization methods have been proposed [14],[15], and more attention has been paid to the
skin effect on the effective transverse shear stiffness of the core material [16]. However, as a first attempt for
the determination of the transverse shear stiffness of folded chevron, it seems relevant to use Kelsey et al.[1]
method.

According to this method, the minimum potential energy theorem is used for deriving upper bounds
for the transverse shear modulus in the α−direction, Gα3. A uniform horizontal displacement hγα3 in the
α−direction is imposed to the top face of the core material while its lower face is fixed (Fig. 2). Here, α = 1, 2
are the in-plane directions, γα3 is the transverse shear strain in the α−direction and h is the height of the core.
Then, the normalized strain energy of any trial strain field which is piecewise uniform in the core walls and
compatible with the kinematic boundary conditions provides an upper bound for Gα3, noted G+

α3. Similarly,
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Fig. 1. Chevron folded paper. Fig. 2. Kelsey et al. unit load method

the minimum complementary energy theorem is used for deriving lower bounds for Gα3. A uniform horizontal
stress load τα3 (respectively, −τα3) is applied in the α−direction to the upper (respectively, lower) face of the
core material. Then, the normalized stress energy of any piecewise uniform trial stress field which is statically
compatible with the boundary conditions provides a lower bound for Gα3, noted G−

α3.

2. The chevron pattern

Like honeycomb, the chevron pattern is periodic in the in-plane directions. Four identical parallelogram -
shape faces are necessary to generate the whole pattern by periodicity along the e1 vector (period 2a) and
the e2 vector (period 2s) where M = (A, e1, e2, e3) is the main coordinate system. Fig. 3 shows these faces:
face 1= ABCD, face 2= D′CBA′, face 3= A′′′B′′CD′ and face 4 = DCB′′A′′.

Fig. 3. The four elementary faces of the pattern. Fig. 4. Face 1.

Tab. 1 gives vertices coordinates in terms of four geometric parameters: a, s, v and h where v is a
horizontal offset parameter (v = 0 when B is aligned with A and A′) and h is the pattern height.

Point A B C D A′ D′ A′′ B′′ A′′′
x1 0 v a + v a 0 a 2a 2a + v 2a
x2 0 s s 0 2s 2s 0 s 2s
x3 0 0 h h 0 h 0 0 0

Tab. 1. Vertices coordinates.

Actually, several parameters sets have been proposed for the geometric description of the chevron
pattern [8, 17]. Among them, the set a0, b0, δ, ζ fully determines the geometry and the position of face 1. Face
1 is a parallelogram ( a0 and b0 are the side lengths) which is tilted by angles δ and ζ with respect to the main
coordinate system as shown in Fig. 4.

• δ is the member angle by analogy with truss beams: cutting the chevron pattern by the (A, e1, e3) plane
gives a zigzag shape similar to that of a Warren-type truss beam.

• ζ is the closure angle equal to the half angle between face 1 and face 2 along the BC edge. For ζ = 0
the pattern is completely folded and for ζ = π/2 the pattern is prismatic.

• β0 = arctan tan δ
cos ζ

is the D̂AB angle and α = arctan 1
tan ζ sin δ

is the Â′AB angle

We have: a = a0 cos δ, s = b0 cos α, v = b0 sin α, h = a0 sin δ. Fig. 5 shows the pattern aspect of the unit
cell for several values of ζ and δ (a0/b0 = 1).

The chevron pattern has actually three major symmetries. When used as a core between two isotropic
skins, these symmetries lead to several simplifications in the Reissner-Mindlin plate constitutive law [18]. Fig. 6
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Fig. 5. Several configurations (a0/b0 = 1). Fig. 6. Central symmetry with respect to point R.

Fig. 7. Symmetry with respect to (B, e1, e3) plane. Fig. 8. Rotational symmetry with respect to (S, e3) axis.

shows the central symmetry R with respect to the center point of face 1, R. This symmetry uncouples in-
plane (membrane) stress and out-of-plane (flexural) stress. Fig. 7 shows the symmetry N with respect to the
(B, e1, e3) plane. This symmetry uncouples transverse shear stresses. Fig. 8 shows the rotational symmetry
S of axis (S, e3). This symmetry uncouples transverse shear stress and tensile stress in direction 3. Finally,
there are only two transverse shear moduli to be determined: G13 and G23.

