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AN OPTIMAL VARIANCE ESTIMATE IN STOCHASTIC

HOMOGENIZATION OF DISCRETE ELLIPTIC EQUATIONS

ANTOINE GLORIA & FELIX OTTO

Abstract. We consider a discrete elliptic equation on the d-dimensional lattice Z
d

with random coefficients A of the simplest type: They are identically distributed
and independent from edge to edge. On scales large w. r. t. the lattice spacing
(i. e. unity), the solution operator is known to behave like the solution operator of a
(continuous) elliptic equation with constant deterministic coefficients. This symmetric
“homogenized” matrix Ahom = ahomId is characterized by ξ · Ahomξ = 〈(ξ + ∇φ) ·
A(ξ + ∇φ)〉 for any direction ξ ∈ R

d, where the random field φ (the “corrector”) is
the unique stationary solution of −∇∗ · A(ξ + ∇φ) = 0 normalized by 〈φ〉 = 0, and
〈·〉 denotes the ensemble average.

It is known (“by ergodicity”) that the above ensemble average of the energy density
E = (ξ + ∇φ) · A(ξ + ∇φ), which is a stationary random field, can be recovered by a
system average. We quantify this by proving that the variance of a spatial average of
E on length scales L satisfies the optimal estimate, i. e. var [

∑ EηL] . L−d, where
the averaging function (i. e.

∑
ηL = 1, supp (ηL) ⊂ {|x| ≤ L}) has to be smooth

in the sense that |∇ηL| . L−1−d. In two space dimensions (i. e. d = 2), there is a
logarithmic correction. This estimate is optimal since it shows that smooth averages
of the energy density E decay in L as if E would be independent from edge to edge
(which it is not for d > 1).

This result is of practical significance, since it allows to estimate the dominant error
when numerically computing ahom.

Keywords: stochastic homogenization, variance estimate, difference operator.

2000 Mathematics Subject Classification: 35B27, 39A70, 60H25, 60F99.

1. Introduction

1.1. Motivation, informal statement and optimality of the result. We study dis-
crete elliptic equations. More precisely, we consider real functions u of the sites x in a
d-dimensional Cartesian lattice Z

d. Every edge e of the lattice is endowed with a “con-
ductivity” a(e) > 0. This defines a discrete elliptic differential operator −∇∗ · A∇ via

−∇∗ · (A∇u)(x) :=
∑

y

a(e)(u(x) − u(y)),
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2 A. GLORIA & F. OTTO

where the sum is over the 2d sites y which are connected by an edge e = [x, y] to the site
x. It is sometimes more convenient to think in terms of the associated Dirichlet form, i. e.

∑

∇v · A∇u :=
∑

x∈Zd

v(x) (−∇∗ · (A∇u)(x))

=
∑

e

(v(x) − v(y))a(e)(u(x) − u(y)),

where the last sum is over all edges e and (x, y) denotes the two sites connected by e, i. e.
e = [x, y]. We assume the conductivities a to be uniformly elliptic in the sense of

α ≤ a(e) ≤ β for all edges e

for some fixed constants 0 < α ≤ β < ∞.

We are interested in random coefficients. To fix ideas, we consider the simplest situation
possible:

{a(e)}e are independently and identically distributed (i. i. d.).

Hence the statistics are described by a distribution on the finite interval [α, β]. We’d like
to see this discrete elliptic operator with random coefficients as a good model problem for
continuum elliptic operators with random coefficients of correlation length unity.

The first results in stochastic homogenization of linear elliptic equations in the continu-
ous setting are due to Kozlov [10] and Papanicolaou & Varadhan [16], essentially using
compensated compactness. The adaptation of these results to discrete elliptic equations
in quite more general situations than the one considered above (that is under general er-
godic assumptions) is due to Künnemann [12] following the approach by Papanicolaou &
Varadhan for the continuous case, and also to Kozlov [11] (where more general discrete
elliptic operators are considered). Note that the discrete elliptic operator −∇∗ ·A∇ is the
infinitesimal generator of a random walk in a random environment, whence the rephrasing
of the homogenization result in [12] as the diffusion limit for reversible jump processes
in Z

d with random bond conductivities. With the same point of view, it is also worth
mentioning the seminal paper by Kipnis & Varadhan [8] using central limit theorems for
martingales.

The general homogenization result proved in these articles states that there exist homoge-
neous and deterministic coefficients Ahom such that the solution operator of the continuum
differential operator −∇·Ahom∇ describes the large scale behavior of the solution operator
of the discrete differential operator −∇∗ · A∇. As a by product of this homogenization
result, one obtains a characterization of the homogenized coefficients Ahom: It is shown
that for every direction ξ ∈ R

d, there exists a unique stationary scalar field φ (stationarity
means that the fields φ(·) and φ(· + z) have the same statistics for all shifts z ∈ Z

d) such
that

−∇∗ · (A(ξ + ∇φ)) = 0 in Z
d, (1.1)

and normalized by 〈φ(0)〉 = 0. As in periodic homogenization, the function Z
d ∋ x 7→

ξ · x + φ(x) can be seen as the A-harmonic function which macroscopically behaves as the
affine function Z

d ∋ x 7→ ξ ·x. With this “corrector” φ, the homogenized coefficients Ahom

(which in general form a symmetric matrix and for our simple statistics in fact a multiple
of the identity: Ahom = ahomId) can be characterized as follows:

ξ · Ahomξ = 〈(ξ + ∇φ) · A(ξ + ∇φ)〉. (1.2)
2



VARIANCE ESTIMATE FOR EFFECTIVE DIFFUSION 3

Since the scalar field (ξ + ∇φ) · A(ξ + ∇φ) is stationary, it does not matter (in terms of
the distribution) at which site x it is evaluated in the formula (1.2), so that we suppress
the argument x in our notation.

The representation (1.2) is of no immediate practical use, since the equation (1.1) has to
be solved

• for every realization of the coefficients {a(e)}e and
• in the whole space Z

d.

In order to overcome the first difficulty, it is natural to appeal to ergodicity (in the sense
that ensemble averages are equal to system averages), which suggests to replace (1.2) by

ξ · Ahomξ ;

∑
(ξ + ∇φ) · A(ξ + ∇φ)ηL, (1.3)

where ηL is a suitable averaging function of length scale L ≫ 1, that is,

supp (ηL) ⊂ {|x| ≤ L}, |ηL| . L−d,
∑

ηL = 1. (1.4)

In fact, on expects the energy density (ξ +∇φ) ·A(ξ +∇φ), which is a stationary random
field, to display a decay of correlations over large distances, so that (1.3) seems a good
approximation for L ≫ 1.

However, one still has to solve (1.1) on the whole space Z
d, albeit for a single realization

of the coefficients. In order to overcome this second difficulty, we start with the following
observation: Since φ on the ball {|x| ≤ L} is expected to be little correlated to φ outside
the ball {|x| ≥ R} for R − L ≫ 1, it seems natural to replace φ in (1.3) by φR:

∑

(ξ + ∇φ) · A(ξ + ∇φ)ηL ;

∑

(ξ + ∇φR) · A(ξ + ∇φR)ηL, (1.5)

where φR is the solution of an equation on a domain (say, a ball) of size R with homoge-
neous boundary conditions (say, Dirichlet):

−∇∗ · (A(ξ + ∇φR)) = 0 in Z
d ∩ {|x| < R},

φR = 0 in Z
d ∩ {|x| ≥ R}, (1.6)

so that the r. h. s. of (1.5) is indeed computable.

However, φR defined by (1.6) is not statistically stationary, which is a handicap for the
error analysis. It is therefore common in the analysis of the error from spatial cut-off to
introduce an intermediate step which consists in replacing equation (1.1) by

T−1φT −∇∗ · (A(ξ + ∇φT )) = 0 in Z
d. (1.7)

Clearly, the zero order term in (1.7) introduces a characteristic length scale
√

T (the
notation T that alludes to time is used because T−1 corresponds to the death rate in the
random walker interpretation of the operator T−1 −∇∗ · A∇). In a second step, (1.7) is
then replaced by

T−1φT −∇∗ · (A(ξ + ∇φT,R)) = 0 in Z
d ∩ {|x| < R},

φT,R = 0 in Z
d ∩ {|x| ≥ R}.

The Green’s function GT (x, y) of the operator T−1 − ∇∗ · A∇ is known to decay faster

than any power in
√

T
|x−y| ≪ 1 uniformly in the realization of the coefficients. Therefore one

expects that φT and φT,R agree on the ball {|x| ≤ L} up to an error which is of infinite

order in ε =
√

T
R−L (ε is the inverse of the distance of the ball {|x| ≤ L} to the Dirichlet

3
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boundary {|x| = R} measured in units of
√

T , see for instance [2, Section 3] for related
arguments). Hence we shall consider

∑
(ξ + ∇φT ) · A(ξ + ∇φT )ηL as a very good proxy

to the practically computable
∑

(ξ + ∇φT,R) · A(ξ + ∇φT,R)ηL:

∑

(ξ + ∇φT ) · A(ξ + ∇φT )ηL ≈
∑

(ξ + ∇φT,R) · A(ξ + ∇φT,R)ηL.

In view of this remark, we restrict our attention to the error we make when replacing

ξ · Ahomξ ;

∑

(ξ + ∇φT ) · A(ξ + ∇φT )ηL.

It is natural to measure this error in terms of the expected value of its square. This error
splits into two parts, the first arising from the finiteness of the averaging length scale L
and the other arising from the finiteness of the cut-off length scale

√
T :

〈∣
∣
∣

∑

(ξ + ∇φT ) · A(ξ + ∇φT )ηL − ξ · Ahomξ
∣
∣
∣

2
〉

(1.2)
=

〈∣
∣
∣

∑

(ξ + ∇φT ) · A(ξ + ∇φT )ηL − 〈(ξ + ∇φ) · A(ξ + ∇φ)〉
∣
∣
∣

2
〉

= var
[∑

(ξ + ∇φT ) · A(ξ + ∇φT )ηL

]

(1.8)

+
∣
∣
∣

〈∑

(ξ + ∇φT ) · A(ξ + ∇φT )ηL

〉

− 〈(ξ + ∇φ) · A(ξ + ∇φ)〉
∣
∣
∣

2
. (1.9)

In view of the stationarity of (ξ + ∇φT ) · A(ξ + ∇φT ), of (1.4) and of (1.1), the second
part (1.9) of the error can be rewritten as

∣
∣
∣

〈∑

(ξ + ∇φT ) · A(ξ + ∇φT )ηL

〉

− 〈(ξ + ∇φ) · A(ξ + ∇φ)〉
∣
∣
∣

2

= |〈(ξ + ∇φT ) · A(ξ + ∇φT ) − (ξ + ∇φ) · A(ξ + ∇φ)〉|2

= 〈(∇φT −∇φ) · A(∇φT −∇φ)〉2. (1.10)

What scaling can we expect for the two error terms (1.8) & (1.10)? A heuristic prediction
can be easily inferred from the regime of small ellipticity contrast, i. e. 1 − α

β ≪ 1 (and

α = 1 w. l. o. g.). In this regime, to leading order, the two error terms (1.8) & (1.10)
behave like

var
[∑(

ξ · (A − 〈A〉)ξ + 2ξ · ∇φ̄
)
ηL

]

and 〈|∇φ̄T −∇φ̄|2〉2,

where φ̄ and φ̄T are defined via

−△φ̄ = ∇∗ · ((A − 〈A〉)ξ), (1.11)

T−1φ̄T −△φ̄T = ∇∗ · ((A − 〈A〉)ξ), (1.12)

respectively. In the first error term, we have replaced φ̄T by φ̄ for simplicity of the
exposition.
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These error terms can be computed in a straightforward manner. Indeed, as shown in the
Appendix, they scale for any direction |ξ| = 1 as:

var
[∑(

ξ · (A − 〈A〉)ξ + 2ξ · ∇φ̄
)
ηL

]

∼ L−d (1.13)

〈|∇φ̄T −∇φ̄|2〉2 ∼







T−d for d < 4,
T−4 ln2 T for d = 4,

T−4 for d > 4.
(1.14)

We now argue that the first error term (1.13) is the dominant one (in dimensions d < 8). In

order to do so, we argue that the choice of L ∼
√

T is natural (for which (1.13) dominates
(1.14) in dimensions d < 8). Indeed, we recall that in the ball {|x| ≤ L}, φT is a proxy
for the computable φT,R (defined on the larger ball {|x| ≤ R}). The error is of infinite

order in the distance between the two balls, measured in the length scale
√

T , i. e. in
ε :=

√
T/(R − L) ≪ 1. Hence for the sake of discussing rates we may indeed think of

L ∼
√

T ∼ R.

In this paper, we therefore focus on the error term (1.8) coming from the finite range L
of the spatial average. In Theorem 1 (see also Remark 1), we shall establish that (1.13)
holds as an estimate also for its nonlinear counterpart (1.8), that is,

var
[∑

(ξ + ∇φT ) · A(ξ + ∇φT )ηL

]

. L−d, (1.15)

with two minor restrictions:

• In dimension d = 2, the prefactor depends logarithmically on T (whereas for d 6= 2,
the prefactor depends only on the ellipticity constants).

• The spatial averaging function ηL has to be smooth in the sense that |∇ηL| .

L−d−1 in addition to (1.4).

The estimate for the lower order term (1.9) will be the object of a subsequent work.

1.2. Discussion of the works of Yurinskii and of Naddaf & Spencer. In this
subsection, we comment on two papers on error estimates (in the sense of the previous
subsection) which from our perspective are the essential ones. We also explain how our
work relates to these two papers.

Still unsurpassed is the first quantitative paper, the inspiring 1986 work by Yurinskii [17].
He essentially deals with the error (1.9) arising from the spatial cut-off T . In our discrete
setting of i. i. d. coefficients a(e) and for dimension d > 2, his result translates into

〈|∇φT −∇φ|2〉 . T
2−d
4+d

+δ, (1.16)

for T ≫ 1 and some arbitrarily small δ > 0, see [17, Theorem 2.1] (and [5, Lemma A.5]
for this rephrasing of Yurinskii’s result).

Yurinskii derives estimate (1.16) by fairly elementary arguments from the following crucial
variance estimate of the spatial averages

∑
φT ηL of φT on length scales L:

var
[∑

φT ηL

]

. T

(
T

Ld

)1/2−δ

(1.17)

5



6 A. GLORIA & F. OTTO

for 1 ≪ T ≪ Ld and some arbitrarily small δ > 0, see [17, Lemma 2.4]. Let us comment
a bit on the proof of (1.17): By stationarity of φT , the variance can be reformulated as a
covariance, i. e.

var
[∑

φT ηL

]

= cov
[∑

φT η̃L;φT (0)
]

,

with a modified averaging function η̃L. The starting point for (1.17) is to control the
covariance by:

i) An additive decomposition of φT (0) over all finite subsets S of the lattice Z
d, i. e.

φT (0) =
∑

S⊂Zd φT,S(0), where φT,S(0) only depends on a|S, i. e. the coefficients
a restricted to the subset S.

ii) An estimate on how sensitively
∑

φT η̃L depends on a|S.

The decomposition in i) is based on the probability measure on path space [0,∞) ∋ t 7→
η(t) ∈ Z

d describing the random walk generated by the operator −∇∗ · A∇ (for a fixed
realization of a). Indeed, this probability measure on path space allows for a well-known
representation of φT (0) in terms of paths starting in 0 (via the expected value). Hence the
splitting can be obtained from restricting the expected value to all paths η with image S
(up to some exit time larger than T ), see [17, Lemma 2.3].

The sensitivity estimate ii) comes in form of the deterministic energy-type estimate

|
∑

φT η̃L −
∑

φ̃T η̃L|2 .
T

Ld

∑

edges e s. t. e∩S 6=Ø

(1 + |∇φT (e)|2),

where φ̃T is the solution of T−1φ̃T −∇∗ · Ã(ξ +∇φ̃T ) = 0 with coefficients Ã which differ
from A only on the subset S, see [17, (1.17)].

The third ingredient for (1.17) is an estimate of the probability that a path η starting in 0
crosses a given edge e. This probability can be estimated in terms of the Green’s function
GT (x, 0) of the operator T−1 − ∇∗ · A∇ (where x is one of the two sites on the edge e).
Yurinskii then appeals to estimates on GT (x, y) that only depend on the ellipticity bounds
α ≤ a ≤ β of A (and therefore do not depend on the realization of a) see [17, Lemma 2.1].
As is well-known, these type of estimates rely on the Harnack inequality.

Our variance estimate (1.15) also relies on these deterministic estimates of the Green’s
function GT (x, y), see Lemma 8. However, our strategy to estimate a variance differs
substantially from Yurinskii’s strategy of i) & ii). As a matter of fact, with our methods,
we could derive the optimal variance estimate

var
[∑

φT ηL

]

. L2−d (1.18)

for L ≫ 1. Estimate (1.18) is optimal in the sense that we obtain the above scaling in
the regime of “vanishing ellipticity ratio” 1 − α

β ≪ 1 by the arguments in the previous

subsection. Still, the optimal estimate (1.18) would not yield the optimal estimate (1.14)
by Yurinskii’s argument to pass from (1.17) to (1.16).

Our strategy of estimating a variance is inspired by an unpublished paper by Naddaf &
Spencer [15]. They use a spectral gap estimate to control the variance of some function X
of the coefficients {a(e)}edges e (i. e. a random variable):

var [X] .

〈
∑

edges e

(
∂X

∂a(e)

)2
〉

, (1.19)

6



VARIANCE ESTIMATE FOR EFFECTIVE DIFFUSION 7

see [15, p.4]. This type of estimate can be seen as a Poincaré estimate with mean value
zero w. r. t. the infinite product measure that describes the distribution of the coefficients
(and the optimal constant in this estimate is given by the smallest non-zero eigenvalue
of the corresponding elliptic operator, whence “spectral gap”). Naddaf & Spencer derive
(1.19) via the Brascamp-Lieb inequality for a large class of statistics for {a(e)}edges e, which
however does not include all i. i. d. statistics of {a(e)}edges e considered by us. We therefore
rely on a slight modification of (1.19), see Lemma 3.

We also follow Naddaf & Spencer in the sense that we treat the variance of an energy
density. However, they express their result not in terms of the energy density of φT but
of a generic solution u with a compactly supported, deterministic r. h. s. f , i. e.

−∇∗ · A∇u = ∇∗ · f. (1.20)

Using (1.20), they obtain the formula ∂
∂a(e)

∑
∇u·A∇u = −|∇u(e)|2 so that an application

of (1.19) yields the following estimate on the energy density X =
∑∇u · A∇u:

var
[∑

∇u · A∇u
]

.
〈∑

|∇u|4
〉

, (1.21)

see [15, Proposition 1].

Naddaf and Spencer also remark that provided the ellipticity contrast 1 − α
β is small

enough, Meyer’s estimate holds which states that
∑

|∇u|4 .
∑

|f |4, (1.22)

with a constant that only depends on α, β. The combination of (1.21) & (1.22) yields the
a priori estimate

var
[∑

∇u · A∇u
]

.
∑

|f |4, (1.23)

see [15, Theorem 1]. Since the l. h. s. of (1.23) scales as (volume)2, while the r. h. s. only
scales as volume, this estimate reveals the optimal decay of fluctuations on the macro-
scopic level, very much like (1.15). — There is a somewhat theatrical convention in the
homogenization literature to call the lattice spacing ε instead of 1 which highlights this
scaling. Following Naddaf & Spencer, we use Meyer’s estimate, albeit applied on the
Green’s function GT (x, y), see Lemma 9.

