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BUILDING INFINITESIMAL NEIGHBOURHOODS OF VARIETIES.

by Catriona Maclean

ABSTRACT. We develop a deformation-type tool for the study of embeddings ofgukinvariety X. Given a variety
X C Y there is a natural series of schem¥és= Xo C X1 C X2... C Y of infinitesimal neighbourhoods of Xefined as
follows
Xn = zero(y y).

Under certain assumptions, we calculate the obstructions to the existennéndésimal neighbourhoods and classify
them when they exist.

1. INTRODUCTION.

1.1 A MOTIVATING EXAMPLE.

Consider the following question. LeX be a complex normal crossing variety: for simplicity’s sake
consider the case whee¢ is the union of two smooth irreducible varietieg and X, glued together along
divisors D; C X; and D, C X; via an isomorphismyp : D; — D,. The common image ob; and D, in X
is denotedD.

It is natural to ask whetheiX can be embedded in a smooth varieYy as a normal crossing divisor.
The following example (based on Friedman’s paper [1]) shtives the answer is “no” in general.

Suppose thaX C Y is an inclusion ofX as a normal crossing divisor in a smooth variety. Then therani
exact sequence
0— N;‘Y—>Q\1(®Ox—>§2>l(—>0

where Ny . is the conormal bundle oK in Y, N . = |></Y/|>2</Y- We note thatly,y ® Ox, = Ny  and
hence
N;l‘y ® Op = |x1‘y ® Ox1 ® Op = |X1|Y ® Op = |D\X2 ® Op = NS\XZ'

Likewise, Ny \ ® Op = N, , but sinceX is a normal crossing divisor i¥, Nyy[p = Ny vIo @ Ng [o
s0 Ny vlo = Npx, ® Np .- The point is that the right-hand side of this equation is tstriction toD of a
line bundle defined orX, whereas the left-hand side does not dependroiwe therefore have the following
result.

ProPosITION1.1. Let X= X; Up Xo be a normal crossing variety as above. If X can be embedded in
a smooth variety Y as a normal crossing divisor then the linade N, ® N5, can be extended to a
line bundle on X.

Consider a pair X, D), where D is a smooth divisor inX such that the restriction map PX)(— Pic(D)
is not surjective. (This typically holds iX is a surface and is a smooth curve of genus 0.) Choose a
line bundleL on D which is not the restriction of a line bundle ok and setX; = ProjlL & Op), Xz = X,
D; = ProjL) and D, =D.

We then have thatNj, = L, N5, = O(-D) and by definition, N5, ® N7, ~does not extend to a



line bundle onX;. It follows that X cannot be embedded in any smooth variety as a normal crodsiisgr.

The obstruction given above t§ being a normal crossing divisor is in farffinitesimal in other words, it
is an obstruction not only to the existence %fbut also to the existence of the schede= zeroqf(lY).

Indeed, suppose given a scheme supportedXorX., such that

1. Ixx. is a line bundle,L on X. (In particular, |>2<\x€ =0.)

2. The sheaf)} ® Ox is a locally free sheaf oX. (This condition means thaX. is “potentially” the first
infinitesimal neighbourhood oK in a smoothvariety Y).

It then turns out that, as above, we can build an exact sequenc

0—>|X‘x€—>Q>l(€®Ox—>Q)l(—>0.

Since Q}Q ® Ox is assumed to be locally free, there is a surjective “iaﬁ — Ext}(Q%, Ox). The sheaf
EXtL(Q, Ox) is a line bundle onD which is proved in [1] (page 85) to be given Yo x, ® Npjx,- The
left-hand side is a line bundle oX : it follows that I}, [o = N5, ® N, and henceNj, ®@Ng,, ~extends
to a line bundle onX.

1.2 DEFINITIONS AND STATEMENT OF THEOREMS

Hopefully, the above example has convinced the reader tifiaitesimal considerations can produce inter-
esting information about embeddings Xfand a systematic study of infinitesimal obstructions to tkistence
of embeddings can be useful.

Throughout what follows we work ovek, an algebraically closed field of characteristic zero. Gian
inclusion of k-schemesX C Y there is an associated sequenXe= Xo C X3 C Xz C X3 C ... of nilpotent
schemes supported 0¥ given by X; = zeroqi(w). Our aim is to classify these infinitesimal models under
certain assumptions. We start by defining infinitesimal hletqirhoods, which should be thought of as nilpotent
schemes whose underlying base schem¥ iand which are potentially schemes of the form zd@;]() for
“good” X and Y.

DerFINITION 1.2. Let X be a reduced locally complete intersectiksvariety, wherek is an algebraically
closed field. LetV be a vector bundle orX. An n-th order infinitesimal neighbourhood of with normal
bundleV, X,, is the data of a triplél, = (Xn,ix,,ax,) such that
1. X, is a k-scheme of finite type,

. The mapiy, : X — X, is an inclusion,

. The ideal sheaf%(i =0,

. The mapax, : V¥ — |X\XH/|>2<|xn is an isomorphism of9x-modules,

. The multiplication map SyRfax, ) : Synd'(V*) — 1%x, is an isomorphism.

g~ WODN

The bundleV* is called theconormalbundle of the infinitesimal neighbourhodki,.

REMARK 1.3. If X, = (Xn,ix,, @x,) is an-th order infinitesimal neighbourhood &f with normal bundle
V then for any 1< i < n there is ani-th order infinitesima | neighbourhood of with normal bundleV,
Xi = (X, ix;, ax;) which is defined as follows:
Xij = zero Q;(T)%n), ixi = ixn‘xi; ;= ax,.

The infinitesimal neighbourhood; is called thei-th order truncation ofX,.

We fix an open selU C X. We will need to know what we mean by the restictions of an rotter
infinitesimal neighbourhood oK to U. Note that if X = (X, ix,, ax,) then the nilpotent schemX, can be
thought of as a sheaf of algebras #n In particular, the restriction oK, to U is well-defined. We denote
the restriction of the nilpotent schemé, (resp. X%, ,, X2, ;) to U by U, (respUL, ., UZ,,).
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DEFINITION 1.4, LetX, = (Xn,ix,, ax,) be an n-th order infinitesimal neighbourhood Xfwith normal
bundle V and let U be an open set inX. The restriction of X, to U, denotedU,, is the n-th order
infinitesimal neighbourhood ob) with normal bundleV|y given by Uy = (Un,ix,|u, ax,|u)-

DEFINITION 1.5.  An n-th order infinitesimal neighbourhoodl, = (X, ix,, ax,) is said to bepotentially
smoothif the shean)1<n ® Ox is a locally free sheaf orX.

Consider an inclusion of schemés X — Y such that the conormal sheaf* &' |xw/|>2qy is a vector
bundle onX. We can then form a series of triples

Y Y ;
Xp = (Xna|XIvaDCI)
given by
Y 1 H H A 2 2 2
Xy = zero(3), ixy =ilxy, axy =id /1w = byxe/Wxe = v /Ny = V-

The above definitions are motivated by the following lemma.

LEMMA 1.6. Let iy : X — Y be a closed embedding of X, a reduced l.c.i. k-variety. Tlages Y is
then smooth in an open neighbourhood of X if and only if thelariX) is a potentially smooth infinitesimal
neighbourhood of X for all & N.

Proof of Lemma 1.6.

We start by proving that if the tripléC is a potentially smooth infinitesimal neighbourhood for alE N
then Y is smooth alongX.

Let x € X be a point. The schem& is smooth at the pointx if and only if O} ® kc is a kg-vector
space of rank dimY (see [4] Theorem 8.15). We note $at2 ke = Q2 @ ky. By assumption(2,, @ Ox is
a vector bundle onX : it remains only to show that this vector bundle is of rank im 1t will be enough
to prove thathlY ® kg is a vector space of dimension dimY for any closed smoothtpwia X.

Let f,...,f, be elements of the local rin@y(X) such thatdfy, ..., df, form a basis ofQ} @k, dfi,...,df;,

form a basis of Q% ® ke and fpyq,...,f, are elements inlyjy. In particular, the cIasseEmH,...,ﬁ are

then independent elements of the vector spb@e/lf(/Y ® ky. We wish to show that < dim(Y) (we know
that it is > dim(Y)): to do this it will be enough to show that the elemerits...,f, are algebraically
independent ovek. Suppose not: there is then an algebraic equation of the f(f...,f,) = 0, whereP

is a polynomial. We write

P(f]_,...,fr) = P]_(f]_,...,fr)+...—I—PD(f]_,...,fr)

where P; is of total degreei with respect to the function§y,1,...,f. (We note that there is no terrRg
because the function|x,...,fm|x are algebraically independent). There is at least one 1 such that
P; # 0. Let d be the smallest non-zero integer such tRat 0 : in a suitable Zariski neighbourhood af
we have that 6= Py(fr,.. ., fm, fni1,... ) € I;'@('Y/IO“rl Since XJ is supposed to be an infinitesimal neigh-

x|y -
bourhood Py(fy, . . ., fm, fme1, . - . fr) = O is therefore identically 0 as a polynomial in variablgg y,...,f
with coordinates in the local rin@x(x). But now asfi|x, ..., fm|x are algebraically independent this implies

that P4 = 0, which is a contradiction.

Let us now prove that ifY is smooth thenXY is an infinitesimal neighbourhood for ahh € N. (It is
then immediate that it is potentially smooth.) The only thiwe have to prove is that i is smooth then
the multiplication map

pin = Sy (v /15y) — I)Q|Y/I)QT§(1
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is an isomorphism. By Matsumur&][p.121 we know thatY is Cohen Macaulay so by?] p. 110 for any
ideal | generated by a regular sequenég .( ., fy) we know that Syr:1/12 — I"/I" is an isomorphism.
But now sinceX is a locally complete intersectioty,y is generated by a regular series in any sufficiently
small open set inX. This completes the proof of Lemma 1.6. O

We will also need in what follows to have a definition of an isphism of infinitesimal deformations.

DEFINITION 1.7. Let Xn = (Xn,ix,, ax,) and X = (X),ix;,ax;) be two n-th order infinitesimal
neighbourhoods ofX with normal bundleV. An isomorphism of infinitesimal neighbourhoods betwekén
and X}, is an isomorphism of schemgs: X, — X such thatj, oix, =ix; and ax, oj; = ax;.

Here, j; : Ixjx; — Ixjx, is the pull-back map. Note that jf, : X, — X] is an isomorphism of infinitesimal
deformations of ordein with normal bundleV then for any 1<i < n the truncated morphism
ji=ilx X =X

is an isomorphism of infinitesimal neighboourhoods of ordewith normal bundleV betweenX; and X;.
We define an extension of am-th order infinitesimal neighbourhood as follows.

DEFINITION 1.8. LetXp = (Xn,ix,,ax,) be ann-th order infinitesimal neighbourhood of with normal
bundle V. An extension ofX, is given by a pair X}, ,,jn) where
1. Xj,1 is an @+ 1)st order infinitesimal neighbourhood &f with normal bundleV and
2. jn: X, — X, is an isomorphism betweel{;, the n-th order truncation ofxgH, and X,.

By abuse of notation, if there is no risk of confusion we oftienote the extensioriX{,, ,,jn) by X[,;.
We will also need to know what we mean by an isomorphism of resitas.

DEerFINITION 1.9. LetX, be ann-th order infinitesimal neighbourhood &f with normal bundleV and let
(R, 1005, (X2,4,j3) be two different extensions df,. An isomorphism between the extensiorf§} (,, jr)
and ()CﬁH,jﬁ) is an isomorphism of (+ 1)-th order infinitesimal neighbourhoods with normal beni

cl 2
Int1t Xy — Xip

such thatj2 o J, = j}
The aim of this article is to prove the following two theorems

THEOREM 1.10. Let n be an integer> 1 and let X, = (Xn,ix,,ax,) be an n-th order infinitesimal
neighbourhood of X with normal bundle V. Suppose that theokektensions of(, to (n+ 1)-st order is
not empty. To any pair of extensions %f,, (I)C}Hl,jl) and (xﬁ+1,j2) we can then associate a difference

D4, X3,4) € Exty (% ® Ox, SymTH(V))

in such a way that
1. D(X}, 1, X2,,) =0 if and only if (X}, ,j}, 1) and (X3, 4,j2,,) are isomorphic as extensions &f,
2. DL, 1, X2, )+ D2, 1, X3, ;) = D(XE,,,X3,,) for any triple of extensiongX? ,,X2,,, X3, ),
3. Given any extensiofct,; and any elemenv € Exty (% ® Ox, SynT™(V*)) there is an extensiof(Z,
such that
DXy 1, Xipyn) = w.

THEOREM 1.11. Given an n-th order infinitesimal neighbourhodf, with normal bundle V we can
assign to it an element
oby, € Ext}, (2, @ Ox, Sy (V"))

such thatX, has an(n+ 1)st order extension if and only ibby, = O.
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There are obvious analogies with the standard theorems fofrdation theory (see [6], [11] and [10]
for more details). The related problem of constructing itégimal neighbourhoods seems to have received
relatively little attention: lllusie’s book [6] proves aadsification/obstruction result for extensions of sheaves
of algebras by fixed sheaves &theme fondamental, page 162) but, surprisingly, does not ireigd deal
with the question of whether the algebras produced are fiegimhal neighbourhoods in the above sense. (See
page 191 of [6] for a related result, which works for much mgemeral choices oKX and X,, but which
requires the presence of a base scherpe . The aim of the present article is to deal with the many cases
where no such base scheme can exist.)

REMARK 1.12. The sheaﬂ)l(n ® Ox which appears in the above statements is isomorphi@itp@ Ox.
In particular it only depends on the first infinitesimal néiaghrhood of X.

ReEmMARK 1.13. If X, is potentially smooth then E@g;(ﬂin ® Ox, Sym"1(v*)) is isomorphic to
Hl(J{orr(Q}(n ® Ox, Sym1(V*))). Any two extensions are then locally isomorphic: thisncasts with the
deformation theory of singular varieties.

We have the following immediate corollary of 1.10.

COROLLARY 1.14. Let X be an l.c.i. reduced k-variety and let V be a vector barait X. LetX; be
a first-order infinitesimal neighbourhood of X with normalndle V and suppose there is a number k such
that Exty (2% ® Ox, Syn?™(V*)) vanishes for any > k+ 1. Suppose giverit} and X2, two n-th order
infinitesimal neighbourhoods of X, and isomorphismhs ¥} — X; and ¢ : X2 — X;. Suppose we also
have an isomorphismyJd Xt — X2 such that J = (j2)~1oji. There is then an isomorphism of infinitesimal
neighbourhoods with normal bundle V, JX! — X2, such that the k-th truncation of, Js X.

In the case wher&k = C, V is a weakly negative vector bundle an€l is smooth the above corollary
can be seen as a weaker version of Grauert’s theorem in [2].

THEOREM 1.15 (Grauert). Let X and X be two smooth complex varieties, and let A (respectiviely
be a smooth codimension 1 subvariety of X (respecti%ly Assume that the normal bundle of A in X is
weakly negative. Then there is an integey such that for anyr > 1y any isomorphism A2 A, extends
to an isomorphism of the ringed space$ A Ox|a and A* = Og|;.

In [5], Hironaka and Rossi proved the following generalmatof the above result.

THEOREM 1.16 (Hironaka/Rossi). Let A (resp.A) be a compact reduced complex subspace of a reduced
complex space X (respK), such that X- A (resp. X — A) is smooth. Assume that A is exceptional (i.e.
it can be blown down to a point). Then there is an integgrsuch that for anyv > 1y any isomorphism
A, =~ A, extends to an isomorphism of the ringed spacés=A)x|n and Ar = Ox|a-

REMARK 1.17. Whenn = 0 condition 5 of definition 1.2 is empty and the first order iitésimal
neighbourhoods oX with normal bundleV are simply algebra extensions @fx by V*. These have been
classified by lllusie in [6] (page 162, &beme fondamental 1.2): there are no obstructions to theesxist
of such algebra extensions and they are classified by(&xtV*).

Our proof uses embeddings of infinitesimal neighbourhowodbtheir morphisms, which are defined below.

DEFINITION 1.18. LetX be a reduced locally complete intersectiksvariety and letX, = (Xn, ix,, ax,)
be ann-th order infinitesimal neighbourhood of with normal bundleV. Let P be a smooth scheme and
let W be a vector bundle oP. An embedding ofX, over P with normal bundleW is given by a pair
(Pn, fr) where

1. P, is an n-th order infinitesimal neighbourhood @& with normal bundleW,
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2. fo: Xy — Py is a closed inclusion of schemes such tifiallp) = Ix and the pull-back map

. 2 2
f: . W>k = IP\Pn/IP|Pn — IX\Xn/|X\X,, = V*

iS surjective.

