
Routing in Wireless Networks with Position

Trees

Edgar Chávez1, Nathalie Mitton2, and Héctor Tejeda1

1 Escuela de Ciencias F́ısico-Matemáticas
Universidad Michoacana de San Nicolás de Hidalgo

Av.Francisco J. Mujica
Morelia - Michoacán - México

2 IRCICA/LIFL, Univ. Lille 1, CNRS UMR 8022, INRIA Futurs
Parc scientifique de la haute borne - 50, avenue Halley

59650 VILLENEUVE D’ASCQ - France

Abstract. Sensor networks are wireless adhoc networks where all the
nodes cooperate for routing messages in the absence of a fixed infrastruc-
ture. Non-flooding, guaranteed delivery routing protocols are preferred
because sensor networks have limited battery life. Location aware rout-
ing protocols are good candidates for sensor network applications, never-
theless they need either an external location service like GPS or Galileo
(which are bulky, energy consuming devices) or internal location services
providing non-unique virtual coordinates leading to low delivery rates.
In this paper we introduce Position Trees a collision free, distributed
labeling algorithm based on hop counting, which embed a spanning tree
of the underlying network . The Routing with Position Trees (RTP) is
a guaranteed delivery, non-flooding, efficient implicit routing protocol
based on Position Trees. We study experimentally the statistical prop-
erties of memory requirements and the routing efficiency of the RPT.
keywords: Location aware routing, virtual coordinates, wireless sensor
networks.

1 Introduction

Sensor networks are wireless networks where all the nodes cooperate for rout-
ing messages in the absence of a fixed infrastructure. Here the nodes are low
cost with limited computational resources and limited battery life. A simple
distributed routing algorithm with small memory overhead, and a small CPU
demand is thus mandatory for such networks [14]. Typical applications of sen-
sor networks are environment sampling, monitoring disaster areas, security and
inventory management.

A route is a sequence of nodes forwarding messages from the source node to
the target node. The deployment of new applications in sensor networks heavily
relies on the efficiency of route discovery mechanisms. Some (actually deployed)
sensor networks use query distribution and data collection based on a model
known as data diffusion [15]. In this model, a sink node has a permanent con-
nection with an outside network (e.g. the Internet or some wired network) and

performs most of the data analysis, while the other nodes are only used for data
acquisition or for simpler data processing. Several protocols have been proposed
to express queries over the data sensed by the nodes and to aggregate them [20].
These concepts require support of efficient and robust routing protocols, more
powerful than those used to support data diffusion.

Position awareness in sensor networks has improved the efficiency of route dis-
covery and broadcasting algorithms in both power saving and latency measures.
The fundamental idea behind position awareness (referred also as geographic or
geometric information) is to provide each node in the network with a label having
global information. This information is obtained through devices such GPS or
Galileo. Routing protocols based on geographic coordinates of the sensors have
revealed to be a very competitive alternative to the classical routing protocols
for wireless ad hoc networks, reactive [16, 24] or proactive [8].

Our contribution is a collision-free labeling algorithm based on the unique-
ness of a path in a tree. This leads to a non flooding, guaranteed delivery routing
protocol (as long as the nodes in the path does not vanish while the packet is
in transit). Our routing algorithm presents the same good properties as clas-
sical geographical routing, yet it outperforms them, as shown with thorough
experimentation, and they don’t rely on external location services.

The rest of this paper is organized as follows. Section 2 reports geographic
routing over virtual coordinates in literature. Section 3 describes our contribu-
tion: the Routing with Position trees (RPT). Simulation results are reported in
4 and Section 5 sketches some conclusions and future work.

