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LANDAU DAMPING

C. MOUHOT AND C. VILLANI

Abstract. In this note we present the main results from the recent work [16],
which for the first time establish Landau damping in a nonlinear context — for
all times if the interaction is less singular than Coulomb or Newton, and for ex-
ponentially large times in the case of these potentials.

Keywords. Landau damping; plasma physics; astrophysics; Vlasov–Poisson
equation.

1. Introduction

The “standard model” of classical plasma physics is the Vlasov–Poisson–Landau
equation [10, 20], here written with periodic boundary conditions and in nondimen-
sional units:

(1)
∂f

∂t
+ v · ∇xf + F [f ] · ∇vf =

log Λ

2πΛ
QL(f, f),

where f = f(t, x, v) is the electron distribution function (t ≥ 0, v ∈ R
3, x ∈ T

3 =
R3/Z3),

(2) F [f ](t, x) = −

∫∫
∇W (x − y) f(t, y, w) dwdy

is the self-induced force, W (x) = 1/|x| is the Coulomb interaction potential, and QL

is the Landau collision operator, described for instance in [11] or [19]. The parameter
Λ is very large, ranging typically from 102 to 1030.

On very large time scales (say O(Λ/ logΛ)), dissipative phenomena play a nonneg-
ligeable role, and the entropy increase is supposed to force the (slow) convergence
to a Maxwellian distribution. Thanks to the recent progress on hypocoercivity,
this mechanism is now mathematically rather well understood, as soon as global
smoothness estimates are available (see [18] and the references therein).

Ten years after devising this collisional scenario, Landau [10] formulated a much
more subtle prediction: the stability of homogeneous equilibria satisfying certain
conditions — for instance any function of |v|, not necessarily Gaussian — on much
shorter time scales (say O(1)), by means of purely conservative mechanisms. This
phenomenon, called Landau damping, is a property of the (collisionless!) Vlasov
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equation, obtained by setting Λ = ∞ in (1). At the time, Landau’s discovery
was considered “astonishing” by his peers; since then it has become a theoretical
cornerstone of classical plasma physics (among a large number of references let us
mention [1, 11]). Similar damping phenomena are expected to occur in gravitational
dynamics [12], but also in other domains of physics.

The Landau damping has been since long understood at the linearized level [2, 4,
6, 7, 15, 17]. However, fifty years ago in the first volume of Journal of Mathematical
Physics, Backus [2] already noticed that the time scale for linearization is sometimes
much shorter than the time scale for Landau damping, and expressed doubt on the
relevance of the linearization approach to this problem. His objection remained
unanswered up to now, because the important conceptual and technical difficulties
associated with the nonlinear equation have severely hampered the results obtained
in this setting: in [3, 8] only the existence of some damped solutions was proven.

We fill this gap in a recent work [16], whose main result we shall now describe.

2. Main result

If f is a function defined on Td × Rd, we note, for any k ∈ Zd and η ∈ Rd,

f̂(k, v) =

∫

Td

f(x, v) e−2iπk·x dx, f̃(k, η) =

∫∫

Td×Rd

f(x, v) e−2iπk·x e−2iπη·v dv dx.

We also set

(3) ‖f‖λ,µ,β = sup
k,η

(
|f̃(k, η)| e2πλ|η| e2πµ|k|

)
+

∫∫

Td×Rd

|f(x, v)| e2πβ|v| dv dx.

Theorem 1 (nonlinear Landau damping for general interaction). Let d ≥ 1, and
f 0 : R

d → R+ an analytic velocity profile. Let W : T
d → R be an interaction

potential. For any k ∈ Zd, ξ ∈ C, we set

L(k, ξ) = −4π2 Ŵ (k)

∫ ∞

0

e2π|k|ξ∗t |f̃ 0(kt)| |k|2 t dt.

