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Abstract. We develop a simple energy method to prove the stability of finite difference schemes

for multidimensional hyperbolic initial boundary value problems. In particular we extend to several
space dimensions a crucial result by Goldberg and Tadmor. This allows us to give two conditions on
the discretized operator that ensure that stability estimates for zero initial data imply a semigroup
stability estimate for general initial data. We then apply this criterion to several numerical schemes
in two space dimensions.

1. Introduction

The aim of this article is to prove stability estimates for finite difference discretizations of hyper-
bolic initial boundary value problems. A general theory to derive such estimates has been developed
in [4] for one-dimensional problems and later extended in [7] to multidimensional problems. The
analysis for the discretized equations is similar to the theory in [5] for the continuous problem
(namely for hyperbolic systems of partial differential equations), and relies on the so-called normal
modes analysis. Due to the fact that the method uses a Laplace transform in time, the estimates in
[4, 5, 7] are restricted to zero initial data. A natural question is then to show that problems that are
stable for zero initial data are also stable for non-zero initial data. Making the space of “suitable”
initial data precise is part of the question.

For continuous problems, this question was solved in [8]. (We also refer to [1, chapter 4] for
a complete description of the results.) For discretized problems, the question was solved in [13]
where the author proves stability for non-zero initial data in one space dimension. The proof in [13]
relies on a crucial Lemma (Lemma 2.3 in [2]), that we shall refer to as Goldberg-Tadmor’s Lemma.
Goldberg-Tadmor’s Lemma shows that the Dirichlet boundary conditions yield stable problems for
discretized scalar equations and zero initial data. Consequently, it is not clear whether Goldberg-
Tadmor’s Lemma, and therefore the results of [13], extends to hyperbolic systems in several space
dimensions (because systems usually do not decouple into a collection of scalar equations). In this
article, we develop a simple energy method with which we recover Goldberg-Tadmor’s Lemma and
the stability results of [13] and that is flexible enough to handle discretized multidimensional systems.
Opposite to the original proof in [2], our new proof of Goldberg-Tadmor’s Lemma covers the case
of non-zero initial data in ℓ2. Once we have obtained a stability estimate for Dirichlet boundary
conditions and non-zero initial data, it is almost straightforward to show that discretizations that
are stable for zero initial data are also stable for non-zero initial data. Note that, although this is an
old problem, Theorem 3.1 below seems to be the first general stability result for discretized initial
boundary problems in several space dimensions.
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We first develop our approach on one-dimensional problems. The one-dimensional analysis is ex-
tended to multidimensional problems in Section 3 using a partial Fourier transform in the tangential
space variables. Then in Section 4, we give examples of discretizations to which our analysis applies.

Notation. In all this paper, we let Md,D(K) denote the set of d × D matrices with entries in
K = R or C, and we use the notation MD(K) when d = D. If M ∈ MD(C), sp(M) denotes the
spectrum of M , ρ(M) denotes the spectral radius of M , while M∗ denotes the conjugate transpose
of M . We let I denote the identity matrix, without mentioning the dimension. The norm of a vector
x ∈ CD is |x| := (x∗ x)1/2. Eventually, we let ℓ2 denote the set of square integrable sequences,
without mentioning the indices of the sequences (sequences may be valued in Cd for some integer
d).

The letter C denotes a constant that may vary from line to line or within the same line. The
dependence of the constants on the various parameters is made precise throughout the text.

2. One-dimensional problems

For one-dimensional problems, we introduce the following notation for norms on ℓ2(Z). Let
∆x > 0 be a space step. For all integers m1 ≤ m2, we set

‖u‖2
m1,m2

:= ∆x

m2∑

j=m1

|uj |2

to denote the ℓ2-norm on the interval [m1, m2] (m1 may equal −∞ and m2 may equal +∞). The
corresponding scalar product is denoted by (·, ·)m1,m2

.

2.1. Main result in one space dimension. We consider a hyperbolic initial boundary value
problem in one space dimension:





∂tu + A ∂xu = F (t, x) , (t, x) ∈ R+ × R+ ,

B u(t, 0) = g(t) , t ∈ R+ ,

u(0, x) = f(x) , x ∈ R+ ,

(1)

where A ∈ MD(R) is diagonalizable with real eigenvalues, and B ∈ MD+,D(R) with D+ the number
of positive eigenvalues of A (counted with their multiplicity). We assume that the boundary is
noncharacteristic, that is 0 6∈ sp(A). Problem (1) is well-posed in any suitable sense if and only if:

RD = Ker B ⊕ E+(A) ,

where E+(A) is the unstable eigenspace of A (associated with positive eigenvalues of A). In that
case, the solution u to (1) belongs to C (R+;L2(R+)) and its trace on {x = 0} is well-defined and
belongs to eγ t L2(R+) for all γ > 0. Moreover, for every parameter γ > 0, u satisfies the energy
estimate:

sup
t≥0

e−2 γ t ‖u(t, ·)‖2
L2(R+) + γ

∫ +∞

0

e−2 γ t ‖u(t, ·)‖2
L2(R+) dt +

∫ +∞

0

e−2 γ t |u(t, 0)|2 dt

≤ C

(
‖f‖2

L2(R+) +
1

γ

∫ +∞

0

e−2 γ t ‖F (t, ·)‖2
L2(R+) dt +

∫ +∞

0

e−2 γ t |g(t)|2 dt

)
, (2)

where the constant C is independent of γ, f, F, g. The estimate (2) can be localized on any finite
time interval [0, T ] because the solutions to (1) satisfy a causality principle (“future does not affect
the past”).

We now introduce the finite difference approximation of (1). Let ∆x,∆t > 0 denote the space and
time steps, where the ratio λ = ∆t/∆x is a fixed positive constant, and let p, q, r be some integers.
The solution u to (1) is approximated by a sequence (Un

j ) defined for n ∈ N, and j ∈ 1− r + N. For
j = 1 − r, . . . , 0, Un

j approximates the trace u(n ∆t, 0) on the boundary {x = 0}, and possibly the
trace of normal derivatives. The boundary meshes [j ∆x, (j + 1) ∆x[, j = 1− r, . . . , 0, shrink to {0}
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as ∆x tends to 0. Hence the “formal” limit problem as ∆x tends to 0 is set on the half-line R+. We
consider one-step finite difference approximations of (1) that read1:





Un+1
j = Q Un

j + ∆t Fn
j , j ≥ 1 , n ≥ 0 ,

Un+1
j = Bj,−1 Un+1

1 + Bj,0 Un
1 + gn+1

j , j = 1 − r, . . . , 0 , n ≥ 0 ,

U0
j = fj , j ≥ 1 − r ,

(3)

where the operators Q, Bj,−1, Bj,0 are given by:

Q :=

p∑

ℓ=−r

Aℓ T ℓ , Bj,σ :=

q∑

ℓ=0

Bℓ,j,σ T ℓ , T ℓ Um
k := Um

k+ℓ . (4)

In (4), all matrices Aℓ, Bℓ,j,σ belong to MD(R) and depend on λ, A,B but not on ∆t (or equivalently
∆x). We recall the following definition from [4]:

Definition 2.1 (Strong stability [4]). The finite difference approximation (3) is said to be strongly

stable if there exists a constant C such that for all γ > 0 and all ∆t ∈ ]0, 1], the solution (Un
j ) of

(3) with f = 0 satisfies the estimate:

γ

γ ∆t + 1

∑

n≥0

∆t e−2 γ n ∆t ‖Un‖2
1−r,+∞ +

∑

n≥0

∆t e−2 γ n ∆t
0∑

j=1−r

|Un
j |2

≤ C





γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞ +

∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 .

The estimate in Definition 2.1 is the discrete counterpart of the energy estimate (2) for the
“continuous” problem (1) in the case of zero initial data (and when one does not require to control
the L∞

t (L2
x) norm of the solution). We recall that strong stability in the sense of Definition 2.1 is

usually proved by performing a Laplace transform with respect to the time variable. The energy
estimate for the resolvent equation is then obtained by using symmetrizers whose construction relies
on the so-called uniform Kreiss-Lopatinskii condition (non-existence of unstable nor weakly unstable
normal modes). We refer to [4] for some results in this direction. In this paper, we shall consider
that the scheme (3) is strongly stable, and we wish to prove an energy estimate for (3) in the case
of non-zero initial data. In view of (2), the most obvious space of initial data for (3) is ℓ2. Let us
now introduce our main assumptions, and then state our result.

For ℓ = −r, . . . , p, and z ∈ C \ {0}, let us define the matrices:

Aℓ(z) := δℓ0 I − 1

z
Aℓ , (5)

where δℓ1ℓ2 is the Kronecker symbol. We make the following assumption2:

Assumption 2.1. The matrix Ap(z) is invertible for all z ∈ C with |z| ≥ 1.

Our second crucial assumption is the following:

Assumption 2.2. The operator Q satisfies ‖Q v‖−∞,+∞ ≤ ‖v‖−∞,+∞ for all v ∈ ℓ2.

Our main result is stated as follows:

Theorem 2.1. Let Assumptions 2.1 and 2.2 be satisfied, and assume that the scheme (3) is strongly

stable in the sense of Definition 2.1. Then there exists a constant C such that for all γ > 0 and all

1We do not focus here on the construction of such approximations and refer to [3] for some examples that enter
this framework, see also Section 4.

2Assumption 2.1 is similar to Assumption 5.5 in [4].
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∆t ∈ ]0, 1], the solution U to (3) satisfies the estimate:

sup
n≥0

e−2 γ n ∆t ‖Un‖2
1−r,+∞ +

γ

γ ∆t + 1

∑

n≥0

∆t e−2 γ n ∆t ‖Un‖2
1−r,+∞ +

∑

n≥0

∆t e−2 γ n ∆t
0∑

j=1−r

|Un
j |2

≤ C



‖f‖2

1−r,+∞ +
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞ +

∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 .

