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Abstra
t: We analyze in this paper the longest in
reasing 
ontiguous sequen
e or maximalas
ending run of random variables with 
ommon uniform distribution but not independent.Their dependen
e is 
hara
terized by the fa
t that two su

essive random variables 
annot takethe same value. Using a Markov 
hain approa
h, we study the distribution of the maximalas
ending run and we develop an algorithm to 
ompute it. This problem 
omes from theanalysis of several self-organizing proto
ols designed for large-s
ale wireless sensor networks,and we show how our results applies to this domain.Key-words: Markov 
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ending run, self-stabilization, 
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Sous-suites 
roissantes 
ontiguës de variables aléatoiresdépendantes uniformément distribuées: appli
ation auxréseaux sans �lRésumé : Nous analysons dans 
et arti
le la plus longue sous-suite 
roissante 
ontiguë d'unesuite de variables aléatoires de même distribution uniforme mais non indépendantes. Leurdépendan
e est 
ara
térisée par le fait que deux variables su

essives ne peuvent prende lamême valeur. En utilisant une appro
he markovienne, nous étudions la distribution de la pluslongue sous-suite 
roissante 
ontiguë et nous développons un algorithme pour la 
al
uler. Ceprobème provient de l'analyse de plusieurs proto
oles auto-organisants pour les réseaux de
apteurs sans-�l à grande é
helle, et nous montrons 
omment nos résultats s'appliquent à 
edomaine.Mots-
lés : Chaînes de Markov, sous-suites 
roissantes 
ontiguës, auto-stabilisation, tempsde 
onvergen
e.



As
ending runs in dependent uniformly distributed random variables 31 Introdu
tionLet X = (Xn)n>1 be a sequen
e of identi
ally distributed random variables on the set S =
{1, . . . , m}. As in [8℄, we de�ne an as
ending run as a 
ontiguous and in
reasing subse-quen
e in the pro
ess X. For instan
e, with m = 5, among the 20 �rst following values of
X: 23124342313451234341, there are 8 as
ending runs and the length of maximal as
endingrun is 4. More formally, an as
ending run of length ℓ > 1, starting at position k > 1, is asubsequen
e (Xk, Xk+1, . . . , Xk+ℓ−1) su
h that

Xk−1 > Xk < Xk+1 < · · · < Xk+ℓ−1 > Xk+ℓ,where we set X0 = ∞ in order to avoid spe
ial 
ases at the boundary. Under the assumptionthat the distribution is dis
rete and the random variables are independent, several authorshave studied the behaviour of the maximal as
ending run, as well as the longest non-de
reasing
ontiguous subsequen
e. The main results 
on
ern the asymptoti
 behaviour of these quantitieswhen the number of random variables tends to in�nity, see for example [6℄ and [4℄ and thereferen
es therein. Note that these two notions 
oin
ide when the 
ommon distribution is
ontinuous. In this 
ase, the asymptoti
 behaviour is known and does not depend on thedistribution, as shown in [6℄.We denote by Mn the length of the maximal as
ending run among the �rst n randomvariables. The asymptoti
 behaviour of Mn hardly depends on the 
ommon distribution of therandom variables Xk, k > 1. Some results have been established for the geometri
 distributionin [10℄ where an equivalent of the law ofMn is provided and previously in [1℄ where the almost-sure 
onvergen
e is studied, as well as for Poisson distribution.In [9℄, the 
ase of the uniform distribution on the set {1, . . . , s} is investigated. The au-thor 
onsiders the problem of the longest non-de
reasing 
ontiguous subsequen
e and gives anequivalent of its law when n is large and s is �xed. The asymptoti
 equivalent of E(Mn) is also
onje
tured.In this paper, we 
onsider a sequen
e X = (Xn)n>1 of integer random variables on the set
S = {1, . . . , m}, with m > 2. The random variable X1 is uniformly distributed on S and, for
n > 2, Xn is uniformly distributed on S with the 
onstraint Xn 6= Xn−1. This pro
ess may beseen as the drawing of balls, numbered from 1 to m in an urn where at ea
h step the last balldrawn is kept outside the urn. Thus we have, for every i, j ∈ S and n > 1,

P(X1 = i) =
1

m
and P(Xn = j|Xn−1 = i) =

1{i6=j}

m− 1By indu
tion over n and un
onditioning, we get, for every n > 1 and i ∈ S,
P(Xn = i) =