We assume that there is λ > 0 such that

(4) sup
η∈Rd

|f̃ 0(η)| e2πλ|η| ≤ C0,
∑

n∈Nd

λn

n!
‖∇n

vf
0‖L1(dv) ≤ C0,

(5) inf
k∈Zd

inf
0≤ℜ ξ <λ

∣∣L(k, ξ) − 1
∣∣ ≥ κ > 0

(6) ∃ γ > 1; ∀ k ∈ Z
d; |Ŵ (k)| ≤

CW

|k|1+γ
.
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Then as soon as 0 < λ′ < λ, 0 < µ′ < µ, β > 0, r ∈ N, there are ε > 0 and C > 0,
depending only on d, γ, λ, λ′, µ, µ′, C0, κ, CW , β, r, such that if fi ≥ 0 satisfies

(7) δ := ‖fi − f 0‖λ,µ,β ≤ ε,

then the unique solution of the nonlinear Vlasov equation

(8)
∂f

∂t
+v·∇xf+F [f ]·∇vf = 0, F [f ](t, x) = −

∫∫
∇W (x−y) f(t, y, w) dwdy,

defined for all times and such that f(0, · ) = fi, satisfies

(9)
∥∥ρ(t, · ) − ρ∞

∥∥
Cr(Td)

≤ C δ e−2πλ′|t|,

where ρ(t, x) =
∫

f(t, x, v) dv, ρ∞ =
∫∫

fi(x, v) dv dx. Futhermore, there are analytic
profiles f+∞(v), f−∞(v) such that

f(t, · )
t→±∞
−−−−→ f±∞ weakly

∫
f(t, x, · ) dx

t→±∞
−−−−→ f±∞ strongly (in Cr(Rd

v)),

these convergences being also O(δ e−2πλ′|t|).

This theorem, entirely constructive, is almost optimal, as the following comments
show.

Comments on the assumptions: The periodic boundary conditions of course are
debatable; in any case, the counterexamples of Glassey and Schaeffer [5] show that
some confinement mechanism — or at least a limitation on the spatial wavelength
— is mandatory. Condition (4) quantitatively expresses the analyticity of the profile
f 0, without which we could not hope for an exponential convergence. The inequality
(5) is a linear stability condition, roughly optimal, covering all physically interesting
cases: in particular the (attractive) Newton interaction for wavelengths shorter than
the Jeans unstability length; and the (repulsive) Coulomb interaction around radially
symmetric profiles f 0 in dimension d ≥ 3, for all wavelengths. On the other hand,
condition (6) shows up only in the nonlinear stability, and Coulomb and Newton
interactions fail just short of satisfying it. As for condition (7), its perturbative
nature is natural in view of theoretical speculations and numerical studies in the
subject.

Comments on the conclusions:
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(1) The large-time convergence is based on a reversible, purely deterministic
mechanism, without any Lyapunov functional neither variational interpreta-
tion. The asymptotic profiles f±∞ eventually keep the memory of the initial
datum and the interaction. This convergence “for no reason” was not really
expected, since the quasilinear theory of Landau damping [1, Vol. II, Section
9.1.2] predicts convergence only after taking average on statistical ensembles.

(2) This result can be interpreted in the spirit of the KAM theorem: for the
linearized Vlasov equation, convergence is forced by an infinite number of
conservation laws which make the model “completely integrable”; as soon
as one adds a nonlinear coupling, the conservation laws disappear but the
convergence remains.

(3) The other major surprise is the “critical” nature of the Coulomb or Newton
interaction, which can be seen only at the nonlinear level. A crude large-time
estimate bounds the nonlinear growth like O(ect2); but a finer analysis of the
nonlinear response of the equation, “all in echoes”, yields an expected growth
like O(ect1/γ

) (to be replaced, in the case of an analytic interaction, by the

exotic growth rate ec(log t)2). Thus the value γ = 1 in (6) is the critical value
for which the expected nonlinear growth is absorbed by the linear decay, at
best exponential.

(4) This also implies that the analytic regularity is critical in this large-time
problem for Coulomb/Newton interaction (γ = 1). This is of course is in
(very) sharp contrast with the Cauchy problem for the Vlasov–Poisson equa-
tion, which can be solved with basically no regularity.

(5) Given a stable equilibrium profile f 0, we see that an entire neighborhood —
in analytic topology — of f 0 is filled by homoclinic or (in general) heteroclinic
trajectories. Only infinite dimension allows this remarkable behavior of the
nonlinear Vlasov equation.