2 Related Work

When nodes are aware of their geographic coordinates (for instance by the use of
a GPS), a geographic routing based on these coordinates is feasible. The greedy
approach is called Most Forward Routing (MFR) [28]. In MFR, the source node
forwards the message to the node that is closest to the destination. This is a
simple localized algorithm that does not guarantee delivery. A package can be
trapped in a local minimum and the algorithm fails to find a path to the desti-
nation leading to low delivery rates. In dense networks the algorithm performs
well. Other geographic approaches have then been proposed in order to min-
imize the energy consumption [17] or to guarantee delivery [12, 18]. The face
routing algorithm [12] is generally used to overcome the local optima trap prob-
lem of the greedy approach MFR. This is performed by extracting a planar
subgraph of the network and forwarding the package through the faces. This
geographic approaches assume that all nodes are equipped with a GPS, which
can become energy-costly and expensive. Moreover, GPS work only in out-door
environments.

In order to reduce the cost, one can also equip only a subset of the nodes
with a GPS and use these special nodes like in [9, 5] to infer the position of
the remaining nodes. In such case it suffices to know the distance relative to
the special nodes using techniques such as time difference of arrival [25], angle

of arrival [23], or signal strength [22]. Once the position of every node in the
network in estimated one can use, in theory, any geographic routing algorithm.
These approaches introduce, however, drawbacks to the geographic routing. It
is possible, for example, that two nodes obtain the same coordinates leading to
delivery failures.

Other approaches rely exclusively on the relative distances (or hop counting)
to a set of nodes in the network, without the intervention of external location
services. The general idea is to define a virtual coordinate system and use it to
induce a routing protocol based on the virtual coordinates. We survey some of
them below.

The authors of [6] introduce VCap (Virtual Coordinate assignment protocol)
to support geographic routing. A system of virtual coordinates based on three
landmarks is proposed. Nodes are assigned a triplet of coordinates given as the
number of hops the node is distant from each landmark. A more accurate co-
ordinate system can be established as the number of landmarks increases [2].
Then, nodes use a greedy routing, like in MFR, based on the Hamming distance
computed on these coordinates (instead of the Euclidean distance in the origi-
nal MFR). The storage overhead for each sensor is limited to the storage of its
coordinates and the coordinates of its neighbors. If the routing reaches a node
v with a local minimum, they give a local detour rule which consist in locally
flooding within a finite neighborhood. A similar idea is presented in [11] with
different tie break and recovery mechanisms. Another approach also based in
hop counting is presented in [26] where loops are avoided recording the moving
history, a time to live for dropping packages and elaborate tie break and recovery
mechanisms. A different approach is used in [10] where landmarks are selected
more carefully after partitioning the nodes into tiles, and elaborate gradient de-
scent procedures are used to route packets, and high communication and storage
overhead is required to increase the delivery rate.

All these geographic routings relying on virtual coordinates use landmarks
and the number of hops each node is distant from each landmark to compute node
coordinates. None of them guarantees delivery, unless significantly increasing the
resource consumption (e.g. by flooding the network). The core problem of such
routing is the amount of reference points needed to produce a unique reference
framework. With hop counting, the labels or identifiers obtained are not unique
while the routing algorithms rely on the uniqueness of the labels. The authors
of [19] studies the number of these reference points needed to avoid duplicate
labels. The main result states that the number of beacons needed to get the set
fixed is linear on the number of nodes, hence a logical coordinate system must
use O(n) such reference points, and consequently must use O(n) space to store
the labels. Our result is in line with the bounds given in [19] for nodes in general
position. The key difference is that we encode the labels in a different way, using
only O(log n) space to represent each label.

In this paper, we propose a geographic routing algorithm based on virtual
coordinates.

We use the uniqueness of a path in a tree to assign labels to nodes and assure
the labels uniqueness. As far as we know, this approach using this tree feature
has only been used in [21] but it can be used only over a clustering structure.

3 Routing with Position Trees (RPT)

3.1 Position Tree Routing Algorithm

Basic Idea In this paper, we propose a geographic routing algorithm based on
virtual coordinates. The objective of a logical coordinate system is to fix all
the nodes in a network making it invariant under rigid transformations. This is
a theoretical requirement motivated by the observation that a dynamic routing
algorithm must handle the packet to the next hop using only local information. If
two nodes share the same description, then a local and deterministic decision can
lead to only one route (unless the packet is divided, i.e. flooding the network),
hence one of the nodes will not receive the packet. In a geographic routing
using an external positioning service for each node, the network is fixed in the
sense above. Our goal is then to fix the network in the sense above by using an
internal positioning service while requesting the smallest amount of memory at
each node.