Note that in the above definition we do not ask tlfiat should be an isomorphism. As previously, we will
abusively write P, for the embedding %, f,) when there is no risk of confusion.

DEFINITION 1.19. LetX be a reduced locally complete intersectiksvariety and letX, = (Xn, ix,, ax,)
be ann-th order infinitesimal neighbourhood of with normal bundleV. Let P and Q be smooth schemes
and let Wp and Wg be vector bundles o® and Q, respectively. Let ¥y, f,) and Qn, gn) be embeddings
of X, over P and Q respectively. A map of embeddings frof}, to Q, is a map

h . iPn — Qn
such thatho f, = g, and h*(lg|q,) = lpjp, -

1.3 OVERVIEW OF THE PROOF AND NOTATION

We start by indicating a relatively elementary proof of stam deformation-theoretic results, and which
parts do and don’t work in our set-up.

1.4 REVIEW OF BASIC DEFORMATION THEORY

Given a reduced locally complete intersectiowvariety X, there is a well-developped theory of deformations
of X. By a deformation ofX over a local Artinian ringA, we mean a commutative diagram

X———Xa

L

Speck) —— Spech)

where X, is flat over A. Intuitively, we think of such schemes as being “fatteningtthe base schem&.

The first systematic study of deformations of structures ahifiolds was carried out in the complex analytical
category by Kodaira and Spencer in 1958 in [7]. The first cahensive study of deformations in the
algebraic category was completed by Schlessinger in [9hénlate 1960s: an exposition of this work is also
contained in Grothendieck’s E.G.A [3].

In the particular case wher¥, is a local complete intersection the theorem on extensidndeforma-
tions of X can be stated as follows. Le&¥ and A be Artinian rings, and consider an exact sequence

0—-a—-A >5A->0

where a is an ideal of A’ such thatma.a = 0. If X5 — Specf) is a deformation ofX over A and
Xn — Spech’) is a deformation ofX over A’ then we say thatX, is an extension ofX, if there is
an isomorphismXa = Xy ®a Spech). Likewise, we say that two deformations of over A, X3 and X3
are isomorphic as deformations &f if and only if they are isomorphic a&-schemes. We then have the
following two theorems, which can be found in [11] or more gelly in [6]. (See also the recent book [10]).

THEOREM 1.20. To any ordered pair(X3,, X3,) of extensions of X over Specf'), we can assign a

difference D(X},, X3,) € Ext'(Q%, Ox ® a) in such a way that the following hold.

1. We have thatD(X3,X3) = 0 if and only if X}, and X3 are isomorphic as extensions of X

2. For any triple of extensions over’AX:, X3 and X, we have thatD(X} ,X3) + D(X3,X3) =
D(X3, X3).

3. If an extension ¥ exists then for any E= Ext'(Q%, Ox ® a) there is an extension 2X such that
DXL, X2) = E.



THEOREM 1.21. We can associate to pX a deformation of X overSpecf), an elementoby, €
Ext?(Qx, Ox ® a), such that extensions ofaXover Specf)) exist if and only ifobx, = 0.

We start by summarising an (elementary) proof of Theoren® {dRawn from [11]) and indicating what
doesn’t work in our context. Our aim is to associate to a paExtensionsXi, and X,i, of Xa a “difference”
DXL, X3,) in Ext{(Qx, Ox ® a).

1. Prove a classification theorem for embeddeddeformations. Given an embeddir§ e P, we consider

A-flat subschemes

Xa C P x Specf) = Pa

extending X. Extensions of embedded deformationsXf to X, form a torsor overH%(a ® Nx|p) -
2. To an elementh € H%a ® Nxp) We associate the push-forward along the dual nmépof the exact
sequence
0 — Nyjp — 25 ® Ox — O — 0.

3. We can therefore construct local extensions encodingldbal difference between embeddings ®t
and X2. Given two different embeddings of the pax,, X3 as embedded deformations in two different
ambient space® and Q we can define canonical isomorphisms between the asso@atedsions, based
on the the product diagram

Pa xa Qa
Pa Qa

The point which does not work directly for infinitesimal nielgpurhoods is 3). The problem is the following:
the construction of the gluing isomorphisms uses the priosip@cePa xAQa in which X, remains transverse

to the central fibreFor infinitesimal neighbourhoods, there is no base schenex(®p We can still define
embeddings of deformations — P, but P, is no longer the product of a smooth space and the spec of
an Artinian ring, but a simple kind of formal scheme. In pautar, given two such objects? and Q there

is no canonical way to take a product in whigh will be tranverse to the central fibre. For this reason, we
are obliged to consider embeddings of deformations intm#&brthickenings of a smooth variety in which

the schemeX, may not be transverse to the smooth schePeThis is the fundamental reason for most of
the technical problems that we will meet and deal with in thiicle. Globally, the proof follows closely the
ideas and methods of Vistoli’s article [11].

NOTATION

Throughout thi articlek will be an algebraically closed field of characteristic zero
X denotes a reduced locally complete intersectiomariety.
X, denotes am-th order infinitesimal neighbourhood of with normal bundleV.

To simplify the notation, we will denote by) the shean>1<n ® Ox and we will denote byS the sheaf
Sy H(Vy).

For any open setU of X and any sheafA on X we will denote by Ay the restriction of A to U.
(In particular, the sheaf)y is therefore not equal t&} .)

WheneverX is a subscheme of a schenYewe will denote bylyy the ideal sheaf oX in Y.

ORGANISATION

The article is organised as follows. In section 2 below wevereome preliminary lemmas. In section 3
we will define extensions associated to pairs of embeddeshsixins and show how to glue them together in
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order to create an extension encoding the “difference” betwthem. In section 4 we complete the proof of
Theorem 1.10 by proving that this mapping turns the set ofresibns of infinitesimal neighbourhoods into
a torsor over EX(2,9 and in section 5 we prove Theorem 1.11.

2. PRELIMINARY LEMMAS.
In this section we will prove some preliminary lemmas whiclil we useful in the rest of the proof.

Let X be a reduced l.c.ik-variety. Let X;; be an n-th order infinitesimal neighbourhood oX with
normal bundleV and let (P,,f,) be an embedding ok, with normal bundleW. Recall that we then have
a surjective map

fr W' — V™.

DEerINITION 2.1. Let X, and (P, f,) be as above. We then denote by, the kernel of the pullback
map f¥ : W*|x — V*. We denote byl the sheaf-theoretic kernel df : W* — V*, considered as a maps
of sheaves. We note thatp_ is a vector bundle orX.

We need to understand the structure of the ideal shgaf . Note thatlp ,p, is an Op-module; in
particular we have that
Ixjp 1Py sy = IxafPa-1PoafPy C Ixolpy M Ty

We have an isomorphism

|
Syml'(ap,)|x : SymW* [y — —ntlPr
xip - Ipy s/py
. . | | |
We consider Syf{as,)|x* (%) , the inverse image under S¥ns_)|x of the subshea}% CI
a id n—11"n

b le 1 The following lemma identifies this subsheaf explicitly.

'XIP'lF’n—l\Pn
LEMMA 2.2. Let X, X, and P,, be as above. We then have that

| Nl
Synf(as,)lx® (“""’) — [Ly, - Syt W) ).

Ixip - Ipy_s [Py
Proof of Lemma 2.2.

We consider the following commutative diagram.

sym'(cws,)Ix

SynT'(W*)[x Ip,_1p, ® Ox
iw«;) l
Synm'(«
Synfi(vr) — e %1%

where on the right-hand sidg is the pullback mapfy : Ip,_,jp, ® Ox — Ix,_,x, and on the left hand side
f¥ is the pullback mapf : W* — V*. The two horizontal maps are isomorphisms. On the rightihside

of the equation, Keff) = 2= 1t fo1i0ws that

(Ix-lpy_q1Pn)

sl VhlPy g ix(Ker(Symi(i4)

(IX ’ lpn—l‘Pn)
and hence | .
(SynT(as)h) (LT ) — Ker(Synf(5;) = L, - Synf W)l
This completes the proof of Lemma 2.2. O



LEMmMA 2.3. Let X, be an n-th order infinitesimal neighbourhood of a reduced.l.k-variety X with
normal bundle V. The sequenfe— V* 4 Oy, © Ox X Qf ® Ox — 0 is then exact.

Proof of Lemma 2.3.

By [4], 11.8.12 it will be enough to show thad : V* — Q%ﬂ@(ﬁ)x is injective. As the question is local, it will be
enough to prove Lemma 2.3 on any small enough open ¥t We choose an affine open ddtC X such that
V|y is trivial and U can be embedded in an affine spd€eas the zero locus of a regular series of functions
f1,...,fm. (This is possible becaus¥ is l.c.i..) We setU = Specf) where A = K[x1, ..., %n]/{f1,...,fm).
Choose elementsy,. .., e € lyjy, such that the elements,, ... e € lyjy, ® Oy = Vj form a basis of
sections ofV. We can then writeU, in the form U, = SpecB) where

B:(k[X]_,...,Xn,El,...76k]/|~@J)

where| is an ideal of the fornfy, ..., f,, wherefian =f andJ C (e1,..., ). We setm = (e1..., ), the
ideal generated ifB by the ¢;s: we have thaA = B/m. Since theg s form a basis of sections ¢f;y, ® Ou,
we have thatd ¢ T@m2. Now, Qf ® Oy = Qf), ® Oy and Uy = SpecKxy, ..., %, €1,..., /T &m?. It
follows that the Oy -module Qal ® Oy is the sheafification of thé-module

<de1€B...@Bd&@Bdel...eBBdek) 20 A
(d(M) @ d(m2)) B

We note thatd(m?) C m - (Bdx @ ... ® Bdx, & Bdey ... ® Bdex) so Qf, @ Oy is the sheafification of the
following A-module
Adxg @ ... D Adx, ® Adey . .. B Adeg

(dii @A, ... din@A)

V* is the sheafification of thé& module Ade; @ ... ® Adex so it remains to show that the map

Adx @ ... D Ad¥ D Adey ... B Adey

Ad ... B Ade — - -
D O Ak oA Ao A

is injective. In other words, we must show thatf; ® A, ..., df, ® A) N Ade; @ ... @ Ade, = {0}. Suppose
now that there are elements € A such that) ", adfi @ A C ®;Ade;. We then have thad ", adfi = 0 in
Qﬁn ®@ A. But now since thefis are a regular series fdg» the dfis are independent ovek and it follows

that & = O for all i. It follows that the above maps are injective and hentdy LN an ® Oy is also
injective. This completes the proof of Lemma 2.3. (]

LEMMA 2.4, Let X, be an n-th order infinitesimal neighbourhood of X and let U lmeagpen set in
X. Let P, be an embedding ofl,. Consider the map

79, lpp, Ny, e, = luy e, ® Ou.

Then we have thaKer(rp,) = lyp, - Ipjp, . In particular, lpjp, Ny, p,/Ker(rp,) = Ly, .
Proof of Lemma 2.4.

It is immediate thatlyp, - Ipp, C Ker(rp,). To prove the converse, we use the fact thatis a local
complete intersection irP. Locally, we can choose a regular sequencenofelementsfy,... fn € lyp
such that if F denotes the vector spadd; @ kf, ... @ kfy, then Iu|p/|5‘P = F ®¢ Oy and more generally

15/151 = SynT'(F) @ Ou.

We fix liftings foof f, to ly,p,- Choose an element € (ly,p, N lpjp,) such thatrp (v) = 0: our
aim is to show that € lyp, - ly,p, . We know thatv can be written in the formy = >, jigi whereji € lypp,
and gi € ly,p, -



LEMMA 2.5. Let U, P, U, Py, fi....fy and f...fn be as above and let € (Iy,p, N Ipp,) be an
element ofKer(rp ). There is then aw € lyjp, - ly,|p, Such thatv —w = >, jig/ where for all i we have
that Jll,gl/ S <f1,f2 .. fm>

Proof of Lemma 2.5.

We can writev = Y ;jigi. We can writegi = g/ + ¢ where g/ € (fi,f>...fm) and & € lpp,. On set-
ting w1 = > jiei € lyjp, - lu,p, We see thaty —wy =}, giji. We can writej; = j{ +v; whereji € Iy p, and
v € lpjp, . It follows that if we setw, = Zi gJ’ui € lup, - luypy then we have thav — wy —wz = >, gji .
And now we setji = |’ + ¢/, whereji’ € (fi,f...fy) and ¢ € lpp,. On settingws = > ; ¢{g/ we see that
v—w1—wy — w3 =y ;4. On taking w = wy + w» + ws, this completes the proof of Lemma 2.5. O

LEMMA 2.6. Let U, P, U, Py, fi,....fm and fi,...,fn be as above. Let € (ly,p, N lpp,) be an
element ofKer(rp,) which can be written in the fornd = >, jigi, where gi,ji € (f1,f2,...,fy) for all i.
Then for all integers n we have that

v € (Ipjp, - lupp) @ Sym'((fy, .. . fm)).
Proof of Lemma 2.6.

We will prove the lemma by induction om. The casen = 2 holds by definition. Assume that the in-
duction hypothesis holds fon — 1. We then havev = ¢ + >, auf' where e € lpp, - lujp and the sum is
taken over all multi-indiced of degree if — 1). Sincefy, ..., fn is a regular series folyp, the map

Sym*((f1, ... fm) @ Ou — 15/10p

is an isomorphism. It follows thaty |y € lyjp : in other words, we can write) = ¢ + > 5 f! + B where
B € Syml'((f1,...fm)) and & € lpp,. But we then have that + >, 6f' € Ipp, - Iyjp. This completes the
proof of Lemma 2.6. |

We now show how Lemma 2.6 implies Lemma 2.4. It will be enoughshow that for any poinix € X,
the image ofv in the local ringOp, x, which we denote by, is contained in the localised idedpe, - 1yjp)x-

We denote the ideal generated By...f, in Op,x by a. We denote the localised idealpf, N lyp)x
by Ix. We note that by the Artin-Rees lemma the following sequdrcexact

- — —
0—lx— OPl,x - oPl,x/lx —0

where M indicates completion of the modulél with respect toa.

By Lemma 2.6, we know that the image of in @ is contained inly. In particular, we know that the
image of vy In O;X\/Ix is 0. Krull's theorem says that there exists an elemfeatl + a such thatfv =0

in Op, x/Ix. But now the form off implies thatf is invertible since it cannot be an element of the maximal
ideal of Oxx, SO vy € Ix. This completes the proof of Lemma 2.4. O

LEMMA 2.7. Consider the Artinian ring A= Kleg, ..., em]/m". Let % — Specf) be an A-scheme
whose central fibre %= X, is a reduced l.c.i. k-variety. Consider the tripl§, = (X, ix,, @x,), where i,
is the inclusion of X in X and ax, is the identification of V= Oxe; & ... ® Oxen With 'X\Xn/|>2<\xn- Then
the following are equivalent, a)., is an n-th order infinitesimal neighbourhood of Ynd b) X is a flat
A,-scheme.

Proof of Lemma 2.7.

We prove the lemma by induction on. We may assume thaX, is affine, X, = SpecB,), where B,
is an A,-algebra. Throughout this section for any<li < n we setA = Kley, ..., em]/m't1, B = B,®@a, A,
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Xi = SpecB).

In the case wheren = 1 we have thatm? = 0 so m is simply a k-vector space and an ideal %
is the same thing as k-subspace ofn. Conditions 1), 2) and 3) of the definition of anth order infinitesi-
mal neighbourhood are immediately satisfied, and conditénand 5) are equivalent. We have that is flat
if and only if for any subspace C m the mapn ®a, B1 — B; is injective. Now,n®a, By = n®yBp and the
above map is injective for any if and only if the mapm ®x By — B; is injective. But the sheafification of
this morphism is the morphisft? — Ox and since the mam ®x By — g, is surjective by definition, we see
that X; is flat overA; if and only if ax, is an isomorphism. This proves the lemma in the case whestel .

Now, let us consider the case where> 1: we want to show that if one of the two conditions a)
and b) hold then the other also holds. By the induction hygsithwe may assume thai, has the property
that X,,_; is flat over A,_1 and is ann— 1-st order infinitesimal neighbourhood with normal buni¥e We
note thatX, is then an infinitesimal neighbourhood if and only if the magm@ay, : m" @ Ox — Oy, is
injective, or in other words if the mam" ®¢ By — By is injective.