We will make use of the following notation:

• d ≥ 2 is the dimension;
•
∫

Zd dx denotes the sum over x ∈ Z
d, and

∫

D dx denotes the sum over x ∈ Z
d such

that x ∈ D, D open subset of R
d;

• 〈·〉 is the ensemble average, or equivalently the expectation in the underlying prob-
ability space;

• var [·] is the variance associated with the ensemble average;
• . and & stand for ≤ and ≥ up to a multiplicative constant which only depends on

the dimension d and the constants α, β (see Definition 1 below) if not otherwise
stated;

• when both . and & hold, we simply write ∼;
• we use ≫ instead of & when the multiplicative constant is (much) larger than 1;
• (e1, . . . , ed) denotes the canonical basis of Z

d.

7
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2. Main results

2.1. General framework.

Definition 1. We say that a : Z
d × Z

d → R
+, (x, y) 7→ a(x, y) is a conductivity function

on Z
d if there exist 0 < α ≤ β < ∞ such that

• a(x, y) = 0 if |x − y| 6= 1,
• a(x, y) = a(y, x) ∈ [α, β] if |x − y| = 1.

We denote by Aαβ the set of such conductivity functions.

Definition 2. The elliptic operator L : L2
loc(Z

d) → L2
loc(Z

d), u 7→ Lu associated with a

conductivity function a ∈ Aαβ is defined for all x ∈ Z
d by

(Lu)(x) = −∇∗ · A(x)∇u(x) (2.1)

where

∇u(x) :=






u(x + e1) − u(x)
...
u(x + ed) − u(x)




 , ∇∗u(x) :=






u(x) − u(x − e1)
...
u(x) − u(x − ed)




 ,

and
A(x) := diag [a(x, x + e1), . . . , a(x, x + ed)] .

In particular, it holds that

(Lu)(x) =
∑

y,|x−y|=1

a(x, y)(u(x) − u(y)).

If a(x, y) = 1 for |x−y| = 1, then the associated elliptic operator L is the discrete Laplace
operator, and is denoted by −△.

Definition 3 (discrete integration by parts). Let d ≥ 2, h ∈ L2(Zd), and g ∈ L2(Zd, Rd).
Then the discrete integration by parts reads

∫

Zd

h(x)∇∗ · g(x) dx = −
∫

Zd

∇h(x) · g(x) dx.

We now turn to the definition of the statistics of the conductivity function.

Definition 4. A conductivity function is said to be independent and identically dis-
tributed (i. i. d.) if the coefficients a(x, y) for |x − y| = 1 are i. i. d. random variables.

Definition 5. We say that a random field F : Z
d ×Z

d → R is stationary if for all z ∈ Z
d,

F (· + z, · + z) has the same statistics as F (·, ·). In particular, if F is stationary, then

〈F (x + z, y + z)〉 = 〈F (x, y)〉
for all x, y, z ∈ Z

d.

Lemma 1 (corrector). [12, Theorem 3] Let a ∈ Aαβ be an i. i. d. conductivity function,

then for all ξ ∈ R
d, there exists a unique stationary random function φ ∈ L2

loc(Z
d) which

satisfies the corrector equation

−∇∗ · A(x) (∇φ(x) + ξ) = 0 in Z
d, (2.2)

and such that 〈φ〉 = 0. In addition,
〈
|∇φ|2

〉
. |ξ|2.

We also define an “approximation” of the corrector as follows:
8



VARIANCE ESTIMATE FOR EFFECTIVE DIFFUSION 9

Lemma 2 (approximate corrector). [12, Proof of Theorem 3] Let a ∈ Aαβ be an i. i. d.

conductivity function, then for all T > 0 and ξ ∈ R
d, there exists a unique stationary

random function φT ∈ L2
loc(Z

d) which satisfies the “approximate” corrector equation

T−1φT (x) −∇∗ · A(x) (∇φT (x) + ξ) = 0 in Z
d, (2.3)

and such that 〈φT 〉 = 0. In addition, T−1
〈
φ2

T

〉
+
〈

|∇φT |2
〉

. |ξ|2.

Definition 6 (homogenized coefficients). Let a ∈ Aαβ be an i. i. d. conductivity function

and let ξ ∈ R
d and φ be as in Lemma 1. We define the homogenized d× d-matrix Ahom as

ξ · Ahomξ = 〈(ξ + ∇φ) · A(ξ + ∇φ)(0)〉 . (2.4)

Note that (2.4) fully characterizes Ahom since Ahom is a symmetric matrix (it is in particular
of the form ahomId for an i. i. d. conductivity function).

2.2. Statement of the main result. Our main result shows that the energy density
E := T−1φ2

T + (∇φT + ξ) · A(∇φT + ξ) of the approximate corrector φT , which is a
stationary scalar field, decorrelates sufficiently rapidly so that smooth spatial averages
(defined with help of ηL) fluctuate as they would if E would be independent from site to
site (as is the case for the tensor field A of the coefficients). The strength of fluctuation
is expressed in terms of the variance. In more than two space dimensions (i. e. d > 2),

the estimate does not depend on the cut-off scale
√

T and thus carries over to the energy
density of the corrector φ. In two space dimensions, we are not able to rule out a weak
(i. e. logarithmic) dependence on the cut-off scale

√
T :

Theorem 1. Let a ∈ Aαβ be an i. i. d. conductivity function, and let φ and φT denote
the corrector and approximate correctors associated with the conductivity function a and
direction ξ ∈ R

d, |ξ| = 1. We then define for all L > 0 and T ≫ 1 the symmetric matrix
AL,T characterized by

ξ · AL,T ξ :=

∫

Zd

(
T−1φT (x)2 + (∇φT (x) + ξ) · A(x)(∇φT (x) + ξ)

)
ηL(x) dx,

where x 7→ ηL(x) is an averaging function on (−L,L)d such that
∫

Zd ηL(x)dx = 1 and

|∇ηL|L∞ . L−d−1. Then, there exists an exponent q > 0 depending only on α, β such that

for d = 2 : var [ξ · AL,T ξ] . L−2(ln T )q,
for d > 2 : var [ξ · AL,T ξ] . L−d.

(2.5)

In particular, var
[∫

Zd(∇φ(x) + ξ) · A(x)(∇φ(x) + ξ)ηL(x) dx
]

. L−d for d > 2.

Remark 1. While it is natural to include the zero-order term T−1〈φ2
T 〉 into the definition

of the energy density, it is not essential for our result. Here comes the argument: By a
simplified version of the string of arguments which lead to Theorem 1 we can show that
the variance of the zero-order term is estimated as

var

[∫

Zd

φT (x)2ηL(x)dx

]

.

{
(ln T )q for d = 2,
L2−d for d > 2.

Hence this term is of lower order in the regime of interest L .
√

T .

The main ingredient to the proof of Theorem 1 is of independent interest. It states that
all finite stochastic moments of the approximate corrector φT are bounded independently
of T for d > 2 and grow at most logarithmically in T for d = 2.

9



10 A. GLORIA & F. OTTO

Proposition 1. Let a ∈ Aαβ be an i. i. d. conductivity function, ξ ∈ R
d with |ξ| = 1 and

let φT denote the approximate corrector associated with the conductivity function a, and
ξ. Then there exists a continuous function γ : R

+ → R
+ such that for all q ∈ R

+, there
exists a constant Cq such that for all T > 0,

for d = 2 : 〈|φT (0)|q〉 ≤ Cq(ln T )γ(q),
for d > 2 : 〈|φT (0)|q〉 ≤ Cq.

(2.6)

In addition, γ(2n) = n(n + 1) for all n = 2l, l ∈ N large enough.

In d = 1, we expect 〈|φT (0)|q〉 ∼
√

T
q/2

, so that there is a transition between unbound-
edness and boundedness in T for some d ∈ (1, 3). The linearization of the problem in the
regime of vanishing ellipticity contrast, i. e. 1 − α

β ≪ 1, suggests that d = 2 is indeed the

critical dimension for Proposition 1, i. e. the dimension where a logarithmic behavior is
to be expected. However, there is no reason why d = 2 should be critical for Theorem 1.
Indeed, in the case of d = 1, the statement of Theorem 1 holds without a logarithm.

Let us point out that Proposition 1 and Theorem 1 hold true for more general distributions,
provided the variance estimate of Lemma 3 below holds. In particular, the law of a(x, x+
ei) may depend on the direction ei, which would give a general diagonal homogenized
matrix (not necessarily a multiple of the identity matrix). More generally, a(x, x′) and
a(y, y′) may also be slightly correlated. We do not pursue this direction in this article.

2.3. Structure of the proof and statement of the auxiliary results. Not surpris-
ingly, in order to control the variance of some function X of the coefficients a (like the
spatial average of the energy density of the approximate corrector φT ), one needs to con-
trol the gradient of X w. r. t. a. As in [15], this is quantified by the following general
variance estimate:

Lemma 3 (variance estimate). Let a = {ai}i∈N be a sequence of i. i. d. random variables
with range [α, β]. Let X be a Borel measurable function of a ∈ R

N (i. e. measurable w. r. t.
the smallest σ-algebra on R

N for which all coordinate functions R
N ∋ a 7→ ai ∈ R are Borel

measurable, cf. [9, Definition 14.4]). Then we have

var [X] ≤
〈 ∞∑

i=1

sup
ai

∣
∣
∣
∣

∂X

∂ai

∣
∣
∣
∣

2
〉

var [a1] , (2.7)

where supai

∣
∣
∣
∂X
∂ai

∣
∣
∣ denotes the supremum of the modulus of the i-th partial derivative

∂X

∂ai
(a1, · · · , ai−1, ai, ai+1, · · · )

of X with respect to the variable ai ∈ [α, β].

Remark 2. Let us comment a bit on Lemma 3. Estimate (2.7) is a weakened version of
a spectral gap estimate

var [X] .

〈 ∞∑

i=1

∣
∣
∣
∣

∂X

∂ai

∣
∣
∣
∣

2
〉

, (2.8)

10



VARIANCE ESTIMATE FOR EFFECTIVE DIFFUSION 11

which already played a central role in Naddaf & Spencer’s analysis of stochastic homog-
enization [15, Section 2]. We note that for i. i. d. random variables, such a spectral gap
estimate (2.8) follows “by tensorization” from the one-dimensional spectral gap estimate

〈X(a1)
2〉 − 〈X(a1)〉2 .

〈∣
∣
∣
∣

∂X

∂a1

∣
∣
∣
∣

2
〉

, (2.9)

see for instance [13, Lemma 1.1]. The one-dimensional spectral gap estimate (2.9) holds
under mild assumptions on the distribution of a1. Yet, (2.9) does not hold for atomic
measures like 〈X(a1)〉 = 1

2(X(1) + X(2)). Since Lemma 3 covers the case of atomic
measures, we only obtain the weaker form (2.7) of (2.8). Despite this technical detail, the
proof of Lemma 3 is very similar to the one in [13, Lemma 1.1].

As in [15], in the proof of Theorem 1, we will make use of the fact that T−1φ2
T + (∇φT +

ξ) ·A(∇φT + ξ) is an energy density, which yields the following elementary formula for the
partial derivative w. r. t. the value a(e) of the coefficient in the edge e = [z, z + ei]:

∂

∂a(e)

∫

(T−1φ2
T + (∇φT + ξ) · A(∇φT + ξ))(x)ηL(x)dx

= −2

∫ (
∂φT

∂a(e)
∇ηL · A(∇φT + ξ)

)

(x)dx + (ηL(∇iφT + ξi))
2(z), (2.10)

up to minor modifications coming from the discrete Leibniz rule, see Step 1 of the proof
of Theorem 1.

This formula makes the gradient of the averaging function ηL appear; in order to benefit
from this, we assume that the averaging function is smooth so that we get an extra power

of L−1. The merit of (2.10) is that we need to control the partial derivative ∂φT (x)
∂a(e) of

the approximate corrector φT (x) (and not of its spatial derivatives). Not surprisingly,
this partial derivative involves the Green’s function GT (x, ·). More precisely, it involves
the gradient ∇zi

GT (x, z) of the Green’s function with singularity in z (and not its second
gradient ∇zi

∇xGT (x, z), for which we would not have the optimal decay rate uniformly
in a). We define discrete Green’s functions as follows:

Definition 7 (discrete Green’s function). Let d ≥ 2. For all T > 0, the Green’s function
GT : Aαβ×Z

d×Z
d → Z

d, (a, x, y) 7→ GT (x, y; a) associated with the conductivity function

a is defined for all y ∈ Z
d and a ∈ Aαβ as the unique solution in L2

x(Zd) to
∫

Zd

T−1GT (x, y; a)v(x) dx +

∫

Zd

∇v(x) · A(x)∇xGT (x, y; a) dx = v(y), ∀v ∈ L2(Zd),

(2.11)
where A is as in (2.1).

Throughout this paper, when no confusion occurs, we use the short-hand notation GT (x, y)
for GT (x, y; a).

The following lemma provides the elementary formula relating the “susceptibility” ∂φT (x)
∂a(e)

of φT (x) to the Green’s function GT (x, y):

Lemma 4. Let a ∈ Aαβ be an i. i. d. conductivity function, and let GT and φT be the

associated Green’s function and approximate corrector for T > 0 and ξ ∈ R
d, |ξ| = 1.

11



12 A. GLORIA & F. OTTO

Then, for all e = [z, z + ei] and x ∈ Z
d,

∂φT (x; a)

∂a(e)
= −(∇iφT (z; a) + ξi)∇zi

GT (z, x; a), (2.12)

and for all n ∈ N,

sup
a(e)

∣
∣
∣
∣

∂φT (x; a)n+1

∂a(e)

∣
∣
∣
∣

. |φT (x; a)|n(|∇iφT (z; a)| + 1)|∇zi
GT (z, x; a)|

+(|∇iφT (z; a)| + 1)n+1|∇zi
GT (z, x; a)|n+1. (2.13)

In addition, it holds that

sup
a(e)

|∇iφT (z; a)| . |∇iφT (z; a)| + 1. (2.14)

Note that the multiplicative constant in (2.13) depends on n next to α, β, and d.

In addition, Lemma 4 provides uniform estimates on ∂φT (x)n

∂a(e) in a(e) (the case n > 1

is needed in Proposition 1). In order to obtain this uniform control in a(e), we need to

control ∇zG(z, x; a) uniformly in a(e). Again, this comes from considering ∂∇zG(z,x;a)
∂a(e) . The

following lemma provides the elementary formula for ∂∇zG(z,x;a)
∂a(e) and a uniform estimate

in a(e).

Lemma 5. Let GT : Aαβ × Z
d × Z

d → R, (a, x, y) 7→ GT (x, y; a) be the Green’s function
associated with the conductivity function a for T > 0. For all e = [z, z + ei] and for all
x, y ∈ Z

d, it holds that

∂

∂a(e)
GT (x, y; a) = −∇zi

GT (x, z; a)∇zi
GT (z, y; a). (2.15)

As a by-product we also have: For all x ∈ Z
d

sup
a(e)

|∇zi
GT (z, x; a)| . |∇zi

GT (z, x; a)| . (2.16)

There is a technical difficulty arising from the fact that a has infinitely many components.
In Lemma 3 this technical difficulty is handled by the strong measurability assumptions
on X. The following lemma establishes these measurability properties for φT , so that we
can apply Lemma 3.

Lemma 6. Let a ∈ Aαβ be an i. i. d. conductivity function, and let GT (·, ·; a) and

φT (·; a) be the associated Green’s function and approximate corrector for ξ ∈ R
d, d ≥ 2,

and T > 0. Then for fixed x, y ∈ Z
d, GT (x, y, ·) and φT (x; ·) are continuous w. r. t. the

product topology of Aαβ (i. e. the smallest/coarsest topology on R
E, where E denotes the

set of edges, such that the coordinate functions R
E ∋ a 7→ ae ∈ R are continuous for all

edges e ∈ E).
In particular, GT (x, y; ·) and φT (x; ·) are Borel measurable functions of a ∈ Aαβ, so that
one may apply Lemma 3 to φT (x; ·) and nonlinear funtions thereof.

The proof of Theorem 1 crucially relies on the fact that φT is almost bounded indepen-
dently of T (in d > 2). More precisely, it relies on the fact that any moment 〈φT (0)n〉 is
bounded independently of T as stated in Proposition 1. Starting point for Proposition 1
is again Lemma 3, which is iteratively applied to φT (0)m where m increases dyadically.

12



VARIANCE ESTIMATE FOR EFFECTIVE DIFFUSION 13

This is how Lemma 4 comes in again. However, the crucial gain in stochastic integrability
is provided by the following lemma. It can be interpreted as a Cacciopoli estimate in
probability and relies on the stationarity of φT .

Lemma 7. Let a ∈ Aαβ be an i. i. d. conductivity function, and let φT be the approximate

corrector associated with the coefficients a for ξ ∈ R
d, |ξ| = 1. Then for d ≥ 2 and for all

n ∈ 2N,
〈
|φT |n(|∇φT |2 + |∇∗φT |2)(0)

〉
. 〈|φT |n(0)〉 , (2.17)

where the multiplicative constant does depend on n next to α, β, and d, but not on T > 0.

In order to prove Proposition 1 via Lemma 3 (applied to φT (0)n) and Lemma 4, we need
the optimal decay of the gradient ∇zGT (x, z) of Green’s function in |x − z|, that is,

|∇zGT (x, z; a)| . |x − z|1−d uniformly in a and T. (2.18)

The same decay property is also required to prove Theorem 1 via Lemma 3 (applied to
(2.10)) and Lemma 4. It is well-known from the continuum case that there are no pointwise
in z bounds of the type (2.18) which would hold uniformly in the ellipticity constants α,
β. However, (2.18) holds in the square averaged sense on dyadic annuli, as can be seen by
a standard Cacciopoli argument based on the optimal decay of the Green’s function itself,
that is,

GT (x, z) . |x − z|2−d uniformly in a and T, (2.19)

in the case d > 2. The pointwise estimate (2.19) in x and z is a classical result [6, Theorem
1.1] that relies on Harnack’s inequality. It has been partially extended to discrete settings,
see in particular the Harnack inequality on graphs [3]. However, we did not find a suitable
reference for the BMO-type estimate in the case of d = 2. On the other hand, we don’t
require the pointwise version of (2.19), but just an averaged version on dyadic annuli. The
statements we need are collected in the following lemma:

Lemma 8. Let a ∈ Aαβ, T > 0 and GT be the associated Green’s function. For all d ≥ 2
and q < ∞,

(i) BMO and Lq estimate: for all R ≫ 1,

for d = 2 :

∫

|x−y|≤R
|GT (x, y) − ḠT (·, y){|x−y|≤R}|q dx . R2, (2.20)

for d > 2 :

∫

R≤|x−y|≤2R
GT (x, y)q dx . Rd (R2−d)q. (2.21)

where ḠT (·, y){|y−x|≤R} denotes the average of GT (·, y) over the ball {x ∈ Z
d, |x −

y| ≤ R}.
(ii) Behavior for R ∼

√
T and d = 2:

R−2

∫

|x|≤R
GT (x, y)2 dx . 1. (2.22)

(iii) Decay at infinity: for all R ≥
√

T ,
∫

R≤|x−y|≤2R
GT (x, y)2 dx . (

√
TR−1)q. (2.23)

The multiplicative constants in (2.20), (2.21), and (2.23) depend on q next to α, β, and d.
13



14 A. GLORIA & F. OTTO

We present a proof of Lemma 8 which for d = 2 is a direct version of the indirect argu-
ment developed in [4, Lemma 2.5] in case of a nonlinear, continuum equation. For the
convenience of the reader, we also include the proof for d > 2 — anyway, it has the same
building blocks as the argument for d = 2. This makes our paper self-contained w. r. t.
the properties of GT .