Firstly we select and arbitrary root node and label hierarchically from root
to child nodes (child nodes are all the unlabeled neighbors of the current root).
Child nodes inherit their parent’s label plus an extra number. Hence, the path
from the root to each node is encoded in the label. A node’s label is built from
left to right, and it describes the lineage of the node. The size of the label is
proportional to the length of the path from the nodes to the root, and is bounded
by the height of the tree (O(log n) on the average if the tree is balanced).

The labeling is hierarchical. The root node arbitrarily enumerates its neigh-
bors, it can even skip a neighbor (following an arbitrary enumeration heuristic
optimizing an external goal). As a result of this observation, we can build a
virtual topology that can be unrelated to the physical topology of the network,
optimizing external goals (e.g. the reliability of the nodes), and the correctness
of the algorithm will not be compromised.

Labels are thus used to perform an interval routing over the tree. Interval
Routing was introduced in wired networks by Santoro and Khatib in [27] to
reduce the size of the routing tables. It is based on representing the routing
table stored at each node in a compact manner, by grouping the set of destination
addresses that use the same output port into intervals of consecutive addresses.
The main advantage of this scheme is the low memory requirements to store
the routing on each node u: O(δ(u)). The routing is computed in a distributed
fashion with the following algorithm: at each intermediate node x, the routing
process ends if the destination y corresponds to x, otherwise, it is forwarded with
the message through an edge labeled by a set I such that y ∈ I. The algorithm is
shown to be optimal for acyclic graphs, and it exhibits a worst-case complexity
which is a factor of two from the optimal solution for an arbitrary topology.

For naming nodes, authors of [27] construct a minimum-distance spanning tree
and traverse in depth-first style assigning a distinct integer to each node. In our
algorithm, this step is not necessary. For assigning labels to the neighbors, they
use the spanning tree, in our case we use all the neighbors that are enabled, and
this step is done locally. They gave some limitations when nodes are added o
deleted, and with permanent disconnections a new tree must be constructed.

Finally, since we use only the neighborhood relationship both when labeling
the nodes and routing packages, without additional hypothesis, it is possible to
route in any arbitrary network, in particular in three dimensions.

Assumptions We consider a sensor network composed of nodes uniformly scat-
tered. The nodes are assumed static, or with a very low mobility with respect
to the signal propagation speed. We assume that every node has a unique ID.

Once each node is labeled, the routing task can be run. To send a message to
a destination node u, a node v needs to know the label of node u. It thus need a
locating protocol such that [3, 21] which retrieves a node label from its identity.
We do not consider this locating part in this paper and assume that there exists
such a locating service available in the network. Note that this service is required
for any routing protocol.

Labeling the nodes The labeling process is very simple. First, a node of the
network is chosen to be the ”root”. It is labeled as the root R. The root node
can be selected randomly, or with some heuristic. The selection of the root is
not central to the correctness of our algorithm, although different selections will
produce different dilations in a given path.

The root R advertises all its neighbors that they are the root’s children. For
it, it broadcasts a ”Discovery” request. Each neighbor of R answers the root
node by sending a ”Tag Request” message containing its ID. Since this is the
root which instances the labeling process, none of its children has already been
labeled. The root sorts the ID of its children and is then able to assign a label
to each of them. Labels are of the form Rm where m is a positive integer chosen
by R, according to the children sort of R.