(6) The large time convergence of the distribution function holds only in the
weak sense; the norms of velocity derivatives grow quickly in large time,
which reflects a filamentation in phase space, and a transfer of energy (or
information) from low to high frequencies (“weak turbulence”).

(7) It is this transfer of information to small scales which allows to reconcile the
reversibility of the Vlasov–Poisson equation with the seemingly irreversible
large-time behavior. Let us note that the “dual” mechanism of transfer of
energy to large scales, also called radiation, was extensively studied in the
setting of infinite-dimensional Hamiltonian systems.
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(8) The fact that the limit profile keeps the memory of the interaction and initial
datum seems to be bad news for the statistical theory of the Vlasov equation
founded by Lynden-Bell [13] and developed by other authors. Such an ob-
jection had already been raised, without rigorous basis, by Isichenko [9].
However, our discovery of the critical nature of the analytic regularity, and
the fact that huge constants appear in the theorem — qualitatively larger
than those of KAM theory — provides plenty of reason to dismiss this objec-
tion to the statistical theory, at least in an appropriate regime. This seems
to be a good example where a physical debate can be solved only by a careful
mathematical analysis.

Much more comments, both from the mathematical and the physical sides, can
be found in [16].

3. Linear stability

The linear stability is the first step of our study; it only requires a limited technical
investment.

After linearization around a homogeneous equilibrium f 0, the Vlasov equation
becomes

(10)
∂h

∂t
+ v · ∇xh − (∇W ∗ ρ) · ∇vf

0 = 0, ρ =

∫
h dv.

It is well-known that this equation decouples into an infinite number of independent
equations governing the modes of ρ: for all k ∈ Z

d and t ≥ 0,

(11) ρ̂(t, k) −

∫ t

0

K0(t − τ, k) ρ̂(τ, k) dτ = h̃i(k, kt),

where hi is the initial datum, and K0 an integral kernel depending on f 0:

(12) K0(t, k) = −4π2 Ŵ (k) f̃ 0(kt) |k|2 t.

Then from classical results on Volterra equations we deduce that for all k 6= 0 the
decay of ρ̂(t, k) as t → ∞ is essentially controlled by the worst of two convergence
rates:

• the convergence rate of the source term in the right-hand side of (11), which
depends only on the regularity of the initial datum in the velocity variable;

• e−λt, where λ is the largest positive real number such that the Fourier–Laplace
transform (in the t variable) of K0 does not approach the value 1 in the strip
{0 ≤ ℜz ≤ λ} ⊂ C.
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The problem lies in finding sufficient conditions on f 0 to guarantee the strict
positivity of λ. Since Landau, this study has been traditionally performed thanks
to the Laplace transform inversion formula; however, with a view to the nonlinear
study, we prefer a more elementary and constructive approach, based on the plain
Fourier inversion formula.

With this method we establish the linear Landau damping, under conditions (4)
and (5), for any interaction W such that ∇W ∈ L1(Td), and any analytic initial
condition (without any size restriction in this linear context). We recover as par-
ticular cases all the results previously established on the linear Landau damping
[2, 4, 15, 17]; but we also cover for instance Newton interaction. Indeed, condition
(5) is satisfied as soon as any one of the following conditions is satisfied:

(a) ∀ k ∈ Z
d, ∀ z ∈ R, Ŵ (k) ≥ 0, z φ′

k(z) ≤ 0, where φk is the “marginal” of f 0

along the direction k, defined by

φk(z) =

∫

kz
|k|

+k⊥

f 0(w) dw;

(b) 4π2
(
max |Ŵ (k)|

)
(

sup
|σ|=1

∫ ∞

0

|f̃ 0(rσ)| r dr

)
< 1.

This second condition applies to the Newton interaction below the Jeans length.
We refer to [16, Section 3] for more details.