Now, let | be an ideal ofA,. Since B,_; is flat over A,_1 we know that 0— B, ®a, (I N m") —
Bh®1 — By ®a, (I/lNm") — 0 is exact, sincd, | nm" and I /(I nm") are all A,_;-modules. We know
also that the maB,_1 ®a,_, |/l Nm" — By_1 is injective, sinceB,_; is A,_;-flat. In particular, the map
Bn ®a, | — By is injective for all ideals! if and only if the mapB, ®,, (I Nm") — B, is injective for
all ideals |. In other words,B, is flat over A, if and only if for any subspacen C m" we have that
Bn®a, n — By is an injection intom" - By. Since we have thaB, ®a, n = Bo®kn this is the case if and only
if B, ®a, m" — m"- By is an isomorphism. But this is the case precisely if S ) is an isomorphism,
that is, if X, is an infinitesimal neighbourhood. This completes the pafoEemma 2.7. O

3. CONSTRUCTION OF D(X}, 1, X2 ;).

Throughout this section, the following data will be fixed:
1. an n-th order infinitesimal neighbourhood of, X, = (X, ix,, ax,),
2. two extensions of(,, (X}, ,jt,,) and (2 4,i2,,).
The aim of this section is to construct the extensil?(wxﬁ+17xﬁ+1). We will now define categorie€(U)
and &(U) associated to the extensiofi&,, and X2, ;.

3.0.1 [DEFINITION OF CATEGORIES C(U) AND E(U).

DEFINITION 3.1. An eIementT?nH of the categoryC(U) is a 4—tupleﬂ~>n+1 = (P, U’nﬂ,fnlﬂ,fnzﬂ) where
P is a smoothk-variety, Pni1 = (Pny1,ip,. ., ap,,,) is an infinitesimal neighbourhood of orden ¢ 1) of
P with normal bundlew and f! , : UL, ; — Ppy1 and £2,, : UZ,, — Ppy1 are maps of schemes such that
(Pny1,fl,4) are embeddings ob}, , and the truncated extension mafjs and f? have the property that

froGn) t=1f2o (D)™
(We recall that the mapg: and j2 are the isomorphismg, : U, — U! from the n-th order truncation of
np1 t0 Upl)
If Prit = (P, Poya, fLq, T2 ) is an element ofe(U) then we will denote the map
fnl °© (j%)_l = fnz o (jﬁ)_l 2Un — Py
by f,. The pair (Py,f,) is then an embedding df(,.
DEFINITION 3.2. Let Pp.q = (P, Py, fl.,f2,) and Oni1 = (Q, Ont1, 9541, 95,1) be two elements of

C(U). A €(U)-morphism fromP,,1 to Qny1 is @ map of infinitesimal neighbourhoods: P11 — Qny1
such thatFof! , =gt , andFof2 , =g2 ..

11



(Recall that a map of infinitesimal neighbourhodés Pn 1 — Qn11 is @ map of schemes : P,1 — Qny1
such thatF*(IQ|Qn+1) = IP|Pn+1 )

For any pair of open set¥ ¢ U we define a restriction map); : C(U) — (V).

DEFINITION 3.3.  Let Pnq = (P, Pni1, fl 1, f2,1) be an element of(U). We definer))(Pn11) € C(V) as
follows:

Y (@Par1) = Z, Zog, Fla e

2
1) fn+1|V§+l)

where Z = P\(U \ V).
We now define a category of extensior®gU), in the following way.

DerFINITION 3.4. The members of(U) are exact sequences ¢f;-modules.

0-S, SE™Q, — 0.

Notation. Whenever dealing with an extension
0O-F—-E—-G—-0

we will denote the inclusion maf — E by ig and the projection mafE — G by =g.

DerFINITION 3.5. Consider two elements d@f(U),

0-SSETQ, -0,

TE/

0-S, BE ™, -0

A &(U)-morphism betweerE and E’ is a map of Oy -modulesf : E — E’ such that the following diagram
commutes

0— S —5-E

N

EngUHO

Note that all maps are isomorphisms in this category. Therani obvious functor)) : E(U) — &(V)
given by restriction of extensions dj,-modules.

3.1 THE CONTRAVARIANT FUNCTOR F(U) : C(U) — E(U) : DEFINITION OF iT(fT?nH).

We shall now construct a contravariant funct®(U) : ¢(U) — £(U) which will be compatible with
localisation (i.e.r)j o F(U) = F(V) orY.) This will be based on the conormal bundle which is constuic
below.

3.1.1 (ONSTRUCTION AND PROPERTIES OF THE CONORMAL BUNDLENS, .

DerINITION 3.6. Let Py, f,) be an embedding of an infinitesimal neighbourhoodJaf U,,, with normal
bundle W. The conormal bundle of,,f,), N3 , is defined byN; =1y, p, ® Ou.

We will need a good understanding &f;, in what follows. We start with the following proposition.

LEMmA 3.7. Let (P,,fn) be an embedding of an infinitesimal neighbourhood of W, with normal
bundle W. We then have that;N= ly,p, ® Ou.

12



Proof of Lemma 3.7.

We prove that for anyn > i > 1 we have thatlyp ®o,, Ou = lu,,p,, ®os, Ou. We consider the
surjective maprmitg : ly_,p,, — lujp- The kernel ofriyq is Iy e, Nlpe., - It Will be enough to show

that the ideal shealy,,p., Nlp ., is contained inlyp,,, - lu,, ., - But now by Lemma 2.2 we know that

(0 aipis N 1epe )/ (R < Tuppys) = Sy (as,)|u(Ly, - SymW*|y)
or in other words _ _
(U alpy N RRy.) = Sym ™ (agp, ) (L, - Sym(W))
= x(Ly, @ lp_,p,)
where here x @ lpp, ®o, Ip_,p — Ipp,, IS the multiplication map. Let us considex(a @ b) for

some a € Lp, = lyp, Nlpp, and b € Ip_,p. Locally, there is ana € ly_,p,, N lpp,, Such
that a'lp, = a and ab’ € Ip_,p,, such thatb/|[p, = b. We have thatx(a® b) = & - b’. Since
a € lyp,, and b’ € lp_,p,, C lyp,, We have thatx(@® b) € lyp,, - lu,,p.,,- It follows that
(uisaipis N PPy C lupyy - luigap, - This completes the proof of Lemma 3.7. O

We will now break N3, into N, and a part,Lp , arising because the normal bundle Bf in P,
may be larger than the normal bundle Of in U,.

DEFINITION 3.8. Let (P, f,) be an embedding of the infinitesimal neighbourhdggl. We define a map
rp, : Ly, — N3 as follows. Letl be an element oty : as by definitionLy, = (Ipjp, N1y, p,)/(Ipip, - lujp)
locally we can find an elemerite Ipjp, Nly,jp, such that the class dfin the quotientLyp, is |. The element
re. (1) is then the class of in the quotiently, p, ®op, Ou -

We note thatr, (1) is well-defined : ifl” is an alternative lifting of then (—1") € Ipip,-lu,p, C lujp,-luyjp,-

ProPoOsSITION3.9. Let (P, f,) be an embedding of the infinitesimal neighbourhdégd Let
7o, Np, = ly,p, @ Ou — Njip = lujp ® Ou
be the map induced by the restriction map ily p, — lujp. There is then an exact sequence

e,

x TPn *
0—Lp, = Np — NU|P — 0.

where r, is the map defined in Definition 3.8.
Proof of Proposition 3.9.

By Lemma 3.7, we know thaNj; = ly,p, ® Oy. We consider the exact sequence of ideals

0 — lpp, Nlyyp, = luypy o lyp — 0.
There is an induced exact sequence obtained by tensorifigtieét two right hand terms by
(e, N uggpy) =2 luyp, ® Oy = lyjp ® Oy — 0,
from which it follows that the sequence
0 — (luye, N lppp,)/Ker(rp,) =5 Ny =3 Nip — 0

is exact. But now by Lemma 2.4 we know that Ker() = lyp, - Ipjp, and (y,p, N lpp,)/Ker(re,) = Ly, .
It follows from the definitions ofrp, and rp, that 75, : Ly, — Ng, = Tp,. This completes the proof of
Proposition 3.9. O

This summarises the results we need on the conormal buNgle Our next step will be to construct

amapfs  :Nj — S associated to the data Gti1 = (P, Pror, fh 1, T200).
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3.1.2 (ONSTRUCTION OF THE MAP ff;,n+1 : N3, — . Our aim is to defineff;,nﬂ(ﬁ) for any
B € Nj = lyp, ®Oy. We will in fact define a mapﬂsn : ly,p, — Su which we will then tensorise
with Ou.

DEFINITION 3.10. LetX,, X}, , and X2, , be as above; let) be an open set iX and let Pni1 be an
element ofC(U). Let 3, be a section of the sheaf, |, over an affine open subset bf,. There are surjective
. 2.
maps of coherent sheaves : Iy p,,, — lu,p, @and 72 :lyz 5, — lyp, and we letfy, € ly: .,

and B7.; € lyz,p,,, be sections such that'(8.,) = Bn: we then have thatd,, — 52,,) € lpp,,,- We
define a map of sheaves, ., : ly,p, — Sym(V*)|lu = Sy by

F5,(60) = Syt ((Synt e, ) (B30 — )l
where f here denotes the pullback mdp : W*|y — V{jx*.

LEMvmA 3.11. The mapfs ., is well-defined.
Proof of Lemma 3.11.

We have to prove that the element SYitf:((Syntasp,,,)" 2 (8L, — 82,1))|u is independent of the
choice of g,, and f2,,. Let g%, and %, be another possible choice. We setl(, — gt;) = &
and (2., — #2,,) = 6%: we then have tha8' € lpp, ., Ny, p,.,- By Lemma 2.2, if§l is the class ofs'

in the quotientlp b, /lujp - Ip,jp,,, then we have thad' € SynT(ayp, ,,)|u((Lp, @ SynT(W*))|y . It follows
in particular that Sy (f*)(Sym" ™ (asp,,,)~%(6")|u = 0. In particular,

Syt (Sym™ Hag,,) 2B 1 — B2 )|
= Syn3(E)(SynT Hag,,,) "By + 0 — 8211 — 3D)|u

= SynTH(f)(Sym Haw,,.) (Bt — Bre))lu-
This completes the proof of Lemma 3.11. O

DEFINITION 3.12. LetX,, X%, and X2,, be as above. Let) be an open set irX and let Poi1 be
an element ofC(U). As & is an Oy-module, we can definé; to be the unique map oby-modules
fj;nﬂ Ny p, ®O0u = Nﬂén L Sy such thatf@n+1(g) = fﬁml(a) for any sectiono € Iy, p,. Here,o denotes
the class ofo in the quotient sheafy p, @ Oy .

3.1.3 (ONSTRUCTION OF THE EXTENSIONH"(j’n_,_l). We now show how to associate to the embedding
(Pn, fn) of U, a canonical exact short sequence @j-modules.

DerFINITION 3.13. LetX,, be ann-th order infinitesimal neighbourhood of with normal bundleV, let
U be an open subset of and let (P,,f,) be an embedding ofl,. We denote byEy, the following short
exact sequence o)y -modules.

1) 0—N; 20k ©0y 5y — 0.

where f is simply pull-back along the map of schemgs: U, — P, and dp, is the map defined below.
(Of course, we have not yet established that this sequenegaist.)

DEFINITION 3.14.  LetX,,, X},, andX32,, be as above. Let) be an open set iX and letd : Iy p, — Qf,
be the map of sheaves given by derivation. Tensoring on tite by Oy we obtain a map
d® Oy : ly,p, — O, @ Ou.

Unlike d, d ® Oy is an Op,-module map, since for any € Iy, and anyf € Op, we have that
d ® Oy(fu) = fdu+ udf = fdu becauseudf = 0 in Qf ® Oy. As Qf ® Oy is an Oy-module there
is a unique Oy -module map

dp, : lu,p, ® Ou = Nj — Qb ® Oy
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such that for any sectionr of Iy p, d® Oy(c) = dp,(7), where is the class ofo in the quotient sheaf
ly,p, ® Ou-

It remains to be seen that the sequeltte is exact.

PROPOSITION3.15. Let (Pp,f,) be an embedding with normal bundle W of an n-th order infiiritas
neighbourhoodl, of U with normal bundle V. The exact sequencg, Eefined above is then exact.

Proof of Proposition 3.15.

It is only necessary to prove that the malp, is injective. We consider the following commutative di-
agram, whose middle row is simplisp, .

0 0 0
i
0 Ly, Wy V* 0
FPn d
* dop, f
0 N, Q|1:n®OU*>QLlJn®OU —0
i%n i%n i
* f*
0 NG P —2> QL ® 0y o 0
iﬁn
0 0 0

In the above diagramf is the restriction of the maf, : U, — P, to U. Suppose that is a section of
Nj, such thatdy (o) = 0. We then have that}, o dg (0) =0 sodoij (0) = 0. As the bottom row of
the diagram is exact becau&¢ is a local complete intersection we have thgt(c) = 0. As the left-hand
column is exact by Proposition 3.9 there is a sectior Ly, such thato = rp (1). We considery as an
element of W*, which is possible becaudsy, is defined as a sub-bundle ¥¥. We have thatd(x) = 0 and
it follows from Lemma 2.3 thatu = 0. This completes the proof of Proposition 3.15. a

We now define the extensiofi(Pn;1).

DEFINITION 3.16. Let§>n+1 = (P, ﬂ?nﬂ,f,}“,fnz“) be an element o€(U) and let (,,f,) be the associated
embedding ofU,. The extensionF(P) is defined to be the pushforward alorlign+1 of the extensionEgp,
defined above.

We recall the definition of the pushforward because it willibgortant in what follows.

DEFINITION 3.17. In any abelian category, let-0 F -5 E 5 G — 0 be an extension 06 by F. Let
f : F — F’ be a morphism fromF to F’. We then define the pushforward & by f to be the following
extension _
0-FEFEG-0
where E/ = (f(a),O):'(:C/J,ei?ja))VaeF’ ier(n) = [(n,0)] for any p € F' and 7g[(p,v)] = me(v) for any
(u,v) € FF®E. If E' is the pushforward of an extensioB under a morphismf : F — F’ then for
any ec E and f’ € F we denote the class of/f’) in the quotientE’ by [e f']g .

In the particular case above, this means tﬁ@nﬂ) is the extension

(5 1 T (5
0—>SUUE’+1) S D (2, ® Ou) ‘U’—QH)Q%J@OU—»O
(f3,,,(0),0) = (0,dp, (0))Vo € N5, n
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where w55 ., ([S,w]) = w|u, and iz, (S) = [s,0].

DEFINITION 3.18. Let U~>n+1 be an element of2(U). For any choice ofse §; and w € Q,%n ® Oy we
SUB(Q,®00)
5., 60=0.dp,()Vo NG,

SJ@(SZP ®0y)
5 11(9),.0)=0,d», (0))VoeN; |

denote by §, w]g:n+1 the class of § w) in the quotient?(ﬁ’n+1). The inclusiong;, —

— Qu given

given by s — [s,0]5_ e will be denoted byis " and the projectiong
by [s, w]j,n+1 — wly, will be denoted by7rg>n+1.

3.2 (QONSTRUCTION OF THE FUNCTORTF : G(U) — E(U) : CONSTRUCTION OF F(F).

Suppose that we have elements&t)), P = (P, Pny1,fL1,f2 1) and Q = (Q, Qn1, 9.1, 92.1) - Consider
a mapF : P — Q which is a €(U)-morphism. (Recall thaF is just a mapF : P17 — Qny1 satisfying
various compatibility conditions.) There is an induced oamative diagram

do
0N, %oy so,

a5
- -
d, f*

0*>N* Q ®OUL>QU*>O
The following lemma holds.

LEMMA 3.19. Let P = (P, Poga, Tl ,f2.) and 0 =(Q, Ont1, 92,1, 95,1) be elements of(U) and let
F:? — Q be aC(U)-morphism. We have then have th@m =f3.,,0F N5 — &

Proof of Lemma 3.19.
We consider an element ¢ N, = lujq, ® Ou = IU1 lQnis ® Oy = |U2 1100 ® Oy. Let 61 be a

lifting of o to IU1 Qs @nd let 02 be a lifting of o to |Uz Qnys - We have then thaf* (1) € I
and F*(a7) € Iug Pos , by definition of €(U)-morphisms. By def|n|t|on

+1‘Pn+1

(F*0) = synl4(f ) Sy ag,,,) " (F*(62) — F*(G2))lu-

?+l

Since F is a map of infinitesimal neighbourhoods, we have tRato aq, , = ap, ., SO
f5,,,(F*0) = Synf ™ ({)(Sym X (ag,,,) 261 — 62))lu = fa,,, (0)-

This completes the proof of Lemma 3.19. |
We are now in a position to defing(F).