1

mHen
e the random variables Xn are uniformly distributed on S but are not independent. Usinga Markov 
hain approa
h, we study the distribution of the maximal as
ending run and wedevelop an algorithm to 
ompute it. This problem 
omes from the analysis of self-organizingproto
ols designed for large-s
ale wireless sensor networks, and we show how our results applyto this domain.The remainder of the paper is organized as follows. In the next se
tion, we use a Markov
hain approa
h to study the behavior of the sequen
e of as
ending runs in the pro
ess X. InSe
tion 3, we analyze the hitting times of an as
ending run of �xed length and we obtain theRR n° 0123456789



4 N. Mitton, K. Paroux, B. Seri
ola & S. Tixeuildistribution of the maximal as
ending Mn over the n �rst random variables X1, . . . , Xn using aMarkov renewal argument. An algorithm to 
ompute this distribution is developed in Se
tion 4and Se
tion 5 is devoted to the pra
ti
al impli
ations of this work in large-s
ale wireless sensornetworks.2 Asso
iated Markov 
hainThe pro
ess X is obviously a Markov 
hain on S. As observed in [10℄, we 
an see the as
endingruns as a dis
rete-time pro
ess having two 
omponents: the value taken by the �rst element ofthe as
ending run and its length. We denote this pro
ess by Y = (Vk, Lk)k>1, where Vk is thevalue of the �rst element of the kth as
ending run and Lk is its length. The state spa
e of Y isa subset S2 we shall pre
ise now.Only the �rst as
ending run 
an start with the value m. Indeed, as soon as k > 2, therandom variable Vk takes its values in {1, . . . , m − 1}. Moreover V1 = X1 = m implies that
L1 = 1. Thus, for any ℓ > 2, (m, ℓ) is not a state of Y whereas (m, 1) is only an initial statethat Y will never visit again.We observe also that if Vk = 1 then ne
essarily Lk > 2, whi
h implies that (1, 1) is not astate of Y . Moreover Vk = i implies that Lk 6 m− i+ 1.A

ording to this behaviour, we have

Y1 ∈ E ∪ {(m, 1)} and for k > 2, Yk ∈ E,where
E = {(i, ℓ) | 1 6 i 6 m− 1 and 1 6 ℓ 6 m− i+ 1} \ {(1, 1)}.We de�ne the following useful quantities for any i, j, ℓ ∈ S and k > 1 :

Φℓ(i, j) = P(Vk+1 = j, Lk = ℓ|Vk = i) (1)
ϕℓ(i) = P(Lk = ℓ|Vk = i) (2)
ψℓ(i) = P(Lk > ℓ|Vk = i). (3)Theorem 1. The pro
ess Y is a homogeneous Markov 
hain with transition probability matrix

P , whi
h entries are given for any (i, ℓ) ∈ E ∪ {(m, 1)} and (j, λ) ∈ E by
P(i,ℓ),(j,λ) =

Φℓ(i, j)ϕλ(j)

ϕℓ(i)
.Proof. We exploit the Markov property of X, rewriting events for Y as events for X.For every (j, λ) ∈ E and taking k > 1 then for any (vk, ℓk), . . . , (v1, ℓ1) ∈ E ∪ {(m, 1)}, wedenote by Ak the event :

Ak = {Yk = (vk, ℓk), . . . , Y1 = (v1, ℓ1)}.We have to 
he
k that
P(Yk+1 = (j, λ)|Ak) = P(Y2 = (j, λ)|Y1 = (vk, ℓk)).First, we observe that

A1 = {Y1 = (v1, ℓ1)} = {X1 = v1 < · · · < Xℓ1 > Xℓ1+1}, INRIA



As
ending runs in dependent uniformly distributed random variables 5and
A2 = {Y2 = (v2, ℓ2), Y1 = (v1, ℓ1)}

= {X1 = v1 < · · · < Xℓ1 > Xℓ1+1 = v2 < · · · < Xℓ1+ℓ2 > Xℓ1+ℓ2+1}

= A1 ∩ {Xℓ1+1 = v2 < · · · < Xℓ1+ℓ2 > Xℓ1+ℓ2+1}.By indu
tion, we obtain
Ak = Ak−1 ∩ {Xℓ(k−1)+1 = vk < · · · < Xℓ(k) > Xℓ(k)+1},where ℓ(k) = ℓ1 + . . . + ℓk. Using this remark and the fa
t that X is a homogeneous Markov
hain, we get