4. Nonlinear stability

To establish the nonlinear stability, we start by introducing analytic norms

which are “hybrid” (based on the size of derivatives in the velocity variable, and on
the size of Fourier coefficients in the position variable) and “gliding” (the norm will
change with time to take into account the transfer to small velocity scales). Five
indices provide the desired flexibility:

(13) ‖f‖
Z

λ,(µ,γ);p
τ

=
∑

k∈Zd

∑

n∈Nd

e2πµ|k| (1 + |k|)γ λn

n!

∥∥∥
(
∇v + 2iπτk

)n
f̂(k, v)

∥∥∥
Lp(dv)

.

(By default γ = 0.) A tedious injection theorem “à la Sobolev” compares these
norms to more traditional ones, such as the ‖f‖λ,µ,β norms appearing in (3).

The Z norms enjoy remarkable properties with respect to composition and prod-
uct. The parameter τ partly compensates for filamentation. Finally, the hybrid
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nature of these norms is well adapted to the geometry of the problem. If f depends
only on x, the norm (13) coincides with the algebra norm Fλτ+µ,γ defined by

(14) ‖f‖Fλτ+µ,γ =
∑

k∈Zd

|f̂(k)| e2π(λτ+µ)|k| (1 + |k|)γ.

(We also use the “homogeneous” version Ḟλτ+µ,γ where the mode k = 0 is removed.)
Then the Vlasov equation is solved by a Newton scheme, whose first step is the

solution of the linearized equation around f 0:

fn = f 0 + h1 + . . . + hn,

{
∂th

1 + v · ∇xh
1 + F [h1] · ∇vf

0 = 0

h1(0, · ) = fi − f 0

n ≥ 1,

{
∂th

n+1 + v · ∇xh
n+1 + F [fn] · ∇vh

n+1 + F [hn+1] · ∇vf
n = −F [hn] · ∇vh

n

hn+1(0, · ) = 0.

In a first step, we establish the short-time analytic regularity of hn(τ, · ) in the

norm Z
λ,(µ,γ);1
τ ; this step, in the spirit of a Cauchy–Kowalevskaya theorem, is per-

formed thanks to the identity

(15)
d

dt

+
∣∣∣∣
t=τ

‖f‖
Z

λ(t),µ(t);p
τ

≤ −
K

1 + τ
‖∇f‖

Z
λ(τ),µ(τ);p
τ

,

where λ(t) = λ − Kt, µ(t) = µ − Kt.

In a second step, we establish uniform in time estimates on each hn, now with a
partly Eulerian and partly Lagrangian method, integrating the equation along the
characteristics (Xn

τ,t, V
n
τ,t) created by the force F [fn]. (Here τ is the initial time, t

the current time, (x, v) the initial conditions, (Xn, V n) the current conditions.) The
smoothness of these characteristics is expressed by controls in hybrid norm on the
operators Ωn

t,τ (x, v) = (Xn
t,τ , V

n
t,τ )(x + v(t− τ), v), which compare the perturbed dy-

namics to the unperturbed one; these are informally called (finite-time) scattering

operators.
Then we propagate a number of estimates along the scheme; the most important

are (slightly simplifying)

(16) sup
τ≥0

∥∥∥∥
∫

Rd

hn
(
τ, · , v

)
dv

∥∥∥∥
Fλnτ+µn

≤ δn,
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(17) sup
t≥τ≥0

∥∥∥hn
(
τ, Ωn

t,τ

)∥∥∥
Z

λn(1+b),µn;1

τ− bt
1+b

≤ δn, b = b(t) =
B

1 + t
,

(18)
∥∥∥Ωn

t,τ − Id
∥∥∥
Z

λn(1+b),(µn,γ);∞

τ− bt
1+b

≤ C

(
n∑

k=1

δk e−2π(λk−λn+1)τ

2π(λk − λn+1)2

)
min{t − τ ; 1}.

Notice, in (16), the linear increase in the regularity of the spatial density, which
is simultaneous to the deterioration of regularity in the v variable. In (17), the
additional time-shift in the indices by the function b(t) will be crucial to absorb
error terms coming from the composition; the constant B itself is determined by the
previous small-time estimates. Finally, in (18), notice the uniform in t control, and
the improved estimates in the limit cases t → τ and τ → ∞; also this is important
for handling error terms. The constants λn and µn decrease at each stage of the
scheme, converging — not too fast — to positive limits λ∞, µ∞; at the same time,
the constants δn converge extremely fast to 0, which guarantees “by retroaction” the
uniformity of the constants in the right-hand side of (18).

