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Sous-suites roissantes ontiguës de variables aléatoiresdépendantes uniformément distribuées: appliation auxréseaux sans �lRésumé : Nous analysons dans et artile la plus longue sous-suite roissante ontiguë d'unesuite de variables aléatoires de même distribution uniforme mais non indépendantes. Leurdépendane est aratérisée par le fait que deux variables suessives ne peuvent prende lamême valeur. En utilisant une approhe markovienne, nous étudions la distribution de la pluslongue sous-suite roissante ontiguë et nous développons un algorithme pour la aluler. Ceprobème provient de l'analyse de plusieurs protooles auto-organisants pour les réseaux deapteurs sans-�l à grande éhelle, et nous montrons omment nos résultats s'appliquent à edomaine.Mots-lés : Chaînes de Markov, sous-suites roissantes ontiguës, auto-stabilisation, tempsde onvergene.



Asending runs in dependent uniformly distributed random variables 31 IntrodutionLet X = (Xn)n>1 be a sequene of identially distributed random variables on the set S =
{1, . . . , m}. As in [8℄, we de�ne an asending run as a ontiguous and inreasing subse-quene in the proess X. For instane, with m = 5, among the 20 �rst following values of
X: 23124342313451234341, there are 8 asending runs and the length of maximal asendingrun is 4. More formally, an asending run of length ℓ > 1, starting at position k > 1, is asubsequene (Xk, Xk+1, . . . , Xk+ℓ−1) suh that

Xk−1 > Xk < Xk+1 < · · · < Xk+ℓ−1 > Xk+ℓ,where we set X0 = ∞ in order to avoid speial ases at the boundary. Under the assumptionthat the distribution is disrete and the random variables are independent, several authorshave studied the behaviour of the maximal asending run, as well as the longest non-dereasingontiguous subsequene. The main results onern the asymptoti behaviour of these quantitieswhen the number of random variables tends to in�nity, see for example [6℄ and [4℄ and thereferenes therein. Note that these two notions oinide when the ommon distribution isontinuous. In this ase, the asymptoti behaviour is known and does not depend on thedistribution, as shown in [6℄.We denote by Mn the length of the maximal asending run among the �rst n randomvariables. The asymptoti behaviour of Mn hardly depends on the ommon distribution of therandom variables Xk, k > 1. Some results have been established for the geometri distributionin [10℄ where an equivalent of the law ofMn is provided and previously in [1℄ where the almost-sure onvergene is studied, as well as for Poisson distribution.In [9℄, the ase of the uniform distribution on the set {1, . . . , s} is investigated. The au-thor onsiders the problem of the longest non-dereasing ontiguous subsequene and gives anequivalent of its law when n is large and s is �xed. The asymptoti equivalent of E(Mn) is alsoonjetured.In this paper, we onsider a sequene X = (Xn)n>1 of integer random variables on the set
S = {1, . . . , m}, with m > 2. The random variable X1 is uniformly distributed on S and, for
n > 2, Xn is uniformly distributed on S with the onstraint Xn 6= Xn−1. This proess may beseen as the drawing of balls, numbered from 1 to m in an urn where at eah step the last balldrawn is kept outside the urn. Thus we have, for every i, j ∈ S and n > 1,

P(X1 = i) =
1

m
and P(Xn = j|Xn−1 = i) =

1{i6=j}

m− 1By indution over n and unonditioning, we get, for every n > 1 and i ∈ S,
P(Xn = i) =

1

mHene the random variables Xn are uniformly distributed on S but are not independent. Usinga Markov hain approah, we study the distribution of the maximal asending run and wedevelop an algorithm to ompute it. This problem omes from the analysis of self-organizingprotools designed for large-sale wireless sensor networks, and we show how our results applyto this domain.The remainder of the paper is organized as follows. In the next setion, we use a Markovhain approah to study the behavior of the sequene of asending runs in the proess X. InSetion 3, we analyze the hitting times of an asending run of �xed length and we obtain theRR n° 0123456789