P(Yk+1 = (j, λ)|Ak) = P(Vk+1 = j, Lk+1 = λ|Ak)

= P(Xℓ(k)+1 = j < · · · < Xℓ(k)+λ > Xℓ(k)+λ+1|Xℓ(k−1)+1 = vk < · · · < Xℓ(k) > Xℓ(k)+1, Ak−1)

= P(Xℓ(k)+1 = j < · · · < Xℓ(k)+λ > Xℓ(k)+λ+1|Xℓ(k−1)+1 = vk < · · · < Xℓ(k) > Xℓ(k)+1)

= P(Xℓk+1 = j < · · · < Xℓk+λ > Xℓk+λ+1|X1 = vk < · · · < Xℓk
> Xℓk+1)

= P(V2 = j, L2 = λ|V1 = vk, L1 = ℓk)

= P(Y2 = (j, λ)|Y1 = (vk, ℓk)).We now have to show that
P(Yk+1 = (j, λ)|Yk = (vk, ℓk)) = P(Y2 = (j, λ)|Y1 = (vk, ℓk)).Using the previous result, we have

P(Yk+1 = (j, λ)|Yk = (vk, ℓk)) =
P(Yk+1 = (j, λ), Yk = (vk, ℓk))

P(Yk = (vk, ℓk))

=

k−1
∑

i=1

∑

(vi,ℓi)∈E

P(Yk+1 = (j, λ), Yk = (vk, ℓk), Ak−1)

k−1
∑

i=1

∑

(vi,ℓi)∈E

P(Yk = (vk, ℓk), Ak−1)

=

k−1
∑

i=1

∑

(vi,ℓi)∈E

P(Yk+1 = (j, λ)|Ak)P(Ak)

k−1
∑

i=1

∑

(vi,ℓi)∈E

P(Ak)

= P(Y2 = (j, λ)|Y1 = (vk, ℓk)).We have shown that Y is a homogeneous Markov 
hain over its state spa
e. The entries ofmatrix P are then given, for every (j, λ) ∈ E and (i, ℓ) ∈ E ∪ {(m, 1)} by
P(i,ℓ),(j,λ) = P{Vk+1 = j, Lk+1 = λ|Vk = i, Lk = ℓ)

= P{Vk+1 = j|Vk = i, Lk = ℓ)P{Lk+1 = λ|Vk+1 = j, Vk = i, Lk = ℓ)

= P{Vk+1 = j|Vk = i, Lk = ℓ)P{Lk+1 = λ|Vk+1 = j)

=
P(Vk+1 = λ, Lk = ℓ|Vk = i)

P(Lk = ℓ|Vk = i)
ϕλ(j)

=
Φℓ(i, j)ϕλ(j)

ϕℓ(i)
,RR n° 0123456789



6 N. Mitton, K. Paroux, B. Seri
ola & S. Tixeuilwhere the third equality follows from the Markov property.We give the expressions of ϕλ(j) and Φℓ(i, j) for every i, i, ℓ ∈ S in the following lemma.Lemma 2. For every i, j, ℓ ∈ S, we have
Φℓ(i, j) =

(

m− i

ℓ− 1

)

(m− 1)ℓ
1{m−i>ℓ−1} −

(

j − i

ℓ− 1

)

(m− 1)ℓ
1{j−i>ℓ−1}

ψℓ(i) =

(

m− i

ℓ− 1

)

(m− 1)ℓ−1
1{m−i>ℓ−1}

ϕℓ(i) =

(

m− i

ℓ− 1

)

(m− 1)ℓ−1
1{m−i>ℓ−1} −

(

m− i

ℓ

)

(m− 1)ℓ
1{m−i>ℓ}.Proof. For every i, j, ℓ ∈ S, it is easily 
he
ked that Φℓ(i, j) = 0 ifm < i+ℓ−1. Ifm > i+ℓ−1,we have

Φℓ(i, j) = P(V2 = j, L1 = ℓ|V1 = i)

= P(i < X2 < . . . < Xℓ > Xℓ+1 = j|X1 = i)

= P(i < X2 < . . . < Xℓ, Xℓ+1 = j|X1 = i)