It is useful to introduce a local basis Lk = (ek
u, ek

v , ek
w ) associated to face k (k = 1, 2, 3, 4) as shown in

Fig. 3. For face 1, vector e1
u is along the AD edge, e1

w is normal to the face with e1
w · e3 > 0 and e1

v is such
that L1 is direct. Thus, the components of (e1

u, e1
v , e1

w ) in the (e1, e2, e3) basis are given by:

(e1
u, e1

v , e1
w ) =

(
cos δ sin ζ cos δ − sin δ sin ζ

0 sin ζ cos ζ
sin δ − cos δ cos ζ cos δ sin ζ

)

(e1,e2,e3)

(eq. 1)

Moreover, the symmetries enables to determine the components of the other local basis L2, L3 and L4.

3. Analytical bounds

3.1 Lower bounds

Fig. 9. Stress load in direction 1. Fig. 10. Stress load in direction 2.

According to Kelsey et al.[1] method, a uniformly distributed horizontal force per unit length, f±,
is applied to the upper (+) and lower edges (−) of the pattern as shown in Fig. 9 and 10:
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f± = ±2
a s
b0

ταeα (eq. 2)

Piecewise uniform plane stress is assumed in each face. Hence, the stress of face 1 writes:

σ1 = σ1
uue1

u ⊗ e1
u + σ1

vv e1
v ⊗ e1

v + σ1
uv

(
e1

u ⊗ e1
v + e1

v ⊗ e1
u

)
(eq. 3)

where ⊗ is the dyadic product of two vectors and σ1
uu , σ1

vv , σ1
uv are three unknowns to be determined. Thanks

to N and S symmetries, it is possible to express the stress σk of face k , k = 2, 3, 4, in terms of σ1. Indeed,
the following relations are easily derived:

σ2 = εN σ1N , σ4 = −S σ1S, σ3 = εN σ4N , (eq. 4)

where ε = 1 for loading in direction 1 and ε = −1 for loading in direction 2. The equilibrium condition at edge
AD (or edge BC) writes :

σ1 · e1
v + σ2 · (−e2

v

)
= 0 (eq. 5)

Similarly, the equilibrium condition at edge CD (or edge AB) writes:

−t
(
σ1 · n1 + σ4 · n4) + f + = 0 (eq. 6)

where t is the faces thickness and nk is the in-plane vector of face k , k = 1, 4, which is outer normal to CD:

n1 = − sin β0e1
u + cos β0e1

v n4 = sin β0e4
u − cos β0e4

v (eq. 7)

The six (non independent) linear equations (eq. 5 - eq. 6) uniquely determine the three unknowns σ1
uu, σ1

vv ,
σ1

uv . The solution is:

loading in direction 1: loading in direction 2:
σ1

uu = − sin ζ a0τ1
t σ1

uu = − cos ζ cos δ
( 1

tan δ
− tan δ

) a0τ2
t

σ1
vv = 0 σ1

vv = 0
σ1

uv = 0 σ1
uv = − cos δ a0τ2

t

The faces constitutive material is assumed to be isotropic1. Hence, the total stress energy of the unit cell is
given by:

W ∗
int = 2 sin β0b0a0t

(
2(1 + νs)

Es
(σ1

uv )2 +
1
Es

(σ1
uu)2

)
(eq. 8)

where Es and νs are the solid Young modulus and Poisson’s ratio. The stress energy of the effective core
material subjected to the transverse shear stress τα in the direction α is:

W ∗
ext = 2ahs

τ 2
α

Gα3
(eq. 9)

The theorem of the complementary energy states that W ∗
ext ≤ W ∗

int . Inserting the expressions of σ1
uu and σ1

uv
into (eq. 8) gives the lower bounds:

G13 ≥ G−
13 = t

a0
Es

sin δ cos δ
sin ζ

G23 ≥ G−
23 = t

a0
Es

sin δ
cos δ

sin ζ

2(1+νs)+cos2 ζ( 1
tan δ−tan δ)2

It is more convenient to use the following normalization: Eα = Gα3
ρGs

, where ρ is the core relative density, Gs is
the solid shear modulus and Eα is the normalized transverse shear modulus in direction α. For chevron cores,
ρ is given by:

ρ =
t

a0 sin ζ sin δ cos δ
(eq. 10)

1This is the case for metallic cores and for Nomex paper core. For CFRP cores, anisotropy should be introduced.
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Hence, we have:

E1 ≥ E−1 = 2(1 + νs) sin2 δ cos2 δ

E2 ≥ E−2 = 2(1 + νs) sin2 δ sin2 ζ

2(1+νs)+cos2 ζ( 1
tan δ−tan δ)2

3.2 Upper bounds

In order to derive an upper bound for the transverse shear modulus Gα3, a relative horizontal displace-
ment, γαh, between the top and the bottom of the chevron pattern is prescribed in the direction α as shown in
Fig. 11 and 12. The corresponding overall transformation is:

F = I + γαeα ⊗ e3 (eq. 11)

where I is the unit second order tensor.