DEFINITION 3.20. Let an+1 and Qn+1 be two elements of(‘Z(U) and letF : Ppy1 — Qnu1 be a
C(U)-morphism from?n+1 to Qn+1 The mapJ(F) : 9(Qn+1) — 3"(:]3“+1) is then defined by

FFE)s wls,,,) = [sFWls,,,

foranyse § and anyw € Ql , ®0y. (This map is well-defined on the quotient becatﬁge oF*))

Tn+1

We note that~the mag : C(U) — E(U) is indeed a contravariant functor because-if iTJnH — 53%1
and G: Rpy1 — Qnyg are C(U)-morphisms then for ang e § and w € Q<13n ® Oy we have that

FFoQ)sula, , =[s(FoG) uls,, =[G F Wj,, = FO)ISsF Wi, = FOG) o FEIswls,,,-

Further, since the above construction is entirely local weehthatr), o ¥ = For). This completes the
construction of the functoff : C(U) — E(U).
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3.3 THE CANONICAL ISOMORPHISMS IN C(U).

Throughout this subsection we fix two elements @), Pn;1 and O,,1. The aim of this subsection
is to construct a canonical isomorphism between the exIBBST((T’nH) and 9(@n+1). The first step will
be to create products in the categofyU). To do this, we will need first of all products of infinitesima
neighbourhoods.

DEFINITION 3.21. Let P = (Pn,ip,,a9,) and Q = (Qn,iq,,a0,) be infinitesimal neighbourhoods of
order n > 1 of varieties P and Q with normal bundlesW, and Wq respectively. We denote the
projections fromP x Q to P and Q by np and mg respectively. We define the producf(x Q) to
be the infinitesimal neighbourhood of order of P x Q with normal bundlers(We) © 75(Wg) given by
(Zn,ip, X iq,, ¢ o mp (ap,) ® 7§ (aq,) Where hereZ is the subscheme oP, x Q, defined by the ideal

n+1 . . .
| QP Qn and ¢ is the isomorphism

¢ mp(lppp,/13p,) @ To(lQ1an/1810,) = 1PxQIPaxQu/ 1BxQlPaxQn
given by pullback alongrp and mq.
We can now define products i6(U).
DEFINITION 3.22. LetPn,; = (P, Pny1, foya, f214) and Qni1 = (Q Qn41, 98,1, 92,1) be two members of
C(U). We then define the produdfnﬂ x Qni1 as follows:
j)n—kl X Qn—&-l =(PxQ,Pny1 x Qr1+lvfnl-~-1 X g%+1,f,12+1 X g§+1).
For any pair P,.1 and Q,,1 there are projection maps;, , : Por1 X Qny1 — Pnyr and Ty

Prs1 % Qni1 — Qnys which are €(U)-morphisms. It follows that there are induced contravarienaps
g’u(ﬂ'j;nH) . 3:(‘:])n+1) — EF(Tn-&-l X Qn+1) and 3"(77'@““) . ?(Qn-t,-l) — Sr((])n_,_l X Qn+1).

_ DEFINITION 3.23. Let Pny1 and Qi1 be two elements of(U). There is then a canonical isomorphism
904t F(Boy1) — F(Bnya) defined by

a, _
J@nﬁ = F(ma,,,) Lo F(nsp,, ).

By construction, the isomorphisrﬂg”ﬁ is compatible with restriction to an open subset. We need the
following proposition:

PrROPOSITION3.24. Let an+17 Qn+1 and Rnﬂ be elements of(U). We then have thatyj+1 :R":ll =

Ont1
Jar
Tn+1

Proof of Proposition 3.24.

Consider the following diagram:

Pt X Qnp1 X Rnga

N A

iPn+l X Qn+1 Qn+1 X Rn-&-l Tn+l X :Rn-s-l

N AL AL

We have thatry o 13 = 507, mgom = 7o and mg o mp = g o 3. It follows that F(w3) o F(ms) =
F(m1) o F(ws), F(mwy) o F(me) = F(mo) o F(m7) and F(my) o F(mg) = F(ms) o F(mg). Re-arranging, we see that
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F(m1) "t o F(ms) = F(ms) 0 F(ma) *
F(ms) o F(mp) = F(me) o F(mg) ~*
F(m2) "t o F(my) = F(ms) o F(me) .
Multiplying, we get that
Id = F(ns) 0 F(ma) "1 0 F(mg) 0 F(mg) ™ 0 F(rr7) 0 F(me) ™
which we then write as
F(ms) " 0 F(m6) = F(ma) " 0 F(mo) 0 F(mg) ~* 0 F(m7)

or in other WordsJﬂ%n+l = JS%”“ o121 This completes the proof of Proposition 3.24. O
n+1 n+1 ':PnJrl

3.4 DEFINITION OF D(X},;, X2, ).

We start by checking thaK can be covered by open sets such tBdt)) is non-empty.
LEMMA 3.25. Let U be an affine open set in X such thafyMs trivial. Then C(U) is not-empty.
Proof of Lemma 3.25.

Let P be a smooth variety and lét: U — P be an inclusion ofU in P. Let W be a trivial vector bundle on

i 1 =1 2
P whose rank is the same a&. Choose elementst, ... el € |u\ug+1 such that{e'} C 'UIU%+1/|U|ug+l forms
i i 2 2 2 2 _ .1
a basis of sections OfU\u;H/'U‘U%H- Choose elementss, ..., ef € lujuz,, such thatef|y, = €|u,. These

choices give rise to maps; : Uj,, — Specf,1) where Ay 1 = Kle,...,&]/m" ! and by Lemma 2.7
the choice of the maps; turns ULH into a flat A, 1-scheme. Moreover, by choice of thjes, m1|u, = 72|u, -

Now, letf : U — P be a closed immersion df in a smoothk-variety P and considelP,.1 = PxSpecf\;1).

By Lemma 2.7 Pni1 = (Pny1,ip,.,,ap,.,) iS an n+ 1-st infinitesimal neighbourhood oPpn; ;. It will

be enough to show that there are flat subscher\;l,i,e;;:l of Pny1 such that there are isomorphisms of
Anii-schemes¢; : U ., — Vi, such that ¢iy, = ¢2[u, and ¢ilu = f. We start by recursively
constructing flat subscheme¥;, ¢ P; = P x Specf;) which are isomorphic toU; for any i < n.
Suppose thatVi_; exists and is isomorphic tdJi_,. We then know by [10] that flat subschemes of
P, extending V,_; are a torsor over Hom(’jlp,m‘/mi+l ®k Qu), that isomorphism classes of fla;-

schemes extendiny;_; are a torsor over EXQJ,m'/m ™! @, Oy) and that the forgetful map sending
a flat subscheme oP; extending Vi_; to its isomorphism class as a flat scheme is the boundary map
S5 Hom(N[j‘P,m'/m""l @k Ou) — ExtH(Qf, m'/m+1 @, Oy) associated to the exact sequence

0—>NG‘p—>Qé®Ou—>Qa—>O~

But now sinceP is smooth andU is affine we know thaty is a surjection. In particular, there is aq-flat
subscheme of;, Vi, which extendsV;_; and which is isomorphic as aA;-scheme toU;. Iterating this
procedure, we obtain a flah,-subscheme of, which is isomorphic toU,. The same argument then also
shows that there are flat subschen¥s, and VZ,, in P13 which are A,;1-isomorphic toU}, ; and UZ, ,
respectively and which satisfy all the required conditiofibis completes the proof of Lemma 3.25. O

We now choose an open affine coveritg of X such thatVy, is triy_i‘al for eachi. For eaghi, we
choose an elemert®}, , = (P, P\, ,,f1 | f2)) of C(U;). We denote byP!,, the elementry(Fi,,) in
CUiny).

DerFINITION 3.26. Let X, be an n-th order infinitesimal neighbourhood of with normal bundleV.
Let X%, , and X,1 be two extensions oK to n+ 1st order, letU; be a covering ofX by open affines
such thatV|y, is trivial for eachi. For eachi, let P, be an element of2(U;). To the choice of elements
{P..1} we associate the unique extensiGi(P;_ ;) € £(X) such that:
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1. There is an isomorphisrajy. D(fP he1) — ?(TnH)

2. The mapJ : 5P, )y, — 9(3’n+1)|uu given by J = S, oSyt satisfiesd = J~,,”“.

n+1 n+1

It follows from the various compatibilities proved aboveth

PROPOSITION3.27. Let X, X}, ,, X2,, and U be as above. Le(ﬂ?nH) and (Qi nt1) be two different
choices of elements df(U;). There is then a unique isomorphism

D(Qhia) .
JD(TI * D(‘:P +l) - D(Q +l)

such that over Uwe have that 8§, 03 D) 3*1 J~”+1

DPFL) TP, P,
Proof of Proposition 3.27. We defineJ 2@ n+1)| by JD(Q”“)| s=t oJ O g . It will be enough
p &l D@, DI, Q' Pl P g
to show that these definitions are compat|ble on the mthx:U.,, or |n other Words that
—1 n+1 —1 an+1 -
Sé'n oJ~ osy. —S@»Hlo;ljjjmrl OS?JnH

or in other words that

n+1 ~n+1 n+1 n+1
J@ oJ?, Jj,,. _Jjbj :

But this has already been established in Proposmon 3.24’% d’ompletes the proof of Proposition 3.27]

DEFINITION 3.28. Let X, X%, X%, , and U; be as above. We identify any pair of extensions

of the form D(UB‘,]H) and D(Q‘nﬂ) using the isomorphisms]D((T,”“) After this identification, we set

DL, 4, X2, ;) = D(PL,,) for any choice of element§i,; € C(U;).

Throughout the rest of the paper, we denoteég)n/+1 the isomorphism

DO, 1, %2, )l — F@.0)

for any element? .1 € C(U;). Having thus constructed the elemeP(X} ;,X2,,), in the next section we
will show that it has the required properties

4. TORSOR CHARACTER OFD(X}, ;, X2, ).

To complete the proof of Theorem 1.10, it remains to provefttiewing.
1. D(XE, 1, X2,,) = S®Q as an extension if and only &}, , and XZ,, are isomorphic extensions &€,.
2. For any triple of extension&(t ;, X2, and X3,, we have thatD(X}, . X3, ) = DXL, ,, X2, ) +
DGR 41 Xi0)-
3. That if one extensior(}, , exists, then for anyE € £(X) there is anX2,, such thatD(X},,,X2,,) ~E
We will begin by proving 1. In fact, we will prove something mo namely that there exists a canonical
correspondence between splittings B{X}, ,, X2, ;) and isomorphisms betweeli},, and X2, ;.

4.1 THE CANONICAL CORRESPONDENCE BETWEEN SPLITTINGS OED(X},;, X2, ;) AND ISOMORPHISMS BE
TWEEN X}, , AND X2, ;.

Throughout this secuonJCnJr1 and xﬁﬂ will be a pair of fixed extensions ok’,,. We start by setting up
some notation.

DEFINITION 4.1. Let X, be ann-th order neighbourhood oK and let X, , and DCn+1 be a pair of
extensions ofX,. For any open set irX, U, we let R(U) be the set of splittings 01D(un+17 n+l) and we
let J(U) be the set of isomorphisms of extensiopsy : U, , — U2, ;.
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In this subsection we will prove the following proposition.

PROPOSITION4.2. Let X, be an n-th order neighbourhood of X with normal bundle V andde, ;
and X2, be extensions of(,. Let U be an open set in X. There is then a canonical bijectibrsets
b(U) : J(U) — R(U) such that for any Mc U and je€ J(U) we have that &/)(j|v) = (b(U)())|v -

REMARK 4.3. Note that since the mapd — R(U) and U — J(U) define sheaves of sets, it will be
enough to prove the existence of the mb@J) for all sufficiently small open set&).

Proof of Proposition 4.2.

By Remark 4.3, it will be enough to prove the existence lff)) for any U such that G(U) is not
empty. LetU be such an open set iK and let ‘Pn+1 be an element of2(U). We introduce setsT(iPnH)
and R(anH).

DEFINITION 4.4, LetU be an open set itX and let U~>n+1 be an element of2(U). '[he setT(ﬁ’nH) is
the set of all Oy -linear mapst : Q,%n ® Oy — S such thattodyp, = fﬁml- The setR(Pn.1) is the set of

splittings of F(Pns1).

There is~ a canonical isomorphisr&x;g,n+1 : @(ugﬂ,uﬁtl) — 5—"(5’”+1). We have therefore a bijection
(sjsnﬂ)* ' R(Pny1) — R(U) We now construct a bijectiom(Pn41) : J(U) — R(Pn11). Recall that

Su @ (95, ® Ou)

F(Pny1) = (fi>n+1(0)’ 0) = (0,dyp,(0)) Vo € Nign.

An elementr € R(Pn.1) is therefore a map : Sy @ (8, ® Oy) — S such that

1. r(s,0) = s for any sectionse S;.

2. for any sectiono € N3, we have thatfg,n+1(a) = r([o,d(pn(O')]j)n+l).

Note that by 1) the map is characterised by the mag(r) : Ql ® 0Oy — S given by t;(r)(w) = r([0 u}]j;n+1)
for any w € Qp ® Oy. We note that 2) is equivalent to the fact that for amye Nj we have that
fz.. (@) = t(r)(dp,(0)). In other words, the map(r) is an element ofT(ﬂ’nH) We now prove the
following lemma.

LEMMA 4.5. The map {: R(5>n+1) — T(§>n+1) given by r— t;(r) is a bijection.
Proof of Lemma 4.5.

We construct an inverse map, by letting ri(t) be the splitting given byri(t)[s, w]s

~ fPn+1
anyt e T(Pny1), anyw € Q1~ Bois ® Oy and anys € . Note that for any section € Nj,_

r2®[dg, (0), ..., (5., = g, (@)) — T, () = 0

by definition of T(i’nH) so ry(t) is a well defined splitting of?(ﬁ’nﬂ). It is immediate thatry(ti(r)) =r
and ty(r1(t)) = t. This completes the proof of Lemma 4.5. O

= s+ t(w) for

We now construct a bijection betweed(U) and T(ﬂ~>n+1). An elementj,.1 € J(U) is determined by
Jper Ouﬁﬂ — OU%H’ the corresponding map of algebra sheaves.(‘A;s is a quotient algebra sheaf of

Op,,, this can be seen as a map of algebra shegyes: Op,., — Obm such that Keif, ;) = ly2
and for anyf € Op,,, we have thatj; (f)|u, = f|u,.

n+1‘Pn+1

Likewise, any sheaf map;,; : Op,,, — OU%+1 such that Kei, 1) = Iuﬁmpn+1 and for anyf € Op,,
we have thatj;;(f)|u, = flu, gives rise to an elemerj, 1 € J(U). Given such a magn,1, we consider
the mapd(jnt1) : Op,., — Su given by
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d(n+2)(F) = (Syw+laug+1)_1(_f|ug+l +nta())-

Note that sincej;;, ;(f)|u, = flu, we do indeed have that—(|un1+1 +inp1(f)) € luguz,, = Sym1(v*). The
map d(jns1) is a derivation because for any sectiohg € Op ., we have that

d(in+2)(Fg) = (SynT e )" H—Fgluz, | +ina(f9))

1 n+1

= (Symane ) Hglus, +nsa(@) + (Symays )N - Jia(9) + ia () - ia(o))

n+1

= d(in+1)(9) +insa(9) - (Sym g ) HE +jna(F))-
=Tf-d(in+2)(9) + insa(9) - dlns2)(F).
Since S, is an Oy-module, andj’_ ;(g)|u = glu, it follows that

d(n+1)(fg) = - d(int2)(9) + g - d(n+2)(F).
By the universal property of derivations, it follows thaeth is a uniqueQy -linear map,
ta(jny1) : 95, © Oy — Sy

such that for anyf € Op, ., we have thaty(jn1)(df|u) = d(jn2)(F). We considgr the map : J(U) — T(iT?nH)
given by tp @ jnr1 — t2(jnr1). We now prove thatt(jny1) is @ member ofT(Pn11). Let o be a section of
Njf,n+1 = ly,p, ® Ou = |U§+1|Pn+1 ® 0y = Iugmpm ® Oy . Locally, we choose sections; € IU%+1IPn+1 and
o € IU§+1|Pn+l which lift . We may assume that;|p, = o2|p,. By definition, ta(jn+1)(dp,0) = d(jnt+-1)(02)-
We know thato, € Ker(jy, ;), and henced(jni1)(o2) = —(Syni‘*lau@)‘laﬂum. But now, by definition,
f5,,,(0) = SynTH(EN(Syn™* tap,,,)~(o1— 02))|u, where heref; is the pull-back magf; : W*|y — V*|y.
We know that Sy (f)(Symtagp,, )"y = (Serf]Hau%H) Loflr,, where here the maff}, : Ip,p,., —
lu,juz,, is the pull-back map. It follows thaty (o) = (Syrﬁ‘*lauﬁ“) Lo flr (—02) = to(int1)(dp,0). We
therefore have thaty(jni1) € T(Pni1).