4 N. Mitton, K. Paroux, B. Seriola & S. Tixeuildistribution of the maximal asending Mn over the n �rst random variables X1, . . . , Xn using aMarkov renewal argument. An algorithm to ompute this distribution is developed in Setion 4and Setion 5 is devoted to the pratial impliations of this work in large-sale wireless sensornetworks.2 Assoiated Markov hainThe proess X is obviously a Markov hain on S. As observed in [10℄, we an see the asendingruns as a disrete-time proess having two omponents: the value taken by the �rst element ofthe asending run and its length. We denote this proess by Y = (Vk, Lk)k>1, where Vk is thevalue of the �rst element of the kth asending run and Lk is its length. The state spae of Y isa subset S2 we shall preise now.Only the �rst asending run an start with the value m. Indeed, as soon as k > 2, therandom variable Vk takes its values in {1, . . . , m − 1}. Moreover V1 = X1 = m implies that
L1 = 1. Thus, for any ℓ > 2, (m, ℓ) is not a state of Y whereas (m, 1) is only an initial statethat Y will never visit again.We observe also that if Vk = 1 then neessarily Lk > 2, whih implies that (1, 1) is not astate of Y . Moreover Vk = i implies that Lk 6 m− i+ 1.Aording to this behaviour, we have

Y1 ∈ E ∪ {(m, 1)} and for k > 2, Yk ∈ E,where
E = {(i, ℓ) | 1 6 i 6 m− 1 and 1 6 ℓ 6 m− i+ 1} \ {(1, 1)}.We de�ne the following useful quantities for any i, j, ℓ ∈ S and k > 1 :

Φℓ(i, j) = P(Vk+1 = j, Lk = ℓ|Vk = i) (1)
ϕℓ(i) = P(Lk = ℓ|Vk = i) (2)
ψℓ(i) = P(Lk > ℓ|Vk = i). (3)Theorem 1. The proess Y is a homogeneous Markov hain with transition probability matrix

P , whih entries are given for any (i, ℓ) ∈ E ∪ {(m, 1)} and (j, λ) ∈ E by
P(i,ℓ),(j,λ) =

Φℓ(i, j)ϕλ(j)

ϕℓ(i)
.Proof. We exploit the Markov property of X, rewriting events for Y as events for X.For every (j, λ) ∈ E and taking k > 1 then for any (vk, ℓk), . . . , (v1, ℓ1) ∈ E ∪ {(m, 1)}, wedenote by Ak the event :

Ak = {Yk = (vk, ℓk), . . . , Y1 = (v1, ℓ1)}.We have to hek that
P(Yk+1 = (j, λ)|Ak) = P(Y2 = (j, λ)|Y1 = (vk, ℓk)).First, we observe that

A1 = {Y1 = (v1, ℓ1)} = {X1 = v1 < · · · < Xℓ1 > Xℓ1+1}, INRIA



Asending runs in dependent uniformly distributed random variables 5and
A2 = {Y2 = (v2, ℓ2), Y1 = (v1, ℓ1)}

= {X1 = v1 < · · · < Xℓ1 > Xℓ1+1 = v2 < · · · < Xℓ1+ℓ2 > Xℓ1+ℓ2+1}

= A1 ∩ {Xℓ1+1 = v2 < · · · < Xℓ1+ℓ2 > Xℓ1+ℓ2+1}.By indution, we obtain
Ak = Ak−1 ∩ {Xℓ(k−1)+1 = vk < · · · < Xℓ(k) > Xℓ(k)+1},where ℓ(k) = ℓ1 + . . . + ℓk. Using this remark and the fat that X is a homogeneous Markovhain, we get

P(Yk+1 = (j, λ)|Ak) = P(Vk+1 = j, Lk+1 = λ|Ak)

= P(Xℓ(k)+1 = j < · · · < Xℓ(k)+λ > Xℓ(k)+λ+1|Xℓ(k−1)+1 = vk < · · · < Xℓ(k) > Xℓ(k)+1, Ak−1)