−P(i < X2 < . . . < Xℓ < Xℓ+1 = j|X1 = i)1{j>i+ℓ−1}. (4)We introdu
e the sets G1(i, j, ℓ,m), G2(i, j, ℓ,m), G(i, ℓ,m) and H(ℓ,m) de�ned by
G1(i, j, ℓ,m) = {(x2, . . . , xℓ+1) ∈ {i+ 1, . . . , m}ℓ ; x2 < · · · < xℓ 6= xℓ+1 = j},

G2(i, j, ℓ,m) = {(x2, . . . , xℓ+1) ∈ {i+ 1, . . . , m}ℓ ; x2 < · · · < xℓ = xℓ+1 = j},

G(i, ℓ,m) = {(x2, . . . , xℓ) ∈ {i+ 1, . . . , m}ℓ−1 ; x2 < · · · < xℓ},

H(ℓ,m) = {(x2, . . . , xℓ+1) ∈ {1, . . . , m}ℓ ; i 6= x2 6= · · · 6= xℓ+1}.It is well-known, see for instan
e [5℄, that
|G(i, ℓ,m)| =

(

m− i

ℓ− 1

)

.Sin
e |G2(i, j, ℓ,m)| = |G(i, ℓ− 1, j − 1)|, the �rst term in (4) 
an be written as
P(i < X2 < . . . < Xℓ, Xℓ+1 = j|X1 = i) =

|G1(i, j, ℓ,m)|

|H(ℓ,m)|

=
|G(i, ℓ,m)| − |G2(i, j, ℓ,m)|

|H(ℓ,m)|

=
|G(i, ℓ,m)| − |G(i, ℓ− 1, j − 1)|

|H(ℓ,m)|

=

(

m− i

ℓ− 1

)

−

(

j − i− 1

ℓ− 2

)1{j−i>ℓ−1}

(m− 1)ℓ
, INRIA



As
ending runs in dependent uniformly distributed random variables 7The se
ond term is given, for j > i+ ℓ− 1, by
P(i < X2 < . . . < Xℓ < Xℓ+1 = j|X1 = i} =

|G(i, ℓ, j − 1)|

|H(ℓ,m)|
=

(

j − i− 1

ℓ− 1

)

(m− 1)ℓ
.Adding these two terms, we get

Φℓ(i, j) =

(

m− i

ℓ− 1

)1{m−i>ℓ−1} −

(

j − i− 1

ℓ− 2

)1{j−i>ℓ−1} −

(

j − i− 1

ℓ− 1

)1{j−i>ℓ}

(m− 1)ℓ

=

(

m− i

ℓ− 1

)1{m−i>ℓ−1} −

(

j − i

ℓ− 1

)1{j−i>ℓ−1}

(m− 1)ℓ
,whi
h 
ompletes the proof of the �rst relation.The se
ond relation follows from expression (3) by writing

ψℓ(i) = P(L1 > ℓ|V1 = i)

= P(i < X2 < . . . < Xℓ|X1 = i)1{m−i>ℓ−1}

=
|G(i, ℓ,m)|

|H(ℓ− 1, m)|

=

(

m− i

ℓ− 1

)

(m− 1)ℓ−1
1{m−i>ℓ−1}.The third relation follows from expression (2) by writing ϕℓ(i) = ψℓ(i) − ψℓ+1(i).Note that the matrix Φ de�ned by

Φ =

m
∑

ℓ=1

Φℓis obviously a sto
hasti
 matrix, whi
h means that, for every i = 1, . . . , m, we have
m

∑

ℓ=1

ϕℓ(i) = 1.

m
∑

ℓ=1

m
∑

j=1

Φℓ(i, j) =
m

∑

ℓ=1

ϕℓ(i) = ψ(i) = 1.3 Hitting times and maximal as
ending runFor every r = 1, . . . , m, we denote by Tr the hitting time of an as
ending run of length at leastequal to r. More formally, we have
Tr = inf{k > r ; Xk−r+1 < · · · < Xk}.It is easy to 
he
k that we have T1 = 1 and Tr > r. The distribution of Tr is given by thefollowing theorem.RR n° 0123456789