(6)

The method of proof is inspired from [13] with however some important modifications. More pre-
cisely, we shall introduce an auxiliary discretized problem where we modify the boundary operators
Bj,−1, Bj,0. The auxiliary problem is chosen in such a way that even for non-zero initial data, the
solution can be estimated by applying the energy method (in some sense, the auxiliary boundary
conditions are “strictly dissipative”). Our auxiliary problem is not the same as in [13]. As a matter
of fact, we shall show directly that the Dirichlet boundary conditions are strictly dissipative. As
announced in the introduction, this is an improved version of Goldberg-Tadmor’s Lemma. Our new
proof of Goldberg-Tadmor’s Lemma relies on the energy method and can therefore be extended to
multidimensional problems even if the equation is not scalar (D ≥ 2), see Section 3. Once we have
the estimate for the auxiliary boundary conditions, the end of the proof follows [13], see also the
arguments in [1, chapter 4] for the continuous problem.

2.2. A refined version of Goldberg-Tadmor’s Lemma. In this paragraph, we consider the
following auxiliary discretization where the (non-homogeneous) Dirichlet conditions are enforced at
the boundary: 




V n+1
j = Q V n

j + ∆t Fn
j , j ≥ 1 , n ≥ 0 ,

V n+1
j = gn+1

j , j = 1 − r, . . . , 0 , n ≥ 0 ,

V 0
j = fj , j ≥ 1 − r .

(7)

The aim of this paragraph is to prove the following:

Theorem 2.2. Let Assumptions 2.1 and 2.2 be satisfied. Then there exists a constant C such that

for all γ > 0 and all ∆t ∈ ]0, 1], the solution V to (7) satisfies the estimate:

sup
n≥0

e−2 γ n ∆t ‖V n‖2
1−r,+∞ +

γ

γ ∆t + 1

∑

n≥0

∆t e−2 γ n ∆t ‖V n‖2
1−r,+∞

+
∑

n≥0

∆t e−2 γ n ∆t

max(p,q+1)∑

j=1−r

|V n
j |2 ≤ C



‖f‖2

1−r,+∞ +
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞

+
∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 . (8)

In particular, the discretization (7) is strongly stable in the sense of Definition 2.1.

The key point in the proof of Theorem 2.2 is Assumption 2.2, which can be understood as a
symmetry assumption on the matrices Aℓ. We emphasize that Assumption 2.2 can be extended to
multidimensional systems, as we shall see in section 3, while the “scalar” assumption in [2] does not
extend to general multidimensional systems.

The proof of Theorem 2.2 is split in several steps. We first observe that the solution V to (7)
depends linearly on the source terms (f, g, F ). It is therefore sufficient to prove (8) in the case
F = 0 (no source term in the interior equation) and in the case (f, g) = 0 (zero initial data, and
homogeneous boundary conditions). It turns out that we use slightly different arguments for the
two cases. We begin with the case F = 0, and then treat the case (f, g) = 0.

We point out that in (8), we estimate the (weighted) ℓ2-norm in time of the trace (V n
j )n≥0, for

all j from 1 − r to max(p, q + 1). As a matter of fact, it would have been sufficient for the proof of
Theorem 2.1 to have this type of estimate up to j = q + 1. However, in the proof below, we shall
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first obtain an estimate up to j = p (see Corollary 2.1 below). This is the reason why we have stated
(8) in this way. We start the proof of Theorem 2.2 proper with a series of preliminary results:

Lemma 2.1. Let Assumptions 2.1 and 2.2 be satisfied. Then there exists a constant C such that

for all γ > 0 and all ∆t ∈ ]0, 1], the solution V to (7) with F = 0 satisfies the estimate:

e2 γ ∆t sup
n≥1

e−2 γ n ∆t ‖V n‖2
1,+∞ + γ

∑

n≥1

∆t e−2 γ n ∆t ‖V n‖2
1,+∞ +

∑

n≥0

∆t e−2 γ n ∆t

p∑

j=1−r

|V n
j |2

≤ C



‖f‖2

1−r,+∞ +
∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 . (9)

Proof of Lemma 2.1. We decompose the operator Q as:

Q := I + Q̃ .

Then Assumption 2.2 is equivalent to the inequality:

∀w ∈ ℓ2 , 2
(
w, Q̃ w

)
−∞,+∞

+ ‖Q̃ w‖2
−∞,+∞ ≤ 0 . (10)

We first use the relation V n+1
j = (I + Q̃) V n

j for j ≥ 1 (recall that F = 0), and derive:

‖V n+1‖2
1,+∞ − ‖V n‖2

1,+∞ = 2
(
V n, Q̃ V n

)
1,+∞

+ ‖Q̃ V n‖2
1,+∞ . (11)

For a fixed integer n, we introduce the sequence (Wj) such that Wj = V n
j for j ≥ 1− r and Wj = 0

for j ≤ −r. Due to the structure of the operator Q̃, see (4), we have Q̃ Wj = 0 if j ≤ −r − p, and

Q̃ Wj = Q̃ V n
j if j ≥ 1. Using (10), we thus get:

0 ≥ 2
(
W, Q̃ W

)
−∞,+∞

+ ‖Q̃ W‖2
−∞,+∞

= 2
(
V n, Q̃ W

)
1−r,0

+ 2
(
V n, Q̃ V n

)
1,+∞

+ ‖Q̃ W‖2
1−r−p,−r + ‖Q̃ W‖2

1−r,0 + ‖Q̃ V n‖2
1,+∞

= 2
(
V n, Q̃ V n

)
1,+∞

+ ‖Q̃ V n‖2
1,+∞ + ‖V n + Q̃ W‖2

1−r,0 + ‖Q̃ W‖2
1−r−p,−r − ‖V n‖2

1−r,0 . (12)

We insert (12) into (11) and obtain:

‖V n+1‖2
1,+∞ − ‖V n‖2

1,+∞ + ‖Q̃ W‖2
1−r−p,−r + ‖V n + Q̃ W‖2

1−r,0 ≤ ‖V n‖2
1−r,0 . (13)

At this point, two situations may occur depending on p. Let us first consider the case p ≥ 1.
Then, by Assumption 2.1, Ap is an invertible matrix. We have the following:

Lemma 2.2. Let p ≥ 1 and let Ap be invertible. Then there exists a constant c > 0 that does not

depend on ∆t nor on V n such that the following estimate holds:

‖Q̃ W‖2
1−r−p,−r + ‖V n + Q̃ W‖2

1−r,0 ≥ c ‖V n‖2
1−r,p .

Let us assume that Lemma 2.2 holds and go back to (13). We have:

‖V n+1‖2
1,+∞ − ‖V n‖2

1,+∞ + c∆x

p∑

j=1−r

|V n
j |2 ≤ ∆x

0∑

j=1−r

|V n
j |2 . (14)

The end of the proof consists in integrating (14) over N, see a similar calculation in the continous
case in [1, page 95]. Let γ > 0, and for the sake of clarity, let us introduce the following notation:

Vn := e−2 γ n ∆t ‖V n‖2
1,+∞ , Bn := e−2 γ n ∆t

p∑

j=1−r

|V n
j |2 , Gn := e−2 γ n ∆t

0∑

j=1−r

|V n
j |2 .

We multiply (14) by exp(−2 γ n ∆t):

e2 γ ∆t
Vn+1 − Vn +

c

λ
∆t Bn ≤ 1

λ
∆t Gn .
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Summing this inequality from 0 to N yields:

e2 γ ∆t
VN+1 +

e2 γ ∆t − 1

∆t

N∑

1

∆t Vn +
c

λ

N∑

0

∆t Bn ≤ V0 +
1

λ

N∑

0

∆t Gn ≤ V0 +
1

λ

∑

n≥0

∆t Gn .

Letting N tend to +∞, we have proved:

e2 γ ∆t sup
n≥1

Vn + γ
∑

n≥1

∆t Vn +
∑

n≥0

∆t Bn ≤ C


V0 + ∆xG0 +

∑

n≥1

∆t Gn


 , (15)

and the right-hand side of (15) is directly estimated by the right-hand side of (9), see the definition
above for Gn and use (7). The constant C in (15) is independent of γ and ∆t and we have therefore
completed the proof of (9) in the case p ≥ 1.

It remains to treat the case p = 0 for which Lemma 2.2 does not hold anymore. In this case, we
go back to (13) and simply ignore the nonnegative “boundary terms” on the left-hand side:

‖V n+1‖2
1,+∞ − ‖V n‖2

1,+∞ ≤ ‖V n‖2
1−r,0 .

Then we proceed as above (with the same notation) and derive the weighted-in-time estimate:

e2 γ ∆t sup
n≥1

Vn + γ
∑

n≥1

∆t Vn ≤ C


V0 + ∆xG0 +

∑

n≥1

∆t Gn


 .

In the case p = 0, the term:

∑

n≥0

∆t e−2 γ n ∆t

p∑

j=1−r

|V n
j |2 ,

in the left-hand side of (9) is directly estimated by the right-hand side of (9) so the proof of Lemma
2.1 is complete (provided that we prove Lemma 2.2, which is done below). �

Proof of Lemma 2.2. Proving Lemma 2.2 is equivalent to proving that the following quadratic form
(that is independent on n):

(V n
1−r, . . . , V

n
p ) 7−→

−r∑

j=1−r−p

|Q̃ Wj |2 +

0∑

j=1−r

|V n
j + Q̃ Wj |2 , (16)

is positive definite. (Recall that W denotes the extension of V n by zero for j ≤ −r.) The quadratic
form (16) is clearly nonnegative. Let us therefore consider some vector (V n

1−r, . . . , V
n
p ) that satisfies:

∀ j = 1 − r − p, . . . ,−r, Q̃ Wj = 0 , ∀ j = 1 − r, . . . , 0, V n
j + Q̃ Wj = 0 . (17)

We first show by induction on j that V n
j = 0 for all j = 1− r, . . . , p− r. Let us recall that p ≥ 1, so

we can write Q̃ = Q − I under the form:

Q̃ = Ap T p +

p−1∑

ℓ=−r

Ãℓ T ℓ .