= P(Xℓ(k)+1 = j < · · · < Xℓ(k)+λ > Xℓ(k)+λ+1|Xℓ(k−1)+1 = vk < · · · < Xℓ(k) > Xℓ(k)+1)

= P(Xℓk+1 = j < · · · < Xℓk+λ > Xℓk+λ+1|X1 = vk < · · · < Xℓk
> Xℓk+1)

= P(V2 = j, L2 = λ|V1 = vk, L1 = ℓk)

= P(Y2 = (j, λ)|Y1 = (vk, ℓk)).We now have to show that
P(Yk+1 = (j, λ)|Yk = (vk, ℓk)) = P(Y2 = (j, λ)|Y1 = (vk, ℓk)).Using the previous result, we have

P(Yk+1 = (j, λ)|Yk = (vk, ℓk)) =
P(Yk+1 = (j, λ), Yk = (vk, ℓk))

P(Yk = (vk, ℓk))

=

k−1
∑

i=1

∑

(vi,ℓi)∈E

P(Yk+1 = (j, λ), Yk = (vk, ℓk), Ak−1)

k−1
∑

i=1

∑

(vi,ℓi)∈E

P(Yk = (vk, ℓk), Ak−1)

=

k−1
∑

i=1

∑

(vi,ℓi)∈E

P(Yk+1 = (j, λ)|Ak)P(Ak)

k−1
∑

i=1

∑

(vi,ℓi)∈E

P(Ak)

= P(Y2 = (j, λ)|Y1 = (vk, ℓk)).We have shown that Y is a homogeneous Markov hain over its state spae. The entries ofmatrix P are then given, for every (j, λ) ∈ E and (i, ℓ) ∈ E ∪ {(m, 1)} by
P(i,ℓ),(j,λ) = P{Vk+1 = j, Lk+1 = λ|Vk = i, Lk = ℓ)

= P{Vk+1 = j|Vk = i, Lk = ℓ)P{Lk+1 = λ|Vk+1 = j, Vk = i, Lk = ℓ)

= P{Vk+1 = j|Vk = i, Lk = ℓ)P{Lk+1 = λ|Vk+1 = j)

=
P(Vk+1 = λ, Lk = ℓ|Vk = i)

P(Lk = ℓ|Vk = i)
ϕλ(j)

=
Φℓ(i, j)ϕλ(j)

ϕℓ(i)
,RR n° 0123456789



6 N. Mitton, K. Paroux, B. Seriola & S. Tixeuilwhere the third equality follows from the Markov property.We give the expressions of ϕλ(j) and Φℓ(i, j) for every i, i, ℓ ∈ S in the following lemma.Lemma 2. For every i, j, ℓ ∈ S, we have
Φℓ(i, j) =

(

m− i

ℓ− 1

)

(m− 1)ℓ
1{m−i>ℓ−1} −

(

j − i

ℓ− 1

)

(m− 1)ℓ
1{j−i>ℓ−1}

ψℓ(i) =

(

m− i

ℓ− 1

)

(m− 1)ℓ−1
1{m−i>ℓ−1}

ϕℓ(i) =

(

m− i

ℓ− 1

)

(m− 1)ℓ−1
1{m−i>ℓ−1} −

(

m− i

ℓ

)

(m− 1)ℓ
1{m−i>ℓ}.Proof. For every i, j, ℓ ∈ S, it is easily heked that Φℓ(i, j) = 0 ifm < i+ℓ−1. Ifm > i+ℓ−1,we have

Φℓ(i, j) = P(V2 = j, L1 = ℓ|V1 = i)

= P(i < X2 < . . . < Xℓ > Xℓ+1 = j|X1 = i)

= P(i < X2 < . . . < Xℓ, Xℓ+1 = j|X1 = i)