However, it is not quite enough to know (2.18) in the square-averaged sense on dyadic
annuli. In order to compensate for the fact that we only control finite stochastic moments
of ∇φT (0) via Proposition 1, we need to control a p-th power of the gradient ∇zGT (x, z)
of Green’s function in the optimal way for some p > 2. This slight increase in integrability
is provided by Meyer’s estimate, which yields such a p > 2 as a function of the ellipticity
bounds α, β only. Meyer’s estimate has already been crucially used in [15], however in a
somewhat different spirit. There it is used that for sufficiently small ellipticity contrast,
1− α

β ≪ 1, one has p ≥ 4. The following lemma is the version of Meyer’s estimate we need

and will prove:

Lemma 9 (higher integrability of gradients). Let a ∈ Aαβ be a conductivity function, and
GT be its associated Green’s function. Then, for d ≥ 2, there exists p > 2 depending only
on α, β, and d such that for all T > 0, p ≥ q ≥ 2 and R ≫ 1,

for d = 2 :

∫

R≤|z|≤2R
|∇zGT (z, 0)|qdz . R2−q min{1,

√
TR−1}q, (2.24)

for d > 2 :

∫

R≤|z|≤2R
|∇zGT (z, 0)|qdz . Rd(R1−d)q. (2.25)

For technical reasons, we need a pointwise decay of GT (x, y; a) in |x − y| uniformly in a
(but not in T ). The decay we obtain is suboptimal and easily follows from Lemmas 8 & 9
using the discreteness:

Corollary 1. For all d ≥ 2 and T > 0, there exists a bounded radially symmetric function
hT ∈ L1(Zd) depending only on d, α, β, and T such that

GT (x, y; a) ≤ hT (x − y)

for all x, y ∈ Z
d and a ∈ Aαβ.

Lemmas 8 & 9 only treat GT away from the diagonal x = y — which is a consequence of
the fact that the scaling symmetry is broken by the discreteness. Using the discreteness,
the following corollary establishes a bound independent of T and a.

Corollary 2. For all a ∈ Aαβ, T > 0 and x, y ∈ Z
d,

|∇GT (x, y; a)| . 1.

Finally, for the proof of Theorem 1, we need to know that also the convolution of the
gradients of the Green’s functions decays at the optimal rate, i. e.

∫

Zd

|∇zGT (x, z)||∇zGT (x′, z)|dz . |x − x′|2−d uniformly in a and T. (2.26)

As for (2.18), it is not necessary to know (2.26) pointwise in (x, x′), but only in an averaged
sense on dyadic annuli. The following lemma shows that (2.26) for linear averages can be
inferred from (2.18) for quadratic averages:

14
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Lemma 10. Let hT ∈ L2
loc(Z

d) be such that for all R ≫ 1 and T > 0,

for d = 2 :

∫

R<|z|≤2R
h2

T (z)dz . min{1,
√

TR−1}2, (2.27)

for d > 2 :

∫

R<|z|≤2R
h2

T (z)dz . R2−d, (2.28)

and for R ∼ 1

for d ≥ 2 :

∫

|z|≤R
h2

T (z)dz . 1. (2.29)

Then for R ≫ 1

for d = 2 :

∫

|x|≤R

∫

Zd

hT (z)hT (z − x) dz dx . R2 max{1, ln(
√

TR−1)}, (2.30)

for d > 2 :

∫

|x|≤R

∫

Zd

hT (z)hT (z − x) dz dx . R2. (2.31)

3. Proofs of the main results

3.1. Proof of Proposition 1. Starting point are Lemmas 3 and 6, which yield

var [φT (0)m] .
∑

e

〈

sup
a(e)

∣
∣
∣
∣

∂φT (0)m

∂a(e)

∣
∣
∣
∣

2
〉

,

where
∑

e denotes the sum over the edges. Using now Lemma 4, this inequality turns into

var [φT (0)m] .

∫

Zd

d∑

i=1

〈

φT (0)2(m−1)(|∇iφT (z)| + 1)2|∇zi
GT (z, 0)|2

+(|∇iφT (z)| + 1)2m|∇zi
GT (z, 0)|2m

〉

dz,

where we have replaced the sum over edges e by the sum over sites z ∈ Z
d and directions

ei for i ∈ {1, . . . , d} according to e = [z, z + ei]. Simplifying further, we obtain

var [φT (0)m] .

∫

Zd

〈

φT (0)2(m−1)(|∇φT (z)| + 1)2|∇zGT (z, 0)|2

+(|∇φT (z)| + 1)2m|∇zGT (z, 0)|2m
〉

dz. (3.1)

We proceed in four steps. Assuming first that for n big enough and for all m ≤ n it holds
that

∫

Zd

〈

φT (0)2(m−1)(|∇φT (z)| + 1)2|∇zGT (z, 0)|2 + (|∇φT (z)| + 1)2m|∇zGT (z, 0)|2m
〉

dz

. (
〈
φT (0)2n

〉m
n
− 1

n(n+1) + 1)

{
ln T for d = 2,
1 for d > 2,

(3.2)

we prove the claim in the first step. The last three steps are dedicated to the proof of
(3.2) for n large enough.

Step 1. Proof that (3.1) and (3.2) imply (2.6).
15



16 A. GLORIA & F. OTTO

For notational convenience we set µd(T ) = 1 for d > 2 and µd(T ) = ln T for d = 2. Let
n = 2l, l ∈ N

∗. Using the elementary fact that
〈
φT (0)2m

〉
≤ 〈φT (0)m〉2 + var [φT (0)m] ,

from the cascade of inequalities (3.1) & (3.2) for m = 2l−q, q ∈ {0, . . . , l}, we deduce
〈

φT (0)2·2
l
〉

.
〈

φT (0)2
l
〉2

+ µd(T )(
〈
φT (0)2n

〉1− 1
n(n+1) + 1), (estimate 0)

...
〈

φT (0)2·2
l−q
〉

.
〈

φT (0)2
l−q
〉2

+ µd(T )(
〈
φT (0)2n

〉 1
2q − 1

n(n+1) + 1), (estimate q)

...
〈

φT (0)2·2
0
〉

. 〈φT (0)〉2
︸ ︷︷ ︸

Lemma 2
= 0

+µd(T )(
〈
φT (0)2n

〉 1
n
− 1

n(n+1) + 1). (estimate l)

We then take the power 2q of each (estimate q) and obtain using Young’s inequality:
〈
φT (0)2n

〉
. 〈φT (0)n〉2 + µd(T )(

〈
φT (0)2n

〉1− 1
n(n+1) + 1),

...
〈

φT (0)2·2
l−q
〉2q

.
〈

φT (0)2
l−q
〉2q+1

+ µd(T )2
q

(
〈
φT (0)2n

〉1− 2q

n(n+1) + 1),
〈

φT (0)2
l−q
〉2q+1

.
〈

φT (0)2
l−q−1

〉2q+2

+ µd(T )2
q+1

(
〈
φT (0)2n

〉1− 2q+1

n(n+1) + 1),

...
〈
φT (0)2

〉n
. µd(T )n(

〈
φT (0)2n

〉1− 1
n+1 + 1).

Summing these l + 1 inequalities then yields

〈
φT (0)2n

〉
.

l∑

q=0

µd(T )2
q

(
〈
φT (0)2n

〉1− 2q

n(n+1) + 1). (3.3)

Using Young’s inequality, each term gives the same contribution and (3.3) turns into
〈
φT (0)2n

〉
. µd(T )n(n+1). (3.4)

Formula (2.6) is then proved for all q ≤ 2n using Hölder’s inequality in probability.

Step 2. Estimate for the Green’s function.
Let p > 2 be as in Lemma 9. We shall prove that for all q ≥ 1 and R ≫ 1 the following
holds

for d = 2 :

∫

R<|z|≤2R
|∇zGT (z, 0)|qdz . R

2max{1, q

p
}
R−q min{1,

√
TR−1}q, (3.5)

for d > 2 :

∫

R<|z|≤2R
|∇zGT (z, 0)|qdz . R

d max{1, q

p
}
(R1−d)q. (3.6)

We split the argument into two parts to treat q ≥ p and q < p respectively. For q ≥ p, we
use the discrete ℓq − ℓp estimate, which ensures that

(
∫

R<|z|≤2R
|∇zGT (z, 0)|qdz

)1/q

≤
(
∫

R<|z|≤2R
|∇zGT (z, 0)|pdz

)1/p

,

16
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and proves (3.5) & (3.6) in combination with (2.24) & (2.25) in Lemma 9.
For q < p, we simply use Hölder’s inequality in the form

(

R−d

∫

R<|z|≤2R
|∇zGT (z, 0)|qdz

)1/q

.

(

R−d

∫

R<|z|≤2R
|∇zGT (z, 0)|pdz

)1/p

,

that we also combine with (2.24) & (2.25).

Step 3. General estimate.
Let χ ≥ 0 be a random variable. In order to prove (3.2), we will need to estimate terms
of the form

∫

Zd

〈χ|∇zGT (z, 0)|q〉1/r dz

for q, r > 1. Relying on (3.5) & (3.6), we show that

∫

Zd

〈χ|∇zGT (z, 0)|q〉1/r dz

. 〈χ〉1/r

{

ln T if 2max{1, 1 − 1
r + q

rp} −
q
r = 0, d = 2,

1 if dmax{1, 1 − 1
r + q

rp} + (1 − d) q
r < 0, d ≥ 2.

(3.7)

Let imin ∈ N, imin ∼ 1 be such that Lemma 9 holds for R ≥ 2imin . To prove (3.7) we use
a dyadic decomposition of Z

d in annuli of radii Ri = 2i, i ≥ imin, and Hölder’s inequality
with (r, r

r−1) as follows:

∫

Zd

〈χ|∇zGT (z, 0)|q〉1/r dz

=

∫

|z|≤2imin

〈χ|∇zGT (z, 0)|q〉1/r dz

︸ ︷︷ ︸

Corollary 2

. 〈χ〉1/r

+
∞∑

i=imin

∫

Ri<|z|≤Ri+1

〈χ|∇zGT (z, 0)|q〉1/r dz

︸ ︷︷ ︸

Hölder

.

∞∑

i=imin

(Rd
i )

1−1/r

(
∫

Ri<|z|≤Ri+1

〈χ|∇zGT (z, 0)|q〉 dz

)1/r

. 〈χ〉1/r +
∞∑

i=imin

(Rd
i )

1−1/r

〈

χ

∫

Ri<|z|≤Ri+1

|∇zGT (z, 0)|q dz

〉1/r

.

Using then (3.5) & (3.6), we get

〈

χ

∫

Ri<|z|≤Ri+1

|∇zGT (z, 0)|q dz

〉

.







〈χ〉R
2max{1, q

p
}

i R−q
i min{1,

√
TR−1

i }q, d = 2,

〈χ〉R
d max{1, q

p
}

i (R1−d
i )q, d ≥ 2.

17



18 A. GLORIA & F. OTTO

Hence,
∫

Zd

〈χ|∇zGT (z, 0)|q〉1/r dz

.







〈χ〉1/r
∞∑

i=0

R
2max{1,1− 1

r
+ q

rp
}− q

r

i min{1,
√

TR−1
i }q/r, d = 2,

〈χ〉1/r
∞∑

i=0

R
dmax{1,1− 1

r
+ q

rp
}+(1−d) q

r

i , d ≥ 2.

We distinguish two cases. If dmax{1, 1 − 1
r + q

rp} + (1 − d) q
r < 0, then

∫

Zd

〈χ|∇zGT (z, 0)|q〉1/r dz . 〈χ〉1/r
∞∑

i=0

R
d max{1,1− 1

r
+ q

rp
}+(1−d) q

r

i . 〈χ〉1/r .

If 2max{1, 1 − 1
r + q

rp} −
q
r = 0 (for d = 2), then

∫

Z2

〈χ|∇zGT (z, 0)|q〉1/r dz . 〈χ〉1/r
∞∑

i=0

min{1,
√

TR−1
i }q/r

. 〈χ〉1/r (ln T +

∞∑

i=0

R
−q/r
i )

. 〈χ〉1/r (1 + lnT ).

This proves (3.7).

Step 4. Proof of (3.2).
Let n ≥ 1 and n ≥ m ≥ 1. We first treat the first term of the l. h. s. of (3.2). In that case
Hölder’s inequality in probability for (n + 1, n+1

n ) and the stationarity of ∇φT show
∫

Zd

〈

φT (0)2(m−1)(|∇φT (z)| + 1)2|∇zGT (z, 0)|2
〉

dz

.

∫

Zd

(〈

|∇φT (z)|2(n+1)
〉 1

n+1
+ 1

)〈

|φT (0)|
2(m−1)(n+1)

n |∇zGT (z, 0)|
2(n+1)

n

〉 n
n+1

dz

=

(〈

|∇φT (0)|2(n+1)
〉 1

n+1
+ 1

)∫

Zd

〈

|φT (0)|
2(m−1)(n+1)

n |∇zGT (z, 0)|
2(n+1)

n

〉 n
n+1

dz.

(3.8)

We apply Lemma 7 to bound the first ensemble average in (3.8):

〈

|∇φT (0)|2(n+1)
〉

.

〈
d∑

i=1

|∇φT (0)|2(φ(0)2n + φ(ei)
2n)

〉

stationarity
= 2

〈
d∑

i=1

|∇φT (0)|2φ(0)2n

〉

(2.17)

.
〈
φ(0)2n

〉
. (3.9)

18



VARIANCE ESTIMATE FOR EFFECTIVE DIFFUSION 19

We now want to apply Step 3 to the r. h. s. integral of (3.8), i.e. setting q = 2(n+1)
n ,

r = n+1
n , and χ = |φT (0)|

2(m−1)(n+1)
n . Estimate (3.7) involves the number

dmax{1, 1 − 1

r
+

q

rp
} + (1 − d)

q

r
= dmax{1, 1

n + 1
+

2

p
} + 2(1 − d). (3.10)

We distinguish the cases d > 2 and d = 2. For d > 2, we have that the number (3.10) is
equal to d + 2(1− d) = 2− d and thus negative for n sufficiently large since p > 2. Hence,
(3.7) yields

∫

Zd

〈

|φT (0)|
2(m−1)(n+1)

n |∇zGT (z, 0)|
2(n+1)

n

〉 n
n+1

dz .
〈

|φT (0)|
2(m−1)(n+1)

n

〉 n
n+1

≤
〈
|φT (0)|2n

〉m−1
n ,

where in the last inequality we appealed to Jensen in probability using 2(m−1)(n+1)
n ≤

2(n−1)(n+1)
n ≤ 2n. The combination of this with (3.8) and (3.9) yields as desired

∫

Zd

〈

φT (0)2(m−1)(|∇φT (z)| + 1)2|∇zGT (z, 0)|2
〉

dz

.
〈
φ(0)2n

〉 1
n+1

+ m−1
n + 1 =

〈
φ(0)2n

〉m
n
− 1

n(n+1) + 1.

We turn to the case d = 2. We note that the number (3.10) is zero for n large enough
since p > 2. Thus from (3.7) we infer as we did above that
∫

Zd

〈

φT (0)2(m−1)(|∇φT (z)| + 1)2|∇zGT (z, 0)|2
〉

dz . (ln T )
(〈

φ(0)2n
〉m

n
− 1

n(n+1) + 1
)

.

Let us now treat the second term of the l. h. s. of (3.2), which differs from the first
term only when m ≥ 2. As for the first term, Hölder’s inequality in probability with
(n+1

m , n+1
n−m+1 ), the stationarity of ∇φT and Lemma 7 imply
∫

Zd

〈
(|∇φT (z)| + 1)2m|∇zi

GT (z, 0)|2m
〉

dz

.

∫

Zd

(〈

|∇φT (z)|2(n+1)
〉 m

n+1
+ 1

)〈

|∇zGT (z, 0)|
2(n+1)m
n−m+1

〉n−m+1
n+1

dz

.
(〈

φT (0)2n
〉 m

n+1 + 1
) ∫

Zd

〈

|∇zGT (z, 0)|
2(n+1)m
n−m+1

〉n−m+1
n+1

dz. (3.11)

We use (3.7) with χ ≡ 1, q = 2(n+1)m
n−m+1 and r = n+1

n−m+1 , in which case we have

dmax{1, 1 − 1

r
+

q

rp
} + (1 − d)

q

r
= dmax{1, m

n + 1
+

2m

p
} + (1 − d)2m. (3.12)

We claim that this number is negative for n sufficiently large. Indeed, if max{1, m
n+1 +

2m
p } = 1, then

dmax{1, m

n + 1
+

2m

p
} + (1 − d)2m = d + 2m(1 − d) = (2m − 1)(1 − d) + 1 < 0
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20 A. GLORIA & F. OTTO

since d ≥ 2 and m ≥ 2. Otherwise, max{1, m
n+1 + 2m

p } = m
n+1 + 2m

p , and

dmax{1, m

n + 1
+

2m

p
}+(1−d)2m = 2m

(

d

(
1

2(n + 1)
+

1

p

)

+ 1 − d

)

< 2m

(

1 − d

2

)

≤ 0

for d ≥ 2 and n large enough since 1
p < 1

2 . This shows that (3.12) is negative so that we

obtain by (3.7)

∫

Zd

〈

|∇zGT (z, 0)|
2(n+1)m
n−m+1

〉n−m+1
n+1

dz . 1.

Combining this with (3.11) yields
∫

Z2

〈
(|∇φT (z)| + 1)2m|∇zGT (z, 0)|2m

〉
dz .

〈
φT (0)2n

〉 m
n+1 + 1

=
〈
φT (0)2n

〉m
n
− m

n(n+1) + 1

≤
〈
φT (0)2n

〉m
n
− 1

n(n+1) + 1.

This concludes the proof of the proposition.

3.2. Proof of Theorem 1. Let us define the spatial average of a function h : Z
d → R

with the mask ηL by

〈〈h〉〉L :=

∫

Zd

h(x)ηL(x)dx,

where ηL satisfies

ηL : Z
d → [0, 1], supp (ηL) ⊂ (−L,L)d,

∫

Zd

ηL(x) dx = 1, |∇ηL| . L−d−1. (3.13)

The claim of the theorem is that there exists q depending only on α, β, and d such that

var
[〈〈

T−1φ2
T + (∇φT + ξ) · A(∇φT + ξ)

〉〉

L

]
. L−dµd(T )q,

where µd(T ) = 1 for d > 2 and µd(T ) = ln T for d = 2. Since we are not interested in the
precise value of q, we adopt the convention that q is a non-negative exponent which only
depends on α, β, and d but which may vary from line to line in the proof.

Starting point is the estimate provided by Lemmas 3 and 6

var
[〈〈

T−1φ2
T + (∇φT + ξ) · A(∇φT + ξ)

〉〉

L

]

.