In particular, we have Q̃ W1−r−p = Ap V n
1−r, so V n

1−r = 0 because Ap is invertible. For j = 1 − r −
p, . . . ,−r, Q̃ Wj equals Ap V n

j+p plus a linear combination of the V n
ℓ , ℓ < j + p. Since the first term

V n
1−r is zero, we can proceed by induction and we thus get V n

1−r = · · · = V n
p−r = 0.

We now use the second set of equalities in (17). In particular, we have V n
1−r+Q̃ W1−r = Q̃ W1−r =

Ap V n
1−r+p. We therefore get V n

1−r+p = 0, and the rest of the proof follows from another induction
argument. We have therefore shown that (17) implies (V n

1−r, . . . , V
n
p ) = 0, so the quadratic form

(16) is positive definite. The proof of Lemma 2.2 is complete. �

We next turn to the case (f, g) = 0 and the interior source F is arbitrary. We have:
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Lemma 2.3. Let Assumptions 2.1 and 2.2 be satisfied. Then there exists a constant C such that

for all γ > 0 and all ∆t ∈ ]0, 1], the solution (V n
j ) to (7) with (f, g) = 0 satisfies the estimate:

sup
n≥1

e−2 γ n ∆t ‖V n‖2
1,+∞ +

γ

γ ∆t + 1

∑

n≥1

∆t e−2 γ n ∆t ‖V n‖2
1,+∞

+ e−2 γ ∆t
∑

n≥1

∆t e−2 γ n ∆t

p∑

j=1

|V n
j |2 ≤ C

γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞ . (18)

Proof of Lemma 2.3. Following the proof of Lemma 2.1, we decompose the operator Q as Q = I+Q̃.
Then we use the relation V n+1

j = Q V n
j + ∆t Fn

j for j ≥ 1 and derive:

‖V n+1‖2
1,+∞ − ‖V n‖2

1,+∞

= 2
(
V n, Q̃ V n

)
1,+∞

+ ‖Q̃ V n‖2
1,+∞ + 2

(
Q V n, Fn

)
1,+∞

+ ∆t2 ‖Fn‖2
1,+∞ .

Let us first assume that p is positive, so that Lemma 2.2 holds. Proceeding as in the proof of
Lemma 2.1, we obtain the inequality (recall that here we have homogeneous boundary conditions):

‖V n+1‖2
1,+∞ − ‖V n‖2

1,+∞ + c∆x

p∑

j=1

|V n
j |2 ≤ 2 ∆t ‖V n‖1,+∞ ‖Fn‖1,+∞ + ∆t2 ‖Fn‖2

1,+∞ . (19)

For the sake of clarity, we now introduce the notation:

Vn := e−2 γ n ∆t ‖V n‖2
1,+∞ , Bn := e−2 γ n ∆t

p∑

j=1

|V n
j |2 , Fn := e−2 γ (n+1) ∆t ‖Fn‖2

1,+∞ .

We multiply (19) by exp(−2 γ (n + 1) ∆t) and get:

Vn+1 − e−2 γ ∆t
Vn +

c

λ
e−2 γ ∆t ∆t Bn ≤ 2 ∆t e−γ ∆t

F
1/2
n V

1/2
n + ∆t2 Fn .

Summing this inequality from 0 to N and recalling that the initial data is zero, we obtain:

VN+1 +
1 − e−2 γ ∆t

∆t

N∑

1

∆t Vn +
c

λ
e−2 γ ∆t

N∑

0

∆t Bn ≤ ∆t

N∑

0

∆t Fn + C

N∑

0

√
∆t Fn

√
∆t Vn .

We apply Young’s inequality for the last term on the right-hand side and we end up with:

VN+1 +
1 − e−2 γ ∆t

2 ∆t

N∑

0

∆t Vn +
c

λ
e−2 γ ∆t

N∑

0

∆t Bn ≤ C
∆t

1 − e−2 γ ∆t

N∑

0

∆t Fn .

Letting N tend to +∞, we have proved (recall that the initial data is zero):

sup
n≥1

Vn +
γ

γ ∆t + 1

∑

n≥1

∆t Vn + e−2 γ ∆t
∑

n≥1

∆t Bn ≤ C
γ ∆t + 1

γ

∑

n≥0

∆t Fn .

The constant C is independent of γ and ∆t.
The case p = 0 is dealt with in an entirely similar way. In this case, the term:

∑

n≥1

∆t e−2 γ n ∆t

p∑

j=1

|V n
j |2

that appears on the left-hand side of (18) vanishes. The proof of Lemma 2.3 is thus complete. �

If we compare Lemma 2.1 to Lemma 2.3, we observe that in (18) the estimate for the trace
(V n

j )n≥0, j = 1, . . . , p, involves a factor exp(−2 γ ∆t) that deteriorates the estimate when γ ∆t is
large. We are going to derive an additional estimate that will enable us to get rid of this factor.
This is done in:
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Lemma 2.4. Let Assumptions 2.1 and 2.2 be satisfied. Then there exists a constant C such that

for all γ > 0 and all ∆t ∈ ]0, 1] verifying γ ∆t ≥ 1, the solution (V n
j ) to (7) with (f, g) = 0 satisfies

the estimate:

∑

n≥1

∆t e−2 γ n ∆t

p∑

j=1

|V n
j |2 ≤ C

γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞ . (20)

Proof of Lemma 2.4. Let j ∈ {1, . . . , p}. We use the equation V n+1
j = Q V n

j + ∆t Fn
j , and derive:

|V n+1
j |2 ≤ 2 |Q V n

j |2 + 2 ∆t2 |Fn
j |2 ≤ C

(
1

∆t
‖V n‖2

1,+∞ + ∆t ‖Fn‖2
1,+∞

)
.

We multiply this inequality by exp(−2 γ (n + 1) ∆t) and sum with respect to n ≥ 0:

∑

n≥1

∆t e−2 γ n ∆t |V n
j |2

≤ C


e−2 γ ∆t

∆t

∑

n≥1

∆t e−2 γ n ∆t ‖V n‖2
1,+∞ + ∆t

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞


 .

We now use Lemma 2.3 to estimate the first term on the right-hand side of the inequality. We
obtain:

∑

n≥1

∆t e−2 γ n ∆t |V n
j |2 ≤ C

(
e−2 γ ∆t γ ∆t + 1

γ ∆t
+ 1

)
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞ ,

and the result follows. �

The proof of Lemma 2.4 is surprisingly simple, but unfortunately it does cover the small values
of γ ∆t. If we collect Lemma 2.1, Lemma 2.3 and Lemma 2.4, we obtain:

Corollary 2.1. Let Assumptions 2.1 and 2.2 be satisfied. Then there exists a constant C such that

for all γ > 0 and all ∆t ∈ ]0, 1], the solution V to (7) satisfies the estimate:

sup
n≥0

e−2 γ n ∆t ‖V n‖2
1−r,+∞ +

γ

γ ∆t + 1

∑

n≥0

∆t e−2 γ n ∆t ‖V n‖2
1−r,+∞ +

∑

n≥0

∆t e−2 γ n ∆t

p∑

j=1−r

|V n
j |2

≤ C



‖f‖2

1−r,+∞ +
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞ +

∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 .

(21)

Proof of Corollary 2.1. First of all, Lemma 2.1 shows that (21) holds when the interior source term
F vanishes. Indeed, (9) implies the weaker inequality:

sup
n≥1

e−2 γ n ∆t ‖V n‖2
1,+∞ +

γ

γ ∆t + 1

∑

n≥1

∆t e−2 γ n ∆t ‖V n‖2
1,+∞ +

∑

n≥0

∆t e−2 γ n ∆t

p∑

j=1−r

|V n
j |2

≤ C



‖f‖2

1−r,+∞ +
∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 . (22)

To obtain (21) in the case F = 0, it remains to argue that one may replace supn≥1 e−2 γ n ∆t ‖V n‖2
1,+∞

in (22) by supn≥1 e−2 γ n ∆t ‖V n‖2
1−r,+∞, and add the term

γ

γ∆t + 1

∑

n≥1

∆te−2γn∆t‖V n‖2
1−r,0 =

1

λ

γ∆t

γ∆t + 1

∑

n≥1

∆t e−2γn∆t
0∑

j=1−r

|V n
j |2
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to the left handside. To this aim, it is enough to note that

‖V n‖2
1−r,0 =

0∑

j=1−r

∆x |V n
j |2 = λ ∆t

0∑

j=1−r

|gn
j |2,

which precisely appears in the right handside of (22). Changing C accordingly proves the claim.
When the initial data and the boundary source term vanish, the estimate (21) is obtained by

combining Lemma 2.3 (when γ ∆t ∈ ]0, 1]) and Lemma 2.4 (when γ ∆t ≥ 1). We need not recover
the boundary terms in the supremum as above since these boundary terms vanish here. �

If we compare the result of Corollary 2.1 with [13, Theorem 3.2], we get a better information when
p is greater than 2, since we get additional trace estimates. Another advantage of our approach is
that in [13], the author uses Goldberg-Tadmor’s Lemma after introducing his auxiliary boundary
operator. Hence, in some sense he needs two auxiliary problems. Here we shall only deal with the
original discretization (3) and the auxiliary discretization (7).