LEMMA 4.6. The map 4: J(U) — T(Pn1) given by ji1 — ta(ini1) is a bijection.
Proof of Lemma 4.6.

We will do this by constructlng an explicit inverse magp;; : T(ﬂ?nH) — J(U). Let t: Q,% ® 0y — &

be an element ofT(Pn.1). We let joi1(t) be the map whose associated pull-back map is given by
1@ = v\ul + Syrﬁ‘“(aul )(t(dv)) for any v € Op,,,. We need to show thaj; ; is indeed an
algebra morph|sm tha]l;*;Jrl(t)(f)|Un = fly, and that Ker_ (1) = Iz

n+1|Pn+1
The mapj;_ ,(t) is an algebra morphism because

i ®@w) = v-w + Sy agg J(Aww)) = vw + v - Sy ag (Hdw)) + w - Sy Hagg,,)(t(d)

= a1 ) - JraO@) — SynT ™ age )(E(dv)) - Sym o )(t(dw)) = s (O©) - jnra®)(w)
where the last equality follows because giﬂ‘r(aul )(t(dv)) and Syn’i“(aul )(t(dw)) are both contained
in |un|u; Moreover,j; 1 (t)(f)|u, = flu, by deflnmon It remains only to show that Kgf, ,(t) = IU§+1|pn+1.
Suppose that;|U%+l+Syrﬁ‘+1(auﬁ+l)(t(dv)) = 0 for somev € Op,,, ; we then have that|y, = 0. We choose
v1 € lyt, ey and vy € luz, ,1Poia such thatvy|p, = v2|p, = v|p,, SO that—v|ué+1 = Syni‘ﬂ(auﬁﬂ)(t(dv)) =
Serle(au%H)(fj;nH(U)) = (v1 — ’Uz)‘un1+l. (Here by v we mean the class ob|p, € ly,p, in ly,p, ® Ou.)
This implies that ¢ — vz)|un1+1 = 0. Sincev — vy|p, = 0, we have thaty — v, € Ip, N1y But we
know that

|Pn+1 +1‘Pn+1

oo N1t e /(UlPys * IRoPass) = SYNT ap,  (Ly, - Synf'(W]y))

n+1

= Ieaipoes Nz, pyys/(UjPrs - TRy P)-
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It follows that @ — v2) € Iz

. IP., @nd hencev € 1z p ., since by definitionv; € Iz .
n n n

The mapst, and j, 1 are easily seen to be inverses. This completes the proof wiriae 4.6. |
We therefore have a bijection(Pn.1) : J(U) — R(Pnr1) given by b(Pni1) = r1ots.
LEMMA 4.7. For any elementsT?nH and Qn+1 in ¢(U) we have that ’%H o b((T>H+1) =S5 1 © b(QnH)

Proof of Lemma 4.7.

We have to prove tha(Pn1) = (s;1+1)*os’én+lob(én+1) or alternativelyb(Pn 1) = (sQnHosglﬂ)*ob(QnH).
This can be re-written as i
b(®n+1) = (35")" 0 b(Gnia).

In other words, we have to prove that for any.1 € J(U) we have that
b(®n+1)in+1) = B@ns1)Gns1) 0 357

considered as maps froffi(Py1) to S, . We start by proving that i : Ony1 — Pny is any €(U)-morphism
then for anyjn1 € J(U) we have thatb(Pni1)(int1) = b(Qni1)(nr1) o F(F). We recall that for anys € Sy
andf € Op,,, we have that

b(@ns1)(ns IS df © OUL,.., = S+ to(df|u) = s+ Syn* 7 o (Syni™ag, )" (~Flus | +inah).

n+1

Likewise, for anyse€ § andf € Op,,, we have that
b(Qn+1)(in+1)oF(F)[s. dfOul3,,, = b(Qn1)Gnt2)ls, AF f@OU]s5,,, = s+SynT ™ (f)(SynT ™ ag,, )~ (=FFluz  +inaF 1)

But by definition of ¢(U)-morphisms we know thaF*f|U%+1 = f\Unl+1 and F*f|u§+l = f|Uﬁ+1, which implies
that j;,,F*f = j;4f . In particular it follows that

b(Pn11)Gnr1) = B(Qny1)(inta) o F(F).

By definition Jﬂ?i = 5’(an+1)—10?(an+1) so it follows that for any pairﬂ?nﬂ, Qnﬂ) of elements inC(U)
we have that

b(Pn1)(in+1) = B(Qn1)(ns1) 0 35"

This completes the proof of Lemma 4.7 O

We now setb(U) = s;, O b(ﬁJnH) for any U such thatC(U) has an eIementTJnH. The local nature
of this map follows from the local nature of all the constioos involved. This completes the proof of
Proposition 4.2. |

There is a special case of this isomorphism WWQh_l = xﬁH and jnh1 = Id.

DEFINITION 4.8. Let X%, be an extension of a-th order infinitesimal neighbourhood 6f, of X, and
consider the extension _
1

pxt xl Tpcl, xl )
+1 +1 +1 +1
0—S =" DOk, XL ) R ¢}

b(X)(Id)®.
P 0y, )
—

We denote byr,q the isomorphismD(XE, |, X2, ,) " Se 0.

Let now Pyyq € C(U) be of the form B, Pnyq, L. T2 ). The mapryg o 551“ CF(Prsr) — U@ Qu is
then given by the formulaq([s, w]@w) — (s, w|Un1+1) foranyse §; andw € Q,%n ®0y.
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4.2 THE ISOMORPHISM D(X} 1, X3, 1) = D(XE, 4, X2, 1) + D(XZ, 1, X3, ).

In this section we will construct a natural isomorphism begw D(XE, 1, X3 ;) and DXL, ,, X2, ;) +
D(xﬁH’ x§+l)-

In what follows we will need a certain number of facts on sunmsl aifferences of extensions, which
we now summarise.

4.2.1 SM AND DIFFERENCE MAPS ON EXTENSIONS We place ourselves in an arbitrary abelian category
C: let F and G be two elements of this category. Whenever-O0F — E — G — 0 is an extension in the
categoryC the inclusion mapF — E will be denoted byig and the projection majg — G will be denoted
by me. Let E;, E, be two extensions of and G,

iy B

O—)F—)Elﬂ—)

ig, TE,

O—-F=E,—=G—0
By definition, E; + E; is the spaceU(Ey, E;)/V(E, Ez) where U(Ey, Ep) is defined by

G—0

U(E1, E2) = {(e1, &) € E1 @ Ez|mg, (€1) = 7, (&) }

and V(E1, E,) is defined by
V(E1, Bz) = {(ie,(f), —ig,(F))[f € F}.

For any e, € E;, e € E, such thatrg, (e1) = mg,(e;) we write [e1, e] for the equivalence class if; + E;
of (e, e). There is an exact sequence

i +Ey TE,+Ep

0—-F “PE+E 57°G—0
where by definition
ig+£(f) = [ie,(F), 0] = [0,ie,(F)], and e, e, ([€1, &]) = 7e,(€1).
Note that if we have two extension mags : E; — E; and ¢, : E; — E;, then the sum
1D By Ey, — E;®E)

descends to an extension map
¢$1+ ¢2  E1+ E; — Ef + Eb.
We note further that if we consider the trivial extensith® G, then there is a natural isomorphism
(F ® G) + E — E given by
[(f,9). €] — ie(f) +e
By abuse of notation, we will frequently identify the extems F ¢ G) + E and E

More generally, given extensions;, E,, ..., E,, we have a multiple sum extensiok; + E, + ... + E, =
U(Ey,...Ey)/V(E:...E,) where by definitionU(E;...E)) C E1® ... ® E, is defined by &,...,&) €
U(E;...E) if and only if g, (e1) = 7g,(e2) ... = mg,(en) and V(E; ... E,) is given by

V(E:...En) = {(ig,(f), .. .,ig,(f))[f1, ..., Tn € F,Zfi =0}.
i
We denote the equivalence class of,(..,e,) under this map by d,...,&]. For any permutation
o of [1,...,n] there is a canonical isomorphisnE; + ... + E, — Esq + ... + E; given by

[en,....&] — [&),---;€m]. We will therefore considerE; + ...+ E, and E,q) + ... + E;n to be
equivalent. We have an extension.

0-F*S"™E 4+ 4B ™5™ G_o0

given by ig,+ . +g,(f) = [ig,(f),0,...,0] and g, 4. +g,([€1,-..,&]) = 75 (g) for all i. Moreover, given an
extension
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0—>F EESEG—0

we can define an extensionE in a similar way: —E is equal toE as an element of the categofy, the
extension maps are given as follows

i E——IE

0—>F —EEEG—0.

We define the difference of extensiong; — E,, to be equal toE; + (—E,). Explicitly, this space can be
constructed as followsE; — E; is the spaceU’(E;, E;)/V'(E;, E;) where U'(Ey, Ey) is defined by

U'(E1, E) = {(e1, &) € E1 @ Ep|mg, (1) = 7g, (&)}

and V'(Ey, E) is defined by
V'(Eq, B2) = {(i, (). ie, () If € F}.

We will write [er, &)’ for the equivalence class i&; — E, of (e;,&). There is an exact sequence
0—F"“®E _E ™% G0
where by definition
ie,-6(f) = [ie,(f), 0]’ = [0, —ig, ()], 7, -k, [€1, €] = 7E, (€0).

We will need the contraction maps in what follows.

DEFINITION 4.9. Let E be an extension of by G in an abelian categoryC. We then denote bycg
the contraction mage : E— E — F @& G given by

len, &] — (ig'(e1 — &), me(er)).

4.2.2 LOCAL CONSTRUCTION OF THE CANONICAL ISOMORPHISM Throughout this section an-th order
infinitesimal neighbourhood oK, X,, and three extensions dt,, X%,,, X2, and DCn+1, are fixed. For
any open selU C X and any pair of distinct integersj € {1,2, 3} we define a categorg'/(U) as follows.

DEFINITION 4.10. An elemenlﬁDiJ \q of €Y(U) is a quadruple R, Pn. 1, ! 1 nJrl) where P is a smooth
variety, Pn11 is an f + 1)-th order infinitesimal neighbourhood d? wrth normal bundleW and each
fl 11Ul — Paya is @ scheme morphism such that:
1. Pnya, n+l) is an embedding ob¥,, for k=1i,j.

2. fl—‘,-:|.|Un - I’1+1|Un' ]

Given two elements ofe'i(U), P L= (P, Paya. Bl nJrl) and Qn+1 = (Q,Qn11, 11, Ghie), @ CH(U)-
morphism fromiPn+l to anj+1 is a mapF : Pnhy1 — Qni1 such thatF is a map of infinitesimal neighbourhoods
and Fofk , =gk | for k=i orj.

We will prove the following proposition.

ProPOsITION4.11. Let X, be an n-th order infinitesimal neighbourhood with normal lenV and let
(L, 1, X2, ,,X3,,) be three extensions df,. There is then a canonical morphism
Pz D(:)Cner n+l) + D(anrlv n+1) - D(:)Cner xﬁ+1)~

n+1° x3

2
X n+1

n+1’

Proof of Proposition 4.11. In order to construct this isomorphism, we will need an estracture which
we will call a triple.

DEFINITION 4.12. Let U be an open set ofX. A triple §’n+1 over U is given by a data set
(P, i]>n+1,fn+1,fnz+1,fr?+1) Where P is a smooth variety,P,.1 is an @+ 1)-th infinitesimal neighbourhood
of P and the maps:fnJrl : Up,y — Pnp1 are maps of schemes such that for each pgirthe 4-tuple
(P, 3’n+1afr'1+17 nJrl) is an element of¢"i(U). We denote P, iPnH,an, n+l) by iPn+l
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DEFINITION 4.13.  Let Poq = (P, Poya, fhq,f21,F31) and Q = (Q, Qnya, ghi g, 62.1,93,1) be triples
over U. A map F : Phy1 — Qqp1 is said to be a map of triples if for all pairsj € {1,2,3} the mapF is
a C"(U)-morphism. The mag- considered as &'J(U)-morphism will be denoted"J.

Given a triple ﬂAJnH there are associated maps
fj;ﬁ,zl, fﬂgﬁsl, fi,#sl . Na‘;n -
and associated extensmrﬁ?n +1) ir”(fPn +1) and EF(an +1) By definition of the mapsijiﬂr | we have that
fz13 =fz1. + 5.5 . There is therefore an induced map of extensions
n+1 n+1 n+1
Py - F(P fl)‘f'ff( -El) - 9@ +1)

given by
¢5,,,([s1, 0] FL2,; [s2, w] 5>§f1]) = (s + =, W]ja;-jl)

for any choice ofs;,s, € Sy and w € Qf, ® Oy .

(We note that any elementey e;] of ?( fl) + 3‘( +1) e = [Sj_,w]_]j,lz , & = [Sg,wz]?zs , can be
written in the above form because of the condition tlrr@,tfl(el) = 7rg,z+31(e2) There are, of course several

choices ofs;, s, and w giving rise to different representations of the same elemérﬁ( +21) +S—"( +1)
we leave it to the reader to prove that the above definitiomdéependent of the choice of representation.)

DEFINITION 4.14. Let 33n+1 be a triple overU. We then Iet’(/)j)n+l be the map

LN DU i1, U y1) + DU, 1, Ud 1) — D(Usyq, D)
given by
Vb = S5y 0 95,1, 0 (S312, + S22

n+1

4.2.3 G.OBALISATION OF THE CANONICAL ISOMORPHISM To complete the proof of Proposition 4.11, it
will be enough to prove the following proposition.

PROPOSITION4.15. Let X, X%, ,, X2,, and X3, , be as above and let U be an open set in X. The
map 5, , defined above is then independent of the choice of triple: € C(U).

Proof of Proposition 4.15.

We have that prove that for any pair of triplé%mrl and Qn+1 we have that
S;Prl:‘l-fl o ¢j>n+1 o (Sj)ifl + Sj,zs )= S~13 o ¢Qn+1 o (5912 + SQZ 3 )
which is equivalent to
-1 —1
e © Sz, + 8523 ) 0 (Sazz, +8a28) ™ = Sy, © s © 0,

which we can also write as s
n n ?n
., © (ngtl +33 n: =515 0 6a,,.
We start by proving that i@nH and erl are two triples overld and F : Ppy1 — Qni1 is @ morphism of
triples then

05,., © (FFH?) + F(F?%) = FF¥) 09, ,

considered as maps frofﬁ(QnH)Jr?(QnH) to 3"(33”+1) Consider elementel € S"(QHH) ande, € S"(QHH)
such thatmgsz (61) = mges (€2) and consider the elemenei[e;] F@Qr2) + F(Q%). We write [er, €]
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in the form [[Sl’w]éﬁfl’ [s2, w] Q§f1]' The map ¢Qn+1 is then given by¢én+l([e1,e2]) =[s —|—SQ,’LU]Q$,J§1. We
have that
FEY) 0 g, (e e2l) = FE)([s1 + 2, wlns)

= [s1 + S, F*(w)] 515 -
n+1

But on the other hand, we have that
Py, © (FFY2) + FFE>¥) (s, w5 12 o [S2:w] 5 gfll)

= 05, (I8, Fr(w)l22 , [2, F ()52 1) = [$1+ 82, F* (w)] 325 -

”'13 "12 ”23
It now follows that if an+1, Qn+1 are two triples thenJ~n+1 ° 5., = %n“ (J~“*1 + JT2§1 . Indeed, if
n+1
Pri1, Ony1 are triples then B x Q, Py x Ont1, flig X ghia, fnJrl X g2 1130 xg3) |s again a triple, which
we denote by P x Q)ny1. The projection mapsp,,, : (P X Q)ny1 — Pnr1 and mq,,, (P X Qny1 — Qnya

are then maps of triples, so

¢(j>><Q)n+l (3:(7‘]3”“) +J(m Pn+1)) = J(m Pn“)(ﬁf’(an)
Likewise, we have that

B © (2 )+ F(w5> ) = F(rg® Noa,..)-
Taking the inverse of the second equation multiplied by th#,five get that

(Flrgr,,) + Flrge, ) o (Fmg,) + F(ws,) = (a,,,) " Frge,) T, )95,

or in other wordnglj + JGQ;: (¢Qn+1)_1 ngij o ¢5’n+1' This completes the proof of Proposition 4.185.
DEFINITION 4.16. For anyn-th order infinitesimal neighbourhood of, X, and any tripleXt,,, X2, ,
and X3, , of extensions ofX, we set ¢x%+17xn+l n+1|U (T |y for any triple Pny1 defined overU.