−P(i < X2 < . . . < Xℓ < Xℓ+1 = j|X1 = i)1{j>i+ℓ−1}. (4)We introdue the sets G1(i, j, ℓ,m), G2(i, j, ℓ,m), G(i, ℓ,m) and H(ℓ,m) de�ned by
G1(i, j, ℓ,m) = {(x2, . . . , xℓ+1) ∈ {i+ 1, . . . , m}ℓ ; x2 < · · · < xℓ 6= xℓ+1 = j},

G2(i, j, ℓ,m) = {(x2, . . . , xℓ+1) ∈ {i+ 1, . . . , m}ℓ ; x2 < · · · < xℓ = xℓ+1 = j},

G(i, ℓ,m) = {(x2, . . . , xℓ) ∈ {i+ 1, . . . , m}ℓ−1 ; x2 < · · · < xℓ},

H(ℓ,m) = {(x2, . . . , xℓ+1) ∈ {1, . . . , m}ℓ ; i 6= x2 6= · · · 6= xℓ+1}.It is well-known, see for instane [5℄, that
|G(i, ℓ,m)| =

(

m− i

ℓ− 1

)

.Sine |G2(i, j, ℓ,m)| = |G(i, ℓ− 1, j − 1)|, the �rst term in (4) an be written as
P(i < X2 < . . . < Xℓ, Xℓ+1 = j|X1 = i) =

|G1(i, j, ℓ,m)|

|H(ℓ,m)|

=
|G(i, ℓ,m)| − |G2(i, j, ℓ,m)|

|H(ℓ,m)|

=
|G(i, ℓ,m)| − |G(i, ℓ− 1, j − 1)|

|H(ℓ,m)|

=

(

m− i

ℓ− 1

)

−

(

j − i− 1

ℓ− 2

)1{j−i>ℓ−1}

(m− 1)ℓ
, INRIA



Asending runs in dependent uniformly distributed random variables 7The seond term is given, for j > i+ ℓ− 1, by
P(i < X2 < . . . < Xℓ < Xℓ+1 = j|X1 = i} =

|G(i, ℓ, j − 1)|

|H(ℓ,m)|
=

(

j − i− 1

ℓ− 1

)

(m− 1)ℓ
.Adding these two terms, we get

Φℓ(i, j) =

(

m− i

ℓ− 1

)1{m−i>ℓ−1} −

(

j − i− 1

ℓ− 2

)1{j−i>ℓ−1} −

(

j − i− 1

ℓ− 1

)1{j−i>ℓ}

(m− 1)ℓ

=

(

m− i

ℓ− 1

)1{m−i>ℓ−1} −

(

j − i

ℓ− 1

)1{j−i>ℓ−1}

(m− 1)ℓ
,whih ompletes the proof of the �rst relation.The seond relation follows from expression (3) by writing

ψℓ(i) = P(L1 > ℓ|V1 = i)

= P(i < X2 < . . . < Xℓ|X1 = i)1{m−i>ℓ−1}

=
|G(i, ℓ,m)|

|H(ℓ− 1, m)|

=

(

m− i

ℓ− 1

)

(m− 1)ℓ−1
1{m−i>ℓ−1}.The third relation follows from expression (2) by writing ϕℓ(i) = ψℓ(i) − ψℓ+1(i).Note that the matrix Φ de�ned by

Φ =

m
∑

ℓ=1

Φℓis obviously a stohasti matrix, whih means that, for every i = 1, . . . , m, we have
m

∑

ℓ=1

ϕℓ(i) = 1.

m
∑

ℓ=1

m
∑

j=1

Φℓ(i, j) =
m

∑

ℓ=1

ϕℓ(i) = ψ(i) = 1.3 Hitting times and maximal asending runFor every r = 1, . . . , m, we denote by Tr the hitting time of an asending run of length at leastequal to r. More formally, we have
Tr = inf{k > r ; Xk−r+1 < · · · < Xk}.It is easy to hek that we have T1 = 1 and Tr > r. The distribution of Tr is given by thefollowing theorem.RR n° 0123456789