Corollary 2.1 gives the result of Theorem 2.2 when p > q. For q ≥ p, we need some additional
trace estimates. These estimates can be obtained by adapting the method described in [13, page
85]. As a matter of fact, we use simpler arguments than in [13], which are only based on the energy
method. In particular, we nowhere refer to the results of [4].

End of the proof of Theorem 2.2. From now on, we consider the case q ≥ p since for q < p, Corollary
2.1 gives the result of Theorem 2.2. Once again, the proof of (9) is slightly different according to
the value of p. Let us first assume p ≥ 1. As in [13], we define the sequence Wn

j := V n
j+1 for n ≥ 0

and j ≥ 1 − r. Then (Wn
j ) solves the system:





Wn+1
j = Q Wn

j + ∆t Fn
j+1 , j ≥ 1 , n ≥ 0 ,

Wn+1
j = gn+1

j+1 , j = 1 − r, . . . ,−1 , n ≥ 0 ,

Wn+1
0 = V n+1

1 , n ≥ 0 ,

W 0
j = fj+1 , j ≥ 1 − r .

We can apply Corollary 2.1 to W and obtain:

∑

n≥0

∆t e−2 γ n ∆t |Wn
p |2 ≤ C



‖f‖2

2−r,+∞ +
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
2,+∞

+
∑

n≥1

∆t e−2 γ n ∆t
0∑

j=2−r

|gn
j |2 +

∑

n≥1

∆t e−2 γ n ∆t |V n
1 |2


 .

We use Corollary 2.1 again to estimate the last term on the right-hand (this is possible because
p ≥ 1), and we get:

∑

n≥0

∆t e−2 γ n ∆t |V n
p+1|2 ≤ C



‖f‖2

1−r,+∞ +
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞

+
∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 .
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We have therefore derived a trace estimate for (V n
p+1)n≥0. A straightforward induction argument

gives:

∑

n≥0

∆t e−2 γ n ∆t

q+1∑

j=p+1

|V n
j |2 ≤ C



‖f‖2

1−r,+∞ +
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞

+
∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 . (23)

Combining (21) and (23), we obtain (9) for the case p ≥ 1.
We now consider the case p = 0, for which Corollary 2.1 does not give any trace estimate of

(V n
j )n≥0 with j ≥ 1. Hence, we can not use the shift argument of [13] as above. Using Assump-

tion 2.1, we know that the spectral radius of A0 is strictly less than 1. Consequently, there exists a
positive definite symmetric matrix H and there exists a positive number ε0 such that if we consider
the new Euclidean norm on RD:

∀X ∈ RD , |X|H :=
√

〈X;H X〉 ,

then we have:

∀X ∈ RD , |A0 X|H ≤
√

1 − 2 ε0 |X|H .

We start from the relation:

V n+1
1 = A0 V n

1 +

−1∑

ℓ=−r

Aℓ V n
1+ℓ + ∆t Fn

1 = A0 V n
1 +

0∑

j=1−r

Aj−1 gn
j + ∆t Fn

1

︸ ︷︷ ︸
=:Xn

,

where we use the notation g0
j := fj for j = 1 − r, . . . , 0. Then we derive:

|V n+1
1 |2H = |A0 V n

1 |2H + 2 〈A0 V n
1 ;H Xn〉 + |Xn|2H

≤ (1 − 2 ε0) |V n
1 |2H + 2 〈A0 V n

1 ;H Xn〉 + |Xn|2H ≤ (1 − ε0) |V n
1 |2H + (1 + ε−1

0 ) |Xn|2H .

Using the definition of Xn, the latter inequality gives:

|V n+1
1 |2H − |V n

1 |2H + ε0 |V n
1 |2H ≤ C


∆t ‖Fn‖2

1,+∞ +

0∑

j=1−r

|gn
j |2

 .

Using the same summation process as earlier, we obtain:
{

(1 − e−2 γ ∆t) + ε0 e−2 γ ∆t
} ∑

n≥0

∆t e−2 γ n ∆t |V n
1 |2H

≤ C



‖f‖2

1−r,+∞ +
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞ +

∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 .

The norm | · |H and the standard Euclidean norm are equivalent, so we get:

∑

n≥0

∆t e−2 γ n ∆t |V n
1 |2

≤ C



‖f‖2

1−r,+∞ +
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞ +

∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 ,

(24)

with a constant C that does not depend on γ nor on ∆t. The proof of (9) follows from an induction
argument where we apply the above method to recover the estimate for the trace (V n

j )n≥0, j =
2, . . . , q + 1. The proof of Theorem 2.2 is now complete. �
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2.3. Proof of Theorem 2.1. We decompose the solution U to (3) as U = V +W , where V satisfies:




V n+1
j = Q V n

j + ∆t Fn
j , j ≥ 1 , n ≥ 0 ,

V n+1
j = gn+1

j , j = 1 − r, . . . , 0 , n ≥ 0 ,

V 0
j = fj , j ≥ 1 − r ,

(25)

and W satisfies:



Wn+1
j = Q Wn

j , j ≥ 1 , n ≥ 0 ,

Wn+1
j = Bj,−1 Wn+1

1 + Bj,0 Wn
1 + g̃n+1

j , j = 1 − r, . . . , 0 , n ≥ 0 ,

W 0
j = 0 , j ≥ 1 − r .

(26)

The source term g̃ in (26) is defined by:

∀ j = 1 − r, . . . , 0 , ∀n ≥ 1 , g̃n
j := Bj,−1 V n

1 + Bj,0 V n−1
1 . (27)

The estimate of V is given by Theorem 2.2. Moreover, the discretization (3) is strongly stable in
the sense of Definition 2.1, so W satisfies:

γ

γ ∆t + 1

∑

n≥0

∆t e−2 γ n ∆t ‖Wn‖2
1−r,+∞ +

∑

n≥0

∆t e−2 γ n ∆t
0∑

j=1−r

|Wn
j |2

≤ C
∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|g̃n
j |2 .

Here, we use the fact that the initial data for (26) is zero. The estimate of g̃n
j is straightforward

using the definition (27) and (9). In the end, we obtain:

γ

γ ∆t + 1

∑

n≥0

∆t e−2 γ n ∆t ‖Wn‖2
1−r,+∞ +

∑

n≥0

∆t e−2 γ n ∆t
0∑

j=1−r

|Wn
j |2

≤ C



‖f‖2

1−r,+∞ +
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞ +

∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 .

(28)

If we combine the estimate (28) for W and the estimate (9) for V , we see that the final task in
the proof of Theorem 2.1 is to control the ℓ∞n (ℓ2j ) norm of W . We recall the following result that is
the analogue of [13, Lemma 3.1]:

Lemma 2.5. Let Assumptions 2.1 and 2.2 be satisfied, and assume that the discretization (3) is

strongly stable. Then there exists a constant C that does not depend on the data g̃ such that for all

γ > 0 and all ∆t ∈ ]0, 1], the solution W to (26) satisfies:

∑

n≥0

∆t e−2 γ n ∆t

q+1∑

j=1

|Wn
j |2 ≤ C

∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|g̃n
j |2 .

We give a proof of Lemma 2.5 in Appendix A. As a matter of fact, Lemma 2.5 was stated without
a proof in [13], although the result does not appear exactly in this form in [4]. We find it useful to
give a complete and detailed proof here. Using Lemma 2.5, let us rewrite (26) as:





Wn+1
j = Q Wn

j , j ≥ 1 , n ≥ 0 ,

Wn+1
j = Gn+1

j , j = 1 − r, . . . , 0 , n ≥ 0 ,

W 0
j = 0 , j ≥ 1 − r ,

(29)

with an obvious definition for the source term G. We apply Theorem 2.2 to (29) and obtain:

sup
n≥0

e−2 γ n ∆t ‖Wn‖2
1−r,+∞ ≤ C

∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|Gn
j |2 .
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We now combine Lemma 2.5 and our previous estimate of g̃ (see the argument above to get (28)),
to derive:

∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|Gn
j |2

≤ C



‖f‖2

1−r,+∞ +
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖Fn‖2
1,+∞ +

∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 .

We thus get the expected estimate for the ℓ∞n (ℓ2j ) norm of W , and the proof of Theorem 2.1 is
complete.

3. Multidimensional problems

For multidimensional problems, we need further notation for norms on ℓ2(Zd). Let ∆xi > 0 for
i = 1, . . . , d be d space steps. For all integers m1 ≤ m2, we set:

|||u|||2m1,m2
:= ∆x1

m2∑

j1=m1

(
d∏

k=2

∆xk

)
d∑

i=2

∑

ji∈Z

|uj1,...,jd
|2 ,

to denote the ℓ2-norm on the set [m1, m2] × Zd−1 (m1 may equal −∞ and m2 may equal +∞).
We shall also make use of the ℓ2(Zd−1)-norm that we denote by ‖ · ‖: for all v ∈ ℓ2(Zd−1),

‖v‖2 :=

(
d∏

k=2

∆xk

)
d∑

i=2

∑

ji∈Z

|vj2,...,jd
|2 .