Fig. 11. Face 1 displacement in direction 1. Fig. 12. Face 1 displacement in direction 2.

The in-plane components of the uniform Green-Lagrange strain tensor of face 1 with respect to the
(e1

u, e1
v ) local basis are given by:

e1
λµ =

1
2

(
e1∗

λ · e1∗
µ − δλµ

)
λ, µ = u, v , (eq. 12)

where e1∗
λ = F · e1

λ, and δλµ is the Krönecker symbol. Neglecting the second order terms in γα leads to the
following linearized in-plane strain components:

loading in direction 1 loading in direction 2
ε1

uu = γ1 sin δ cos δ ε1
uu = 0

ε1
vv = −γ1 sin δ cos δ cos2 ζ ε1

vv = −γ2 cos ζ sin ζ cos δ
ε1

uv = −γ1
2 cos 2δ cos ζ ε1

uv = γ2
2 sin ζ sin δ

Piecewise uniform plane stress is assumed in each face. Therefore, the strain energy density of face 1 is given
by:

w =
1
2

(
Es

1 + νs

(
(ε1

uu)2 + (ε1
vv )2 + 2(ε1

uv )2) +
νsEs

1− ν2
s

(
ε1

uu + ε1
vv

)2
)

. (eq. 13)

The total strain energy stored in the unit cell is:

Wint = 2 sin β0b0a0tw . (eq. 14)

The strain energy stored in the effective core material is:

Wext = 2ahsGα3γ
2
α (eq. 15)

According to the potential energy theorem, we have Wext ≤ Wint . Hence, the following upper bounds for the
normalized transverse shear moduli are obtained:

E1 ≤ E+
1 = 2

1−νs
sin2 δ cos2 δ sin4 ζ + cos2 ζ

E2 ≤ E+
2 = sin2 ζ

(
2

1−νs
cos2 δ cos2 ζ + sin2 δ

)
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3.3 Results

As expected, for both directions, we have: 0 < E−α ≤ E+
α < 1, where E = 1 is associated to the Voigt

upper bound and E = 0 is associated to the Reuss lower bound. It should be emphasized that the derived
bounds are only functions of νs and the angles ζ and δ.

Fig. 13 and 14 show the normalized lower and upper bounds in direction 1 as functions of δ and ζ for
νs = 0.4. It is possible to give a simple interpretation for the lower bound E−1 . The corresponding trial stress
has only one non-zero component: σuu. All the faces are subjected to uniaxial traction and compression in
the eu direction. This structural behavior can be compared to Warren truss beams where members are under
alternative traction and compression. Hence, it is not surprising that the lower bound depends only on the
member angle δ and is maximum for δ = π/4 as for Warren truss beams. For most values of ζ and δ, E−1 and
E+

1 are not equal. However, for δ = π/4 and cos2 ζ = νs, they are coincident (E−1 = E+
1 = 1+νs

2 ). This means
that, for this geometric configuration, the piecewise uniform trial strain and stress fields are the exact solutions
for the transverse shear loading in direction 1.
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Fig. 13. E−1 as function of ζ and δ for νs = 0.4.
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Fig. 14. E+
1 as function of ζ and δ for νs = 0.4.

Fig. 15 and 16 show the normalized lower and upper bounds in direction 2. The trial stress field asso-
ciated to E−2 is mainly in-plane shear of the core walls as it is the case for a honeycomb core. For ζ = π/2,

the pattern is prismatic and both bounds are equal to sin2 δ which is an exact value for E2. Actually, prismatic
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Fig. 15. E−2 as function of ζ and δ for νs = 0.4.
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Fig. 16. E+
2 as function of ζ and δ for νs = 0.4.

cores are not used in sandwich panels because they are not resistant enough. When decreasing ζ from π/2,
the prismatic pattern becomes wavy and this waviness increases the faces buckling strength under loading in
direction 1.