8 N. Mitton, K. Paroux, B. Seriola & S. TixeuilTheorem 3. For 2 6 r 6 m, we have
P(Tr 6 n|V1 = i) =



















0 if 1 6 n 6 r − 1

ψr(i) +

r−1
∑

ℓ=1

m
∑

j=1

Φℓ(i, j)P(Tr 6 n− ℓ|V1 = j) if n > r.
(5)Proof. Sine Tr > r, we have, for 1 6 n 6 r − 1,

P(Tr 6 n|V1 = i) = 0Let us assume from now that n > r. Sine L1 > r implies that Tr = r, we get
P(Tr 6 n, L1 > r|V1 = i) = P(L1 > r|V1 = i) = ψr(i). (6)We introdue the random variable T (p)

r de�ned by hitting time of an asending run length atleast equal to r when ounting from position p. Thus we have
T (p)

r = inf{k > r ; Xp+k−r < · · · < Xp+k−1}.We then have Tr = T
(1)
r . Moreover, L1 = ℓ < r implies that Tr = T

(L1+1)
r + ℓ, whih leads to

P(Tr 6 n, L1 < r|V1 = i) =

r−1
∑

ℓ=1

P(Tr 6 n, L1 = ℓ|V1 = i)

=
r−1
∑

ℓ=1

P(T (L1+1)
r 6 n− ℓ, L1 = ℓ|V1 = i)

=
r−1
∑

ℓ=1

m
∑

j=1

P(T (L1+1)
r 6 n− ℓ, V2 = j, L1 = ℓ|V1 = i)

=
r−1
∑

ℓ=1

m
∑

j=1

Φℓ(i, j) P(T (L1+1)
r 6 n− ℓ|V2 = j, L1 = ℓ, V1 = i)

=

r−1
∑

ℓ=1

m
∑

j=1

Φℓ(i, j) P(T (L1+1)
r 6 n− ℓ|V2 = j)

=

r−1
∑

ℓ=1

m
∑

j=1

Φℓ(i, j) P(Tr 6 n− ℓ|V1 = j), (7)where the �fth equality follows from the Markov property and the last one from the homogeneityof Y . Putting together relations (6) and (7), we obtain
P(Tr 6 n|V1 = i) = ψr(i) +

r−1
∑

ℓ=1

m
∑

j=1

Φℓ(i, j)P(Tr 6 n− ℓ|V1 = j).

INRIA



Asending runs in dependent uniformly distributed random variables 9For every n > 1, we de�ne Mn as the maximal asending run length over the n �rst values
X1, . . . , Xn. We have 1 6 Mn 6 m ∧ n and

Mn > r ⇐⇒ Tr 6 n,whih impliesE(Mn) =
m∧n
∑

r=1

P(Mn > r) =
m∧n
∑

r=1

P(Tr 6 n) =
1

m

m∧n
∑

r=1

m
∑

i=1

P(Tr 6 n|V1 = i).4 AlgorithmFor r = 1, . . . , m, we denote by ψr the olumn vetor of dimension m whih ith entry is ψr(i).For r = 1, . . . , m, n > 1 and h = 1, . . . , n, we denote by Wr,h the olumn vetor of dimension
m whih ith entry is de�ned by

Wh,r(i) = P(Tr 6 h|V1 = i) = P(Mh > r|V1 = i),and we denote by 1 the olumn vetor of dimension m with all entries equal to 1. An algorithmfor the omputation of the distribution and the expetation of Mn is given in Table 1.input : m, noutput : E(Mh) for h = 1, . . . , n.for ℓ = 1 to m do Compute the matrix Φℓ endforfor r = 1 to m do Compute the olumn vetors ψr endforfor h = 1 to n do Wh,1 = 1 endforfor r = 2 to m ∧ n dofor h = 1 to r − 1 do Wh,r = 0 endforfor h = r to n do Wh,r = ψr +