3.1. Main result in several space dimensions. We consider the hyperbolic initial boundary
value problem corresponding to (1) in several space dimensions d > 1, that is:





∂tu +

d∑

i=1

Ai ∂xi
u = F (t, x) , (t, x) ∈ R+ × Rd

+ ,

B u(t, (0, x′)) = g(t, x′) , t ∈ R+, x′ ∈ Rd−1,

u(0, x) = f(x) , x ∈ Rd
+ ,

(30)

where Rd
+ := R+ × Rd−1, the matrices Ai ∈ MD(R) are such that the symbol Rd ∋ ξ 7→ A(ξ) :=∑d

i=1 ξiAi is uniformly diagonalizable (see [1, Theorem 1.3]) in R, and B ∈ MD+,D(R) with D+

the number of positive eigenvalues of A1. We assume that the boundary is noncharacteristic, that
is 0 6∈ sp(A1). Problem (30) is strongly well-posed in L2(Rd

+) if and only if the matrices {Ai} and B
satisfy the so-called uniform Kreiss-Lopatinskii condition. In that case, the solution u to (30) belongs
to C (R+;L2(Rd

+)) and its trace on {x1 = 0} is well-defined and belongs to eγ t L2(R+;L2(Rd−1)) for
all γ > 0. Moreover, for all γ > 0, u satisfies the energy estimate:

sup
t≥0

e−2 γ t ‖u(t, ·)‖2
L2(Rd

+
) + γ

∫ +∞

0

e−2 γ t ‖u(t, ·)‖2
L2(Rd

+
) dt +

∫ +∞

0

e−2 γ t ‖u(t, (0, ·))‖2
L2(Rd−1) dt

≤ C

(
‖f‖2

L2(Rd

+
) +

1

γ

∫ +∞

0

e−2 γ t ‖F (t, ·)‖2
L2(Rd

+
) dt +

∫ +∞

0

e−2 γ t ‖g(t, ·)‖2
L2(Rd−1) dt

)
, (31)

where the constant C is independent of γ, f, F, g.
As for the one-dimensional case, we introduce the finite difference approximation of (30). We

denote by ∆x := {∆xi}i=1,...,d and ∆t the space and time steps related by the fixed ratios λi =
∆t/∆xi. For all j ∈ Zd, we set j = (j1, j

′) with j′ = (j2, . . . , jd). We let p, q, r ∈ Nd be some
multi-integers, and define p1, q1, r1, p′, q′, r′ according to the above notation. The solution u to (30)
is approximated by a sequence (Un

j ) = (Un
j1,j′) for n ∈ N, j1 ∈ 1 − r1 + N, and j′ ∈ Zd−1. For

j1 = 1− r1, . . . , 0, Un
j1,· approximates the trace u(n∆t, 0, ·) on the boundary {x1 = 0}, and possibly
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the trace of normal derivatives. We consider one-step finite difference approximations of (30) that
read:





Un+1
j1,j′ = Q Un

j1,j′ + ∆t Fn
j1,j′ , j1 ≥ 1 , j′ ∈ Zd−1 , n ≥ 0 ,

Un+1
j1,j′ = Bj1,−1 Un+1

1,j′ + Bj1,0 Un
1,j′ + gn+1

j1,j′ , j1 = 1 − r1, . . . , 0 , j′ ∈ Zd−1 , n ≥ 0 ,

U0
j1,j′ = fj1,j′ , j1 ≥ 1 − r1 , j′ ∈ Zd−1 ,

(32)

where the operators Q, Bj1,−1, Bj1,0 are given by:

Q :=

p1∑

ℓ1=−r1

( p′∑

ℓ′=−r′

Aℓ1,ℓ′ T ′ℓ
′
)

T ℓ1 ,

Bj1,σ :=

q1∑

ℓ1=0

( q′∑

ℓ′=−q′

Bℓ1,ℓ′,j1,σ T ′ℓ
′
)

T ℓ1 ,

T ℓ1 Um
k1,k′ := Um

k1+ℓ1,k′ ,

T ′ℓ
′

Um
k1,k′ := Um

k1,k′+ℓ′ .

(33)

In (33), all matrices Aℓ, Bℓ,j1,σ belong to MD(R) and depend on {λi, Ai}i=1,...,d, B but not on ∆t (or
equivalently not on ∆x). For multidimensional problems, the notion of strong stability now reads:

Definition 3.1 (Strong stability [7]). The finite difference approximation (32) is said to be strongly

stable if there exists a constant C such that for all γ > 0 and all ∆t ∈ ]0, 1], the solution (Un
j ) of

(3) with f = 0 satisfies the estimate:

γ

γ ∆t + 1

∑

n≥0

∆t e−2 γ n ∆t |||Un|||21−r1,+∞ +
∑

n≥0

∆t e−2 γ n ∆t
0∑

j1=1−r1

‖Un
j1,·‖2

≤ C





γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t |||Fn|||21,+∞ +
∑

n≥1

∆t e−2 γ n ∆t
0∑

j1=1−r1

‖gn
j1,·‖2



 .

We are in position to introduce the hypotheses corresponding to Assumptions 2.1 and 2.2 in the
multidimensional case. For ℓ1 = −r1, . . . , p1, and z ∈ C \ {0}, let us define the linear mappings:

Aℓ1(z) : ℓ2(Zd−1) → ℓ2(Zd−1)

w 7→ δℓ10 w − 1

z

p′∑

ℓ′=−r′

Aℓ1,ℓ′T
′ℓ

′

w .
(34)

We make the following first assumption:

Assumption 3.1. The mapping Ap1
(z) is coercive on ℓ2(Zd−1) for all z ∈ C with |z| ≥ 1. More

precisely, there exists a constant c > 0 such that for all z ∈ C with |z| ≥ 1 and for all w ∈ ℓ2(Zd−1),
we have:

‖Ap1
(z)w‖ ≥ c

|z|ν ‖w‖ , ν :=

{
1 if p1 > 0,

0 otherwise.

Remark 3.1. If p1 = 0, then Assumption 3.1 amounts to assuming that A0(z) is an isomorphism

on ℓ2(Zd−1) for all |z| ≥ 1. For p1 > 0, Assumption 3.1 is slightly weaker than assuming that Ap1
(z)

is an isomorphism since the fulfillment of Assumption 3.1 does not necessarily imply the surjectivity

of Ap1
(z) on ℓ2(Zd−1).

Our second assumption is unchanged:

Assumption 3.2. The operator Q satisfies |||Q v|||−∞,+∞ ≤ |||v|||−∞,+∞ for all v ∈ ℓ2(Zd).

Our main stability result corresponding to Theorem 2.1 then reads:
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Theorem 3.1. Let Assumptions 3.1 and 3.2 be satisfied, and assume that the scheme (32) is strongly

stable in the sense of Definition 3.1. Then there exists a constant C such that for all γ > 0 and all

∆t ∈ ]0, 1], the solution U to (32) satisfies the estimate:

sup
n≥0

e−2 γ n ∆t |||Un|||21−r1,+∞ +
γ

γ ∆t + 1

∑

n≥0

∆t e−2 γ n ∆t |||Un|||21−r1,+∞

+
∑

n≥0

∆t e−2 γ n ∆t
0∑

j1=1−r1

‖Un
j1,·‖2 ≤ C



|||f |||21−r1,+∞ +

γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t |||Fn|||21,+∞

+
∑

n≥1

∆t e−2 γ n ∆t
0∑

j1=1−r1

‖gn
j1,·‖2



 .

Our proof of Theorem 3.1 relies on the application of the one-dimensional analysis. In particular,
we shall see below why Assumptions 3.1 and 3.2 are the natural extensions of Assumptions 2.1 and
2.2 in several space dimensions.

Proof of Theorem 3.1. Let us start from the scheme (32) that defines the sequence (Un
j ). For each

pair (j1, n) with j1 ≥ 1 − r1 and n ≥ 0, we define the piecewise constant function V n
j1

(x′) on Rd−1

such that V n
j1

(x′) equals Un
j1,j′ on the mesh element with index j′. In a similar way, we define the

functions Fn
j1

, gn
j1

, fj1 . Applying Fourier transform with respect to the tangential variables x′ in (32),
we obtain:





V̂ n+1
j1

(ξ′) = Q(θ′) V̂ n
j1

(ξ′) + ∆t F̂n
j1

(ξ′) , j1 ≥ 1 , n ≥ 0 ,

V̂ n+1
j1

(ξ′) = Bj1,−1(θ
′) V̂ n+1

1 (ξ′) + Bj1,0(θ
′) V̂ n

1 (ξ′) + ĝn+1
j1

(ξ′) , j1 = 1 − r1, . . . , 0 , n ≥ 0 ,

V̂ 0
j1

(ξ′) = f̂j1(ξ
′) , j1 ≥ 1 − r1 ,

(35)
where ξ′ = (ξ2, . . . , ξd) denotes the frequency variables, θ′ is a short notation for (ξ2 ∆x2, . . . , ξd ∆xd),
and the operators Q(θ′), Bj1,−1(θ

′), Bj1,0(θ
′) are defined by:

Q(θ′) :=

p1∑

ℓ1=−r1

( p′∑

ℓ′=−r′

Aℓ1,ℓ′ ei ℓ′·θ′

)
T ℓ1 ,

Bj1,σ(θ′) :=

q1∑

ℓ1=0

( q′∑

ℓ′=−q′

Bℓ1,ℓ′,j1,σ ei ℓ′·θ′

)
T ℓ1 .

We are reduced to a collection of one-dimensional problems parametrized by the frequencies ξ′. The
end of the proof is based on the following observation:

Lemma 3.1. Let Assumptions 3.1 and 3.2 be satisfied, and assume that the scheme (32) is strongly

stable in the sense of Definition 3.1. Then for all ξ′ ∈ Rd−1, the scheme (35) satisfies Assumptions

2.1 and 2.2, and is strongly stable in the sense of Definition 2.1. Moreover, the estimate of Theorem

2.1 holds with a constant C that is independent of ξ′.