〈
∑

e

sup
a(e)

∣
∣
∣
∣

∂

∂a(e)

〈〈
T−1φ2

T + (∇φT + ξ) · A(∇φT + ξ)
〉〉

L

∣
∣
∣
∣

2
〉

. (3.14)

Step 1. In this step, using the notation e = [z, z + ei], we establish the formula

∂

∂a(e)

〈〈
T−1φ2

T + (∇φT + ξ) · A(∇φT + ξ)
〉〉

L

= 2

∫

Zd

(∇iφT (z) + ξi)∇zi
GT (z, x)





d∑

j=1

a(x − ej, x)∇∗
jηL(x)(∇∗

jφT (x) + ξj)



 dx

+ηL(z)(∇iφT + ξi)
2(z). (3.15)
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VARIANCE ESTIMATE FOR EFFECTIVE DIFFUSION 21

Indeed, by definition of 〈〈·〉〉L we have

∂

∂a(e)

〈〈
T−1φ2

T + (∇φT + ξ) · A(∇φT + ξ)
〉〉

L

=

∫

Zd

ηL(x)
∂

∂a(e)

(
T−1φ2

T + (∇φT + ξ) · A(∇φT + ξ)
)
(x)dx.

We note

∂

∂a(e)

(
T−1φ2

T + (∇φT + ξ) · A(∇φT + ξ)
)
(x)

=

(

2T−1φT
∂φT

∂a(e)
+ 2∇ ∂φT

∂a(e)
· A(∇φT + ξ) + (∇φT + ξ) · ∂A

∂a(e)
(∇φT + ξ)

)

(x)

= 2T−1
(

φT
∂φT

∂a(e)

)

(x) + 2
(

∇ ∂φT

∂a(e)
· A(∇φT + ξ)

)

(x) + (∇iφT + ξi)
2(z)δ(x − z),

so that

∂

∂a(e)

〈〈
T−1φ2

T + (∇φT + ξ) · A(∇φT + ξ)
〉〉

L

= 2

∫

Zd

(

ηL

(

T−1φT
∂φT

∂a(e)
+ ∇ ∂φT

∂a(e)
· A(∇φT + ξ)

))

(x)dx

+ηL(z)(∇iφT + ξi)
2(z). (3.16)

Using the discrete integration by parts formula of Definition 3, the first term of the r. h. s.
of (3.16) turns into

∫

Zd

(

ηL(T−1φT
∂φT

∂a(e)
+ ∇ ∂φT

∂a(e)
· A(∇φT + ξ))

)

(x)dx

= −
∫

Zd

∂φT

∂a(e)
(x)∇∗ · (ηLA(∇φT + ξ)) (x) dx +

∫

Zd

(

ηLT−1φT
∂φT

∂a(e)

)

(x) dx.

(3.17)

We now use the following discrete Leibniz rule:

∇∗ · (ηLA(∇φT + ξ)) (x)

=
d∑

j=1

(

ηL(x)[A(∇φT + ξ)]j(x) − ηL(x − ej)[A(∇φT + ξ)]j(x − ej)
)

=
d∑

j=1

ηL(x)
(

[A(∇φT + ξ)]j(x) − [A(∇φT + ξ)]j(x − ej)
)

+

d∑

j=1

(

ηL(x) − ηL(x − ej)
)

[A(∇φT + ξ)]j(x − ej)

= ηL(x) (∇∗ · A(∇φT + ξ)) (x) +

d∑

j=1

∇∗
jηL(x)[A(∇φT + ξ)]j(x − ej),

where [A(∇φT +ξ)]j denotes the j-th coordinate of the vector A(∇φT +ξ). For notational
convenience, we take advantage of the diagonal structure of A (although this is not crucial)
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to rewrite the latter equality in the form

∇∗ · (ηLA(∇φT + ξ)) (x)

= ηL(x) (∇∗ · A(∇φT + ξ)) (x) +
d∑

j=1

a(x − ej, x)∇∗
jηL(x)(∇∗

jφT (x) + ξj). (3.18)

The combination of (3.18) with (3.17) and the use of the equation satisfied by φT ,

T−1φT −∇∗ · A(∇φT + ξ) = 0,

yield

∫

Zd

(

ηL(T−1φT
∂φT

∂a(e)
+ ∇ ∂φT

∂a(e)
· A(∇φT + ξ))

)

(x)dx

= −
∫

Zd

∂φT

∂a(e)
(x)





d∑

j=1

a(x − ej, x)∇∗
jηL(x)(∇∗

jφT (x) + ξj)



 dx.

Using now Lemma 4, this turns into

∫

Zd

(

ηL(T−1φT
∂φT

∂a(e)
+ ∇ ∂φT

∂a(e)
· A(∇φT + ξ))

)

(x)dx

(2.12)
=

∫

Zd

(∇iφT (z) + ξi)∇zi
GT (z, x)





d∑

j=1

a(x − ej , x)∇∗
jηL(x)(∇∗

jφT (x) + ξj)



 dx. (3.19)

Inserting (3.19) into (3.16) proves (3.15).

Step 2. In this step, we provide the estimate

sup
a(e)

∣
∣
∣
∣

∂

∂a(e)

〈〈
T−1φ2

T + (∇φT + ξ) · A(∇φT + ξ)
〉〉

L

∣
∣
∣
∣

.

∫

Zd

|∇zGT (z, x)||∇∗ηL(x)|(|∇∗φT (x)|2 + |∇φT (z)|2 + 1) dx

+ηL(z)(|∇φT (z)|2 + 1). (3.20)

Indeed, from Step 1, the boundedness of a, and |ξ| = 1, we infer that

sup
a(e)

∣
∣
∣
∣

∂

∂a(e)

〈〈
T−1φ2

T + (∇φT + ξ) · A(∇φT + ξ)
〉〉

L

∣
∣
∣
∣

.

∫

Zd

(sup
a(e)

|∇iφT (z)| + 1) sup
a(e)

|∇zi
GT (z, x)||∇∗ηL(x)|(sup

a(e)
|∇∗φT (x)| + 1) dx

+ηL(z)(sup
a(e)

|∇iφT (z)|2 + 1). (3.21)
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VARIANCE ESTIMATE FOR EFFECTIVE DIFFUSION 23

Hence, in the remainder of this step, we have to deal with the suprema over a(e). Recalling
that e = [z, z + ei], the two following inequalities are consequences of Lemmas 5 and 4:

sup
a(e)

|∇zi
GT (z, x)|

(2.16)

. |∇zi
GT (z, x)|, for all x ∈ Z

d

sup
a(e)

|∇iφT (z)|
(2.14)

. |∇iφT (z)| + 1.

The last inequality we need is

sup
a(e)

|∇∗φT (x)| . |∇∗φT (x)| + sup
a(e)

|∇iφT (z)| + 1
(2.14)

. |∇∗φT (x)| + |∇iφT (z)| + 1.

It is then proved combining the boundedness of a and the following bound on the derivative
of ∇∗φT (x) with respect to a(e):

∣
∣
∣
∣

∂

∂a(e)
∇∗φT (x)

∣
∣
∣
∣

=

∣
∣
∣
∣
∇∗

x

∂

∂a(e)
φT (x)

∣
∣
∣
∣

(2.12)
= |∇∗

x ((∇iφT (z) + ξi)∇zi
GT (z, x))|

= |(∇iφT (z) + ξi)∇zi
∇∗

xGT (z, x)|
≤ 2(|∇iφT (z)| + |ξi|) sup

Zd×Zd

|∇GT |

. |∇iφT (z)| + 1,

where we have used the uniform bound on ∇GT provided by Corollary 2.

Combining these three inequalities with (3.21) yields

sup
a(e)

∣
∣
∣
∣

∂

∂a(e)

〈〈
T−1φ2

T + (∇φT + ξ) · A(∇φT + ξ)
〉〉

L

∣
∣
∣
∣

.

∫

Zd

(|∇φT (z)| + 1)|∇zGT (z, x)||∇∗ηL(x)|(|∇∗φT (x)| + |∇φT (z)| + 1) dx

+ηL(z)(|∇φT (z)|2 + 1),

from which we deduce (3.20).

Step 3. In this step, we argue that

var
[〈〈

T−1φ2
T + (∇φT + ξ) · A(∇φT + ξ)

〉〉

L

]

.

〈
∫

Zd

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)||∇∗φT (x)|2 dx

)2

dz

〉

(3.22)

+

〈
∫

Zd

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)||∇φT (z)|2 dx

)2

dz

〉

(3.23)

+

〈
∫

Zd

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)| dx

)2

dz

〉

(3.24)

+

〈∫

Zd

ηL(z)2(|∇φT (z)|2 + 1)2dz

〉

. (3.25)
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Indeed, inserting (3.20) in (3.14) yields

var
[〈〈

T−1φ2
T + (∇φT + ξ) · A(∇φT + ξ)

〉〉

L

]

.

〈
∑

e

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)|(|∇∗φT (x)|2 + |∇φT (z)|2 + 1) dx

)2
〉

+

〈
∑

e

η2
L(z)(|∇φT (z)|2 + 1)2

〉

.

We then use Young’s inequality in the first term of the r. h. s. of this inequality and we
replace the sum

∑

e over edges [z, z + ei] by d times the sum over z ∈ Z
d to establish this

step.

It now remains to estimate the terms (3.22), (3.23), (3.24) and (3.25) to conclude the proof
of the theorem.

Step 4. Estimate of (3.25):
〈∫

Zd

ηL(z)2(|∇φT (z)|2 + 1)2dz

〉

. µd(T )qL−d. (3.26)

Indeed, by stationarity we have

〈
|∇φT (z)|4

〉
.

d∑

i=1

〈
|φT (z + ei)|4 + |φT (z)|4

〉
= 2d

〈
φT (0)4

〉
,

so that
〈∫

Zd

ηL(z)2(|∇φT (z)|2 + 1)2 dz

〉

.

〈∫

Zd

ηL(z)2(|∇φT (z)|4 + 1) dz

〉

=

∫

Zd

ηL(z)2(
〈
|∇φT (z)|4

〉
+ 1) dz

. (
〈
φT (0)4

〉
+ 1)

∫

Zd

ηL(z)2 dz.

On the one hand, it follows from Proposition 1 that
〈
φT (0)4

〉
. µd(T )q.

On the other hand, it follows from (3.13) that
∫

Zd

ηL(z)2 dz . L−d.

This establishes Step 4.

Step 5. Estimate of (3.24):
〈
∫

Zd

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)| dx

)2

dz

〉

. µd(T )qL−d. (3.27)
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We expand the square
〈
∫

Zd

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)| dx

)2

dz

〉

=

〈∫

Zd

∫

Zd

∫

Zd

|∇∗ηL(x)||∇∗ηL(x′)||∇zGT (z, x)||∇zGT (z, x′)| dx dx′ dz

〉

=

∫

Zd

∫

Zd

|∇∗ηL(x)||∇∗ηL(x′)|
∫

Zd

〈
|∇zGT (z, x)||∇zGT (z, x′)|

〉
dz dx dx′.

We then use Cauchy-Schwarz’ inequality in probability and the stationarity of GT :
〈
|∇zGT (z, x)||∇zGT (z, x′)|

〉

≤
〈
|∇zGT (z, x)|2

〉1/2 〈|∇zGT (z, x′)|2
〉1/2

=
〈
|∇zGT (z − x, 0)|2

〉1/2 〈|∇zGT (z − x′, 0)|2
〉1/2

.

Hence, with the notation

h(y) :=
〈
|∇yGT (y, 0)|2

〉1/2
,

we have by definition of ηL:
〈
∫

Zd

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)| dx

)2

dz

〉

≤
∫

Zd

∫

Zd

|∇∗ηL(x)||∇∗ηL(x′)|
∫

Zd

h(z − x)h(z − x′) dz dx dx′

. L−2(d+1)

∫

|x|≤L

∫

|x′|≤L

∫

Zd

h(z − x)h(z − x′) dz dx dx′

= L−2(d+1)

∫

|x|≤L

∫

|x′|≤L

∫

Zd

h(z′)h(z′ + x − x′) dz′ dx dx′

≤ L−d−2

∫

|y|≤2L

∫

Zd

h(z′)h(z′ − y) dz′ dy.

We note that
∫

R<|y|≤2R
h2(y) dy =

〈
∫

R<|y|≤2R
|∇yGT (y, 0)|2 dy

〉

.

On the one hand, for R ≫ 1 we have according to Lemma 9 (for q = 2)

for d = 2 :

∫

R<|y|≤2R
h2(y) dy . R2−2 min{1,

√
TR−1}2 = min{1,

√
TR−1}2,

for d > 2 :

∫

R<|y|≤2R
h2(y) dy . Rd(R1−d)2 = R2−d.

On the other hand, for R ∼ 1, Corollary 2 implies

for d ≥ 2 :

∫

|y|≤R
h2(y) dy . 1.

Hence we are in position to apply Lemma 10, which yields as desired
∫

|y|≤2L

∫

Zd

h(z′)h(z′ − y) dz′ dy . L2µd(T ).
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Note that for d = 2, we have used the elementary fact that max{1, ln
√

TL−1} . lnT .

Step 6. Estimate of (3.23):
〈
∫

Zd

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)||∇φT (z)|2 dx

)2

dz

〉

. µd(T )qL−d. (3.28)

As in Step 5,
〈
∫

Zd

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)||∇φT (z)|2 dx

)2

dz

〉

=

∫

Zd

∫

Zd

|∇∗ηL(x)||∇∗ηL(x′)|
∫

Zd

〈
|∇zGT (z, x)||∇zGT (z, x′)||∇φT (z)|4

〉
dz dx dx′.

This time, we use Hölder’s inequality with (p, p, p
p−2) in probability (where p > 2 is the

exponent in Lemma 9):
〈
|∇zGT (z, x)||∇zGT (z, x′)||∇φT (z)|4

〉

≤ 〈|∇zGT (z, x)|p〉
1
p
〈
|∇zGT (z, x′)|p

〉 1
p

〈

|∇φT (z)|
4p

p−2

〉 p−2
p

.

By stationarity of GT and φT we obtain with Proposition 1
〈
|∇zGT (z, x)||∇zGT (z, x′)||∇φT (z)|4

〉

. µd(T )q 〈|∇zGT (z − x, 0)|p〉
1
p
〈
|∇zGT (z − x′, 0)|p

〉 1
p .

Hence, with the notation

h(y) := 〈|∇yGT (y, 0)|p〉1/p ,

by definition of ηL:
〈
∫

Zd

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)||∇φT (z)|2 dx

)2

dz

〉

. µd(T )q
∫

Zd

∫

Zd

|∇∗ηL(x)||∇∗ηL(x′)|
∫

Zd

h(z − x)h(z − x′) dz dx dx′

. µd(T )qL−d−2

∫

|y|≤2L

∫

Zd

h(z′)h(z′ − y) dz′ dy.

As in Step 5, we shall establish that for R ≫ 1

for d = 2 :

∫

R<|y|≤2R
h2(y) dy . min{1,

√
TR−1}2,

for d > 2 :

∫

R<|y|≤2R
h2(y) dy . R2−d,

(3.29)

and for R ∼ 1

for d ≥ 2 :

∫

|y|≤R
h2(y) dy . 1, (3.30)

Once this is done, Lemma 10 implies as desired
∫

|y|≤2L

∫

Zd

h(z′)h(z′ − y) dz′ dy . L2µd(T ),
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using in addition that max{1, ln
√

TL−1} . ln T for d = 2. As above, (3.30) is a direct
consequence of Corollary 2. We now deal with (3.29). Note that according to Lemma 9,
we have for R ≫ 1

for d = 2 :

∫

R<|y|≤2R
hp(y) dy . R2−p min{1,

√
TR−1}p,

for d > 2 :

∫

R<|y|≤2R
hp(y) dy . Rd(R1−d)p.

(3.31)

We now argue that this yields (3.29). Indeed, by Jensen’s inequality

(

R−d

∫

R<|x|≤2R
h2(x)dx

)1/2

≤
(

R−d

∫

R<|x|≤2R
hp(x)dx

)1/p

(3.31)

.







(

R−2R2−p min{1,
√

TR−1}p
)1/p

, d = 2
(
R−dRd(R1−d)p

)1/p
, d > 2

=

{

R−1 min{1,
√

TR−1}, d = 2,
R1−d, d > 2,

which implies (3.29).

Step 7. Estimate of (3.22):
〈
∫

Zd

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)||∇∗φT (x)|2 dx

)2

dz

〉

. µd(T )qL−d. (3.32)

As in Steps 5 and 6,
〈
∫

Zd

(∫

Zd

|∇zGT (z, x)||∇∗ηL(x)||∇∗φT (x)|2 dx

)2

dz

〉

=

∫

Zd

∫

Zd

|∇∗ηL(x)||∇∗ηL(x′)|
∫

Zd

〈
|∇zGT (z, x)||∇zGT (z, x′)||∇∗φT (x)|4

〉
dz dx dx′.

Hölder’s inequality with (p, p, p
p−2) in probability (where p > 2 is the exponent in Lemma 9)

then yields
〈
|∇zGT (z, x)||∇zGT (z, x′)||∇∗φT (x)|4

〉

≤ 〈|∇zGT (z, x)|p〉
1
p
〈
|∇zGT (z, x′)|p

〉 1
p

〈

|∇∗φT (x)|
4p

p−2

〉 p−2
p

.

The stationarity of GT and φT , and Proposition 1 show
〈
|∇zGT (z, x)||∇zGT (z, x′)||∇∗φT (x)|4

〉

. µd(T )q 〈|∇zGT (z − x, 0)|p〉
1
p
〈
|∇zGT (z − x′, 0)|p

〉 1
p .

We may now conclude as in Step 6.

The theorem follows from the combination of Step 3 with (3.26), (3.27), (3.28) & (3.32).
27



28 A. GLORIA & F. OTTO

4. Proofs of the auxiliary lemmas

Before addressing the proofs proper, let us make a general comment. In what follows,
we shall replace the classical Leibniz rule by its discrete counterpart. Although they are
essentially the same, the expressions that appear are more intricate in the discrete case.
In order to keep the proofs clear, we first present the arguments using the classical Leibniz
rule (though it does not hold at the discrete level) and we later give a separate argument
to show that the various results still hold with the true discrete version.

4.1. Proof of Lemma 8. Without loss of generality, we may assume y = 0 and suppress
the y-dependance of GT in our notation. We will first give the proof in the continuum case
(that is using the classical Leibniz rule) and then sketch the modifications arising from
the discreteness.

We first argue that for any d,

T−1

∫

Zd

G2
T,M dx +

∫

Zd

|∇GT,M |2 dx . M, (4.1)

where for 0 < M < ∞, GT,M denotes the following truncated version of GT

GT,M = min{GT ,M} ≥ 0.

Indeed, we consider T−1GT −∇∗ · A∇GT = δ in its weak form, that is

T−1

∫

Zd

ζ GT dx +

∫

Zd

∇ζ · A∇GT dx = ζ(0), (4.2)

and select ζ = GT,M . Since GT,M GT ≥ G2
T,M and provided that ∇GT,M · A∇GT ≥

∇GT,M · A∇GT,M , we obtain (4.1) by uniform ellipticity. Indeed, since A is diagonal,

∇GT,M · A∇GT (x) =

d∑

i=1

a(x + ei, x)(GT,M (x + ei) − GT,M (x))(GT (x + ei) − GT (x))

≥
d∑

i=1

a(x + ei, x)(GT,M (x + ei) − GT,M (x))2

≥ α|∇GT,M (x)|2.