Once a node u has received its label, it is ready to name its own children in a
similar fashion. Node u broadcasts a ”Discovery” request to its neighbors. Only
the ones of them which have not been labeled by another node answer with a
”Tag Request” message. Parent node u sorts the ID of its non-tagged neighbors
which become its children in the labeled tree. Node u assigns them a label. If the
parent’s label is a string s, its children’s labels will be obtained by appending a
positive integer to s. Since in wireless environments, a transmission by each node
reaches all nodes within radius distance from it, node u can send the labels of
all its children in only one message instead of sending one message per neighbor
node.

This process is iterated until all the nodes in the network have been labeled.
Once this happens, we must tell the root the labeling process is done. When
a node becomes ”childless”, that is, all its neighbors are either been labeled or

tagged by other nodes, it sends its parent a message informing it that its descen-
dants have been completely determined. When a parent node has received similar
messages from all its children, (e.g all descendants have been determined), it ad-
vertises its own parent, until the root gets the message from all its children. At
that time, all the nodes of the network have been labeled.

R1

R211

R

R3

R2

R12

R21

R11

Fig. 1: Labeling process. Dark links are links of the tree, dashed links are the wireless
underling links.

Figure 1 illustrates the labeling process over an arbitrary topology. Dark lines
represent the links in the tree. Dashed lines are the wireless links which have not
been selected to be part of the tree during the labeling process.

Storage requirements Once every node is tagged, the routes are computed and
the network is ready for routing. The nodes need to store just their own label.
As we will see below, nodes do not even need to store their neighbor’s labels.

Sending a Packet Once the labels are in place, sending a packet through the
network is almost trivial, because the labels define a canonical a path joining
any pair of nodes.

Let’s suppose node A wants to send a packet to node B. The packet is
forwarded up the tree to find the least common ancestor of A and B and then
down the tree until finding node B. All the forwarding decisions are made locally,
without flooding. To fix ideas, suppose A is labeled R167895 and B is labeled
R16774232, the largest common prefix is R167 which corresponds to the least
common ancestor of A and B. By broadcasting the source and destination labels
there is only one node, labeled R16789, which will forward the packet. This
process is repeated with the sequence A = R167895, R167789, · · · , R167 (being
the last one the common ancestor) and from there the packet is forwarded to
the nodes with unique labels R1677, R16774, · · · , R16774232 = B to reach node
B. The up tree forwarding could be an empty step if the source/destination is
the least common ancestor of the destination/source respectively.

The above sketch of the routing protocol is as simple as the actual routing
protocol. The actual implementation may rewrite the source in each step. In this
case the current node will broadcast the new source, and only the new source
node will forward the message rewriting the packet each time.

To illustrate this routing scheme, let’s take the tree plotted on Figure 1.
Let’s suppose node R211 wants to send a message to node R11. The message
will follow the path R211 − R21 − R2 − R − R1 − R11. But when node R21
forwards the message, nodes R211, R12 and R2 receive it whereas only node R2
needs to forward it. In this case R is the least common ancestor between the
destination R211 and R11.

3.2 Analysis

Message complexity The total number of messages needed to label the nodes
is linear in both the number of nodes and the total number of connections.
To label its children, each node broadcasts a ”Discovery” message, contacting
at the same time all its neighbors. We thus generate N messages where N is
the number of nodes in the network. After all unlabeled children reply to their
parent, the parent node sends a unique message for the totality of its children
giving them their corresponding labels. We thus generate N1 messages where
N1 is the number of internal nodes in the labeled tree. To finish the labeling
process, each node must inform its parents when all its children are tagged or if
it is a leaf in the labeled tree. Hence the total number of messages is N − 1 (the
root node does not need to send this message). Hence the total number of these
messages is thus 2N + N1 − 1

Memory complexity Let t be the length of the longest path which starts at the
root. The longest possible label has as many entries as t, so the largest possible
amount of memory to store a label is t. The length of the path is t = O(n) in
worst case and t = O(log(n)) if the tree is balanced. If a balanced tree can be
found by e.g. selecting a node in the center, then the size of each label will be
O(log(n)).