The estimates (18) are obtained by repeated application of fixed point theorems
in analytic norms. Another crucial ingredient to go from stage n to stage n+1 is the
mechanism of regularity extortion, which we shall now describe in a simplified
version. Given two distribution functions f and f , depending on t, x, v, let us define

σ(t, x) =

∫ t

0

∫

Rd

(
F [f ] · ∇vf

)(
τ, x − v(t − τ), v

)
dv dτ.

This quantity can be interpreted as follows: if particles distributed according to
f exert a force on particles distributed according to f , then σ is the variation of
density

∫
f dv caused by the reaction of f on f . We show that if f has a high

gliding regularity, then the regularity of σ in large time is better than what would
be expected:

(19) ‖σ(t, · )‖Ḟλt+µ ≤

∫ t

0

K(t, τ)
∥∥F
[
f(τ, · )

]∥∥
Fλτ+µ,γ dτ,

where

K(t, τ) =

[
sup

0≤s≤t

(∥∥∇vf(s, · )
∥∥
Zλ,µ;1

s

1 + s

)]
(1+τ) sup

k 6=0, ℓ 6=0

e−2π(λ−λ)|k(t−τ)+ℓτ | e−2π(µ−µ)|ℓ|

1 + |k − ℓ|γ
.

The kernel K(t, τ) has integral O(t) as t → ∞, which may let us fear a violent
unstability; but as t becomes large it is also more and more concentrated on discrete
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times τ = kt/(k − ℓ); this is the effect of plasma echoes, discovered and experi-
mentally observed in the sixties [14]. The stabilizing role of the echo phenomenon,
related to the Landau damping, is uncovered in our study. The regularity extortion
mechanism is a twist on the usual qualitative interpretation of Landau damping as
a transfer of energy from forcing wave to particles.

Then we analyze the nonlinear response due to echoes. The assumption γ < 1
implies that this response is subexponential, so that it can be controlled by an
arbitrarily small loss of gliding regularity, at the price of a gigantic constant, which
later will be absorbed by the ultrafast convergence of the Newton scheme. In the
end, part of the gliding regularity of f has been converted into a large-time decay.

In practice, straight trajectories in (19) must be replaced by characteristics (this
reflects the fact that f also exerts a force on f), which is a source of considerable
technical difficulties. Among the tools used to overcome them, let us mention a
second mechanism of regularity extortion, acting in short time and close in spirit to
velocity-averaging lemmas; here is a simplified version of it:

(20) ‖σ(t, · )‖Ḟλt+µ ≤

∫ t

0

∥∥F
[
f(τ, · )

]∥∥
Fλ[τ−b(t−τ)]+µ,γ

∥∥∇f(τ, · )
∥∥
Z

λ(1+b),(µ,0);1
τ−bt/(1+b)

dτ.

We see in (20) that the regularity of σ is better than that of F [f ], with a gain that
degenerates as t → ∞ or τ → t. �

5. Limit case: Coulomb/Newton

When γ = 1, this strategy fails, and we do not know whether the conclusion of
Theorem 1 applies. However, we are still able to convert the bi-exponential conver-
gence of the Newton scheme (convergence like O(δan

)) into a result of damping on
very large times — exponentially large in the perturbation size — which is sufficient
to qualitatively explain the robustness of Landau damping in the nonlinear regime:

Theorem 2 (Landau damping, Coulomb/Newton interactions). If in the statement
of Theorem 1 the assumption (6) is relaxed by allowing γ = 1, the conclusion (9)
remains true, provided it is complemented with the restriction

|t| ≤ C A
1

δ(log δ)2 ,

where C > 0, A > 1 are constants depending only on d, λ, λ′, µ, µ′, C0, κ, CW , β, r.

And so it happens, by coincidence, that the treatment of the Newton potential
uses the full power of the Newton scheme.
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(1938), 291–318.

Clément Mouhot
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