Throughout the rest of this paper we will refer to the maps

X3 as contraction maps.
N1 10 n41

In particular, this establishes condition 2). To prove theorem it remains only to prove condition 3)
(surjectivity) : in the next section we will prove some rdsubn the contraction maps that will be useful in
what follows.

4.2.4 Q\LCULATIONS. In what follows, by abuse of notation, the subscnipt 1 in expressions of the
form XT,; will frequently be dropped in order to make the formulae nussdble.

PROPOSITION 4.17. Let X%, X2,,, X3,,, X} , be extensions of(,, an n-th order infinitesimal
neighbourhood of X. We then have that

Gt 2,000 © (1A e, x2y 4 Pz 03, 500) = Pt oz o0e © (Pocr 52,503 + 1dp (s x0e))

as maps fromD(X}, 1, X2, ;) + D(XZ, 1, X3, ;) + D3, 1, Xn, 1) to DXL, 1, Xy y)-
Proof of Proposition 4.17.

Since the question is local oK, it will be enough to prove the proposition in any suitablyashopen set
in X. Let U be an open set iiX which is small enough that we can find a smooth varietyan 1+ 1)-th
order infinitesimal neighbourhood d?, Pny1, and mapsfi,; : U\, — Py such that @na, n+l) is an
embedding ofU,, for all i andf}, |u, = f} |y, for all i,j. Let P2 be the triple B, Pry1, i, g, T4, TK ).
Our aim is to show that

Pgras o (ygrz ) + dgeae) = dgras o (Ppraa +Idgaa ).
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as maps fromfr"(ﬂ’n+1) + S"(Tn+1) + F(P>4) to S"(TnH) Let [e), &, €3] be an element 0f3"(3’n+1) +
F(P fl) + F(P +1) where e; € F(P +1) e c F(P +1) and e; € F(P +1) We write [e1, &, €3] in the form
[[S[b’ll)]j)lfl, [Sg,w]fpzfl, [sg,w]?sfl] for some choice ofs;, s, 53 € S and w € an ®0Oy.

We have that
Ppi2s © (Idggrz ) + %ﬁf)[el, €, 8] = [$1+ % + 83, wlzra -
Likewise, we calculate that
Ppise 0 (%ﬁf + |d5,r@ﬁﬁ1))[el, &,6] =[s1+ %+ S3,w] Fre-
This completes the proof of Proposition 4.17. a

In other words, the order of a sequence of contraction map®tismportant.

DEFINITION 4.18. LetX,, be ann-th order infinitesimal neighbourhood. L&t,, , ... X[, , be an ordered
sequence of extensions &f,. We define the contraction map

Byr am s DXL, X2 + ..+ DE™ L, XM — DXL, ™)
by

(bxl)“wxm = ¢x17xm—17xm O0...0 (bxl}xS,xA o (bxl’xz,xa.

We can in fact introduce a more general version of these igolm®ms: to do so we introduce some
notation.

DEFINITION 4.19. A chain of extensions ak,, is a finite ordered set = (iy,i»,...,ix) together with a
choice of extensioriX" m.1 of Xy for each indexin,.

DEFINITION 4.20. Given a chain of extensions &f,, C = (X! DC'nZH, e ink+1), we set

n+1’
D(C) = D(X: +l,x'2 )+ D(XE +l,x'3 D+ +D(:>c'nk+;,x' )

DEFINITION 4.21. LetC = (xn+l, . .,DCinkH) be a chain of extensions df, indexed by an ordered set

| =(i1,...,ik). A subchain ofC is a chain of the formC’ = (f)CnH,.. DCk' (1)) wherel’ = (i},...,i},) is
a sub-ordered set df which containsi; and i.

Suppose thaC = (X%, ..., X¥,) is & chain andC’ = (X2, .., Xy, -, Xy 4)} is a chain obtained
from C by removing an We then define a contraction maz|zg : D(C) — D(C) by

¢S = Idp(cy) + Pxii—1,xin xi+1 + 1dp(cy

where C; is the chain L%, ,,...,X};}) and C, is the chain L5, ..., XY )
DEFINITION 4.22. LetC be a chain of extensions and I€f be a subchain oC. Let C,C,,...,C be

a sequence of subchains &f such thatC; is C, C; is C’' and C; is obtained fromCi_; by deleting one
element for alli € [2,...,]]. We then define a mapbg' : D(C) — D(C') by

¢ =g ,0...00
REMARK 4.23. Proposition 4.17 implies that the maﬁ does not depend on the choice of intermediate
subchainsC,...C,_1. We note further that ifC is a chain of extensions;’ is a subchain ofC and C” is a

subcham ofC’ then ¢S = 4% oS . If C is the concatenation of; and C; (that is, C; = (X, X?,...,X'),
— (0, XM and C = (XL, 0L 0, 0L, LX) then

D(C) = D(C1) + D(Cy)

and if C; and C}, are subchains of; and C, whose concatenation i€’ then ¢S = ¢>§; + ¢§;
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DEFINITION 4.24. LetC be a chain of extensions &€, and letC’ be a sub-chain o. We then denote
the inverse map¢S)~t by ¢S, .

In the special case wher€ contains a pair of identical neighbours (i€. = (..., Xm Xim1 ) with
X'm = Xim+1 then there are two (a priori distinct) ways of contractifigC) to D(C’), where C’ is the chain
(...Xm Xim2 ). We can either use the magf or we can use the map

ldn(cy) +T1a+1dp(cy) : (D(Cr)+DL™, X'm1) +D(Cp)) — (D(C1)+SBN+D(Cy)) = D(C1) +D(Cz) = D(C).

where C; is the chain {',...,X), C, is the chain L™,...,X*) andrq is the map constructed at the
end of section 4.1.

LEMMA 4.25. Let C= (X™,...,Xx) be a chain of extensions ¢, and suppose thai('m = X'+ Let
C’ be the subchain obtained from C by deletifi@+. Then we have tha‘qbg’ = ldpcy + Nd + ldo(cy)
where G is the chain(X™,...,X'") and G is the chain (X', ..., X%).

Proof of Lemma 4.25. By remark 4.23, it will be enough to deal with the case whére- (X(*, X1, X?)
or C = (X%, X%, XY). We treat the case wher€ = (X!, X!, X?) below: the same argument works for
C = (X2, XL, XY).

Since the problem is local orX, we may assume there is a a trip[@mrl over X of the form
(P, Pyr, fi 0, fr g, £2,0). We have thatgg (I[s1, 512, [S2,Wlg23 1) = [S1+ S, w05 for any sy, € Sy
and w € Qf ® Oy. Further,

Na(([se, wlzez , [S2, wlges 1) = [(S1 wlun), [S2, wlg2s ] = [$1+ 82, s

This completes the proof of Lemma 4.25. O

We now consider the particular case whefe= (X!, X2,X!) and C' = (X, X%). In this case we ob-
tain a contraction map

¢ @ DX, X?) + D(X?, X1 — DAL, XH).
We have a canonical isomorphismy : D(Xt, X1) — S@ Q and hence in particular, we have a map

(fig o ¢S) : DXL, X?) + D(X?, XY — Sa Q.

DEFINITION 4.26. For any pair of extensiori}, ;, X3, of an n-th order neighbourhood,, we denote
the map (g o <) : D(XL, X?) + DX, XY) — SSQ by Ty 2.

This gives rise to a map
(Tcr.c2) + 1d(=D(XZ, X)) = DY, X?) + D(XZ, X1 + (—D(X%, X)) — —D(X?, X?)
and since we have for ani a canonical isomorphisme : E+ (—E) — S Q this gives rise to a map which
we denote byT;(lyxz,
Tha 2 = (Ngery © 3 ) + 1d) © (1dper, 12 + Cpa yny) * DXL, X?) — —D(X2, XY,
We can restate Lemma 4.25 in the following form.

LEMMA 4.27. Let X, be an n-th order infinitesimal neighbourhood of X and %t and X? be two
extensions of X Let C= (...X% X%, X*...) be a chain of extensions ¢, and let C be the sub-chain
of C obtained on suppressing ti%& term and the second? term. The following diagram then commutes.

¢S
(... 4+ DL, X?) + D(X?, XY + DXL, X3y . .?) ——— (.. .+ DL, A+ ..)
i‘rxlyxz d+ch(‘JC1,X2)+Id
(.. 4+ DXL X?) + (—=D(XL, X?) + D(XL, X3)..)
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4.3 SJRJIECTIVITY.

In this paragraph, we will assume that at least one extensiof,, exists. We shall denote this “base”
extension byX?,,. Our aim is to prove the following proposition.

PrROPOSITION4.28. Let X, be an n-th order infinitesimal neighbourhood of a reduced. lk-variety X
and suppose there is at least one extensiori(pfto n+ 1st order, DC%H. Then for any extension E df
and S there exist&(2, ,, an extension to r 1st order of X,,, such thatD(X},,, X2, ) = E.

Let E be an extension 8> S5 E ™ Q — 0. If U; is an open cover oK then we denoteE|y, by E;.
We denote the intersectiob;,N, ... NUj, by Ui, i, and the restrictiorE|y, , by E,_i,.

ProPOSITION4.29. Let X, be an n-th order infinitesimal neighbourhood of a reduced. lk-variety X
with normal bundle V. Let)C,l]+l be an extension ok, and let E be an element &(X). Suppose that there
exists an open covering of X by sets &lich that E is trivial for each i. Then there exists an extension of
Xn, X2,,, such thatD(X}, ,, X2, ;) = E.

Proof of Proposition 4.29.

For eachi we choose an isomorphism : E; — Sy, ® Qu,. This choice of isomorphism gives rise over each
Ui; to an map

¢i,j . SJi)j 5> QUi,j - SJH' © QUM'
given by ¢;; = rjoldg o ri"L. Since ¢;; is a map of extensions, it is of the following form

(s, w) = (s+ ¢i(w), w)

where ¢ : Qu,, — Sy, is a linear map. It is immediate from the definition of; that ik o ¢ij = dik.

and it follows that¢;j + ¢;k = ¢ix. Over Uj; = U; N U, there is an automorphism of algebra sheaves

Aj e OX%H — OX%H given by Aj;(f) = — SynP*l(axn)(¢i7j(df|U)). Let xﬁH be the unique extension of

Xn up to isomorphism that satisfies the following properties.

1. For everyi there is an isomorphisn : U?,, — U, ,, whereU?, ,, is the restriction ofX7,; to U;,
such thattj|y, , = Id.

2. The isomorphismh; : Ui, , — U, defined byh;; =tjo ldyz . © t71 is given by the dual formula

hyy(f) = A(f) for all £ € O

Since ¢ + ¢jx = ¢ix we have thath;xohj = hx so I)Cﬁ+l does indeed exist.
PROPOSITION4.30. The elementD(X},,, X2, ;) is isomorphic to E.
Proof of Proposition 4.30.

For eachi we choose an elemeﬁli’nﬂ € C(U;) of the form @, Tn+17f,}+l,fr}+1oti). We let ﬂ3i’n+1 have nor-
mal bundleWs, . For any pairi,j we will denote byrp, ., the projection mapre, ., : (Pi x Pj)ny1 — Piny1.
It is immediate from the definition of;  thatf;  =0. It follows that for everyi we have a map

R :F(Pini1) — Sy @,
given by R([s, w]gsi’n“) = (s,wly,) for any wherese S, and w € Q?Pm ® Oy . We now seek to prove the

following equation.

2) RoJlm oR™t = g

Pint1

Throughout the proof of this equation we will tacitly assumarselves to be working on a small enough
neighbourhood for all necessary constructions. This issiptes because of the local nature of all our
constructions. We consider the following diagram
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fi n+1 Xf

Sk (Pi X Pnt1

1
Uiintt

(fr n+1ot )X (] n+10ti)T
2
Ulins1

We will now attempt to determine the elemerhiJ nf([s w]3, +1) foranyse §), and w € Ql L ® 0y,

It will be enough to establish equation (2) for any of the form dgi, where gi € O9p, ., . We fix an
elementg; € Op, ., and denote its restriction thlwrl by g. We choose an elemen € Oy, ., such that
gJ|UJ =Y We note that

7T;‘;i’,-,{,l(gi) - Tr;iﬁna,l(gj) € IU%+1|(PiXPj)n+1'
We denote the functiom;i‘nﬂ(gi)—w;jvw(gj) on (Pi xPj)nt1 by h and we leth be the equivalence class bfin
NG5y, - We noW show thafs,, 5, ., (F) = ¢1;(dg). We have thatj, = (ﬂ;i1n+1(gi) pJ @Dz, =
goti—goty =go(ld—tot ) ot. By definition, gotjotit = Aj(g) so h|U§+1 =(@—-Ajl@) ot =
Synﬁ”“auﬁﬂ(@,j(dg)) oty = Syr‘rf‘“(auﬁﬂ)(qﬁi}j(dg)). It follows that if ®;;(dg) is an arbitrary lifting of
¢ij(dg) € Syrﬁ‘*l(ij) to SyI’T{]Jrl(W|:>i X ij) thenh’ = h— a(Tix(Pj)nH((I)i,j(dg)) is a lifting to IUr21+1‘(Pi
of glu,. By definition of f5,, 5, ., we therefore have that

fdix 30 (N = SynT T EDSYMT (o, 5,),,,) " (h = (= Sym™* a5, Pi(d9))
where here SyPﬁ“l(f,;*) is the surjective pull-back map
Sy H (W, & W) — Synf4(vg, )

X Pj)nt1

and hence B
fdyn,. () = SymT™H(E) (@i (dg)) = ¢i5(dg).
By definition of F(7p ,,,) we have that for anysc S and g € Op, ,,,
g:(ﬂ-Pi n+1)[s dg]j>| ,n+1 = [S dﬂ-gr n+lg](€p| Xj’])n+1
But we have seen thafgfp‘wj)nﬂ(h) ¢ij(dg) and hence m&"((ﬂ’. X TJ)HH) we have that
[_d)l.,](dg)? d(WPi1n+lgi - 7TPJ'),-|+1gj) ® OU](jjinDj)n+1 =
and hence
[0, d77|*5i’n+19i](5>i XPDns1 — [¢i,j (dg), dWSj,anj](iq XPDnga’
We therefore have that
F(me, IS dails, o =[S+ 61i(d9). A5 Gl = [S+ Gij(d), A L 0] x e,
and hence
?(Wpi,n+1)[sv dgi]i’i,n+1 = ?(ij,n+1)[s+ ¢i,j (dg)a dgj]ﬂBj,nJrl'
We note that for anysc€ §; and anyg; € Op, ., R[sdgi ® Ou]gal,n+1 = (s,dg) and
Rls+ ¢i(dg),dg ® Ou] = (s+ ¢i(dg),dg)

and so it follows that for anse S, and w € Qéml ® Oy we have that

Rj © §(7TPJ n+1)_l o g(ﬁp.,n+1) © Ri_l(s7 ’U)) = (S+ ¢i,](w)7 IU) = %i,j(s? w)

or in other wordsR; o J, Pinta oR™t = J).,(S w) which completes the proof of equation 2. But Proposition
4.29 now follows because thrs implies that the maps

R : D(xn-r-la x%+l)|Ui —E
given by R = (r)"1oR o Sj,,,, satisfy the equation

R)oR ™ =r, ORJOJ:PJ"HOR, ori=rogjor = Idg

| ,n+1
for any pair {,j). These maps therefore glue together to give a global isphiem of extensions. O

The following lemma establishes the existenceddf, , locally.
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LEMMA 4.31. Let X, X n+1 be as above. Let U be an open affine subset of X such thatk ¥ trivial
bundle. There is then an extension 6f, U2,, such thatD(Ul ,,U2,,) is isomorphic to &.