3.3 Enhancements

Improving the routing paths Since there is a single path in the tree from the
source to the destination, and since the length of this path can be computed
before the actual packet forwarding begins, multiple trees may help to discover
more efficient routes. It also provides a simple way to recover from vanishing
nodes or congestion problems. A way to improve our routing algorithm is to
multiple roots to produce orthogonal labels (a vector of labels) and thus get a
robust algorithm.

When running the routing algorithm from node A to B, every nodes’ labels
are compared and the couple of labels minimizing the path length (e.g. the ones
which has the greatest common prefix) is chosen.

Nevertheless, maintaining several trees imply more memory requirements and
more computations at each node. Yet, there is a trade-off to study between the
number of roots and the node resource requirements.

Shrinking the paths Below the logical path defined by the label tree, there could
be many physical connections (dashed links in Figure 1), defining a path shorter
than the shortest path in the label tree. For example, in Figure 1, if the source
node has label R11 and the target node has label R21, the shortest path in the
tree would be R11−R1−R−R2−R21. Since nodes R1 and R2 are neighbors,
then we can avoid the upper part of the path.

A simple way to discover this shorter route is by examining the labels. Indeed,
by examining the label, a node can compute the length of the path in the tree
between itself and the destination. If R is the least common ancestor for nodes
R1 and R211, the length of the path in the tree from R1 to R211 is equal to the
length of the path from R to R211 more the length of the path from R to R21.
Yet, the length of a path from node R and one of its descendant (R1 or R211)
is equal to the difference between the size of the labels. R has size 1. R1 has size
2 (R and one integer), R211 has size 4 (R and 3 integers), thus hop distance
in the tree from R1 and R211 is 4 ((2 − 1) + (4 − 1). Hence , a node is able to
determine whether the path going through it is smaller than the one following
the tree and thus decide whether directly forward the message. This will imply
a slight modification of the routing algorithm because the shortcut node need to
inform that he will be forwarding the message.

4 Experimental Results

We used our own C simulator assuming an ideal MAC layer, i.e. no interferences
and no packet collisions. The nodes were randomly deployed in a 1 × 1 square
using a Poisson Point Process (node positions are independent) with different
intensity λ (λ represents the mean number of nodes per surface unit). These
nodes have the same transmission range, R, therefore, two nodes are connected
by an edge if and only if their Euclidean distance is at most R (assuming a Unit
Disk Graph [7]). If there exists a link between nodes u and v, we say that nodes
u and v are neighbors. We note δ(u) the degree of node u, i.e. the number of
neighbors of node u. With such a Poisson node distribution, we have λπR2 = δ̃.
All results obtained are within a 95% - confidence interval.

4.1 Tree Features

First, we are interested in the intrinsic characteristics of the tree the routing is
based on. We regard the mean tree depth. Indeed, the mean tree depth gives
the latency needed to build the labeled tree. The labels are computed from the
tree building and the deeper the tree, the bigger the maximum label size. Since
each node only need to store its own label for routing, the maximum label size
gives the memory requirements at each node. Tree depth gives a measure for
the latency and for the memory requirements. We also computed the average
number of messages sent per node for building the tree. This is proportional to
the energy cost for building the tree.

First, we run simulations with fixing R to 0.10 with increasing λ. In this
way, we can observe the behavior of the tree when the node degree increases
while the network diameter remains constant. Figure 2 clearly shows that the
parameters are independent of the node degree. This is a consequence of the
building process, where each parent node sends only one message for its whole
neighborhood, whatever its size. Furthermore, since a node only stores its own
label, the memory requirements neither increase. We can thus deduce that when
the number of nodes increases in a bounded environment, our labeling protocol
scale well since it neither send more messages nor increase the storage needs.

 0

 5

 10

 15

 20

 25

 30

 14 16 18 20 22 24 26 28 30

node degree

Max Label Size (in digit)
of MSG per node

Tree Depth (in # of hops)

Fig. 2: RPT characteristics for R = 0..