The proof of Lemma 3.1 is performed below. With the help of Lemma 3.1, let us now complete
the proof of Theorem 3.1. We can apply Theorem 2.1 to the scheme (35) with a constant C that is
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independent of ξ′. We thus obtain:

sup
n≥0

e−2 γ n ∆t ‖V̂ n(ξ′)‖2
1−r1,+∞ +

γ

γ ∆t + 1

∑

n≥0

∆t e−2 γ n ∆t ‖V̂ n(ξ′)‖2
1−r1,+∞

+
∑

n≥0

∆t e−2 γ n ∆t
0∑

j1=1−r1

|V̂ n
j1

(ξ′)|2 ≤ C



‖f̂(ξ′)‖2

1−r,+∞ +
∑

n≥1

∆t e−2 γ n ∆t
0∑

j1=1−r1

|ĝn
j1

(ξ′)|2

+
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t ‖F̂n(ξ′)‖2
1,+∞



 . (36)

Fubini’s and Plancherel’s Theorems yield

sup
n≥0

e−2 γ n ∆t |||Un|||21−r1,+∞ = sup
n≥0

e−2 γ n ∆t

∫

Rd−1

‖V n(x′)‖2
1−r1,+∞ dx′

=
1

(2 π)d−1
sup
n≥0

e−2 γ n ∆t

∫

Rd−1

‖V̂ n(ξ′)‖2
1−r1,+∞ dξ′

≤ 1

(2 π)d−1

∫

Rd−1

sup
n≥0

e−2 γ n ∆t ‖V̂ n(ξ′)‖2
1−r1,+∞ dξ′ ,

after switching the order of the supremum and of the integral. We then integrate (36) with respect
to ξ′ ∈ Rd−1, use Fubini’s and Plancherel’s Theorem. Combined with the latter inequality, this
proves Theorem 3.1. (Observe that it is crucial here that the right handside of (6) only contains
ℓ2 type norms so that we may apply Plancherel’s Theorem, while the ℓ∞-norm only appears on the
left handside of (6).) The proof of Theorem 3.1 is therefore complete provided we prove Lemma 3.1,
which is done below. �

Proof of Lemma 3.1. Let us first show that Assumption 2.2 is satisfied. We know that the norm
of Q as an operator on ℓ2(Zd) is not greater than 1. Using Plancherel’s Theorem, this property

is equivalent to the fact that the norm of the symbol Q̂ of Q is not greater than 1. Decomposing

frequencies θ ∈ Rd as θ = (θ1, θ
′), the symbol Q̂ is given by:

Q̂(θ) =

p1∑

ℓ1=−r1

( p′∑

ℓ′=−r′

Aℓ1,ℓ′ ei ℓ′·θ′

)
ei ℓ1 θ1 .

In other words, the symbol of the operator Q(θ′) is nothing but Q̂(·, θ′). This shows that the norm
of Q(θ′) as an operator on ℓ2(Z) is not greater than 1, and Assumption 2.2 is satisfied.

Let us turn to Assumption 2.1. With slight abuse of notation, if w ∈ ℓ2(Zd−1), we still denote w
the piecewise constant function defined on Rd−1, and whose value on the mesh element with index
j′ equals wj′ . Using Plancherel’s Theorem, we have:

‖Ap1
(z)w‖2 =

1

(2 π)d−1

∫

Rd−1

|( ̂Ap1
(z)w)(ξ′)|2 dξ′ =

1

(2 π)d−1

∫

Rd−1

|Ap1
(z, θ′) ŵ(ξ′)|2 dξ′ ,

where θ′ is again a short notation for (ξ2 ∆x2, . . . , ξd ∆xd), and where the matrices Ap1
(z, θ′) are

defined by:

Ap1
(z, θ′) := δp10 I − 1

z

p′∑

ℓ′=−r′

Ap1,ℓ′ ei ℓ′·θ′

, (37)

see (34). The operator Ap1
is coercive if and only if the matrices Ap1

(z, θ′) are invertible for all
z ∈ C with |z| ≥ 1 and all θ′ ∈ Rd−1. This proves that Assumption 2.1 is satisfied for all θ′ ∈ Rd−1.

Next we argue that the constants in Theorem 2.1 are independent of ξ′. A close look at the proof
shows that the only places where the constants may depend on ξ′ are Lemma 2.2 and (24). On the
one hand, Assumption 3.1 provides a lower bound for the coercivity constants of Ap1

(z, θ′) which is
uniform in θ′, so that the constant in Lemma 2.2 is uniform in θ′. On the other hand, for p1 = 0,



16 JEAN-FRANÇOIS COULOMBEL & ANTOINE GLORIA

we claim that the norm | · |H(θ′) and the standard Euclidian norm | · | are equivalent uniformly in θ′

so that the constant in (24) can be chosen independent of θ′. To this aim, it is enough to prove that

sup
θ′∈Rd−1

|A0(1, θ′)| < ∞ , (38)

sup
θ′∈Rd−1

ρ(A0(1, θ′)) < 1 . (39)

Since θ′ 7→ A0(1, θ′) is continuous and periodic on Rd−1, (38) is trivial, the supremum in (39) is
attained and the bound follows from Assumption 3.1 and (37).

The only remaining task is to prove that the scheme (35) is strongly stable in the sense of Definition
2.1. This is done, as above, by applying Plancherel’s Theorem to the strong stability estimate in
Definition 3.1. We omit the details. �

3.2. A multidimensional version of Goldberg-Tadmor’s lemma. The same argument as
above (Fourier transform in the tangential variables and application of the one-dimensional re-
sults of Section 2) also applies to the case of nonhomogeneous Dirichlet boundary conditions. More
precisely, let us consider the following auxiliary problem:





V n+1
j1,j′ = Q V n

j1,j′ + ∆t Fn
j1,j′ , j1 ≥ 1 , j′ ∈ Zd−1 , n ≥ 0 ,

V n+1
j1,j′ = gn+1

j1,j′ , j1 = 1 − r1, . . . , 0 , j′ ∈ Zd−1 , n ≥ 0 ,

V 0
j1,j′ = fj1,j′ , j1 ≥ 1 − r1 , j′ ∈ Zd−1 .

(40)

The multidimensional version of Theorem 2.2 reads:

Theorem 3.2. Let Assumptions 3.1 and 3.2 be satisfied. Then there exists a constant C such that

for all γ > 0 and all ∆t ∈ ]0, 1], the solution V to (40) satisfies the estimate:

sup
n≥0

e−2 γ n ∆t |||V n|||21−r1,+∞ +
γ

γ ∆t + 1

∑

n≥0

∆t e−2 γ n ∆t |||V n|||21−r1,+∞

+
∑

n≥0

∆t e−2 γ n ∆t

max(p1,q1+1)∑

j1=1−r1

‖V n
j1,·‖2 ≤ C



|||f |||21−r1,+∞ +

∑

n≥1

∆t e−2 γ n ∆t
0∑

j1=1−r1

‖gn
j1,·‖2

+
γ ∆t + 1

γ

∑

n≥0

∆t e−2 γ (n+1) ∆t |||Fn|||21,+∞



 .

In particular, the discretization (40) is strongly stable in the sense of Definition 3.1.

We do not detail the proof of Theorem 3.2 since the arguments are entirely similar to the argu-
ments used in the proof of Theorem 3.1 for passing from one-dimensional results to multidimensional
results.

4. Examples and comments

4.1. Examples and comments in one space dimension. For one-dimensional problems, the
matrices Aℓ in the finite difference operator Q are usually polynomials of the matrix λ A where A
is the matrix of the hyperbolic operator in (1) and λ = ∆t/∆x. If we assume furthermore that A is
symmetric, then there exists an orthogonal matrix that diagonalizes simultaneously all the matrices
Aℓ. In this case, Assumption 2.2 is exactly equivalent to the ℓ2-stability of the finite difference
approximation, which is itself equivalent to the well-known von Neumann condition (see [3, chapter
5]):

∀κ ∈ S1 , ρ

(
p∑

ℓ=−r

κℓ Aℓ

)
≤ 1 .

We recall that ρ denotes the spectral radius of a square matrix. Assumption 2.2 is therefore very
reasonable and not restrictive in one space dimension. Assumption 2.1 is also satisfied in numerous
situations and is rather easy to check.
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We now make a few comments on the proof of Theorem 2.2. The proof in the case F = 0 follows
from Lemma 2.1 and is done in a single way, whatever the values of γ and ∆t. However, we have
seen that the case F 6= 0 requires two different approaches depending on the value of γ ∆t. Here,
we report on a simple numerical test which shows that the two regimes γ ∆t ≤ 1 and γ ∆t ≥ 1 are
different when F 6= 0. We consider the scalar transport equation:

{
∂tu − ∂xu = F (t, x) , (t, x) ∈ R+ × R+ ,

u(0, x) = f(x) , x ∈ R+ ,

where no boundary condition is required. We discretize the equation with the Lax-Friedrichs scheme
and homogeneous Dirichlet boundary condition3:





vn+1
j = (vn

j−1 + vn
j+1)/2 + λ (vn

j+1 − vn
j−1)/2 + ∆t F (n ∆t, j ∆x) , j ≥ 1 , n ≥ 0 ,

vn+1
0 = 0 , n ≥ 0 ,

v0
j = f(j ∆x) , j ≥ 0 ,

(41)

or with the Lax-Wendroff scheme and homogeneous Dirichlet boundary condition:




vn+1
j = vn

j + λ (vn
j+1 − vn

j−1)/2 + λ2 (vn
j+1 + vn

j−1 − 2 vn
j )/2 + ∆t F (n ∆t, j ∆x) , j ≥ 1 , n ≥ 0 ,

vn+1
0 = 0 , n ≥ 0 ,

v0
j = f(j ∆x) , j ≥ 0 .

(42)
The CFL parameter λ is 0.9 in both situations, which ensures that Theorem 2.2 holds.