8 N. Mitton, K. Paroux, B. Seri
ola & S. TixeuilTheorem 3. For 2 6 r 6 m, we have
P(Tr 6 n|V1 = i) =



















0 if 1 6 n 6 r − 1

ψr(i) +

r−1
∑

ℓ=1

m
∑

j=1

Φℓ(i, j)P(Tr 6 n− ℓ|V1 = j) if n > r.
(5)Proof. Sin
e Tr > r, we have, for 1 6 n 6 r − 1,

P(Tr 6 n|V1 = i) = 0Let us assume from now that n > r. Sin
e L1 > r implies that Tr = r, we get
P(Tr 6 n, L1 > r|V1 = i) = P(L1 > r|V1 = i) = ψr(i). (6)We introdu
e the random variable T (p)

r de�ned by hitting time of an as
ending run length atleast equal to r when 
ounting from position p. Thus we have
T (p)

r = inf{k > r ; Xp+k−r < · · · < Xp+k−1}.We then have Tr = T
(1)
r . Moreover, L1 = ℓ < r implies that Tr = T

(L1+1)
r + ℓ, whi
h leads to

P(Tr 6 n, L1 < r|V1 = i) =

r−1
∑

ℓ=1

P(Tr 6 n, L1 = ℓ|V1 = i)

=
r−1
∑

ℓ=1

P(T (L1+1)
r 6 n− ℓ, L1 = ℓ|V1 = i)

=
r−1
∑

ℓ=1

m
∑

j=1

P(T (L1+1)
r 6 n− ℓ, V2 = j, L1 = ℓ|V1 = i)

=
r−1
∑

ℓ=1

m
∑

j=1

Φℓ(i, j) P(T (L1+1)
r 6 n− ℓ|V2 = j, L1 = ℓ, V1 = i)

=

r−1
∑

ℓ=1

m
∑

j=1

Φℓ(i, j) P(T (L1+1)
r 6 n− ℓ|V2 = j)

=

r−1
∑

ℓ=1

m
∑

j=1

Φℓ(i, j) P(Tr 6 n− ℓ|V1 = j), (7)where the �fth equality follows from the Markov property and the last one from the homogeneityof Y . Putting together relations (6) and (7), we obtain
P(Tr 6 n|V1 = i) = ψr(i) +

r−1
∑

ℓ=1

m
∑

j=1

Φℓ(i, j)P(Tr 6 n− ℓ|V1 = j).

INRIA



As
ending runs in dependent uniformly distributed random variables 9For every n > 1, we de�ne Mn as the maximal as
ending run length over the n �rst values
X1, . . . , Xn. We have 1 6 Mn 6 m ∧ n and

Mn > r ⇐⇒ Tr 6 n,whi
h impliesE(Mn) =
m∧n
∑

r=1

P(Mn > r) =
m∧n
∑

r=1

P(Tr 6 n) =
1

m

m∧n
∑

r=1

m
∑

i=1

P(Tr 6 n|V1 = i).4 AlgorithmFor r = 1, . . . , m, we denote by ψr the 
olumn ve
tor of dimension m whi
h ith entry is ψr(i).For r = 1, . . . , m, n > 1 and h = 1, . . . , n, we denote by Wr,h the 
olumn ve
tor of dimension
m whi
h ith entry is de�ned by

Wh,r(i) = P(Tr 6 h|V1 = i) = P(Mh > r|V1 = i),and we denote by 1 the 
olumn ve
tor of dimension m with all entries equal to 1. An algorithmfor the 
omputation of the distribution and the expe
tation of Mn is given in Table 1.input : m, noutput : E(Mh) for h = 1, . . . , n.for ℓ = 1 to m do Compute the matrix Φℓ endforfor r = 1 to m do Compute the 
olumn ve
tors ψr endforfor h = 1 to n do Wh,1 = 1 endforfor r = 2 to m ∧ n dofor h = 1 to r − 1 do Wh,r = 0 endforfor h = r to n do Wh,r = ψr +

r−1
∑

ℓ=1

ΦℓWh−ℓ,r endforendforfor h = 1 to n do E(Mh) =
1

m

m∧h
∑

r=1

1tWh,r endforTable 1: Algorithm for the distribution and expe
tation 
omputation of Mn.5 Appli
ation to wireless networks : fast self-organizationOur analysis has important impli
ations in fore
ast large-s
ale wireless networks. In thosenetworks, the number of ma
hines involved and the likeliness of fault o

urren
es preventsany 
entralized plani�
ation. Instead, distributed self-organization must be designed to enableproper fun
tioning of the network. A useful te
hnique to provide self-organization is self-stabilization [2, 3℄. Self-stabilization is a versatile te
hnique that 
an make a wireless networkwithstand any kind of fault and re
on�guration.A 
ommon drawba
k with self-stabilizing proto
ols is that they were not designed to handleproperly large-s
ale networks, as the stabilizing time (the maximum amount of time needed toRR n° 0123456789