Proof of Lemma 4.31.

By Lemma 3.25 there is a smooth affine varie®;, an n + 1-th order infinitesimal neighbourhood of
P, Pny1 and a mapfl , : UL, — Pnyq such that R, Py, 1, ) is an embedding. We consider the exact
sequence

3) 0—Nj — Qp ®0y — Qu— 0.

Since P is smooth and affine an(ll%,n ® Oy is a locally free sheaf, the map HoNy , ) — Ext{(Qu, Su)
is a surjection. We can therefore findgac Hom(N3, , S such that the pull back of (3) along is = E;.
We define a subschemd?, , € P, 1 by

= {9 —elg’ €luz, . € € Ip,jp,. Sym T HE)(SYMT  ag,.,) ~te) = d(9)}-

Let 5’i,n+1 be the element of2(U;) defined by takingP; n1, UL, ; and Un+1' with f1,, and fnJr1 given by

|
UI 41

the inclusion maps. It is immediate from the definition fgf that f; = ¢, and henceD(U}!, ;, ﬁn+1),
which is simply the push-forward of (3) anng,i' satlsflesD(uI Nl |7n+1) = E;. This completes the
proof of Lemma 4.31. a

LEMMA 4.32. Let X, and DC%H be as above. Let {Ube a covering of X by open affines such that V
is trivial for every U and for each i letU?,,, be an extension ofl;, such thatD(Ul, ,, U7, ;) = E.

Then there is an extension &f,, X n+1 such thatX(2 +1|u. is isomorphic toUZ,, for every i.
Proof of Lemma 4.32.
For eachi we let ji : D(U},, 4, En+1) — E; be an isomorphism.

It will be enough to construct for each pairjj an isomorphismB;; : U? el uJ n+1 which are compatible
on the triple intersections. Over the open &k U; = U;; we have chain<;; = (U7, 1, U, 5, UP,, ;) and
Cl; = (U, 1, U?,,,). For each pairi(j) we have a series of maps

Cij ’

¢ I] 1 2 Tuiz,nJrl’uinJrl
(4) D(ul n+1r Yy, n+1) - D(ul ,n+1> u| n+1) + D(u| n+10 Y n+1) -

J|+l
D(u| n+1» n+1) + D(u| ,n+1> n+1) : Ei|Ui,j + E]-|Ui‘j

where C;; is the chain s U nJrl,lLJ-ZMl) and C{; is the chain u? N1 fn+1) We have a canonical map
C_g;: —Elu,; +Elu; — Su; ©Qu,; and hence for every pair,j there is a map

Sj=c¢c_ E,;©° Jij ®(u| n+1s j2,n+1) - SJi,j & QUi,j'
By Proposition 4.2, this splitting corresponds to a gluin@;) = Bi; : U7, — UP,, 4. It will be enough to
show that these gluings are compatible on the triple inttimes. We start with the following lemma.
LEMMA 4.33. Let U, be an n-th order infinitesimal neihgbourhood of U and 1€}, ;, UZ,; and U3, ;
be three extensions di,,. Suppose given three isomorphisms of extensions
M2 Uny — Uy g, 6% 1 UGy — WRyy and 6121 Un g — UR, .

Let S : DX\, 1, %0, 1) — S&Q be the isomorphism associated 0. We then have thap3 = ¢?3o 12
if and only if
Csp © (S12 + $,3) = S1,3 0 Pt 2, x3

where g0 (S® Q)+ (S Q) — S Q is the canonical contraction map.
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Proof of Lemma 4.33.

The statement of the lemma may be checked locally, so we msynes that there is a triple oved
of the form @, Ppy1,f3 09120023, 13 10923 3 1), wheref3 ; : U3 | — Py;1 is an embedding. We then
have that the isomorphism associated¢f®® o ¢*2 is given by

[swlpe, — [swixl]

for any s € S and w € Qf , © Oy. In particular, we have thaiy'® = ¢?® o ¢'? if and only if
S 3[s, w]Tm = [s,w|x,]. We also have thatyy: 2 ys[[S1, W]j;lZ [s2, w]5,23 l=[s1+%, W]j“D13 . It is therefore
the case tha 13 = 230 12 if and only if Sy30 Py 2 x3[[31,w]g>12 [Sz,w]?23 1=I[st +Sz,w|xn On the
other hand we have that

S3[s2,w]5 23 = = [, w|x,]

and
Salst, Wiz, = [81,wlx]-
In particular,
Cspa © (S1.2 + S3)[[s1, w]p;fI[Sz, w] gsgfl] = [s1 + 92, wlx,]-
This completes the proof of Lemma 4.33. d

To prove the lemma 4.32 it will therefore be enough to show tha following diagram commutes.

Cei j kOJ,iFCe j Ok

D(uﬁn+lﬂ uj2,n+1) + D(ujz,ner uﬁ,nJrl) : - SeN+SaN
i(bzz Lcs@n
2 Ce; j kOJik
D(ul ,n+1 uk,n+1) Se

where hereC} is the chain (2 N1 1n+l’ nJrl) and C; is the chain nﬂ,uﬁ,nﬂ). Since the diagram

Ce;  +Cr ;
(Ei_Ej)+(Ej_Ek)J4E’I>S€BQ+S€BQ

im—a +Cgj+1dg, lcsesn

—E + E¢ & SoQ

is commutative it will be enough to show that the followingagiiam commutes

JI j+‘]] k

D(ul n+1s n+1) + D(uj n+1 uk n+1) — -E+E-F+E
i‘bgz lkja +CEI —HdEk
2 J\,k
D(U? 1> Yicngn) —E + Ex

The following diagram commutes since it simply says thatdbmetraction maps commute with isomorphisms:

D(ul n+1> S n+1) + D(u| ,n+10 Y, n+1) —Jitij—li+ik
_®(uj,n+1> uj2,n+l) + D(uj N1 u2 1)

i D(uJ 12 n+1) ld_g +cEj+IdEk

—E +E — g + E

—Ji+Jk —Ei + Ek

®(u| ,n+1> | n+lv u&,n-o—l)

so it will be enough to show that the following diagram comesut
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7’0o Cii
D u2 u2 D uz uz l (bci/,j _‘D(uil,neruﬁnJrl) + ‘D(ui];nJrlaujz,nJrl)
(Ufni 1 Unnia) + DU Wiens ) —= 1 2 1 >
+7 0¢C;/’k+D(uj,n+1a uj,n+1) + D(uj,ner uk,n+1)

Cy C 1 2
(bcg DU 1 Ungd)

’ Ci k
Ti O¢c/Y
ik
'D(usn—&-l’ uﬁnJrl) - _D(uilm-&-la usn—&-l) + 'D(u%n-&-l’ uﬁ,nJrl)

where here for any indice. the mapr,, denotesr,, . But this diagram commutes by Remark 4.23
a,n+1""a,n+1

and Lemma 4.27. This completes the proof of Lemma 4.32. O

End of the proof of Proposition 4.28\e consider the extensioff;? , constructed in the above lemma.
We have thatD(X}, 1, X2 )|y, = Ei. It follows that the extensiorE — D(X}, 1, X2 ,)|u, is trivial and hence,
by Proposition 4.29, there exists a global extensify, such that

D(xa%rb DCﬁle) - D(X%er x;12+l)
or in other words
D(x#rl’ x:12+1) + D(xﬁrl’ xﬁJrl) =E

By Proposition 4.11 we have thab(X%,,,X2,,) = E. This completes the proof of the torsor character of
D(Xp1r Xoya)- 0

This completes the proof of Theorem 1.10. |

5. OBSTRUCTIONS
This section will be devoted to a proof of the following thewor.

THEOREM 5.1. Let X, be an n-th order infinitesimal neighbourhood of a reduced.lk-variety X of
finite type with normal bundle V. We can associate an eleroég} Ex?(Q, S to X, in such a way that
there exists an extension &, if and only if oby, = 0.

Proof of Theorem 5.1.

We will use the notion of arextension cocycleSection 5.1 below is slightly adapted from Vistoli [11]: we
include it for completeness’s sake.

5.1 EXTENSION COCYCLES AND CLASSES OF EXTENSION COCYCLES

We fix an open affine coverindg); of X which has the following property: for any there exists an
extensionU; n1 of Ui . Throughout this sectiont; will refer to this choice of open affine covering and if
0—F -5 ET™ G— 0 is an extension of sheaves then we will deniats) by s for any s F. We will
also denote the intersectiod;, " U, ... NU;, by U;, ;.. Given a sheaff or a map of sheaves which
is defined on a set containnd;, i by JFi,.. i (resp.

,,,,,,,,,,

DEFINITION 5.2. An extension cocycle of2 by S with respect toU; is a collection {E;;, Fi i} such
that for every pair i(j) E; is an extension ofly,; by Sy; in the category ofOy, ;-modules and for every
triple (i,j,k) Fijx is an isomorphism defined ove;;\, Fij« : E; + Ex — E«, such that for anyi,j, k|
we have the following associativity relation

Fijio (Fijx+idg,) = Fiki o (idg ; + Fjx)).
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DEFINITION 5.3.  Let {Eij,Fij«} and {E{,F;} be two extension cocycles dd by S with respect to

Ui. An isomorphism® : {E; j, Fij«} — {E/j,F/; «} is a collection of morphisms of extensions; : Ej — E

indexed by pairsi(j) such that for all triples,j, k
G0 Fijk=Fijxo(dij+ dip)

From now on, we will deal not with the set of extension cocgdbeit with the set of isomorphism classes
of extension cocycles.

REMARK 5.4. Let Gy (y;;(©2,S) be the set of isomorphism classes of extension cocycle3 bfy S with
respect toU;. Gy (2,9 is then an abelian group with group law given by

{Eij, Fijx] + {E, Fl ] = {Eij + B, Fijx + Fij -

The zero element is the elemenS[(& Qi )),Cs; @0,
We will now define coboundaries of collections of extensions

DerINITION 5.5. Let U; be an open affine covering of and for everyi let E; be an extension of§
and Q; over U;. We define the coboundary of the collectidi;}, denoted bys({E;}), by

5({E|}) = {Ei -, Idg, + C_g + Id—Ek}-

REMARK 5.6. The setG, (2,9 = @iExtllJi(QUi,SJi) is an abelian group with group law given by
addition of extensions. The map: G (y1(2,S) — Gy, (u; (€2, is a group morphism.

We are now in a position to define the set of cocycle classeS ahd 2.

DEFINITION 5.7. LetU; be an open affine cover of as above. We defing,,(€2,S), the set of cocycle
classes ofS and Q with respect toU;, by

Eu(©2,9 = G1,u3(©2,9/5(Gz uy (€2, 9).

PROPOSITION5.8.  Under the above hypotheses, there is a group isomorphigrg u,y : Efu (2,9 —
Ext?(, S).

Proof of Proposition 5.8.

Let [{Eij,Fijk}] be an element ofG; ;y(S Q). We now constructyo s u;3[{Ei;, Fij«x}] Choose an exact
sequence ofOx-modules 0— S KK X Q — 0 such thatK is an injective sheaf onX and hence
Ex?(Q,9 = Ext}(,Q). As &xt3(,9) = &xt(Q, Q) and &xt3(2,S) = 0 since X is a locally complete
intersection, it follows that Ex{Q, Q) = H(Hom(Q, Q)).

Over eachU;;, we have the following digram:

& j TEj

0 S,

lim

Ki’j

Ei Qi 0

Since K is injective, there exist map§; : Eij — K;; such thatfijoig , = ix,;. We say that the mapk; are
compatible with theF; j ks if for any triple i,j, k we have thatf;j o Fi;« = (fij + fj ).

LEMMA 5.9. There exist maps;jf: E; — Kj; such that for all pairs jj we have that ifi o g = ik,
and for all triples ij,k we have that;fo Fi;«= (fi; +fi«).
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Proof of Lemma 5.9.

We note that ifs is an element ofS x then
ik () = fikoFij(se +5.) = (fij +f.0(Se 450
In particular, for eachi,j, k there is a unique map;; : Qijk — Kijk, such that
Tijk © TE 46, = Tik o Fijk — (fij + fix)-

For any i,j,k,| we have thatr;x — 7| + TixI — 73,1 = 0. In particular, ther; form a Cech cocycle

and hence determine an elementkf(om(f2, K)). SinceK is injective, H*(3{om(2, K)) = 0, so there are
elements7; € Hom(€2j,Ki;) such that for alli,j,k we have thatr;x = 7 — 7i x + 7jx. We now define

maps f/; : Eij — Kij by settingf/; = fij + 7j o mg ;. We note that thef/;s form an alternative choice of
liftings of the mapsik,; : §; — Kij;. It remains only to show that

i oFijk="fj+ 1
We note that
flio Fij— () + 1) = fixo Fijx — (fij +fik) + mikome, o Fijk — (7 + 7k) © TE, 5
= Ti,j,k o 7TE‘Yj+Ej,k + (Ti,k - 7_I,] - 7_j,k) o (ﬂ-E‘,jJrEj,k) - O

This completes the proof of Lemma 5.9. O

Henceforth, we assume that the mafps are compatible with theF;; «s. Projecting ontoQ;;, we obtain
mapsf;; = g, ofij : Eij — Q. Sincef;;(sz;) =0 for any s § there are unique maps; : Qi — Qi
such thatf; ; = gij o 7g ;.

LEMMA 5.10. The mapsg;; : €2i; — Q;; defined above have the property that for any p@ij) we have
that gik = Gij + gjx over Y.

Proof of Lemma 5.10.

We note thatfix o Fijx = (fij + fix) whencef;, o Fijx = (f;; + ;). Since Fijx is a morphism of
extensions we have thatrd ¢ ) = 7g, o Fijx and we deduce that

fikoFijk=gikomg, o Fijk= 0ikoTE +g -
It follows that
giko (me 15,0 = (Fij + %)
whence, for allej € Ej, gk € gk such thatrg (&) = 7 ,(gk) We have that
giko(me ;+g )€, 6k = (Fi,j + fj,k)[eu,j, &kl
where B j, €] is the equivalence class o, g ) in Ej+ E. It follows that
gik(me (&) = fij(&;) + fik(g

gk (&) = gij(me (&) + gi k(g (8 K)-
But by definition of E;; + Ejx we have thatrg (e ;) = 7g (k) and it follows that

gik(me (&) = gij(me, (&) + gik(me (&)

for any g ; € E;; and henceg x = gij + gjk. This completes the proof of Lemma 5.10. O

DEFINITION 5.11. The elementm,s{ui}[{Ei’j,Fim}] € Equy(©2,9 = HY(Hom(Q, Q)) is defined to be
[gij], the class inH}(Hom(2, Q)) represented by th€ech cocycle 4 ;).
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It remains only to prove the three following results.

LEmMA 5.12. Let {E;,Fi;jk} be an extension cocycle of S atl with respect to the open covering
Ui. Let f;: B — Ki; be a set of maps such thatj(kg ;) = ¢, for any s€ S and for all ij,k we have
that fxoFijx = (fij +fix). Let gij: Qij — Q; be the unique maps such that; o 7g ; = 7y, o fij. The
cohomology clasggi ;] € H(Hom(Q2, Q) is then independent of the choice of the maps f

ProposITION 5.13. Let {E;,Fijx} be an extension cocycle of2 by S. We then have that
Ya,s¢uir({Eij, Fijk}) = 0 if and only if there exists a collection of extensiof} such that{E;;, Fi;«} is
isomorphic to the boundary clas§{E;}).

LEMMA 5.14. The mapyosu; : Equy(Q,9 — Ext(Q, S is surjective.
Proof of Lemma 5.12.

Let f/; be an alternative choice of litings and lgt; be the associated elements Hom((2i j, Qi;). We have
that fifj —fijls, = 0, so there is a unique malp; : ; — K;; such thatfifj —fij =hijomg,. In particular,
(gi/_’]- — gij) = Tk;; © hij. This implies that the cohomology clasg{yj[— gij] has the property that

9} — 91,1 € Tk (H*(3tom(©2, K))) = {0}

where the last equality holds becaukeis injective. This completes the proof of Lemma 5.12. |
Proof of Proposition 5.13.