We plot the the ratio between the norm of the trace:
∑

n≥0

∆t e−2 γ n ∆t |vn
1 |2 ,

and the right-hand side of (8) as a function of γ for the following cases:

(1) f(x) = 1 for x ∈ [0, 1], F = 0. The simulation is performed on the space interval [0, 2] with
1000 grid points. The parameter γ ranges from 10−2 to 102.

(2) f = 0, F (t, x) = 1 for t ≥ 0 and x ∈ [0, 1]. The simulation is performed on the space interval
[0, 2] with 1000 grid points. The parameter γ ranges from 10−2 to 102.

The results are plotted in Figure 1 for the Lax-Friedrichs scheme (41), and in Figure 2 for the Lax-
Wendroff scheme (42). The observation is the following: the ratio between the norm of the trace
and the norm of the source term depends monotonically on γ when f 6= 0 and F = 0, while it does
not depend monotonically on γ when f = 0 and F 6= 0. This seems to indicate that in the case
F 6= 0, the estimate (8) for small values of γ does not follow from the same arguments as for large
values of γ. This is the reason why we believe that Lemmas 2.3 and 2.4 are both useful.

4.2. Examples and comments in several space dimensions. Let us first comment on our mul-
tidimensional version of Golberg-Tadmor’s lemma. In one dimension, the commutation assumption
by Golberg and Tadmor is very natural, and essentially, it is “equivalent” to Assumption 2.2. The
original work by Golberg and Tadmor [2] also covers the multidimensional case provided the matrices
{Aℓ} in (33) commute. This assumption is very restrictive for d > 1 and amounts more or less to
consider d uncoupled scalar equations in (30). Assumption 3.2, however, can hold independently of
the fact that the matrices {Aℓ} do commute or not. Theorem 3.2 is therefore a true generalization
of Golberg-Tadmor’s lemma.

In the remaining part of this paragraph, we consider d = 2 and give several examples of dis-
cretizations to which Theorem 3.1 applies.

3Observe that the homogeneous Dirichlet condition is not consistent in the L∞-norm with the continuous problem
for which no boundary condition is required. However, we are concerned here with stability estimates, and consistency
is a different issue.
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Figure 1. Lax-Friedrichs scheme (41): ratio between the norm of the trace and
the norm of the source terms. Non-zero initial data and zero interior source term
(left). Zero initial data and non-zero interior source term (right).

Figure 2. Lax-Wendroff scheme (42): ratio between the norm of the trace and the
norm of the source terms. Non-zero initial data and zero interior source term (left).
Zero initial data and non-zero interior source term (right).

We consider the following two-dimensional problem:





∂tu + A1 ∂x1
u + A2 ∂x2

u = F (t, x) , (t, x) ∈ R+ × R2
+ ,

B u(t, 0, x′) = g(t, x′) , t ∈ R+, x′ ∈ R,

u(0, x) = f(x) , x ∈ R2
+ ,

(43)

where A1, A2 and B are matrices, and A1 and A2 are symmetric. We assume that f ∈ L2(R2
+), and

that there exists γ > 0 such that g ∈ eγtL2(R+;L2(R)), and F ∈ eγtL2(R+;L2(R2)). We let fj1,j2 ,
Fn

j1,j2
and gn

j1,j2
be discrete approximations of f , F and g at time n∆t, and points (j1∆x1, j2∆x2),

where ∆t, ∆x1 and ∆x2 are the time and space steps related through the fixed ratios λ1 = ∆x1/∆t
and λ2 = ∆x2/∆t. As before, Un

j1,j2
denotes the approximation of the solution u to (43) at time

n∆t, and points (j1∆x1, j2∆x2). As for the one-dimensional examples (41) and (42), we address
stability issues, not consistency, and we replace the boundary condition in (43) by Dirichlet boundary
conditions for the numerical scheme.
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4.2.1. Lax-Friedrichs’ scheme. The Lax-Friedrichs’ scheme with homogeneous Dirichlet boundary
condition is as follows:




Un+1
j1,j2

= QLF Un
j1,j2

+ ∆t Fn
j1,j2

, for j1 ≥ 1 , j2 ∈ Z , n ≥ 0 ,

Un+1
j1,j2

= gn+1
j1,j2

, for j1 ∈ {−1, 0} , j2 ∈ Z , n ≥ 0 ,

U0
j1,j2

= fj1,j2 , for j1 ≥ −1, j2 ∈ Z ,

(44)

with the operator QLF given by:

QLF :=
1

4

(
T−1

1 + T1 + T−1
2 + T2

)
− λ1

2
A1

(
T1 − T−1

1

)
− λ2

2
A2

(
T2 − T−1

2

)
.

In particular, it is of the form (32) with p1 = p2 = r1 = r2 = 1, q1 = q2 = 0, and obvious definitions
for the matrices Aj1,j2 . Assumptions 3.1 and 3.2 are translated in terms of admissible zones for the
CFL parameters (λ1, λ2).

Let us begin with Assumption 3.1. In this case, p1 = 1, and the mapping:

A1(z) : w 7→ −1

z

(
1

4
w − λ1

2
A1 w

)
= − 1

4 z
(I − 2 λ1 A1) w

has to be coercive on ℓ2(Z) for all |z| ≥ 1. Since A1 is diagonalizable, a sufficient condition for
Assumption 3.1 to be satisfied is:

λ1 ρ(A1) < 1/2 . (45)

Assumption 3.2 is particularly simple in this case, because the symbol of the discretized operator
QLF is a normal matrix. Hence it is diagonalizable in an orthonormal basis and its Hermitian
norm coincides with its spectral radius. We refer to [11] for the following sufficient condition for
Assumption 3.2 to hold:

∀ θ ∈ [0, 2 π] , ρ
(
λ1 cos θ A1 + λ2 sin θ A2

)
≤ 1√

2
.

As shown in [10], the latter condition holds provided that we have4:

λ2
1 A2

1 + λ2
2 A2 ≤ 1

2
I . (46)

If conditions (45) and (46) hold, Theorem 3.2 shows that the solution to (44) satisfies the estimate
of Theorem 3.2.

4.2.2. Modified Lax-Wendroff’s scheme I. Let us now address a variant of the Lax-Wendroff scheme
introduced by Wendroff in [12], whose ℓ2-stability has been further studied by Vaillancourt in [11].
With the notation of Section 3, the scheme is as follows:

QLW1 := I − 1

8

(
λ1 A1 (T1 − T−1

1 ) + λ2 A2 (T2 − T−1
2 )

)

(
T1 + T−1

1 + T2 + T−1
2 − λ1 A1 (T1 − T−1

1 ) − λ2 A2 (T2 − T−1
2 )

)
. (47)

For this scheme, p1 = 2 and for all j2 ∈ Z,

A2,j2 =
1

8
λ1 A1 (I + λ1 A1) δ0j2 .

We first determine the CFL parameters (λ1, λ2) for which Assumption 3.2 is satisfied. The symbol
of the discretized operator QLW1 is given by:

G(ξ) := I − i J(ξ)
(
c(ξ) I − i

J(ξ)

2

)
= I − J(ξ)2

2
− i c(ξ) J(ξ) ,

where J(ξ) := sin ξ1 λ1 A1 + sin ξ2 λ2 A2, and c(ξ) := (cos ξ1 + cos ξ2)/2. In particular, G(ξ) is a
normal matrix. Hence, G(ξ) is diagonalizable in an orthonormal basis and the scheme is ℓ2-stable
if and only if Assumption 3.2 is satisfied. This stability condition is equivalent to the fulfillment of
the von Neumann condition, which reads G(ξ)G∗(ξ) ≤ I, that is:

J(ξ)2 ≤ 4 (1 − c(ξ)) I .

4Condition (46) is sufficient for stability, but it is also necessary when the matrices A1 and A2 commute.
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Following [11], one notes that

1 − c(ξ)2 =
1

2
(sin2 ξ1 + sin2 ξ2) +

1

4
(cos ξ1 − cos ξ2)

2 .

Hence, Assumption 3.2 holds provided

(sin ξ1 λ1 A1 + sin ξ2 λ2 A2)
2 ≤ 2 (sin2 ξ1 + sin2 ξ2) I .

This condition is equivalent to

∀ θ ∈ [0, 2 π] , (λ1 cos θ A1 + λ2 sin θ A2)
2 ≤ 2 I .

Therefore, QLW1 satisfies Assumption 3.2 provided

λ2
1 A2

1 + λ2
2 A2

2 ≤ 2 I . (48)

Let us now turn to Assumption 3.1. In this case, for all z ∈ C∗, we have:

A2(z) : w 7→ 1

8 z
λ1 A1 (I + λ1 A1) w ,

and A2(z) is nothing but a simple multiplication. The mapping A2(z) is coercive if:

det A1 6= 0 and λ1 ρ1(A1) < 1 . (49)

Consequently Theorem 3.2 shows stability for the modified Lax-Wendroff scheme (47) with Dirichlet
boundary conditions provided (48) and (49) hold.

4.2.3. Modified Lax-Wendroff’s scheme II. Our last example is another modification of the Lax-
Wendroff scheme introduced by Lax and Wendroff in [6]. The discretized operator is as follows:

QLW2 := I− 1

2

(
λ1 A1 (T1−T−1

1 )+λ2 A2 (T2−T−1
2 )

)
+

1

8

(
λ1 A1 (T1−T−1

1 )+λ2 A2 (T2−T−1
2 )

)2

−L ,

(50)
where:

L :=
1

8

(
T1 + T−1

1 + T2 + T−1
2 − 4 I

) (
λ2

1 A2
1 (T1 + T−1

1 − 2 I) + λ2
2 A2

2 (T2 + T−1
2 − 2 I)

)
.

Although it may seem at first glance that the scheme involves 5 points in each direction, there are
cancellations for the terms T 2

j , T−2
j and we have r1 = r2 = p1 = p2 = 1.