10 N. Mitton, K. Paroux, B. Seri
ola & S. Tixeuilre
over from any possible disaster) 
ould be related to the a
tual size of the network. In many
ases, this high 
omplexity was due to the fa
t that network-wide unique identi�ers are usedto arbitrate symmetri
 situations [13℄. However, there exists a number of problems appearingin wireless networks that need only lo
ally unique identi�ers.Modeling the network as a graph where nodes represent wireless entities and where edgesrepresent the ability to 
ommuni
ate between two entities (be
ause ea
h is within the trans-mission range of the other), a lo
al 
oloring of the nodes at distan
e d (i.e. having two nodesat distan
e d or less assigned a distin
t 
olor) 
an be enough to solve a wide range of problems.For example, lo
al 
oloring at distan
e 3 
an be used to assign TDMA time slots in an adaptivemanner [7℄, and lo
al 
oloring at distan
e 2 has su

essively been used to self-organize a wirelessnetwork into more manageable 
lusters [12℄.In the performan
e analysis of both s
hemes, it appears that the overall stabilization timeis balan
ed by a tradeo� between the 
oloring time itself and the stabilization time of theproto
ol using the 
oloring (denoted in the following as the 
lient proto
ol). In both 
ases(TDMA assignment and 
lustering), the stabilization time of the 
lient proto
ol is related tothe height of the dire
ted a
y
li
 graph indu
ed by the 
olors. This DAG is obtained byorienting an edge from the node with the highest 
olor to the neighbor with the lowest 
olor.As a result, the overall height of this DAG is equal to the longest stri
tly as
ending 
hain of
olors a
ross neighboring nodes. Of 
ourse, a larger set of 
olors leads to a shorter stabilizationtime for the 
oloring (due to the higher 
han
e of pi
king a fresh 
olor), but yields to a potentialhigher DAG, that 
ould delay the stabilization time of the 
lient proto
ol.In [11℄, the stabilization time of the 
oloring proto
ol was theoreti
ally analyzed while thestabilization time of a parti
ular 
lient proto
ol (the 
lustering s
heme of [12℄) was only studiedby simulation. The analysis performed in this paper gives a theoreti
al upper bound on thestabilization time of all 
lient proto
ols that use a 
oloring s
heme as an underlying basis.Together with the results of [11℄, our study 
onstitutes a 
omprehensive analysis of the overallstabilization time of a 
lass of self-stabilizing proto
ols used for the self-organization of wirelesssensor networks. In the remaining of the se
tion, we provide quantitative results regarding therelative importan
e of the number of used 
olors with respe
t to other network parameters.Figure 1 shows the expe
ted length of the maximal as
ending run over a n-node 
hain fordi�erent values of m.Results show several interesting results. Indeed, self-organization proto
ols relying on a 
ol-oring pro
ess a
hieve better stabilization time when the expe
ted length of maximal as
endingrun is short but a 
oloring pro
ess stabilizes faster when the number of 
olors is high [11℄.Figure 1 
learly shows that even if the number of 
olors is high 
ompared to n (n << m), theexpe
ted length of maximal as
ending run remains short, whi
h is a great advantage. Moreover,even if the number of nodes in
reases, the size of the maximal as
ending run remains short andin
reases very slowly. This observation demonstrates the s
alability properties of a proto
olrelying on a lo
al 
oloring pro
ess sin
e its stabilization time is dire
tly linked to the length ofthis as
ending run [11℄.Figure 2 shows the expe
ted length of maximal as
ending run over a n-node 
hain fordi�erent values of n.Results shows that for a �xed number of nodes n, the expe
ted length of the maximalas
ending run 
onverges to a �nite value, depending of n. This implies that using a largenumber of 
olors does not impa
t the stabilization time of the 
lient algorithm.
INRIA
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ted length of the maximal as
ending run as a fun
tion of the number of nodes.
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