4. Finite element bounds

The analytical bounds proposed in the previous section are based on the piecewise uniform stress or
strain assumption. In order to assess the validity of this assumption, a Finite Element analysis is conducted.
The resulting numerical bounds will be compared to the analytical bounds.

4.1 The finite element model

The computation of the transverse shear moduli for both directions and both loading cases (stress and
displacement) has been performed within the linear elasticity framework. The unit cell of Fig. 3 is chosen as a
representative volume element. Two loadings are applied in each direction: For the upper (respectively, lower)
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bound, the prescribed displacements (respectively, forces per unit length) are applied to the AB, BA′, DC,
CD′, A′′B′′, B′′A′′′ edges and the periodicity conditions are applied to the AD, DA′′, A′D′, D′A′′′ edges (the
strain components at edge AD are set equal to those at edge A′D′, for instance).

Since faces are very thin, Kirchhoff shell elements are used. Four elements of the ABAQUS software
(triangles P1 (STRI3), triangles P2 (STRI65), quadrangles P1 (S4R5) and quadrangles P2 (S8R5)) were tested
and compared through a convergence analysis. Element S4R5 with a 441 node mesh gives accurate results
for a low computation cost.

Few detailed chevron folded core geometries are available in accessible literature. Similarly to [3],
the following geometric parameters are investigated with Es = 3GPa and νs = 0.4: a0 = 30 mm, b0 ∈
[20 mm, 60 mm], t = 0.1mm, δ = 72°, ζ = 34°. The analytical normalized bounds for these configurations
are:

0.23 < E1 < 0.71
0.09 < E2 < 0.35

Fig. 17 and 18 shows the stresses in the unit cell when submitted to stress loads for the case a0 =
b0 = 30mm. At first sight, it is clear that the stresses are approximately piecewise uniform in each face which
is consistent with the assumption made for the analytical derivation of the lower bounds. Also, the stress
distribution complies to the symmetries described in section 2. For stress loading in direction 1, the main
component is σuu as predicted with the Warren truss beam analogy. In direction 2, the analytical estimations
( tσuu

a0τ2
≈ 0.7, tσvv

a0τ2
= 0, tσuv

a0τ2
≈ −0.3) are in good agreement with FE results.

Fig. 17. σuu , σvv , σuv stress components, τ1 load, δ = 72°, ζ = 34°.

Fig. 18. σuu , σvv , σuv stress components, τ2 load, δ = 72°, ζ = 34°.

Fig. 19 and 20 show the strains in the unit cell when submitted to strain loads. Again, strains are
approximately piecewise uniform in each face. For strain loading in direction 1, analytical estimations are
εuu
γ1
≈ 0.29, εvv

γ1
≈ 0.20, εuv

γ1
≈ 0.40. FE fields are approximately consistent with this prediction. In direction 2,

analytical estimations are εuu
γ2

= 0, εvv
γ2
≈ 0.14, εuv

γ2
≈ 0.53. The FE fields are quite homogenous in each face

and they are closer to the analytical predictions.

Fig. 19. εuu , εvv , εuv strain components, γ1 load, δ = 72°, ζ = 34°.

Fig. 20. εuu , εvv , εuv strain components, γ2 load, δ = 72°, ζ = 34°.

FE analysis has been also performed for several values of the shape ratio a0/b0. Results are shown on
Fig. 21 and 22.
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Fig. 21. Bounds in direction 1 versus a0/b0 for δ = 72°,
ζ = 34° and νs = 0.4.
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Fig. 22. Bounds in direction 2 versus a0/b0 for δ = 72°,
ζ = 34° and νs = 0.4.

4.2 Results

For all shape ratios, the expected hierarchy between bounds is observed: E−α < E−, FE
α < E+, FE

α < E+
α.

For direction 1, on the one hand, the FE lower bound is really close to the analytical lower bound whatever the
shape ratio is. This good agreement is consistent with the good uniformity of the stresses shown in Fig. 17.
On the other hand, the FE upper bound is dependent of the shape ratio. In fact, the computed strain fields are
not homogenous in this case (Fig. 19). Moreover, it should be emphasized that the numerical FE bounds for
direction 1 cover all the range between the analytical upper and lower bounds as the shape ratio varies. For
direction 2, the FE upper bound is not really affected by the shape ratio and the strain fields are quite uniform.
The FE lower bound seems more dependent on the shape ratio and the stress fields are less uniform. As
expected, when the actual fields are almost piecewise uniform, then the analytical and numerical bounds are
consistent.