The ℓ2-stablity of QLW2 has been characterized by Lax and Wendroff in [6] (see also Turkel [10]).
However there is a small gap between the general concept of ℓ2-stablity for which the operators
Qn

LW2 are bounded uniformly in n ∈ N, and Assumption 3.2 where we require the norm of QLW2 to
be not greater than 1. The latter property is called strong ℓ2-stability by Tadmor in [9]. The results
of [6] and [9] show that the discretized operator QLW2 in (50) is ℓ2-stable if:

λ2
1 A2

1 + λ2
2 A2

2 ≤ 1

2
I ,

while Assumption 3.2 is satisfied under the slightly more restrictive condition:

λ4
1 A4

1 + λ4
2 A4

2 ≤ 1

8
I . (51)

Let us now address Assumption 3.1. Unlike the previous examples, A1(z) is not a multiplication
anylonger. Here, for all z ∈ C∗, we have:

A1(z) : w 7→ 1

2 z

[
λ1 A1 + λ2

1 A2
1 +

λ1λ2

2
(A1 A2 + A2 A1) (T2 − T−1

2 )

+
1

4
(λ2

1 A2
1 + λ2

2 A2
2) (T2 + T−1

2 − 2 I)
]
w ,

and Assumption 3.1 is satisfied if and only if A1(1/2) is coercive. The symbol of A1(1/2) is given
by:

Â (ξ2) := λ1 A1 (I + λ1 A1) − (λ2
1 A2

1 + λ2 A2
2) sin2 ξ2

2
+ i

λ1 λ2

2
(A1 A2 + A2 A1) sin ξ2 .

Using Plancherel’s Theorem, it is rather easy to prove that the operator A1(1/2) is coercive if and
only if its symbol is invertible for all ξ2.
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Figure 3. Strong stability (grey and black) and coercivity (black) regions for the
modified Lax-Wendroff scheme II in the plane (λ1, λ2) for the specific example.

Let C0 > 0 denote an arbitrary constant. Then for λ2 ≤ C0 λ1, we have:

Â (ξ2) = λ1 A1 + O(λ2
1) ,

uniformly in ξ2 ∈ R. Hence, Assumption 3.1 holds if detA1 6= 0 and λ1 is small enough (the second
CFL parameter λ2 is subject to the restriction λ2 ≤ C0 λ1). In this case, Theorem 3.2 shows the
stability of the scheme (50) with Dirichlet boundary conditions and general initial data.

Let us take a closer look at Assumption 3.1 on one specific example. To this aim, we consider:

A1 =

(
1 0
0 −1

)
, A2 =

(
0 1
1 0

)
.

These matrices satisfy A2
1 = A2

2 = I and A1 A2 + A2 A1 = 0, so that the symbol Â above reduces
to:

Â (ξ2) =




λ1 + λ2
1 − (λ2

1 + λ2
2) sin2 ξ2

2
0

0 −λ1 + λ2
1 − (λ2

1 + λ2
2) sin2 ξ2

2


 .

Let X := sin2(ξ2/2) ∈ [0, 1]. The symbol Â (ξ2) is non-invertible if and only if λ1+λ2
2−(λ2

1+λ2
2)X =

0, that is:

X =
λ1 + λ2

1

λ2
1 + λ2

2

.

Since X ∈ [0, 1], this may only happen for λ1 ≤ λ2
2. Hence, Assumption 3.1 is satisfied if and only if

λ2 <
√

λ1 . (52)

Theorem 3.2 then shows that the scheme (50) with Dirichlet boundary conditions and general initial
data is stable provided (51) and (52) hold. In this case, Assumption 3.1 does have an impact on the
stability region, as illustrated on Figure 3. In particular, the condition (52) does not only involve λ1

but also λ2. The strong stability region (Assumption 3.2 satisfied) in the plane (λ1, λ2) for QLW2

corresponds to the grey and black disk, whereas the black region corresponds to the fulfillment of
both (51) and (52).
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Appendix A. Proof of Lemma 2.5

Let us recall that the matrices Aℓ’s are defined in (5). Using Assumption 2.1, we can define the
following matrix M(z) that depends holomorphically on z, with |z| ≥ 1:

∀ z ∈ C , |z| ≥ 1 , M(z) :=




−Ap(z)−1 Ap−1(z) . . . . . . −Ap(z)−1 A−r(z)
I 0 . . . 0

0
. . .

. . .
...

0 0 I 0


 ∈ MD (p+r)(C) .

(53)
We recall the following result that can be found in [4, page 659]:

Lemma A.1 ([4]). Let Assumptions 2.1 and 2.2 be satisfied. Then for all z ∈ C with |z| > 1,
the matrix M(z) defined by (53) has no eigenvalue on the unit circle S1. We let Es(z) denote the

generalized eigenspace associated with those eigenvalues of M(z) that belong to the unit disk.

The vector space Es(z) is made of all vectors of the form (wp, . . . , w1−r), where each wj belongs
to CD, and such that the sequence (wj)j≥1−r defined by:

z wj − Q wj = 0 , j ≥ 1 , (54)

belongs to ℓ2 (the sequence is even exponentially decreasing). Observe that (54) defines the sequence
(wj)j≥1−r in a unique way thanks to Assumption 2.1. The proof of Lemma 2.5 relies on the following
preliminary result that is entirely similar to the analysis in [1, page 110]:

Lemma A.2. Let Assumptions 2.1 and 2.2 be satisfied. Then there exists a constant C > 0 such

that for all z ∈ C with |z| > 1, and for all W = (wp, . . . , w1−r) ∈ Es(z), the sequence (wj)j≥1−r

defined by (54) satisfies:
q+1∑

j=1

|wj |2 ≤ C

0∑

j=1−r

|wj |2 .

Proof of Lemma A.2. Let N ∈ N, and let z ∈ C with |z| > 1. We consider an element W =
(wp, . . . , w1−r) of Es(z) and the sequence (wj)j≥1−r ∈ ℓ2 defined by (54). Then we define the source
terms g by:

gn
j :=

{
zn wj , if 1 ≤ n ≤ N and 1 − r ≤ j ≤ 0,

0 , otherwise.

We let V denote the solution to the numerical scheme:



V n+1
j = Q V n

j , j ≥ 1 , n ≥ 0 ,

V n+1
j = gn+1

j , j = 1 − r, . . . , 0 , n ≥ 0 ,

V 0
j = wj , j ≥ 1 − r .

Since the sequence (wj) satisfies the induction relation (54), we have V n
j = zn wj for all n ≤ N and

j ≥ 1 − r. We apply Theorem 2.2 to V and obtain the following inequalities for all γ > 0:

N∑

n=0

∆t e−2 γ n ∆t

q+1∑

j=1

|V n
j |2 ≤

∑

n≥0

∆t e−2 γ n ∆t

max(p,q+1)∑

j=1−r

|V n
j |2

≤ C



‖w‖2

1−r,+∞ +

N∑

n≥1

∆t e−2 γ n ∆t
0∑

j=1−r

|gn
j |2


 .

Using the expression of V and g for n ≤ N , we find:

q+1∑

j=1

|wj |2 ≤ C ‖w‖2
1−r,+∞

(
∆t

N∑

n=0

(|z| e−γ ∆t)2 n

)−1

+ C
0∑

j=1−r

|wj |2 .

We choose γ > 0 such that |z| > exp(γ ∆t), then we let N tend to infinity, and the result follows. �
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Let us now go back to the proof of Lemma 2.5. We consider the solution W to (26), and introduce
the piecewise constant functions:

∀ j ≥ 1 − r , Wj(t) :=

{
Wn

j , if n ≥ 1 and t ∈ [n ∆t, (n + 1) ∆t[,

0 , if t < ∆t.

The definition of g̃j(t) is similar. We apply the Laplace transform to (26) and obtain:
{

z Ŵj = QŴj , j ≥ 1 ,

z Ŵj = (z Bj,−1 + Bj,0) Ŵ1 + z ĝj , j = 1 − r, . . . , 0 ,
(55)

where z is a short notation for exp((γ+i ω) ∆t), with γ+i ω the point where we evaluate the Laplace

transform. Using Theorem 4.2 in [4], we know that (Ŵj)j≥1−r satisfies the estimate5:

|z| − 1

|z|
∑

j≥1−r

|Ŵj |2 +

0∑

j=1−r

|Ŵj |2 ≤ C

0∑

j=−r+1

|ĝj |2 , (56)

with a constant C that is uniform with respect to z.

Since we have (Ŵj)j≥1−r ∈ ℓ2, we know that (Ŵp, . . . , Ŵ1−r) ∈ Es(z). Consequently, we can
apply Lemma A.2 and obtain:

q+1∑

j=1

|Ŵj |2 ≤ C

0∑

j=−r+1

|Ŵj |2 ≤ C

0∑

j=−r+1

|ĝj |2 , (57)

where we use (56) to derive the last inequality. The conclusion of Lemma 2.5 follows after integrating
(57) with respect to ω ∈ R and using Plancherel’s Theorem. The proof of Lemma 2.5 is now complete.

Let us observe that the estimate (56), that is obtained by using the strong stability of the dis-

cretization (3), is not sufficient to derive (57) since the control of the “interior” terms Ŵ1, . . . , Ŵq+1

deteriorates as |z| tends to 1. The key point is to combine (56) with the estimate of Lemma A.2. The
latter is a typical estimate in the frequency variables when the uniform Kreiss-Lopatinskii condition

holds, see e.g. [1, chapter 4]. A major advantage of our approach is to bypass the verification of
the uniform Kreiss-Lopatinskii condition for (7) in the frequency variables (this was the approach
followed in [2] and it seems difficult to carry out for systems). Lemma A.2 appears here a direct and
easy consequence of the energy method.
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