Assume that the class ofgif] is 0. Then there exist mapg : & — Q such that for all i(j) we
have thatg; = gi — gj. We consider an extensioB;, which will be the pullback along; of the extension

IKj K

0—-§ = Kj = Q — 0. The extensiork; is then an extension d§ by Q; equipped with a maf : E — K;,
such that the following diagram commutes:

iEj T

0 S Ei Qi 0

N

Ki —>Q —=0

and E; has the following universality property.

REMARK 5.15. Universality property of pullbacks. L& be the pullback of
0—-§—=K —0Q —0.

along the morphisny; : & — Q;. If any extension 0— § — F; — ; — 0 is equipped with a morphism
¢ Fi — K; such thatg(ss) = s¢, and for allv € F 7g, 0o ¢p(v) = gi o g, (v) then there is a unique morphism
of extensions® : F; — E; such thatfi o & = ¢.

In particular, two extension mapg, g» : E — E; are equal if and only iffi o g1 = fj 0 g.
We now prove thati{E} = {E;,Fij«}.

K

LEMMA 5.16. The extensior{E —E) is isomorphic to the pull back along; of 0 — § X, Ki—=Q —0
Proof of Lemma 5.16.

We recall that for anye € E; and g < E; such thatrg () = 7 (g) we denote by ¢,g]" the equivalence
class of &,8) in E —F.
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By remark?? it will be enough to produce a map; : E — E — Ki; such thatm,, ofij = gijome_g. and
fi j(8) = ik, (s). We definef;; as follows:

fij(e.g]) =fi(a) —fi(g).
for all & € B and g € E such thatrg (€) = 75 (g). We note that for allse S
fijie (9, ig (9) = ik, (8) — ik, (9 = O

and hence the above map is well defined on the equivalence felag]. We have thaff; j(ig (9), 0) = fi(sg) =
ik;(S). Further, we have that

m,; o fii(le, 8]) = m, (fi(e) — i(§)) = gi(m& (&) — i(me (§))

= (gl - gj) © WEi*Ej([av Q]/) =4ij° WEiij([av Q]/)
where in the last equation we have used the fact thatg ([g, g]') = g (6) = 7g(g). This completes the
proof of Lemma 5.16. O

But now, applying Remark 5.15 to the mapg (which is possible becausey,; o fij = gij o g ;) we
see that for alli,j there is a unique isomorphism of extensiabg : (E — E) — E; such thatf; ;o &;; = fi;.
The following lemma says that the collectioh; is in fact an isomorphism of extension cocycles between
5{Ei} and {Ei,j, Fi,j,k}-

LEMMA 5.17. We have that for all ,jj, k

CDi,k o (IdE. + C_g + Id—Ek) = Fi,j,k o (‘bu‘ + (I)j,k)-
Proof of Lemma 5.17.

By Remark 5.15 it will be enough to show that
fiko@iko(ldg +cg +1d_g) =fiko Fijko (i + Pj k).

This is equivalent to N

fiko (Idg +c_g +1d_g) =fikoFijko (Pij + Pjk)-
by definition of f;; and this is equivalent to

fico (Idg + c_g + Id_g) = (fij +fix) o (Dij + Dy ).
We calculate that for all; € Ejj, g« € Ex such thatrg (&) = 7, (§k), we have that

(fij + 5 o (Pij + Pjle . gk = (fij + ([P (&), PjeK])
= fij o ®ij(ey) + fix o Piulg ) = fij(ey) + fu(g0)-

So it is enough to show thé o (Idg, +C g +Id_g)= fi(a,;) +fik(gx). We calculate that for alk € E;,
g € E, & € Ex, we have that

fixo (Idg +c_g + 1d_g)([[e. 6], [g.ad'] = fix(le, ad’) = fi@) — fi(e)
But on the other hand

i +f0e, 8] [8,8d') =f(a,8]) + g, al) = fi(e) — fi(e).
This completes the proof of Lemma 5.17. |
This proves that if §; = 0] then vqsu3({Eij,Fijk} = 0. It remains to prove the converse. Sup-
pose that’YQ7S7{Ui}({Ei7j,Fi7j7k} = 0, or in other words there exist extensios over U; such that

[

{Eij,Fijx} = 0E. We can choose map§ : E — K; lifting ix, : § — K; which give rise to lift-
ings i —fi : EE — F — K given by fi — fi([e,g]’) = fi(e) — fi(g). Since there are isomorphisms
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(I)i’j . Ei’j — E — Ej we have a mapfi,,- = (f| _fj)o(bi,j . Ei’j — Ki’j |Iftl|’lg iKi,j S — Ki,j. We
note that fix o Fijk = (i — f) o DixoFijk = (fi — f) o (Id + C_g + Id) o @i + P k. We note that
(fi—f)o(ld+c_g +1d)([[e,e]'[g,al']) = (fi —f)((e, g]) = fi(e) —f(e). On the other hand we have that
(f —f + 1§ — f)(e. 81", [g,8d") = fi(e) — fi(8) + fi(g) — fi(e) = (i — fi) o (id + c_g, + Id)([[e, &]'[, &d'D.
We then have thafix o Fijx = fi; + fjx so thefi;s defined above are compatible with thg;s. But the
associatedy; ;s are simply g j = gi — g; where g; is the unique magy; : & — Q; such thatmy, of; = gjomg,.

It follows that [g;;] = O.

This completes the proof of Proposition 5.13. |

Proof of Lemma 5.14.

Let [gi;] be a cocycle class inHY(Hom(2,Q)). We define Ejj to be the pull-back of the extension
Ki,j ﬂ-Ki,j

1
0—-§j = Kij = Q; — 0 along g;;. There is therefore a unique mdp : E; — K;; such that the
following diagram commutes

Qi 0

By remark 5.15, to construct a map;jk : E;j + Ex — Ex it will be enough to find a map
fijut Bij + Bk — Kijk such thatfiji(Se,+g.) = Sk aNd i, 0 Tijk = ik © TE, +6 -

We definefi;x as follows. For anye ; € E;; and g« € E x we set

fix(e ekl = fije;) + fixE0-

It is readily checked thaﬁ,j,k satisfies the two given conditions. There is therefore a nfapxtensions
Fijk: Ej+Ex— Ex such thatf, cxoF; x = fi ; k. It will now be enough to check the compatibility condition

Fi,“ o (Fi,j,k + idEk,\) = Fi,k,l o (idE;,j + Fj7k7|).
It will be enough to check that
firoFijio(Fijk+idg,) = fij o Fix o (idg; + Fjk)-

This is equivalent tofix o (Fijx + idg,) = fixi o (idg; + Fjk1). We calculate that fore; € Eij, gk € Bk
and e € E, such thatrg (&) = g (g k) = 7, (&) we have that

fii o (Fijx+idgy)e, 8.k &l = fixilFi (e, §.x]), &)
= fixo Fij(&,, 8kl + fui(er) = fijx(le ), ex) + fi(ex)

= fij(&,) + fik(g.x) + fi (&)

A similar calculation show that

ik o (ide,, + Fi) (€. 8k Bil) = fij(@)) + fix(60) + fici ()

This completes the proof of Lemma 5.14. O
This completes the proof of Proposition 5.8. O

In the next section, we will use the isomorphism describeavalto prove Theorem 5.1.
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5.2 PRROOF OF THEOREM 5.1.

Throughout this sectionD (Ui ny1, Ujny1) Will be denoted byD; ;, D(ui,n+1,uj’7n+1) will be denoted by
Dijry DU i1, Ujnt1) will be denoted byDirj and D(U; 4, Uj 1) Will be denoted byD; j . Likewise,
T(Wine1, Wjngr) (resp. 7(Uir g1, Ujng) s, 7(Wings, Wi ne1) s 7(Uir g1, Ui ng1)) will be denoted by j (resp
Ty g Tiey) and 7' (Wing1, Ujnga) (resp. 7/ (Ui ng1, Winga), 7' (Wing1, Wionga), 7' (Wirng, Ujr nga)) will
be denoted byr/; (resp; 7/, 7 ;). We choose an open covéf;i such thatC(U;) is not empty for any
i

DEFINITION 5.18. For each let U1 be an extension otl; , (which exists because of our choice of
the open covelJ;). We set

obx, = va,s Ut ({D(Wi ny1, Winga), duiag,wt)-

ProPOSITION 5.19. Let X, be an n-th order infinitesimal neighbourhood of X of normahdie V
and let Y be an open cover of X such that an extensigr, 1 of Ui, exists for all i. The element
H{D Wi ns1, Uinra), o610 ] € Equy(€2,9) is then independent of the choice of extensions, Y.

Proof of Proposition 5.19.

Let Ui,,, be another possible choice of extensions. We wish to show @i, ¢, }] and
[{Dil)j/,(buil)uj/}u((}] are the same class ifEqy;(©2,S). We consider the element 06, (y3(©2,S given
by {Di-}. Over any set of the fornU;; we seek isomorphism®;; : 6{D;i } + Dy jy — D;; such that the
following diagrams commute

@U/ — '1)]‘_’]'/ + ®i’,j’ i+«

———Dij+Dj«
+®j,j’ — Dk,k’ —+ Dj’,k'

C—'Dj,j/JFF\/,j,kJF'd Fijk

Dk

Diir — Dxw + Dir

Di k

For all pairs {,j) we consider the maps

def

/=1
Lij =ldo, 4o, , + 7, " Dii + Dirjy = Djjy — Dijr + Dirjr + Dy

and o
¢c)  Diji + Dirjy + Dy j — Dij

where C;; is the chain {;, U, U, U, ;) and Cj; is the subchain;, ;).

, c , , ,
PROPOSITIONS.20. The collection of map;j = ¢¢ ol : Diji —Djj +Di j — D is an isomorphism
of extension cocycles.

Proof of Proposition 5.20. We consider the following chains of extensions @df.
1. Cp = (Wi, Ui, U, Uy, U, UG, W)
2. Cy = (Wi, W, Up, Uy)
3. Cs = (Wi, U, Ug)
4. Cq = (U, Uy)
The following diagram of contraction maps commutes by Psdjmn 4.17.

C2
D(Cy) = D(C,)
lqﬁf . iqﬁi‘;

¢ 4
D(Cs) = D(Cy)

39



Expanding, we get a commutative diagram

C2

@
Diiv + Dirjy + Dy j + Dy + Dy e + Dok —> Diir + Dir e + Dic i
J/d%i l«ﬁii
=
Di,J' + Dj,k Di,k

L c c . / . L
We note thatqsgi is simply ¢c:’j + ¢Cj’: and thatqbgj is qbgt We thus rewrite this diagram as

C2

¢
Dijv + Diry + Dy + Dyjr + Dyrje + Do k —> Dy + Div e + Dok
c’. c/ c/
l%::}wcizt . l%::t
b
Dij + Dik : Dik

So, to establish that the choick ; = ¢§; ol'j; is a cocycle isomorphism it will be enough to establish that
the following diagram commutes.

C,
Di i — Di o —+ ®i/ i C_p. , +¢C§
) B il B Di,i/ o Dk,k’ + ®i/,k’
+Djjr — D + Dy
\le-‘rTJ/’J,l-"-ld-‘,-Tk/’k,l-&-ld Lﬂg_’k,

C2

Diir + Dirjr + Dy + Dijr + Dy e + Dok —> Diir + Dir o + Die i

Eliminating D;i» and Dy and permuting the terms we see that this is equivalent toimgothat the
following diagram commutes

Dirj = Djj + Djjr + Dy w

c/
2
(bcl oC(— Dj i1
/1 1 ’
T
i’

Dirjy + Dy + Dyjr + Dyrjo ————Dirw
o2

3

where hereC; = (Ui, U, W), C; = (U, Uy) and C3 = (U], U], U;, U, Wy). But this follows from Lemma
4.27 and Remark 4.23. This concludes the proof of Proposhi@0. O

This completes the proof of Proposition 5.19. O

LEmMMA 5.21. Let X, be an n-th order infinitesimal neighbourhood of X with norrhahdle V. If there
exists an extension df, then the cocycle claseby, =0 ¢ Ex(2,9).

Proof of Lemma 5.21.

Let X1 be the extension in question. We choolen;, to be the restriction toU; of X,y1 and we
consider the associated extension COCYIR(Un 1, Unt1)|u; ;s PUnys,UniaUnsa Uy} - FOr €QCH paini,j we set
i = rdlu; - DXny1, Xng)lu, — Sj D Qi

It remains to show that the following diagram commutes.

o€
D(Xnt1, Xnt1) + D(Xnt1, Xnt1) — D(Xnt1, Xnta)
ild'D(anrlwanrl)Jrr'd ind
D(Xnt1, Xnta) & SeQ
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where hereC = (Xn11, Xni1, Xnr1) and C' = (Xpi1, Xne1). But this follows from Lemma 4.25. O
This completes the proof of Lemma 5.21. O

PROPOSITIONS.22. Let X, be an n-th order infinitesimal neighbourhood of X.dl, is O then there
exists an extensioiX,; of Xp.

Proof of Proposition 5.22.
We choose extensionis; 1 of U; » and we consider the associated extension cocyBIELli ny1, Wjni1), P16,

The fact that {E; j,Fij«}] =0 in E(u,3(€2,S means we can choose extensidisover U; and isomorphisms
lij : D(Ui,Uj) — E — E such that the following diagram commutes

, Dik
lli.j-&-lj.k l'l,k
C_
E-E)+(E-E)—>FE - E

where hereC is the chain Y ny1, Ujn+1, Uknt1) @and C' is the chain Wi nt1, Uk nt1)-

Alternatively, by Proposition 4.28 we can fix the followingtd.

1. ExtensionsU/ of X over U;,

2. Isomorphismsl{; : D(Ui, U;) — D(Wi, U) — D(Y;, Uj) such that the following diagram commutes.
o<

Dij + Dij Dik

)

lli/’jJrlj/’k lli/’k

C_p. ,
(Di,i’ — ®j,j’) + (gj,j’ — Dk,k’) *”> Di,i’ — ®k,k’

There are maps
6a!  Dirj + Dij + Dy — Dy
(i +¢-p,,) : (Diri + Dijir) + (=Djy + Djj) = Su,; & Q-
where Ci; is the chain i ,, 1, Ui n+1, Ujnt1, U] ny4) @and C; is the chain ¢ ,, 1, U] ,,1). Combining these
maps, we get an isomorphism

Cij
!

Ti,j = (Ti,j + C'D(UJ,UJ/)) o (ld =+ Il/,J + |d) o ¢Cij . D(UII, U]’) — SEB Q.

We can now consider the isomorphisk) = b(U; ;)~(T;;) : U/ — U constructed in Section 4.1. To show that
the U/ ,, ;s actually glue together to get a global extensioriX@f we will have to prove that) ko Jij = Ji.
By Lemma 4.33 this is the case if and onlydsq o (Tij + Tjx) = Tik © G, 1,00

LEMMA 5.23. We have that the following diagram commutes.

4

¢
Di’7j’ —+ D]’,k’ ¢ Di’,k’

Tij+Tjk Tik

(S® Q) + (Se Q) =% 50 0.
where here C is the chaifl,Uj,U;) and C is the chain(Uj, Uy).

Proof of Lemma 5.23.
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We consider the following diagram. Here we defi®d, C,, C3 and C; to be the following chains:
Cl = (ufvujlaulk)l CZ = (ufau{()a C3 = (ufvul7u]:ujl7ujuukvu/k) and C4 = (uilauivukv {()

b2
D(Cy) - D(Cy)
i¢€i ¢c;
bt
3
D(Ca) D(Ca)
Di’,i + Di,j + Dj,k"" Id+7; ;s D(C )
D + Dy + Dy j !
l|d+lil,j+lj,,k+ld |d+|i,,k+|d
Dijir + Dijyw — Djj + Djjldten, j, +Hld+7 Do 4D Dew +D
_— '/7' "'/ — k,k’ k,k’
—Dyw + Dy + Dy j + Djjr R
iﬁ/1i+|d+CDk,k,+|d T HCD,
CS@QO(C'Dj_j, +737)
=Dy + Djj + Dy + Dy : S&Q

The first square of the diagram commutes by Proposition 4.88.second square commutes by Lemma 4.27.
The third square commutes by assumption and the last squamnates because E; and E, are extensions
and ¢; : E; — E3 and ¢, : E; — E4 are extension maps then (dg,) o (¢1 + 1d) = (¢1 + 1d) o (Id + ¢2).

But now, the right hand side map i§y and the the left hand side composed with the bottom map is

Cspa © (S + Sk). This completes the proof of Lemma 5.23. O

This completes the proof of Proposition 5.22. O

This completes the proof of Theorem 5.1. O
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