Step 1. Proof of (i) for d > 2.

Following [6, Theorem 1.1], we argue that (4.1) implies a weak-L
d

d−2 estimate, i. e.

Ld({GT ≥ M}) . M− d
d−2 . (4.3)

For this purpose, we appeal to Sobolev’s inequality in Z
d, i. e.

(∫

Zd

G
2d

d−2

T,M dx

) d−2
2d

.

(∫

Zd

|∇GT,M |2 dx

)1/2

.

Via Chebycheff’s inequality and (4.1), this yields

M Ld({GT ≥ M}) d−2
2d . M1/2,

which is (4.3).
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We now argue that the weak-L
d

d−2 estimate (4.3) in Z
d yields a strong Lq-estimate on

balls {|x| ≤ R} for 1 < q < d
d−2 . More precisely, we have
∫

|x|≤R
Gq

T dx . Rd (R2−d)q. (4.4)

Indeed, we have on the one hand
∫

GT >M
Gq

T dx = q

∫ ∞

M
Ld({GT > M ′})M ′q−1

dM ′ + M qLd({|GT | > M})
(4.3)

. M q− d
d−2 ,

(4.5)
where we have used q < d

d−2 . On the other hand, we have trivially
∫

{GT ≤M}∩{|x|≤R}
Gq

T dx . Rd M q. (4.6)

With the choice of M = R2−d, the combination of (4.5) and (4.6) yields (4.4).

In order to increase the exponent q in (4.4), one combines a Cacciopoli estimate1 for
monotone functions of GT with a Poincaré-Sobolev estimate to obtain a “reverse Hölder”
inequality (as in the proof of Harnack’s inequality, see [7, Chapter 4, Method II]). We start
with the Cacciopoli estimate, i. e.

∫

2R≤|x|≤4R
|∇G

q/2
T |2 dx . R−2

∫

R≤|x|≤8R
Gq

T dx (4.7)

for all 1 < q < ∞. For that purpose, we test (4.2) with ζ = η2Gq−1
T , where the spatial

cut-off function η has the properties

η ≡ 1 in {2R ≤ |x| ≤ 4R}, η ≡ 0 outside {R ≤ |x| ≤ 8R},
|∇η| . R−1, 0 ≤ η ≤ 1.

(4.8)

This yields

T−1

∫

Zd

η2 Gq
T dx +

∫

Zd

∇(η2 Gq−1
T ) · A∇GT dx = 0. (4.9)

Since by the uniform ellipticity of A, there exists a generic constant C < ∞ (which only
depends on q, α, β) such that

∇(η2 Gq−1
T ) · A∇GT

= (q − 1) η2 Gq−2
T ∇GT · A∇GT + 2 η Gq−1

T ∇η · A∇GT

Young
≥ C−1 η2 Gq−2

T |∇GT |2 − C Gq
T |∇η|2

& C−1 η2 |∇G
q/2
T |2 − C Gq

T |∇η|2,
we obtain ∫

Zd

η2 |∇G
q/2
T |2 dx .

∫

Zd

Gq
T |∇η|2 dx.

In view of the properties (4.8) of η, this yields (4.7) for d > 2.

1this is the only place where we use the Leibniz rule
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30 A. GLORIA & F. OTTO

We now derive the “reverse Hölder” inequality

(

R−d

∫

2R≤|x|≤4R
G

qd

d−2

T dx

) d−2
qd

.

(

R−d

∫

R≤|x|≤8R
Gq

T dx

) 1
q

. (4.10)

For that purpose, we appeal to the Poincaré-Sobolev estimate on the annulus {2R ≤ |x| ≤
4R}:

(
∫

2R≤|x|≤4R
|u − ū{2R≤|x|≤4R}|

2d
d−2 dx

) d−2
2d

.

(
∫

2R≤|x|≤4R
|∇u|2 dx

)1/2

,

which we use in form of
(

R−d

∫

2R≤|x|≤4R
|u|

2d
d−2 dx

) d−2
2d

.

(

R2−d

∫

2R≤|x|≤4R
|∇u|2 dx

)1/2

+

(

R−d

∫

2R≤|x|≤4R
|u|2 dx

)1/2

.

We apply the latter to u = G
q/2
T :

(

R−d

∫

2R≤|x|≤4R
G

qd

d−2

T dx

) d−2
qd

.

(

R2−d

∫

2R≤|x|≤4R
|∇G

q/2
T |2 dx

)1/q

+

(

R−d

∫

2R≤|x|≤4R
Gq

T dx

)1/q

.

The combination of this with (4.7) yields (4.10).

We now may conclude in the case of d > 2: Indeed, (4.10) allows us to iteratively increase
the integrability q in multiplicative increments of d

d−2 in the estimate (4.4). Since any

p < ∞ can be reached in finite multiplicative increments starting from a 1 < q < d
d−2 , the

side effect that the annuli get dyadically larger at every step does not matter qualitatively
(in this sense, the above argument is much less subtle than the proof of the Harnack
inequality). This proves (2.21).

Step 2. Proof of (i) for d = 2.
We now tackle the case of d = 2, which in fact amounts to the L1-BMO estimate

(

R−2

∫

|x|≤R
|u − ū{|x|≤R}|q dx

)1/q

.

∫

Zd

|f | dx (4.11)

for

T−1 u −∇∗ · A∇u = f, (4.12)

where ū{|x|≤R} denotes the average of u on the ball of radius R. We fix an exponent q < ∞
and a radius 1 ≪ R < ∞ and assume w. l. o. g.

ū{|x|≤R} = 0. (4.13)
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As in (4.1), we have
∫

|x|≤R
|∇uM |2 dx . M

∫

Zd

|f | dx, (4.14)

As opposed to the case of d > 2, this is the only time we use the equation (4.12).

Estimate (4.14) is used in connection with the Poincaré-Sobolev inequality with mean
value zero, i. e.

(

R−2

∫

|x|≤R
|uM − (uM ){|x|≤R}|s dx

)1/s

.

(
∫

|x|≤R
|∇uM |2 dx

)1/2

,

for any s < ∞, which we use once for s = q, i. e.

(

R−2

∫

|x|≤R
|uM − (uM ){|x|≤R}|q dx

)1/q

.

(
∫

|x|≤R
|∇uM |2 dx

)1/2

(4.14)

.

(

M

∫

Zd

|f | dx

)1/2

, (4.15)

and once for arbitrary s (which we think of being larger than q) in the form

(

R−2

∫

|x|≤R
|uM |s dx

)1/s

.

(
∫

|x|≤R
|∇uM |2 dx

)1/2

+ |(uM ){|x|≤R}|

(4.14)

.

(

M

∫

Zd

|f | dx

)1/2

+

(

R−2

∫

|x|≤R
|u|q dx

)1/q

. (4.16)

We use (4.16) to estimate the peaks of u. More precisely, we claim that for s > 2q,

(

R−2

∫

{|x|≤R}∩{|u|>M}
|u|q dx

)1/q

. M1−s/(2q)

(∫

Zd

|f | dx

)s/(2q)

+ M1−s/q

(

R−2

∫

|x|≤R
|u|q dx

)s/q2

. (4.17)

The argument for (4.17) is similar to the case of d > 2: Estimate (4.16) yields the weak
estimate

M
(
R−2 L2 ({|x| ≤ R} ∩ {|u| > M})

)1/s

.

(

M

∫

Zd

|f | dx

)1/2

+

(

R−2

∫

|x|≤R
|u|q dx

)1/q

,
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which we rewrite as

R−2 L2({|x| ≤ R} ∩ {|u| > M})

. M−s/2

(∫

Zd

|f | dx

)s/2

+ M−s

(

R−2

∫

|x|≤R
|u|q dx

)s/q

. (4.18)

On the other hand, we have
∫

{|x|≤R}∩{|u|>M}
|u|q dx = q

∫ ∞

M
L2({|x| ≤ R} ∩ {|u| > M ′})M ′q−1

dM ′

+M qL2({|x| ≤ 1} ∩ {|u| > M}). (4.19)

Since s > 2q, the combination of (4.18) and (4.19) yields

R−2

∫

{|x|≤R}∩{|u|>M}
|u|q dx

. M q−s/2

(∫

Zd

|f | dx

)s/2

+ M q−s

(

R−2

∫

|x|≤R
|u|q dx

)s/q

,

which is (4.17).

We now combine (4.15) and (4.17) as follows

(

R−2

∫

|x|≤R
|u|q dx

)1/q

(4.13)

≤
(

R−2

∫

|x|≤R
|u − (uM ){|x|≤R}|q dx

)1/q

≤
(

R−2

∫

|x|≤R
|uM − (uM ){|x|≤R}|q dx

)1/q

+

(

R−2

∫

{|x|≤R}∩{|u|>M}
|u|q dx

)1/q

(4.15)&(4.17)

. M1/2

(∫

Zd

|f | dx

)1/2

+M1−s/(2q)

(∫

Zd

|f | dx

)s/(2q)

+ M1−s/q

(

R−2

∫

|x|≤R
|u|q dx

)s/q2

.

We claim that this estimate contains the desired estimate. Indeed, using the abbreviations

U :=

(

R−2

∫

|x|≤R
|u|q dx

)1/q

and F :=

∫

Zd

|f | dx,

we rewrite the above as

U . M1/2 F 1/2 + M1−s/(2q) F s/(2q) + M1−s/q U s/q. (4.20)
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Since s > q, choosing M ∼ U sufficiently large, we may absorb the last term of (4.20) into
the l. h. s. yielding

U . U1/2 F 1/2 + U1−s/(2q) F s/(2q).

Using Young’s inequality twice in the r. h. s. since s > 2q, we obtain as desired U . F ,
which shows

(

R−2

∫

|x|≤R
|GT − GT |x|≤R|q dx

)1/q

. 1.

Step 3. Proof of (ii).
We first derive a weak L4-estimate on {|x| ≤ R}:

R−2L2({GT > M} ∩ {|x| ≤ R}) . M−4. (4.21)

For that purpose, we combine (4.1), which for R ∼
√

T turns into

R−2

∫

Zd

G2
T,M dx +

∫

Zd

|∇GT,M |2 dx . M, (4.22)

with the Poincaré-Sobolev estimate
(

R−2

∫

|x|≤R
|GT,M − GT,M {|x|≤R}|

8 dx

)1/8

.

(
∫

|x|≤R
|∇GT,M |2 dx

)1/2

in form of
(

R−2

∫

|x|≤R
G8

T,M dx

)1/8

.

(
∫

|x|≤R
|∇GT,M |2 dx

)1/2

+

(

R−2

∫

|x|≤R
G2

T,M dx

)1/2

.

This yields (4.21):

(R−2M8L2({GT > M} ∩ {|x| ≤ R}))1/8 ≤
(

R−2

∫

|x|≤R
G8

T,M dx

)1/8

. M1/2.

We now argue that (4.21) & (4.22) yield (2.22). Indeed, combining

R−2

∫

{GT >M}∩{|x|≤R}
G2

T dx = 2R−2

∫ ∞

M
L2({GT > M ′} ∩ {|x| ≤ R})M ′dM ′

+R−2M2L2({GT > M} ∩ {|x| ≤ R})
(4.21)

. M−2

with (4.22) in the form of

R−2

∫

Zd

G2
T,M dx . M

for M = 1 yields property (iii) of the Lemma.

Step 4. Proof of (iii).
Due to (2.21) for d > 2 and (2.22) for d = 2, the following holds for d ≥ 2:

R−d

∫

R≤|x|≤2R
G2

T dx . 1 for R ∼
√

T . (4.23)
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We now establish for all R ≫ 1

R−d

∫

|x|≥2R
G2

T dx .
T

R2
R−d

∫

R≤|x|≤2R
G2

T dx. (4.24)

Indeed, we test (4.2) with η2GT where the cut-off function η is chosen as follows

η ≡ 1 in {|x| ≥ 2R}, η ≡ 0 in {|x| ≤ R},
|∇η| . R−1, 0 ≤ η ≤ 1,

yielding

T−1

∫

Zd

η2G2
T dx +

∫

Zd

∇(η2GT ) · A∇GT dx = 0.

Arguing as for (4.9), this yields

T−1

∫

|x|≥2R
G2

T dx +

∫

|x|≥2R
|∇GT |2 dx . R−2

∫

R≤|x|≤2R
G2

T dx,

so in particular (4.24).

We now turn to (2.23). We introduce the abbreviations

Rk := 2k
√

T ,

Λk := R−d
k

∫

Rk≤|x|≤Rk+1

G2
T dx,

so that (4.23) and (4.24) turn into

Λ0 ≤ C and Λk+1 ≤ C
T

R2
k

Λk = C4−kΛk,

where C denotes a constant depending only on α, β, and d. This yields by iteration

Λk ≤ Ck+1Πk−1
i=0 4−i = Ck+14−

(k−1)k
2 = Ck+12−(k−1)k.

Thus, for k large enough,

ln Λk ≤ (k + 1) ln C − k2 ln 2 ∼ −k2

∼ − ln2(
√

TR−1
k ).

Hence,

Λk . exp(− ln2(
√

TR−1
k ))

and for all q > 0,
(

Rk√
T

)q

Λk . exp
(
− ln(

√
TR−1

k )(ln(
√

TR−1
k ) + q)

)
. 1

for Rk ≥
√

T (note that the constant depends on q). This proves property (iii) of the
Lemma.

Step 5. Modifications due to the discreteness.
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The only place where we have used the Leibniz rule is the proof of the Cacciopoli inequal-
ity (4.7). At the discrete level, we have for i ∈ {1, . . . , d}

∇i(η
2 Gq−1

T )(x)

= η2(x + ei)G
q−1
T (x + ei) − η2(x)Gq−1

T (x)

=
η2(x + ei) + η2(x)

2
(Gq−1

T (x + ei) − Gq−1
T (x))

+
η2(x + ei) − η2(x)

2
(Gq−1

T (x + ei) + Gq−1
T (x)). (4.25)

Taking advantage of the diagonal structure of A (although this is not essential), we obtain

∇(η2 Gq−1
T ) · A∇GT (x)

=
d∑

i=1

∇i(η
2 Gq−1

T )(x)a(x, x + ei)∇iGT (x)

(4.25)
=

d∑

i=1

a(x, x + ei)
η2(x + ei) + η2(x)

2
(Gq−1

T (x + ei) − Gq−1
T (x))∇iGT (x)

︸ ︷︷ ︸

≥ 0

+
d∑

i=1

a(x, x + ei)
η2(x + ei) − η2(x)

2
(Gq−1

T (x + ei) + Gq−1
T (x))∇iGT (x).

Since the underbraced term is non-negative, the lower and upper bounds on a yield

∇(η2 Gq−1
T ) · A∇GT (x)

≥ α

d∑

i=1

η2(x + ei) + η2(x)

2
(Gq−1

T (x + ei) − Gq−1
T (x))∇iGT (x)

−β

d∑

i=1

|∇iη(x)|η(x + ei) + η(x)

2
(Gq−1

T (x + ei) + Gq−1
T (x))|∇iGT (x)|

Young
≥ α

d∑

i=1

η2(x + ei) + η2(x)

2
(Gq−1

T (x + ei) − Gq−1
T (x))∇iGT (x)

−βC

d∑

i=1

(GT (x + ei)
q + GT (x)q)|∇iη(x)|2

−βC−1
d∑

i=1

(
η(x + ei) + η(x)

2

)2

︸ ︷︷ ︸

≤ η2(x + ei) + η2(x)

2

(∇iGT (x))2(Gq−2
T (x + ei) + Gq−2

T (x)).

Using the inequality (proved at the end of the step)

2(bq−1 − cq−1)(b − c) ≥ (b − c)2(bq−2 + cq−2) for b, c ≥ 0, q ≥ 2, (4.26)
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we may absorb the last term of the r. h. s. of the latter inequality into the first term for
C large enough, so that it turns into

∇(η2 Gq−1
T ) · A∇GT (x)

≥ (α − 2βC−1)
d∑

i=1

η2(x + ei) + η2(x)

2
(Gq−1

T (x + ei) − Gq−1
T (x))∇iGT (x)

−βC

d∑

i=1

(GT (x + ei)
q + GT (x)q)|∇iη(x)|2. (4.27)

Using now the following inequality

(bq−1 − cq−1)(b − c) & (bq/2 − cq/2)2 for b, c ≥ 0, q > 1, (4.28)

(4.27) finally turns into

∇(η2 Gq−1
T ) · A∇GT (x)

&

d∑

i=1

η2(x + ei) + η2(x)

2
(G

q/2
T (x + ei) − G

q/2
T (x))2

−C

d∑

i=1

(GT (x + ei)
q + GT (x)q)|∇iη(x)|2.

Combining this with (4.9) yields
∫

Zd

η2(x)|∇G
q/2
T (x)|2 dx .

∫

Zd

(GT (x + ei)
q + GT (x)q)|∇iη(x)|2 dx,

which implies as desired
∫

2R≤|x|<4R
|∇G

q/2
T (x)|2 dx . R−2

∫

R≤|x|<8R
GT (x)q dx,

provided that η satisfies in addition

η(x) = 0 for x /∈ {y : R + 1 ≤ |y| ≤ 8R − 1},
which is no restriction since R ≫ 1.
We quickly sketch the proofs of (4.26) and (4.28) to conclude. Inequality (4.26) follows by
symmetry from

(bq−1 − cq−1)(b − c) − (b − c)2cq−2 = (b − c)(bq−1 − bcq−2)

= b(b − c)(bq−2 − cq−2)

= b|b − c||bq−2 − cq−2| ≥ 0.

To prove (4.28) we first note that by homogeneity and non-negativity of b and c, it is
enough to consider c = 1 and b ≥ 0. We introduce the function h = R

+ → R
+ defined by

h(b) =







(bq/2 − 1)2

(bq−1 − 1)(b − 1)
b 6= 1,

q2

4(q − 1)
b = 1.
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Since h ≥ 0, the claim is proved if h is bounded on R
+. As h(0) = 1 and limb→∞ h(b) = 1,

it is enough to prove that h is continuous on R
+. A Taylor expansion around b = 1 yields

(bq/2 − 1)2 =
q2

4
(b − 1)2 + o((b − 1)2),

(bq−1 − 1)(b − 1) = (q − 1)(b − 1)2 + o((b − 1)2).

Hence, limb→1 h(b) = h(1), h is continuous and therefore bounded on R
+, as desired.

4.2. Proof of Lemma 9. The proof relies on three ingredients: a Meyers’ estimate, a
Cacciopoli estimate and the estimates of Lemma 8.

Step 1: Meyers’ estimate.
We follow the original proof by Meyers in [14]. Let u : Z

d → R satisfy the equation

γu(x) −∇∗ · A(x)∇u(x) = ∇∗ · g(x) + f(x) for |x| ≤ R, (4.29)

with f ∈ L2
loc(Z

d), g ∈ L2
loc(Z

d, Rd), and some γ ≥ 0 to be chosen later. We claim that
there exists p > 2 depending only on α, β, and d such that for all R ≫ 1, if u is such that
u(x) = 0 for |x| > R, then the following Lp-estimate holds
(
∫

|x|≤R
|∇u(x)|p dx

)1/p

.