We then consider 2 densities: low (mean node degree 8), and dense (degree
15). For each density, we make λ increase, and consequently the number of
nodes increase, as well as the network diameter. Figure 3 shows the results. As
expected when the network diameter increases, the tree also growths and thus,
more memory is required at each node for storing labels. The number of messages
sent remains very low and tends toward a constant asymptote. Simulation results
match with the analysis of Section 3.2. The tree depth and the label size are in
O(log(n)). Please note that we are using a random root node.

4.2 Routing evaluation

We compared our algorithm RPT to other geographic routing protocols. Firstly
we compared RPT with MFR [28] and VCap [6]. MFR uses geographic coor-
dinates provided by a satellite receiver like GPS. MFR is thus more expensive
than RPT in terms of equipments. Nevertheless, it provides routes with small
number of hops and thus gives us a reference point. VCap uses virtual coordi-
nates computed from landmarks nodes. Up to the best of our knowledge, this
protocol gives the better results in terms of coordinates computing complexity
and success rate among existing routing protocols based on virtual coordinates,

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 100 200 300 400 500 600 700 800 900 1000

T
re

e
D

ep
th

nodes

sparse network
medium network

dense network

(a) Tree Depth

 2.26

 2.28

 2.3

 2.32

 2.34

 2.36

 2.38

 2.4

 2.42

 2.44

 2.46

 100 200 300 400 500 600 700 800 900 1000

M

S
G

 p
er

 n
od

e

nodes

sparse network
medium network

dense network

(b) # messages sent per node

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 M
ax

 L
ab

el
 S

iz
e

(in
 d

ig
it)

nodes

sparse network
medium network

dense network

(c) Maximum size label

Fig. 3: Characteristics of the tree for δ̃ = 8 and δ̃ = 15.

Table 1 sums up the complexity in term of messages and storage overhead for
these algorithms. N is the number of nodes in the network. L refers to the
number of landmarks used in the VCap protocol.

MFR VCap RPT

Cost GPS N × L msg 2N + N1 msg

Node memory own coordinates own coordinates own coordinates
neighbors’ coordinates neighbors’ coordinates

Table 1: Comparative complexity

Note that RPT requires the smaller amount of memory. On can also notice
that RPT needs less message exchanges than VCap.

We run the simulation using the routing algorithms for the same samples
of node distribution. We considered 2 densities: low (average node degree 8)
and dense (average node degree 15). For each density, we make λ increasing, and
hence increasing both, the number of nodes increased and the network diameter.

To implement VCap, we use 5 landmarks randomly selected from the network
nodes.

Figure 4(a) shows the success rate of the protocols studied. As expected,
our protocol achieves a 100% of success, and far outperforms the other protocol
based on labels (VCap) but also the geographic routing protocol MFR.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500 600 700 800 900 1000

S
uc

ce
ss

 R
at

e

nodes

RPT - sparse network
MFR - sparse network

VCap - sparse network
RPT - dense network
MFR - dense network

VCap - dense network

(a) Success Rate

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 P
at

h
Le

ng
th

nodes

RPT - sparse network
MFR - sparse network
RPT - dense network
MFR - dense network

(b) Average path length (in # of hops)

Fig. 4: Routing Characteristics of the tree for δ̃ = 8 and δ̃ = 15.

Since we use a spanning tree of the network, routes are not optimal. We are
thus interested in how far the routes provided by RTP are from the optimal.
Figure 4(b) plots the average path length of RTP and MFR, MFR providing
optimal paths. Since VCAP succeeds only for small paths, its average path length
is not significant and we do not consider it in this figure. As expected, the average
path length increases as the nodes have less neighbors. When comparing our
algorithm vs. shortest paths (MFR), we can observe that the stretch factor
is constant, which allows our algorithm to scale with an increasing network
diameter.

We guess that the average path length provided by RTP could be greatly
improved, particularly in dense networks, with the use of shortcuts as explained
in Section 3.3. We keep this experimental analysis for future work.