r−1
∑

ℓ=1

ΦℓWh−ℓ,r endforendforfor h = 1 to n do E(Mh) =
1

m

m∧h
∑

r=1

1tWh,r endforTable 1: Algorithm for the distribution and expetation omputation of Mn.5 Appliation to wireless networks : fast self-organizationOur analysis has important impliations in foreast large-sale wireless networks. In thosenetworks, the number of mahines involved and the likeliness of fault ourrenes preventsany entralized plani�ation. Instead, distributed self-organization must be designed to enableproper funtioning of the network. A useful tehnique to provide self-organization is self-stabilization [2, 3℄. Self-stabilization is a versatile tehnique that an make a wireless networkwithstand any kind of fault and reon�guration.A ommon drawbak with self-stabilizing protools is that they were not designed to handleproperly large-sale networks, as the stabilizing time (the maximum amount of time needed toRR n° 0123456789



10 N. Mitton, K. Paroux, B. Seriola & S. Tixeuilreover from any possible disaster) ould be related to the atual size of the network. In manyases, this high omplexity was due to the fat that network-wide unique identi�ers are usedto arbitrate symmetri situations [13℄. However, there exists a number of problems appearingin wireless networks that need only loally unique identi�ers.Modeling the network as a graph where nodes represent wireless entities and where edgesrepresent the ability to ommuniate between two entities (beause eah is within the trans-mission range of the other), a loal oloring of the nodes at distane d (i.e. having two nodesat distane d or less assigned a distint olor) an be enough to solve a wide range of problems.For example, loal oloring at distane 3 an be used to assign TDMA time slots in an adaptivemanner [7℄, and loal oloring at distane 2 has suessively been used to self-organize a wirelessnetwork into more manageable lusters [12℄.In the performane analysis of both shemes, it appears that the overall stabilization timeis balaned by a tradeo� between the oloring time itself and the stabilization time of theprotool using the oloring (denoted in the following as the lient protool). In both ases(TDMA assignment and lustering), the stabilization time of the lient protool is related tothe height of the direted ayli graph indued by the olors. This DAG is obtained byorienting an edge from the node with the highest olor to the neighbor with the lowest olor.As a result, the overall height of this DAG is equal to the longest stritly asending hain ofolors aross neighboring nodes. Of ourse, a larger set of olors leads to a shorter stabilizationtime for the oloring (due to the higher hane of piking a fresh olor), but yields to a potentialhigher DAG, that ould delay the stabilization time of the lient protool.In [11℄, the stabilization time of the oloring protool was theoretially analyzed while thestabilization time of a partiular lient protool (the lustering sheme of [12℄) was only studiedby simulation. The analysis performed in this paper gives a theoretial upper bound on thestabilization time of all lient protools that use a oloring sheme as an underlying basis.Together with the results of [11℄, our study onstitutes a omprehensive analysis of the overallstabilization time of a lass of self-stabilizing protools used for the self-organization of wirelesssensor networks. In the remaining of the setion, we provide quantitative results regarding therelative importane of the number of used olors with respet to other network parameters.Figure 1 shows the expeted length of the maximal asending run over a n-node hain fordi�erent values of m.Results show several interesting results. Indeed, self-organization protools relying on a ol-oring proess ahieve better stabilization time when the expeted length of maximal asendingrun is short but a oloring proess stabilizes faster when the number of olors is high [11℄.Figure 1 learly shows that even if the number of olors is high ompared to n (n << m), theexpeted length of maximal asending run remains short, whih is a great advantage. Moreover,even if the number of nodes inreases, the size of the maximal asending run remains short andinreases very slowly. This observation demonstrates the salability properties of a protoolrelying on a loal oloring proess sine its stabilization time is diretly linked to the length ofthis asending run [11℄.Figure 2 shows the expeted length of maximal asending run over a n-node hain fordi�erent values of n.Results shows that for a �xed number of nodes n, the expeted length of the maximalasending run onverges to a �nite value, depending of n. This implies that using a largenumber of olors does not impat the stabilization time of the lient algorithm.
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Figure 1: Expeted length of the maximal asending run as a funtion of the number of nodes.
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