(
∫

|x|≤R
|g(x)|p dx

)1/p

+R1−d(1/2−1/p)

(
∫

|x|≤R
|f(x)|2 dx

)1/2

.

(4.30)

The proof of (4.30) relies on the Lq-regularity theory for the discrete Laplacian and on
an interpolation result. More precisely, for all 1 < q < ∞, there exists a constant Cq > 0

such that for all R ≥ 1 and γ ≥ 0, if v : Z
d → R is a function supported in the set

{x ∈ Z
d : |x| ≤ R} such that

γv(x) −△v(x) = ∇∗ · g(x) for all |x| ≤ R, (4.31)

then the following holds
(
∫

|x|≤R
|∇v(x)|q dx

)1/q

≤ Cq

(
∫

|x|≤R
|g(x)|q dx

)1/q

. (4.32)

Let Tγ,R : Lq(Zd, Rd) → Lq(Zd, Rd), g 7→ ∇v, where v is associated with g through equation
(4.31) and extended by zero on {|x| > R}. Estimate (4.32) shows that the linear mapping
Tγ,R is continuous for all q > 1 and that ‖Tγ,R‖L(Lq(Zd,Rd)) ≤ Cq. Let q∗ > 2. Riesz-

Thorin’s interpolation theorem (see [1, Chapter 1]) then implies that for all q = 2θ + (1−
θ)q∗, θ ∈ [0, 1], one has

Cq ≤ Cθ
2C1−θ

q∗ = C1−θ
q∗ , (4.33)

since one can take C2 = 1.

We now rewrite the l. h. s. of (4.29) as a perturbation of the operator γ − α+β
2 △:

γu − α + β

2
△ u = ∇∗ ·

(

g +
(
A − α + β

2
Id
)
∇u

)

+ f,

or equivalently in the form

2γ

α + β
u −△u = ∇∗ ·

(
2

α + β

(
g + (A − α + β

2
Id)∇u

)
)

+
2

α + β
f.
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Let us assume for now that f ≡ 0. The regularity estimate (4.32) then yields

(
∫

|x|≤R
|∇u(x)|q dx

)1/q

≤ Cq
2

α + β

(
∫

|x|≤R

∣
∣
∣
∣
g(x) +

(

A(x) − α + β

2
Id

)

∇u(x)

∣
∣
∣
∣

q

dx

)1/q

. (4.34)

Using the triangle inequality (4.34) turns into

(
∫

|x|≤R
|∇u(x)|q dx

)1/q

≤ Cq
2

α + β

(
∫

|x|≤R
|g(x)|q dx

)1/q

+Cq
2

α + β

(
∫

|x|≤R

∣
∣
∣
∣

(

A(x) − α + β

2
Id

)

∇u(x)

∣
∣
∣
∣

q

dx

)1/q

.

(4.35)

Since a ∈ Aαβ,
∣
∣
∣

(

A(x) − α+β
2 Id

)

∇u(x)
∣
∣
∣ ≤ β−α

2 |∇u(x)| and we may absorb the term

Cq
2

α + β

(
∫

|x|≤R

∣
∣
∣
∣

(

A(x) − α + β

2
Id

)

∇u(x)

∣
∣
∣
∣

q

dx

)1/q

≤ Cq
β − α

α + β

(
∫

|x|≤R
|∇u(x)|q dx

)1/q

into the l. h. s. of (4.35) provided that

Cq
β − α

α + β
︸ ︷︷ ︸

< 1

< 1. (4.36)

The interpolation property (4.33) ensures there exists p > 2 such that (4.36) holds for all
p ≥ q ≥ 2.

It remains to argue that the case f 6≡ 0 can be dealt with the same way as above. The
Lq-regularity theory for the discrete Laplacian also ensures there exists C̃q > 0 such that

if w ∈ L2(Zd) is supported in the set {x ∈ Z
d : |x| ≤ R} and

−△ w(x) = f(x) for all |x| ≤ R, (4.37)

then it holds that
(
∫

|x|≤R
|∇w(x)|q dx

)1/q

≤ C̃qR
1−d(1/2−1/q)

(
∫

|x|≤R
|f(x)|2 dx

)1/2

. (4.38)

We then replace f by −∇∗ · ∇w in (4.29) to include this term in the function g. The
combination of (4.35) with (4.38) concludes the proof of (4.30).

Step 2. Cacciopoli estimates.
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In the following we will need
∫

2R≤|x|≤16R
|∇GT (x)|2 dx . R−2

∫

R≤|x|≤32R
GT (x)2 dx, (4.39)

∫

2R≤|x|≤16R
|∇GT (x)|2 dx . R−2

∫

R≤|x|≤32R
|GT (x) − GT {R≤|x|≤32R}|2 dx, (4.40)

which are both consequences of the general Cacciopoli estimate (4.7) for q = 2 derived in
the proof of Lemma 8.

Step 3. Proof of (2.25).
We apply Meyers’ estimate (4.30) with γ = T−1 to the function u = ηGT , where η : Z

2 →
[0, 1] is such that

η(x) = 1 for 4R ≤ |x| ≤ 8R, η(x) = 0 for

{
|x| ≤ 2R + 1
|x| ≥ 16R − 1

, |∇η| . R−1. (4.41)

The discrete Leibniz rule yields ∇iu(x) = η(x)∇iGT (x) + GT (x + ei)∇iη(x) for i ∈
{1, . . . , d}. Hence, since A(x) is diagonal, we may define f and g as follows

T−1u(x) −∇∗ · A∇u(x)

= T−1η(x)GT (x) − η(x)∇∗ · A∇GT (x)
︸ ︷︷ ︸

(4.41)&(2.11)
= η(x)T−1GT (x)

−
d∑

i=1

∇∗
i η(x)a(x − ei, x)∇∗

i GT (x)

−
d∑

i=1

∇∗
i

(
GT (x + ei)a(x + ei, x)∇iη(x)

)

= ∇∗ ·
(
−

d∑

i=1

GT (x + ei)a(x + ei, x)∇iη(x)ei

︸ ︷︷ ︸

:= g(x)

)
+
(
−

d∑

i=1

∇∗
i η(x)a(x − ei, x)∇∗

i GT (x)

︸ ︷︷ ︸

:= f(x)

)
.

Estimate (4.30) then yields using (4.41)
(
∫

|x|≤16R
|∇u(x)|p dx

)1/p

.

(
∫

2R≤|x|≤16R
R−pGT (x)p dx

)1/p

+R1−d(1/2−1/p)

(
∫

2R≤|x|≤16R
R−2|∇GT (x)|2 dx

)1/2

.

(4.42)

Using the Cacciopoli estimate (4.39) and property (2.21) once with exponent p and once
with exponent 2, (4.42) turns into

(
∫

|x|≤16R
|∇u(x)|p dx

)1/p

. R−1(Rd+(2−d)p)1/p + R1−d(1/2−1/p)R−1(R−2Rd+(2−d)2)1/2

∼ Rd/p−d+1. (4.43)
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For i ∈ {1, . . . , d}, the discrete Leibniz rule yields ∇iu(x) = η(x)∇iGT (x) + GT (x +
ei)∇iη(x). Hence (4.41) implies that ∇u(x) = ∇GT (x) for 4R ≤ |x| ≤ 8R, so that (4.43)
yields (2.25).

Step 4. Proof of (2.24).
We apply Meyers’ estimate (4.30) with γ = 0 to the function u = η(GT −GT {R≤|x|≤32R}),
where η : Z

d → [0, 1] is as in (4.41). For all i ∈ {1, . . . , d}, the discrete Leibniz rule yields
∇iu(x) = (GT (x+ei)−GT {R≤|x|≤32R})∇iη(x)+η(x)∇iGT (x). Hence the functions f and
g are now defined via

−∇∗ · A∇u(x)

= − η(x)∇∗ · A∇GT (x)
︸ ︷︷ ︸

(4.41)&(2.11)
= η(x)T−1GT (x)

−
2∑

i=1

∇∗
i η(x)a(x − ei, x)∇∗

i GT (x)

−
2∑

i=1

∇∗
i

(
(GT (x + ei) − GT {R≤|x|≤32R})a(x, x + ei)∇iη(x)

)

= ∇∗ ·
(
−

2∑

i=1

(GT (x + ei) − GT {R≤|x|≤32R})a(x, x + ei)∇iη(x)ei

︸ ︷︷ ︸

:= g(x)

)

+
(
−

2∑

i=1

∇∗
i η(x)a(x − ei, x)∇∗

i GT (x) − η(x)T−1GT (x)

︸ ︷︷ ︸

:= f(x)

)
.
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Since u has support in {|x| ≤ 16R}, we may apply estimate (4.30) which yields

(
∫

|x|≤16R
|∇u(x)|p dx

)1/p

.

(
2∑

i=1

∫

Zd

|∇iη(x)|p|GT (x + ei) − GT {R≤|x|≤32R}|p dx

)1/p

+R1−2(1/2−1/p)

(∫

Zd

(|∇∗η(x)|2|∇∗GT (x)|2 + T−2η(x)2GT (x)2) dx

)1/2

=

(
2∑

i=1

∫

Zd

|∇∗
i η(x)|p|GT (x) − GT {R≤|x|≤32R}|p dx

)1/p

+R2/p

(∫

Zd

(|∇η(x)|2|∇GT (x)|2 + T−2η(x)2GT (x)2) dx

)1/2

(4.41)

. R−1

(
2∑

i=1

∫

2R≤|x|≤16R
|GT (x) − GT {R≤|x|≤32R}|p dx

)1/p

+R2/p

(
∫

2R≤|x|≤16R
(R−2|∇GT (x)|2 + T−2GT (x)2) dx

)1/2

. R−1

(
∫

2R≤|x|≤16R
|GT (x) − GT {R≤|x|≤32R}|p dx

)1/p

+R2/p−1

(
∫

2R≤|x|≤16R
|∇GT (x)|2 dx

)1/2

+ R2/p

(
∫

2R≤|x|≤16R
T−2GT (x)2 dx

)1/2

.

(4.44)

We distinguish two regimes: R ≤
√

T and R ≥
√

T . For R ≤
√

T , we bound the first term
of the r. h. s. of (4.44) using the BMO estimate (2.20) of Lemma 8, and for the second
term we use the Cacciopoli estimate (4.40) together with the BMO estimate (2.20), so
that (4.44) turns into

(
∫

|x|≤16R
|∇u(x)|p dx

)1/p

. R−1(R2)1/p + R2/p−1(R−2R2)1/2 + R2/p

(
∫

2R≤|x|≤16R
T−2GT (x)2 dx

)1/2

= 2R2/p−1 + R2/p

(
∫

2R≤|x|≤16R
T−2GT (x)2 dx

)1/2

. (4.45)
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We then appeal to the estimate (2.22) of Lemma 8, which yields
∫

|x|≤16R
T−2GT (x)2 dx ≤ T−2

∫

|x|≤16
√

T
GT (x)2 dx

(2.22)

. T−2
√

T
2

= T−1 ≤ R−2. (4.46)

For R ≥
√

T , we treat all the terms of inequality (4.44) separately. Note that the estimates
hereafter are not optimal. Indeed, since the leading order contribution among terms of
the form (2.24) is for R small, we do not need finer estimates for R ≥

√
T . We use the

ℓp − ℓ2 estimate together with the decay estimate (2.23) with exponent 2. This yields for
the first term in (4.44)

∫

2R≤|x|≤16R
|GT (x) − GT {R≤|x|≤32R}|p dx

.

∫

R≤|x|≤32R
GT (x)p dx

ℓp−ℓ2

≤
(
∫

R≤|x|≤32R
GT (x)2 dx

)p/2

(2.23)

. (
√

TR−1)p,

and therefore

R−1

(
∫

2R≤|x|≤16R
|GT (x) − GT {R≤|x|≤32R}|p dx

)1/p

. R−1
√

TR−1 ≤ R2/p−1
√

TR−1.

(4.47)
For the second term in (4.44) we use the decay estimate (2.23) with exponent 2, which
yields

∫

2R≤|x|≤16R
|∇GT (x)|2 dx .

∫

R≤|x|≤32R
GT (x)2 dx

(2.23)

. (
√

TR−1)2.

Thus,

R2/p−1

(
∫

2R≤|x|≤16R
|∇GT (x)|2 dx

)1/2

. R2/p−1
√

TR−1. (4.48)

For the last term in (4.44), we use the decay estimate (2.23) with exponent 4 to obtain

R2/p

(
∫

2R≤|x|≤16R
T−2GT (x)2 dx

)1/2

. R2/pT−1(
√

TR−1)2 = (R2/p−1
√

TR−1)T−1/2 ≤ R2/p−1
√

TR−1. (4.49)

The combination of (4.44) with (4.45) and (4.46) for R ≤
√

T , and with (4.47), (4.48),

and (4.49) for R ≥
√

T finally proves
∫

|x|≤16R
|∇u(x)|p dx . R2−p min{1,

√
TR−1}p. (4.50)
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We conclude as in Step 3: Since ∇iu(x) = (GT (x+ei)−GT {R≤|x|≤32R})∇iη(x)+η(x)∇iGT (x),
(4.41) implies ∇u(x) = ∇GT (x) for 4R ≤ |x| ≤ 8R, so that (4.50) yields (2.24).

4.3. Proof of Corollaries 1 and 2. These results are easy consequences of Lemmas 8
and 9. We include their proofs for convenience.

4.3.1. Proof of Corollary 1. W. l. o. g. we assume y = 0 and skip the dependence on y in
the notation. We distinguish two regimes: |x| ≤

√
T and |x| ≥

√
T .

In the first case, we use (2.22) and the intermediate results (4.4) in the proof of Lemma 8,
which yield

for d = 2 :

∫

|x|≤
√

T
G2

T (x) dx . T,

for d > 2 :

∫

|x|≤
√

T
Gq

T (x) dx .
√

T
d
(
√

T
2−d

)q,

and imply for q = d−1
d−2 ∈ (1, d

d−2 ) by the ℓ∞ − ℓ2 estimate

GT (x) .
√

T for |x| ≤
√

T . (4.51)

For |x| ≥
√

T , we use the decay estimate (2.23) of Lemma 8 in the form
∫

R≤|x|≤2R
G2

T (x) dx . (
√

TR−1)2d+1

so that we may deduce

GT (x) . (
√

TR−1)d+ 1
2 for R ≤ |x| ≤ 2R. (4.52)

We then define hT ∈ L1(Rd) by

hT (x) ∼
{

2−k(d+ 1
2
),

√
T2k ≤ |x| ≤

√
T2k+1, k ∈ N,√

T |x| ≤
√

T ,

so that GT (x) ≤ hT (x) for all x ∈ Z
d. This concludes the proof since the factors in (4.51)

and (4.52) only depend on α, β, and d.

4.3.2. Proof of Corollary 2. W. l. o. g. we assume y = 0 and skip the dependence on y in
the notation. Let R ∼ 1 be sufficiently large so that Lemma 9 applies. For q = 2, formulas
(2.24) and (2.25) yield for all k ∈ N

∫

2kR≤|x|≤2k+1R
|∇xGT (x)|2 dx . (2kR)d((2kR)1−d)2 = (2kR)2−d

d≥2

. 1.

Hence, by the ℓ∞ − ℓ2 estimate, this shows

|∇xGT (x)| . 1 for |x| ≥ R. (4.53)

We now deal with |x| ≤ R, for which we use an a priori estimate. Let i ∈ {1, . . . , d} be
fixed. We set u(x) := GT (x + ei) − GT (x) = ∇iGT (x). This function solves the equation

T−1u −∇∗ · A∇u = δ(ei − ·) − δ(·) in Z
d. (4.54)

The weak formulation of (4.54) with test-function v ∈ L2(Zd) reads
∫

Zd

T−1(uv)(x) dx +

∫

Zd

(∇v · A∇u)(x) dx = v(ei) − v(0).
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Let us now decompose u in two parts:

u = u + u,

where u and u are defined via

u(x) =

{
u(x) for x ∈ Z

d \ {|x| ≤ R}
0 for x ∈ Z

d ∩ {|x| ≤ R} , u(x) =

{
0 for x ∈ Z

d \ {|x| ≤ R}
u(x) for x ∈ Z

d ∩ {|x| ≤ R} .

(4.55)
Inserting this decomposition into the weak formulation yields the following equation for
u:

∫

Zd

T−1(uv)(x) dx +

∫

Zd

(∇v · A∇u)(x) dx

= v(ei) − v(0) −
∫

Zd

T−1(uv)(x) dx −
∫

Zd

(∇v · A∇u)(x) dx.

Choosing v = u yields
∫

Zd

T−1u(x)2 dx +

∫

Zd

(∇u · A∇u)(x) dx

= u(ei) − u(0) −
∫

Zd

T−1(uu)(x) dx −
∫

Zd

(∇u · A∇u)(x) dx

(4.55)
= u(ei) − u(0) −

∫

{|x|≤R+1}\{|x|≤R−1}
(∇u · A∇u)(x) dx. (4.56)

By Cauchy-Schwarz’ inequality,

|u(ei) − u(0)| ≤
∫

{|x|≤1}
|∇u(x)| dx .

(∫

Zd

|∇u(x)|2 dx

)1/2

. (4.57)

Inserting (4.57) into (4.56), using ellipticity and boundedness of A and Cauchy-Schwarz’
inequality, we obtain

∫

Zd

|∇u(x)|2 dx . 1 +

∫

{|x|≤R+1}\{|x|≤R−1}
|∇u(x)|2 dx

. 1 +

∫

{|x|≤R+2}\{|x|≤R−2}
|u(x)|2 dx

(4.53)

. 1

since despite the fact that R has to be chosen sufficiently large so that Lemma 9 is appli-
cable, it is of order 1. Since u vanishes on {|x| ≥ R} we may use Poincaré’s inequality on
{|x| ≤ R} to get

∫

{|x|≤R}
|u(x)|2 dx . 1.

This implies by the ℓ∞ − ℓ2 estimate

sup
{|x|≤R}

|u| . 1.

Recalling that u(x) = ∇iGT (x, 0), this concludes the proof of the corollary.
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4.4. Proof of Lemma 3. W. l. o. g. we may assume
∞∑

i=1

〈

sup
ai

∣
∣
∣
∣

∂X

∂ai

∣
∣
∣
∣

2
〉

< ∞. (4.58)

Let Xn denote the expected value of X conditioned on a1, · · · , an, that is

Xn(a1, · · · , an) = 〈X | a1, · · · , an 〉.
We will establish the following two inequalities for n < ñ ∈ N:

〈X2
n〉 − 〈Xn〉2 ≤

n∑

i=1

〈

sup
ai

∣
∣
∣
∣

∂X

∂ai

∣
∣
∣
∣

2
〉

var [a1] , (4.59)

〈(Xñ − Xn)2〉 ≤
ñ∑

i=n+1

〈

sup
ai

∣
∣
∣
∣

∂X

∂ai

∣
∣
∣
∣

2
〉

var [a1] . (4.60)

Before proving (4.59) & (4.60), we draw the conclusion. There is a slight technical difficulty
due to the fact that there are infinitely many random variables.

From (4.60) and (4.58) we learn that {Xn}n↑∞ is a Cauchy sequence in L2 w. r. t. prob-

ability. Hence there exists a square integrable function X̃ of a such that

lim
n↑∞

〈(X̃ − Xn)2〉 = 0. (4.61)

By construction of Xn, (4.61) implies

〈X̃ | a1, · · · , an 〉 = 〈X | a1, · · · , an 〉 for a. e. (a1, · · · , an) and all n ∈ N.