One important conclusion of this study is that both FE and analytical bounds are loose for practical
values of the shape ratio (a0/b0 ∈ [0.5, 1.5]). This means that the effective transverse shear moduli of the
considered chevron pattern (δ = 72◦, ζ = 34◦) are sensitive to the the skin effect.

Finally, a systematic computation has been performed for δ and ζ ranging between 0 and π/2 for
a0/b0 = 1. The obtained figures (23, 24, 25, 26) are similar to those obtained for the analytical bounds.
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Fig. 23. E−,FE
1 as function of ζ and δ for νs = 0.4 and

a0/b0 = 1.
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Fig. 24. E+,FE
1 as function of ζ and δ for νs = 0.4 and

a0/b0 = 1.

4.3 Comparison with honeycomb

It is of interest to compare honeycomb geometries with Chevron pattern. For a regular honeycomb core
with the same wall thickness, the use of piecewise uniform strain and stress in the core walls gives equal lower
and upper bounds: E1 = E2 = 0.5. In order to compare chevron pattern to honeycomb, the sum Σ = E1 +E2 can
be considered. Its upper bound for all honeycomb geometries is Σ+ = 1 [13]. However, for chevron pattern, it
is:

Σ+ =
(

2
1− νs

cos2 δ sin2 ζ + 1
) (

1− cos2 δ sin2 ζ
)

(eq. 16)

which reaches the maximum value:
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Fig. 25. E−,FE
2 as function of ζ and δ for νs = 0.4 and

a0/b0 = 1.
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Fig. 26. E+,FE
2 as function of ζ and δ for νs = 0.4 and

a0/b0 = 1.

(3− νs)2

8(1− νs)
for cos2 δ sin2 ζ =

1 + νs

4
(eq. 17)

Fig. 27 shows Σ+ as function of ζ and δ for νs = 0.4, and the continuous set of (ζ, δ) couples for which Σ+

reaches its maximum value. Thus, considering Σ+, the chevron pattern can potentially outperform honeycomb
stiffness by ' 40% for usual values of νs. In Fig. 28 the FE computed sum of upper bounds Σ+,FE is plotted
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for a shape ratio a0/b0 = 1. As expected FE upper bounds are lower than analytical upper bounds. The
domain where Chevron pattern outperforms honeycomb geometries (Σ+,FE > 1) is smaller but still includes
geometries that can be machined. For the geometry considered in [3], Σ+,FE ' 0.65.

5. Conclusion

For an out-of-plane loaded sandwich panel with stiff skins (0.6 mm of CFRP for instance), usual chevron
folded core thickness (0.1 mm of impregnated aramid paper) and small slenderness ratio (1/10 for example),
the deflection is almost proportional to the effective transverse shear moduli of the chevron folded core. In this
paper, Kelsey et al.’s method has been applied for the derivation of analytical and numerical upper bounds for
these moduli. For some pattern geometries, the exact values have been founded. Moreover, it has been shown
that for some geometries, the chevron folded cores are stiffer than honeycomb-like cores (lower bounds for
chevron core are higher than upper bounds for honeycombs). Finally, this work sets the path for the derivation
of analytical bounds for other folded core geometries such as M-type core [19].

However, the obtained bounds for the already existing pattern geometries [3], δ = 72◦, ζ = 34◦, are too
loose (more than 100% of discrepancy). This difficulty was already pointed out in [1] for honeycomb-like cores.
It is due to the lack of consideration of the interaction between the skins and the core of the sandwich panel.
According to these authors, the upper bound is relevant for sandwich panels with thick skins while the lower
bound is relevant for thin skins.

In the case of honeycomb-like core, the discrepancy between bounds has been identified as a skin
effect (Chen and Davalos [16], Xu and Qiao [20]) and correlated to the ratio between the cell width and the
core thickness. In the case of Chevron folded core, the great discrepancy between the obtained bounds
necessitates more refined models able to take into account the interaction between the skins and the core.
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Thus, it seems necessary to consider more elaborated homogenization method [14, 20, 16, 21] or the Reissner-
Mindlin homogenization method proposed by Sab and his co-workers [22, 23, 15, 24, 25].
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