We also compared RPT with other geographic routing algorithms that guar-
anteed delivery like Greedy Face Greedy (GFG) [12, 18]. Since the path length
depends on the planar subgraph extracted, we compared RPT with RNG [31],
Gabriel Graph [13], Morelia Graph [4] and the virtual spanner [30, 29]. Please
note that GFG relies on an external location service like GPS. We tested two
different network densities for all the algorithms and we show the results in
figure 5.

As Figure 5 shows, our RTP protocol outperform the GFG when regarding
the length of the providing routes for any planarization method independently
of the density.

 0

 50

 100

 150

 200

 250

 200 400 600 800 1000

A
ve

ra
ge

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Number of Points

Position Tree vs. GFG routing in a Medium Dense Graph with 250 units radius

Relative Neighborhood Graph
Gabriel Graph
Morelia Graph

Virtual Spanner
Position Tree

(a) δ̃ = 8

 0

 10

 20

 30

 40

 50

 60

 200 400 600 800 1000

A
ve

ra
ge

 N
um

be
r

of
 T

ra
ns

m
is

si
on

s

Number of Points

Position Tree vs. GFG routing in a Dense Graph with 250 units radius

Relative Neighborhood Graph
Gabriel Graph
Morelia Graph

Virtual Spanner
Position Tree

(b) δ̃ = 12

Fig. 5: Average path length (in # of hops) for δ̃ = 8 and δ̃ = 12 for RTP and GFG
using several planarization methods, for R = 0.25.

5 Conclusions and Future Work

The label trees defined here are very similar to the coordinates reported in [1],
the key difference is the top-down construction of a single tree in our approach.
Our contribution also includes the investigation of statistical properties of the
label trees. We showed our routing algorithm is very competitive when compared
with other routing algorithms. It offers a very good trade-off between equipment
cost, number of messages sent, stretch factor and memory requirement. In the
extended version of this paper we will report a thorough comparison with other
tree-based routing protocols. Below we enumerate some of the trends we may
follow for future work:

– Assuming the nodes can adjust the transmission range we may try to build
a tree that is least expensive in terms of the energy used for transmitting a
package. As it is known that an optimal transmission radius can be found
locally, we may choose edges that better approximate this radius.

– Since the underlying structure for routing is a tree, it is natural to explore
broadcasting, optimizing e.g. the energy used or the latency in reaching the
entire network. In this case a similar technique can be used as in the above
case.

– For a fixed tree different root node selections may lead to different label sizes
with impact in the amount of memory required for each node. The selection
of a core node in a distributed manner is an interesting open problem.

– It will be interesting to study the behavior of RTP in a non-ideal MAC layer.
– The tree maintenance (i.e. taking care of vanishing nodes and the incorpo-

ration of new nodes to the network) is a challenging problem, we foresee
some strategies based on the analysis of shortcuts in the tree, and the use of
multiple roots where we need to balance the memory usage and the failure
recovery (this also applies to the case of a non-ideal MAC layer).

We wish to thank the thorough review and suggestions of the anonymous
referees who helped to improve the presentation.

References

1. Y. Ben-Asher, M. Feldman, and S. Feldman. Ad-hoc routing using virtual coor-
dinates based on rooted trees. In Sensor Networks, Ubiquitous, and Trustworthy

Computing, 2006. IEEE International Conference on, pages 6–13, 2006.

2. F. Benbadis, J. Puig, M. D. de Amorim, C. Chaudet, T. Friedman, and D. Simplot-
Ryl. JUMPS: Enhanced hop-count positioning in sensor networks using multiple
coordinates. submitted to Elsevier, 2007.

3. L. Blazevic, S. Giordano, and J. Le Boudec. Anchored path discovery in terminode
routing. In Networking, Pisa, Italy, 2002.

4. P. Boone, E. Chavez, L. Gleitzky, E. Kranakis, J. Opartny, G. Salazar, and J. Ur-
rutia. Morelia test: Improving the efficiency of the gabriel test and face routing in
ad-hoc networks. Lecture Notes in Computer Science, 3104:23–24, 2004.