This means that the random variables X and X̃ agree on all measurable finite rectangular
cylindrical sets, i. e. measurable sets of the form A1 × · · · × An × R × · · · , where n is
finite. Since these sets are stable under intersection and generate the entire σ-algebra of
measurable sets, the random variables X and X̃ are uniquely determined by their value
on these sets [9, Satz 14.12]. Hence the two random variables coincide, yielding

X̃ = X almost surely. (4.62)

From (4.59), (4.61) & (4.62) we obtain in the limit n ↑ ∞ as desired

var [X] = 〈X2〉 − 〈X〉2 ≤
∞∑

i=1

〈

sup
ai

∣
∣
∣
∣

∂X

∂ai

∣
∣
∣
∣

2
〉

var [a1] .

We now turn to (4.59) & (4.60). Notice that we have the decomposition

〈X2
n〉 − 〈Xn〉2 =

n∑

i=1

(
〈X2

i 〉 − 〈X2
i−1〉

)
,

where we have set X0 :≡ 〈X〉 so that 〈Xn〉2 = 〈X2
0 〉. Hence (4.59) reduces to

〈X2
i 〉 − 〈X2

i−1〉 ≤
〈

sup
ai

∣
∣
∣
∣

∂X

∂ai

∣
∣
∣
∣

2
〉

var [a1] . (4.63)

Likewise,

〈(Xñ − Xn)2〉 = 〈X2
ñ〉 − 〈X2

n〉 =

ñ∑

i=n+1

(
〈X2

i 〉 − 〈X2
i−1〉

)
,
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so that also (4.60) reduces to (4.63).

We finally turn to (4.63). We note that by our assumption that {ai}i∈N are i. i. d., we
have

〈X2
i (a1, · · · , ai)〉 =

〈∫

X2
i (a1, · · · , ai−1, a

′
i)β(da′i)

〉

,

Xi−1(a1, · · · , ai−1) =

∫

Xi(a1, · · · , ai−1, a
′′
i )β(da′′i ),

where β denotes the distribution of a1. Hence we obtain

〈X2
i 〉 − 〈X2

i−1〉

=

〈
∫

X2
i (a1, · · · , ai−1, a

′
i)β(da′i) −

(∫

Xi(a1, · · · , ai−1, a
′′
i )β(da′′i )

)2
〉

=

〈∫ ∫

1
2

(
Xi(a1, · · · , ai−1, a

′
i) − Xi(a1, · · · , ai−1, a

′′
i )
)2

β(da′i)β(da′′i )

〉

≤
〈
∫ ∫

sup
a′′′

i

∣
∣
∣
∣

∂Xi

∂ai
(a1, · · · , ai−1, a

′′′
i )

∣
∣
∣
∣

2
1
2 (a′i − a′′i )

2 β(da′i)β(da′′i )

〉

=

〈

sup
a′′′

i

∣
∣
∣
∣

∂Xi

∂ai
(a1, · · · , ai−1, a

′′′
i )

∣
∣
∣
∣

2
〉 (

∫

(a′i)
2 β(da′i) −

(∫

a′′i β(da′′i )

)2
)

=

〈

sup
a′′′

i

∣
∣
∣
∣

∂Xi

∂ai
(a1, · · · , ai−1, a

′′′
i )

∣
∣
∣
∣

2
〉

var [a1] .

We conclude by noting that by the definition of Xi and Jensen’s inequality
∣
∣
∣
∣

∂Xi

∂ai
(a1, · · · , ai)

∣
∣
∣
∣

2

=

∣
∣
∣
∣

〈
∂X

∂ai

∣
∣
∣ a1, · · · , ai

〉∣
∣
∣
∣

2

≤
〈∣
∣
∣
∣

∂X

∂ai

∣
∣
∣
∣

2 ∣
∣
∣ a1, · · · , ai

〉

,

so that
〈

sup
a′

i

∣
∣
∣
∣

∂Xi

∂ai
(a1, · · · , ai−1, a

′
i)

∣
∣
∣
∣

2
〉

≤
〈〈

sup
a′

i

∣
∣
∣
∣

∂X

∂ai
(a1, · · · , ai−1, a

′
i, ai+1, · · · )

∣
∣
∣
∣

2 ∣
∣
∣ a1, · · · , ai

〉〉

=

〈

sup
a′

i

∣
∣
∣
∣

∂X

∂ai
(a1, · · · , ai−1, a

′
i, ai+1, · · · )

∣
∣
∣
∣

2
〉

.

4.5. Proof of Lemma 6. We first prove the claim for GT and deduce the result for φT

appealing to an integral representation using the Green’s function.

Step 1. Properties of GT .
The product topology is the topology of componentwise convergence. Hence we consider
an arbitrary sequence {aν}ν↑∞ ⊂ Aαβ of coefficients such that

lim
ν↑∞

aν(e) = a(e) for all edges e. (4.64)
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Fix y ∈ Z
d; by the uniform bounds on GT (·, y; aν) from Corollary 1, we can select a

subsequence ν ′ such that

uT (x) := lim
ν′↑∞

GT (x, y; aν′) exists for all x ∈ Z
d. (4.65)

It remains to argue that uT (x) = GT (x, y; a). Because of (4.64) and (4.65), we can pass
to the limit in (T−1GT (·, y; aν′) + Laν′

GT (·, y; aν′))(x) = δ(x − y) to obtain

(T−1uT + La uT )(x) = δ(x − y) for all x ∈ Z
d. (4.66)

Moreover, the uniform decay of GT (·, y; aν) from Corollary 1 is preserved in the limit,
so that uT ∈ L1(Zd) ⊂ L2(Zd). Note that Riesz’s representation theorem on L2(Zd)
yields uniqueness for the solution of (4.66) in L2(Zd). Hence we conclude as desired that
uT (·) = GT (·, y; a). Borel measurability of GT (x, y; ·) in the sense of Lemma 3 follows
from continuity w. r. t. the product topology, cf. [9, Satz 14.8].

Step 2. Properties of φT .
Corollary 1 ensures that GT (x, ·) ∈ L1(Zd) for all x ∈ Z

d and one may then define a

function φ̃T by

φ̃T (x) =

∫

Zd

GT (x, y)∇∗ · (A(y)ξi) dy. (4.67)

Since GT (· + z, · + z) has the same law as GT (·, ·) by uniqueness of the Green’s function

and stationarity of the coefficient A, φ̃T (· + z) has the same law as φ̃T . This shows

that φ̃T is stationary. In addition, φ̃T is a solution of (2.3) by construction. Hence, by

the uniqueness of stationary solutions of (2.3), φ̃T = φT almost surely, so that by the

measurability properties we may assume φ̃T ≡ φT .
Introducing for R ≥ 1

φT,R(x) :=

∫

|y|≤R
GT (x, y)∇∗ · (A(y)ξi) dy,

one may rewrite (4.67) as

φT (x) = lim
R→∞

φT,R(x). (4.68)

From Step 1, φT,R(x) is a continuous function of a since GT (x, y) is and the formula for
φT,R(x) involves only a finite number of operations. Note that Corollary 1 implies that

lim
R↑∞

sup
a∈Aαβ

∫

|y|>R
GT (x, y; a) dy = 0.

Hence the convergence in (4.68) is uniform in a and the continuity of φT,R in a is preserved
at the limit. Therefore, φT (and continuous functions thereof) are continuous with respect
to the product topology, and hence Borel measurable.

4.6. Proof of Lemma 5. Let us divide the proof in four steps.

Step 1. Proof of (2.15).
We recall the definition of the operator

(Lu)(x) =
∑

x′,|x′−x|=1

a(x, x′)(u(x) − u(x′)).
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For convenience, we set e = [z, z′], z′ = z + ei. We recall that GT (·, y), y ∈ Z
d, is defined

via

(T−1 + L)GT (·, y)(x) = δ(x − y), x ∈ Z
d. (4.69)

Hence we obtain by differentiating (4.69)
(

(T−1 + L)
∂

∂a(e)
GT (·, y)

)

(x) + (GT (z, y) − GT (z′, y))δ(x − z)

+(GT (z′, y) − GT (z, y))δ(x − z′) = 0,

which, in view of (4.69), can be rewritten as

(T−1 + L)
( ∂

∂a(e)
GT (·, y) + (GT (z, y) − GT (z′, y))GT (·, z)

+(GT (z′, y) − GT (z, y))GT (·, z′)
)

≡ 0. (4.70)

From this, we would like to conclude

∂

∂a(e)
GT (·, y)+(GT (z, y)−GT (z′, y))GT (·, z)+(GT (z′, y)−GT (z, y))GT (·, z′) ≡ 0, (4.71)

which is nothing but (2.15).

In order to draw this conclusion, we will appeal to the following uniqueness result in
L2(Zd): Any u ∈ L2(Zd) which satisfies ((T−1 + L)u)(x) = 0 for all x ∈ Z

d vanishes
identically. However, we cannot apply this directly to u given by the l. h. s. of (4.71),
since we do not know a priori that ∂

∂a(e)GT (·, y) is in L2(Zd).

For that purpose, we replace the derivative ∂
∂a(e) by the difference quotient. We thus fix a

step size h 6= 0 and introduce the abbreviations

GT (x, y) := GT (x, y; a) and G′
T (x, y) := GT (x, y, a′),

where the coefficients a′ are defined by modifying a only at edge e by the increment h,
i. e.

a′(e) = a(e) + h and a′(e′) = a(e′) for all e′ 6= e.

We further denote by LT := T + La and L′
T := T + La′ the operators with coefficients a

and a′, respectively. We mimic the derivation of (4.70) on the discrete level: From (4.69)
we obtain

0 =
1

h

(
LT GT (·, y) − L′

T G′
T (·, y)

)

= LT
1

h

(
GT (·, y) − G′

T (·, y)
)

+
1

h
(LT − L′

T )G′
T (·, y)

= LT
1

h

(
GT (·, y) − G′

T (·, y)
)

+ (G′
T (z, y) − G′

T (z′, y)) δ(· − z) + (G′
T (z′, y) − G′

T (z, y)) δ(· − z′)

= LT

( 1

h

(
GT (·, y) − G′

T (·, y)
)

+ (G′
T (z, y) − G′

T (z′, y))GT (·, z) + (G′
T (z′, y) − G′

T (z, y))GT (·, z′)
)

.
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Since for fixed h 6= 0,

uh :≡ 1

h

(
GT (·, y) − G′

T (·, y)
)

+ (G′
T (z, y) − G′

T (z′, y))GT (·, z) + (G′
T (z′, y) − G′

T (z, y))GT (·, z′)
does inherit the integrability properties of GT (·, y) and G′

T (·, y) from Corollary 1, we now

may conclude that uh ∈ L2(Zd), and therefore uh ≡ 0, i. e.

1

h

(
GT (x, y) − G′

T (x, y)
)

+ (G′
T (z, y) − G′

T (z′, y))GT (x, z) + (G′
T (z′, y) − G′

T (z, y))GT (x, z′) = 0

for every x ∈ Z
d. Since by Lemma 6, GT (x, y; ·) is continuous in a(e), we learn that

GT (x, y; ·) is continuously differentiable w. r. t. a(e) and that (2.15) holds.

We set for abbreviation

GT (x, e) := GT (x, z) − GT (x, z′),

GT (e, y) := GT (z, y) − GT (z′, y),

GT (e, e) := GT (z, z) + GT (z′, z′) − GT (z, z′) − GT (z′, z). (4.72)

Step 2. Proof of

∂

∂a(e)
GT (x, e) = −GT (e, e)GT (x, e),

∂

∂a(e)
GT (e, y) = −GT (e, e)GT (e, y).

(4.73)

This is a consequence of (2.15) for y = z, z′:

∂

∂a(e)

(
GT (x, z) − GT (x, z′)

)

=
∂

∂a(e)
GT (x, z) − ∂

∂a(e)
GT (x, z′)

(2.15)
= −

(
GT (x, z) − GT (x, z′)

)(
GT (z, z) − GT (z′, z)

)

+
(
GT (x, z) − GT (x, z′)

)(
GT (z, z′) − GT (z′, z′)

)

= −
(
GT (z, z) + GT (z′, z′) − GT (z, z′) − GT (z, z′)

) (
GT (x, z) − GT (x, z′)

)
,

and for x = z, z′, respectively.

Step 3. Conclusion.
Note that Corollary 2 implies

|GT (e, e)| . 1. (4.74)

The combination of (4.73) with (4.74) yields
∣
∣
∣
∣

∂

∂a(e)
GT (x, e)

∣
∣
∣
∣
. |GT (x, e)|,

∣
∣
∣
∣

∂

∂a(e)
GT (e, y)

∣
∣
∣
∣
. |GT (e, y)|.

Since a(e) is bounded, this also yields

sup
a(e)

|GT (x, e)| ∼ |GT (x, e)|, sup
a(e)

|GT (e, y)| ∼ |GT (e, y)|,

which is nothing but (2.16).
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4.7. Proof of Lemma 7. We first sketch the proof in the continuous case, that is, with
Z

d replaced by R
d.

Step 1. Continuous version.
Starting point is the defining equation (2.3) of the corrector φT in its continuous version,
i. e.

T−1φT −∇ · A(∇φT + ξ) = 0 in R
d. (4.75)

We multiply (4.75) with φn+1
T and obtain by Leibniz’ rule:

0 = T−1φn+2
T + (−∇ · A(∇φT + ξ)) φn+1

T

= T−1φn+2
T −∇ · (φn+1

T A(∇φT + ξ)) + ∇φn+1
T · A(∇φT + ξ)

= T−1φn+2
T −∇ · (φn+1

T A(∇φT + ξ)) + (n + 1)φn
T ∇φT · A(∇φT + ξ).

(4.76)

We then take the expected value. Since the random fields A and φT are stationary, and
thus also φn+1

T A(∇φT + ξ), we obtain
〈
T−1φn+2

T

〉
+ (n + 1) 〈φn

T ∇φT · A(∇φT + ξ)〉 = 0,

and therefore

〈φn
T ∇φT · A(∇φT + ξ)〉 ≤ 0

since n + 2 is even. By the uniform ellipticity of A and since φn
T ≥ 0 (n is even) and

|ξ| = 1, this yields the estimate

〈φn
T |∇φT |2〉 . 〈φn

T |∇φT |〉.
Applying Cauchy-Schwarz’ inequality in probability on the r. h. s. of this inequality yields
the continuum version of (2.17), that is,

〈φn
T |∇φT |2〉 . 〈φn

T 〉.
We now turn to our discrete case.

Step 2. Discrete version.
We need a discrete version of the Leibniz rule ∇ · (fg) = f ∇ · g + ∇f · g used in (4.76).
Let f ∈ L2

loc(Z
d) and g ∈ L2

loc(Z
d, Rd), then this formula is replaced by

∇∗ · (fg)(z) =

d∑

j=1

(
f(z)[g(z)]j − f(z − ej)[g(z − ej)]j

)

= f(z)∇∗ · g(z) +

d∑

j=1

∇∗
jf(z)[g(z − ej)]j . (4.77)

We also need a substitute for the identity ∇φn+1
T = (n + 1)φn

T ∇φT used in (4.76). This
substitute is provided by the two calculus estimates

(φ̃n+1 − φn+1) (φ̃ − φ) & (φ̃n + φn) (φ̃ − φ)2, (4.78)

|φ̃n+1 − φn+1| . (φ̃n + φn) |φ̃ − φ|. (4.79)
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For the convenience of the reader, we sketch their proof: By the well-known formula for
φ̃n+1 − φn+1, they are equivalent to

n∑

m=0

φm φ̃n−m ∼ φ̃n + φn.

By homogeneity, we may assume φ̃ = 1, so that the above turns into

n∑

m=0

φm ∼ 1 + φn.

The upper estimate is obvious by Hölder’s inequality since n is even. Also for the lower
bound, we use the evenness of n to rearrange the sum as follows:

n∑

m=0

φm = 1
2 1 + 1

2 (1 + 2φ + φ2) + 1
2 φ2 (1 + 2φ + φ2) + · · ·

+ 1
2 φn−2 (1 + 2φ + φ2) + 1

2 φn

≥ 1
2 (1 + φn).

After these motivations and preparations, we turn to the proof of Lemma 7 proper. With
f(z) := φn+1

T (z) and g(z) := A(∇φT + ξ)(z), (4.77) turns into

∇∗ ·
(
φn+1

T (z)A(∇φT + ξ)(z)
)

= φn+1
T (z)∇∗ · A(∇φT + ξ)(z) +

d∑

j=1

∇∗
jφ

n+1
T (z) [A(∇φT + ξ)(z − ej)]j

︸ ︷︷ ︸

= a(z − ej , z)(∇jφT (z − ej) + ξj)
= a(z − ej , z)(∇∗

jφT (z) + ξj).

Hence,

−φn+1
T (z)∇∗ · A(∇φT + ξ)(z) =

d∑

j=1

∇∗
jφ

n+1
T (z)a(z − ej , z)(∇∗

jφT (z) + ξj)

−∇∗ ·
(
φn+1

T (z)A(∇φT + ξ)(z)
)
. (4.80)

Multiplying (2.3) with φn+1
T (z) and using (4.80) emulate (4.76) and yield

0 = T−1φn+2
T (z) −∇∗ ·

(
φn+1

T (z)A(∇φT + ξ)(z)
)

+
d∑

j=1

∇∗
jφ

n+1
T (z)a(z − ej, z)(∇∗

jφT (z) + ξj). (4.81)

Taking the expectation of (4.81) and noting that φn+2
T ≥ 0, we obtain as for the continuous

case
〈

d∑

j=1

a(z − ej , z)∇∗
jφ

n+1
T (z)∇∗

jφT (z)

〉

.

〈
d∑

j=1

a(z − ej, z)|∇∗
jφ

n+1
T (z)|

〉

. (4.82)
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On the one hand, we have

d∑

j=1

a(z − ej, z)∇∗
jφ

n+1
T (z)∇∗

jφT (z)

=

d∑

j=1

a(z − ej, z)(φn+1
T (z) − φn+1

T (z − ej))(φT (z) − φT (z − ej))

(4.78)

&

d∑

j=1

(φn
T (z) + φn

T (z − ej)) (φT (z) − φT (z − ej))
2. (4.83)

On the other hand, we observe

d∑

j=1

a(z − ej, z)|∇∗
jφ

n+1
T (z)|

=

d∑

j=1

a(z − ej, z)|φn+1
T (z) − φn+1

T (z − ej)|

(4.79)

.

d∑

j=1

(φn
T (z) + φn

T (z − ej)) |φT (z) − φT (z − ej)|. (4.84)

Now (4.82), (4.83) & (4.84) combine to

〈
d∑

j=1

(φn
T (z) + φn

T (z − ej)) (φT (z) − φT (z − ej))
2

〉

.

d∑

j=1

〈(φn
T (z) + φn

T (z − ej)) |φT (z) − φT (z − ej)|〉 .

By stochastic homogeneity, this reduces to

〈 d∑

j=1

(φn
T (ej) + φn

T (0)) (φT (ej) − φT (0))2
〉

.

〈
d∑

j=1

(φn
T (ej) + φn

T (0)) |φT (ej) − φT (0)|
〉

.