5. S. Capkun, M. Hamdi, and J. Hubaux. GPS-free positioning in mobile ad-hoc
networks. In HICSS, 2001.

6. A. Caruso, S. Chessa, S. De, and A. Urpi. GPS free coordinate assignment and
routing in wireless sensor networks. INFOCOM, 1:150–160, 2005.

7. B. N. Clark, C. Colbourn, and D. Johnson. Unit disk graphs. Discrete Math.,
86(1-3):165–177, 1990.

8. T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, and L. Viennot.
Optimized Link State Routing Protocol (OLSR), October 2003. RFC 3626.

9. E. Ermel, A. Fladenmuller, G. Pujolle, and A. Cotton. On selecting nodes to
improve estimated positions. In MWCM, 2004.

10. Q. Fang, J. Gao, L. Guibas, V. Silva, and Z. Li. Glider: gradient landmark-based
distributed routing for sensor networks. INFOCOM, 1:339–350, 2005.

11. R. Fonseca, S. Ratnasamy, D. Culler, S. Shenker, and I. Stoica. Beacon vector
routing: Scalable point-to-point in wireless sensornets. Technical Report Tech.
Rep. IRB-TR-04-012, Intel Research Berkeley, 2004.

12. H. Frey and I. Stojmenovic. On delivery guarantees of face and combined greedy-
face routing in ad hoc and sensor networks. In MOBICOM, 2006.

13. K. Gabriel and R. Sokal. A new statistical approach to geographic variation anal-
ysis. Systematic Zoology, 18:259–278, 1969.

14. J. Hill and D. Culler. Mica: a wireless platform for deeply embedded networks.
IEEE Micro, 22(6):12–24, 2002.

15. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In MOBICOM, 2000.

16. D. Johnson, D. Maltz, and J. Broch. Ad Hoc Networking, DSR The dynamic source

routing protocol for multihop wireless networks, pages 139–172. 2001.

17. J. Kuruvila, A. Nayak, and I. Stojmenovic. Progress and location based localized
power aware routing for ah hoc sensor wireless networks. IJDSN, 2:147–159, 2006.

18. J. Li, L. Gewali, H. Selvaraj, and V. Muthukumar. Hybrid greedy/face routing for
ad-hoc sensor network. DSD, 0:574–578, 2004.

19. P. W. M. Wattenhofer, R. Wattenhofer. Geometric routing without geometry.
Lecture Notes in Computer Science, 3499:307–322, January 2005.

20. S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: a tiny aggregation
service for ad-hoc sensor networks. SIGOPS Operating Systems, 36:131–146, 2002.

21. N. Mitton and E. Fleury. Distributed node location in clustered multi-hop wireless
networks. In AINTEC, Bangkok, Thailand, December 2005.

22. D. Niculescu and B. Nath. Ad hoc positioning system. In GLOBECOM, 2001.

23. D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AOA. In
INFOCOM, 2003.

24. C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-demand Distance Vector
Routing, July 2003. RFC 3561.

25. N. Priyantha, A. Miu, H. Balakrishnan, and S. Teller. The cricket compass for
context-aware mobile applications. In MOBICOM, pages 1–14, 2001.

26. T. A. Q. Cao. A scalable logical coordinates framework for routing in wireless
sensor networks. In RTSS, pages 349–358, 2004.

27. N. Santoro and R. Khatib. Labelling and implicit routing in networks. The com-

puter journal, 28(1):427–442, 1985.
28. H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly distributed

packet radio terminals. IEEE transaction on communications, com-22(3), 1984.
29. H. Tejeda, E. Chávez, J. Sánchez, and P. Ruiz. Energy-efficient face routing on

the virtual spanner. In ADHOC-NOW, pages 101–113, 2006.
30. H. Tejeda, E. Chávez, J. Sánchez, and P. Ruiz. A virtual spanner for efficient face

routing in multihop wireless networks. In PWC, pages 459–470, 2006.
31. G. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern

Recognition, 12(4):261–268, 1998.