An application of Cauchy Schwarz’ inequality yields

〈 d∑

j=1

(φn
T (ej) + φn

T (0)) (φT (ej) − φT (0))2
〉

.

〈
d∑

j=1

(φn
T (ej) + φn

T (0))

〉

.

A last application of stochastic homogeneity gives as desired

〈

φn
T (0)

d∑

j=1

(
(φT (ej) − φT (0))2 + (φT (0) − φT (−ej))

2
) 〉

. 〈φn
T (0)〉 .
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4.8. Proof of Lemma 4. We recall that e = [z, z′], z′ = z + ei.

Step 1. Proof of (2.12).
We first give a heuristic argument for (2.12) based on the defining equation

T−1φT (x) − (∇∗ · A(∇φT (x) + ξ))(x) = 0. (4.85)

Differentiating (4.85) w. r. t. a(e) yields as in Step 1 of the proof of Lemma 5

T−1 ∂φT

∂a(e)
(x) −

(

∇∗ · A∇ ∂φT

∂a(e)

)

(x) − (∇iφT (z) + ξi)(δ(x − z) − δ(x − z′)) = 0. (4.86)

Provided we have ∂φT

∂a(e) ∈ L2(Zd), this yields by definition of GT

∂φT

∂a(e)
(x) = −(∇iφT (z) + ξi)(GT (x, z′) − GT (x, z)),

which is (2.12).

In order to turn the above into a rigorous argument, we need to argue that φT (x) is

differentiable w. r. t. a(e) and that ∂φT

∂a(e) ∈ L2(Zd). Starting point is the representation

formula from Step 2 of the proof of Lemma 6, i. e.

φT (x) =

∫

Zd

GT (x, y)∇∗ · (A(y)ξ) dy. (4.87)

Combined with Corollary 1, (4.87) and (2.15) in Lemma 5 show that φT (x) is differentiable
w. r. t. a(e). We may now switch the order of the differentiation and the sum as follows:

∂φT

∂a(e)
(x) = −∇zi

GT (x, z)ξi −
∫

Zd

∇zi
GT (x, z)∇zi

GT (z, y)∇∗ · (A(y)ξ) dy

= −∇zi
GT (x, z)

︸ ︷︷ ︸

∈ L2
x(Zd)

(

ξi +

∫

Zd

∇zi
GT (z, y)

︸ ︷︷ ︸

∈ L1
y(Z

d)

∇∗ · (A(y)ξ)
︸ ︷︷ ︸

∈ L∞(Zd)

dy
)

, (4.88)

since GT (·, z) ∈ L2(Zd) by definition of the Green’s function, GT (z, ·) ∈ L1(Zd) by Corol-

lary 1 and A is bounded. This proves that ∂φT

∂a(e) ∈ L2(Zd).

Step 2. Proof of

sup
a(e)

|φT (x)| . |φT (x)| + (|∇iφT (z)| + 1) |∇zi
GT (z, x)| , (4.89)

sup
a(e)

∣
∣
∣
∣

∂φT (x)

∂a(e)

∣
∣
∣
∣

. (|∇iφT (z)| + 1) |∇zi
GT (z, x)| . (4.90)

We argue that it is enough to prove (2.14). Indeed, the combination of (2.12), (2.16), and
(2.14) with the boundedness of a implies (4.89) and (4.90). In order to prove (2.14), we
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proceed as follows.

−
(

∇i
∂φT

∂a(e)

)

(z) =
∂φT

∂a(e)
(z) − ∂φT

∂a(e)
(z′)

(2.12)
= (∇iφT (z) + ξi)(GT (z, z) − GT (z, z′))

−(∇iφT (z) + ξi)(GT (z′, z) − GT (z′, z′))

= (∇iφT (z) + ξi)(GT (z, z) − GT (z, z′) − GT (z′, z) + GT (z′, z′))

= (∇iφT (z) + ξi)GT (e, e), (4.91)

where we used the abbreviation

GT (e, e) = GT (z, z) − GT (z, z′) − GT (z′, z) + GT (z′, z′).

Recalling that Corollary 2 implies

GT (e, e) . 1,

inequality (2.14) follows now from (4.91) and the boundedness of a.

Step 3. Proof of (2.13).
For n ≥ 0, the chain rule yields

∂φT (x)n+1

∂a(e)
= (n + 1)φT (x)n

∂φT (x)

∂a(e)
.

Using (4.89) and (4.90), this implies

sup
a(e)

∣
∣
∣
∣

∂φT (x)n+1

∂a(e)

∣
∣
∣
∣

.
(

|φT (x)| + (|∇iφT (z)| + 1) |∇zi
GT (z, x)|

)n

(

(|∇iφT (z)| + 1) |∇zi
GT (z, x)|

)

,

which turns into (2.13) using Young’s inequality.

4.9. Proof of Lemma 10. The proof relies on a doubly dyadic decomposition of space.
First note that by symmetry,
∫

|z|≤|z−x|
hT (z)hT (z − x)dz =

∫

|z|≥|z−x|
hT (z)hT (z − x)dz ≥ 1

2

∫

Zd

hT (z)hT (z − x)dz.

Hence, it is enough to consider
∫

|x|≤R

∫

|z|≤|z−x|
hT (z)hT (z − x)dzdx.

In the three first steps, we treat the case d > 2. We then sketch the modification for d = 2
in the last step. Let R̃ ∼ 1 be such that (2.28) holds with a constant independent of R

for all R ≥ R̃/2.

Step 1. Proof of
∫

R<|x|≤2R

∫

|z|≤|z−x|
hT (z)hT (z − x)dzdx . R2, for R ≥ 2R̃. (4.92)
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Let N ∈ N be such that R̃ ≤ 2−NR ≤ 2R̃. We then decompose the sum over |z| ≤ |z − x|
into three contributions: R/2 < |z|, a dyadic decomposition for R̃ < |z| ≤ R/2 and a

remainder on |z| ≤ R̃. More precisely:

∫

R<|x|≤2R

∫

|z|≤|z−x|
hT (z)hT (z − x)dzdx

=

∫

R<|x|≤2R

∫

R/2<|z|≤|z−x|
hT (z)hT (z − x)dzdx

+
N∑

n=1

∫

R<|x|≤2R

∫

{2−(n+1)R<|z|≤2−nR}∩{|z|≤|z−x|}
hT (z)hT (z − x)dzdx

+

∫

R<|x|≤2R

∫

{|z|≤2−(N+1)R}∩{|z|≤|z−x|}
hT (z)hT (z − x)dzdx

≤
∫

|x|≤2R

∫

R/2<|z|≤|z−x|
hT (z)hT (z − x)dz

︸ ︷︷ ︸

= I1

dx

+

N∑

n=1

∫

R<|x|≤2R

∫

2−(n+1)R<|z|≤2−nR
hT (z)hT (z − x)dzdx

︸ ︷︷ ︸

= I2(n)

+

∫

R<|x|≤2R

∫

|z|≤R̃
hT (z)hT (z − x)dzdx

︸ ︷︷ ︸

= I3(N)

.

We use Young’s inequality, a dyadic decomposition of {|z| > R/2}, and the assump-
tion (2.28) to bound I1:

I1 ≤ 1

2

( ∫

R/2<|z|
hT (z)2 dz +

∫

R/2<|z−x|
hT (z − x)2 dz

)

=
∞∑

k=−1

∫

2kR<|z|≤2k+1R
h2

T (z)dz

(2.28)

.

∞∑

k=−1

(
1

2d−2

)k

R2−d

. R2−d.

In order to bound I2(n), we will use the following fact

(

|x| > R and |z| ≤ 1

2
R

)

=⇒
(

|z − x| >
1

2
R

)

. (4.93)
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We have by Cauchy-Schwarz’ inequality

I2(n)

≤
(
∫

|x|≤2R

∫

2−(n+1)R<|z|≤2−nR
hT (z)2dzdx

∫

R<|x|≤2R

∫

|z|≤2−nR
hT (z − x)2dzdx

)1/2

.
(

Rd

∫

2−(n+1)R<|z|≤2−nR
hT (z)2dz

︸ ︷︷ ︸

(2.28)

. (2−nR)2−d

∫

R<|x|≤2R

∫

|z|≤2−nR
hT (z − x)2dzdx

︸ ︷︷ ︸

(4.93)

.

∫

|z|≤2−nR

∫

R/2<|z−x|≤5R/2
hT (z − x)2dxdz

︸ ︷︷ ︸

(2.28)

.

∫

|z|≤2−nR
R2−d dz = (2−nR)dR2−d

)1/2

. 2−nR2.

We proceed the same way to bound I3(N). Recalling that R ≥ 2R̃ ∼ 1, it holds that

|z| ≤ R̃ =⇒ |z| ≤ R/2. Hence, we are in position to use (4.93) and we obtain

I3(N) ≤
(
∫

|x|≤2R

∫

|z|≤R̃
hT (z)2dzdx

∫

R<|x|≤2R

∫

|z|≤R̃
hT (z − x)2dzdx

)1/2

.
(

Rd

∫

|z|≤R̃
hT (z)2dz

︸ ︷︷ ︸

(2.29)

. 1

∫

R<|x|≤2R

∫

|z|≤R̃
hT (z − x)2dzdx

︸ ︷︷ ︸

(4.93)

.

∫

|z|≤R̃

∫

R/2<|z−x|≤5R/2
hT (z − x)2dxdz

︸ ︷︷ ︸

(2.28)

.

∫

|z|≤R̃
R2−d dz ∼ R2−d

)1/2

. R.

Since
∞∑

n=1

2−nR2 ∼ R2 and |{|x| ≤ 2R}|R2−d ∼ R2, the bounds on I1, I2(n) and I3(N)

imply the claim (4.92).

Step 2. Proof of

∫

|x|≤4R̃

∫

|z|≤|z−x|
hT (z)hT (z − x)dzdx . 1. (4.94)
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This time, we decompose the sum over |z| ≤ |z − x| in two contributions only: |z| ≤ R̃

and R̃ < |z|. We then obtain
∫

|x|≤4R̃

∫

|z|≤|z−x|
hT (z)hT (z − x)dzdx

=

∫

|x|≤4R̃

∫

R̃<|z|≤|z−x|
hT (z)hT (z − x)dz

︸ ︷︷ ︸

= I ′1

dx

+

∫

|x|≤4R̃

∫

{|z|≤R̃}∩{|z|≤|z−x|}
hT (z)hT (z − x)dzdx

︸ ︷︷ ︸

= I ′2

.

Proceeding as for I1 in Step 1 using (2.28) yields

I ′1 . 1.

For I ′2, we use Cauchy-Schwarz’ inequality, (2.29), and R̃ ∼ 1:

I ′2 ≤
(
∫

|x|≤4R̃

∫

|z|≤R̃
h2

T (z)dzdx

)1/2(∫

|x|≤4R̃

∫

|z′|≤5R̃
h2

T (z′)dz′dx

)1/2

. 1.

This proves (4.94).

Step 3. Proof of (2.31).
It only remains to use a dyadic decomposition of the ball of radius R into the ball of
radius R̃ and annuli of the form 2−kR < |z| ≤ 2−k+1R, as follows. Taking M such that

2R̃ ≤ 2−MR ≤ 4R̃, it holds that
∫

|x|≤R

∫

|z|≤|z−x|
hT (z)hT (z − x)dzdx

=

∫

|x|≤2−MR

∫

|z|≤|z−x|
hT (z)hT (z − x)dzdx

︸ ︷︷ ︸

(4.94)

. 1

+

M∑

n=1

∫

2n−M−1R<|x|≤2n−MR

∫

|z|≤|z−x|
hT (z)hT (z − x)dzdx

︸ ︷︷ ︸

(4.92)

. (2n−MR)2

. 1 + R2
M∑

n=1

4−n ∼ R2,

which proves (2.31).

Step 4. Proof of (2.30).
For the case d = 2, we use the same strategy as for d > 2. The bounds on I2(n) and I3(N)
are the same as for d > 2. However the estimate for I1 is slightly worse. Indeed, we split
the dyadic sums 2kR < |z| ≤ 2k+1R into two categories in order to take advantage of the
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fast decay in (2.27): The first class is for k such that 2kR ≤
√

T and the other class for k

such that 2kR >
√

T . More precisely, setting I(R,T ) := {k ∈ N : 2k−1R ≤
√

T}, we have

I1 =

∫

R/2<|z|≤|z−x|
hT (z)hT (z − x)dz

Young
≤

∫

R/2<|z|
hT (z)2dz

=

∞∑

k=−1

∫

2kR<|z|≤2k+1R
hT (z)2dz

=
∑

k∈I(R,T )

∫

2k−1R<|z|≤2kR
h2

T (z)dz

︸ ︷︷ ︸

(2.27)

. max{0, ln(
√

TR−1)}

+
∑

k∈N\I(R,T )

∫

2k−1R<|z|≤2kR
h2

T (z)dz

︸ ︷︷ ︸

(2.27)

.
∑

k∈N

2−2k . 1

. max{1, ln(
√

TR−1)},
which gives the extra factor in (2.30).
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[6] M. Grüter and K.-O. Widman. The Green function for uniformly elliptic equations. Manuscripta
Math., 37:303–342, 1982.

[7] Q. Han and F. Lin. Elliptic partial differential equations. Courant Institute of Mathematical Sciences,
New York, 1997.

[8] C. Kipnis and S.R.S. Varadhan. Central limit theorem for additive functional of reversible Markov
processes and applications to simple exclusion. Commun. Math. Phys., 104:1–19, 1986.

[9] K. Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Heidelberg-Berlin, 2006. English version ap-
peared as: Probability theory. A comprehensive course, Universitext, Springer-Verlag London, Ltd.,
London, 2008.

[10] S.M. Kozlov. The averaging of random operators. Mat. Sb. (N.S.), 109(151)(2):188–202, 327, 1979.
[11] S.M. Kozlov. Averaging of difference schemes. Math. USSR Sbornik, 57(2):351–369, 1987.
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Appendix A. Heuristics for (1.13) & (1.14)

Let φ̄i and φ̄T,i denote for i ∈ {1, . . . , d} the solutions of (1.11) and (1.12) respectively,

with ξ replaced by the i-th unit vector ei of R
d. We claim that

d∑

i=1

d∑

j=1

var
[∑(

ej · (A − 〈A〉)ei + 2ej · ∇φ̄i

)
ηL

]

= d var [a]
∑

η2
L, (A.1)

d∑

i=1

〈|∇φ̄T,i −∇φ̄i|2〉 = var [a] T−2
∑

Ḡ2
T , (A.2)

where ḠT denotes the fundamental solution of the constant coefficient operator T−1 −△.
We also denote by Ḡ the fundamental solution of the Laplacian. Since

∑

Ḡ2
T ∼







T 2−d/2 for d < 4,
ln T for d = 4,
1 for d > 4,

and
∑

η2
L ∼ L−d,

(1.13) & (1.14) follow from (A.1) & (A.2), that we prove now.

Step 1. Argument for (A.2).
Since

−△(φ̄T − φ̄) = −T−1φ̄T , (A.3)

one has
〈
|∇(φ̄T − φ̄)|2

〉
= −T−1

〈
φ̄T (φ̄T − φ̄)

〉
. (A.4)

Rewritting (A.3) in the form

T−1(φ̄T − φ̄) −△(φ̄T − φ̄) = −T−1φ̄

yields the formula

(φ̄T − φ̄)(0) = −T−1
∑

x

ḠT (x)φ̄(x). (A.5)

Using (A.5), (A.4) turns into
〈
|∇(φ̄T − φ̄)|2

〉
= −T−2

∑

x

ḠT (x)
〈
φ̄T (0)φ̄(x)

〉
. (A.6)
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Expressing now φ̄T,i(0) and φ̄i(x) in terms the Green’s functions2 ḠT and Ḡ,

φ̄T,i(0) =
∑

x′

ḠT (x′)∇∗ · (A(x′)ei)

= −
∑

x′

∇iḠT (x′)(ai(x
′) − 〈a〉)

φ̄i(x) =
∑

x′

Ḡ(x − x′)∇∗ · (A(x′)ei)

= −
∑

x′′

∇iḠ(x − x′′)(ai(x
′′) − 〈a〉),

and using the independence of ai(x
′) and ai(x

′′) for x′ 6= x′′, we get

〈
φ̄T,i(0)φ̄i(x)

〉
=

∑

x′

∇iḠT (x′)∇iḠ(x − x′)
〈
(ai(x

′) − 〈a〉)2
〉
.

Hence,

d∑

i=1

〈
φ̄T,i(0)φ̄i(x)

〉
= var [a]

∑

x′

∇ḠT (x′) · ∇Ḡ(x − x′)

= var [a] ḠT (x),

since −△Ḡ(x) = δ(x). Combined with (A.6), this proves (A.2).

Step 2. Argument for (A.1).
Using the Green’s function, one has

φ̄i(x) =
∑

x′

Ḡ(x − x′)∇∗ · ((A − 〈A〉)ei)(x
′)

= −
∑

x′

∇iḠ(x − x′)(ai(x
′) − 〈a〉),

and therefore

∇φ̄i(x) = −
∑

x′

∇∇iḠ(x − x′)(ai(x
′) − 〈a〉).

Hence, denoting by Aij the argument of the variance in (A.1), one has

Aij :=
∑

x

(
ej · ei(ai(x) − 〈a〉) + 2ej · ∇φ̄i(x)

)
ηL(x)

=
∑

x

∑

x′

(ai(x
′) − 〈a〉)ej ·

(
δ(x − x′)ei − 2∇∇iḠ(x − x′)

)
ηL(x).

Using the independence of the ai, one obtains for the variance

var [Aij ] = var [a]
∑

x

∑

x′

∑

x′′

ej ·
(
δ(x − x′)ei − 2∇∇iḠ(x − x′)

)

ej ·
(
δ(x′′ − x′)ei − 2∇∇iḠ(x′′ − x′)

)
ηL(x)ηL(x′′).

2Attention should be paid here to turn this into a rigorous argument since Ḡ is not in L
1(Zd).
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Rearranging the terms yields

var [Aij] = var [a]
∑

x

∑

x′

δ(j − i)
(
δ(x − x′) − 4∇i∇iḠ(x − x′)

)
ηL(x)ηL(x′)

+var [a]
∑

x

∑

x′′

4ηL(x)ηL(x′′)
∑

x′

∇j∇iḠ(x − x′)∇j∇iḠ(x′′ − x′)

︸ ︷︷ ︸

= −∇i∇i

∑

x′

Ḡ(x − x′)∇j∇jḠ(x′′ − x′)

.

Summing in j and using that −△G(x) = δ(x), this turns into

d∑

j=1

var [Aij] = var [a]
∑

x

∑

x′

(
δ(x − x′) − 4∇i∇iḠ(x − x′)

)
ηL(x)ηL(x′)

+var [a]
∑

x

∑

x′′

4ηL(x)ηL(x′′)∇i∇iḠ(x − x′′)

= var [a]
∑

x

∑

x′

δ(x − x′)ηL(x)ηL(x′)

= var [a]
∑

x

ηL(x)2,

from which we deduce (A.1).

(Antoine Gloria) Projet SIMPAF, INRIA Lille-Nord Europe, France
E-mail address: antoine.gloria@inria.fr

(Felix Otto) IAM, Universität Bonn, Germany
E-mail address: otto@iam.uni-bonn.de

61


