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BUILDING INFINITESIMAL NEIGHBOURHOODS OF VARIETIES.

by Catriona Maclean

ABSTRACT. We develop a deformation-type tool for the study of embeddings of a singular varietyX . Given a variety
X ⊂ Y there is a natural series of schemesX = X0 ⊂ X1 ⊂ X2 . . . ⊂ Y of infinitesimal neighbourhoods of Xdefined as
follows

Xn = zero(In
X/Y).

Under certain assumptions, we calculate the obstructions to the existence ofinfinitesimal neighbourhoods and classify
them when they exist.

1. INTRODUCTION.

1.1 A MOTIVATING EXAMPLE .

Consider the following question. LetX be a complex normal crossing variety : for simplicity’s sakewe
consider the case whereX is the union of two smooth irreducible varietiesX1 and X2 glued together along
divisors D1 ⊂ X1 and D2 ⊂ X2 via an isomorphismφ : D1 → D2 . The common image ofD1 and D2 in X
is denotedD .

It is natural to ask whetherX can be embedded in a smooth varietyY as a normal crossing divisor.
The following example (based on Friedman’s paper [1]) showsthat the answer is “no” in general.

Suppose thatX ⊂ Y is an inclusion ofX as a normal crossing divisor in a smooth variety. Then there is an
exact sequence

0 → N∗
X|Y → Ω

1
Y ⊗ OX → Ω

1
X → 0

where N∗
X/Y is the conormal bundle ofX in Y, N∗

X/Y = IX/Y/I2
X/Y . We note thatIX1|Y ⊗ OX1 = N∗

X1/Y and
hence

N∗
X1|Y ⊗ OD = IX1|Y ⊗ OX1 ⊗ OD = IX1|Y ⊗ OD = ID|X2

⊗ OD = N∗
D|X2

.

Likewise, N∗
X2|Y

⊗ OD = N∗
D|X1

, but sinceX is a normal crossing divisor inY, N∗
X|Y|D = N∗

X1|Y
|D ⊗ N∗

X2|Y
|D

so N∗
X|Y|D = N∗

D|X1
⊗ N∗

D|X2
. The point is that the right-hand side of this equation is the restriction to D of a

line bundle defined onX , whereas the left-hand side does not depend onY. We therefore have the following
result.

PROPOSITION 1.1. Let X = X1 ∪D X2 be a normal crossing variety as above. If X can be embedded in
a smooth variety Y as a normal crossing divisor then the line bundle N∗D|X1

⊗ N∗
D|X2

can be extended to a
line bundle on X .

Consider a pair (X,D) , where D is a smooth divisor inX such that the restriction map Pic(X) → Pic(D)
is not surjective. (This typically holds ifX is a surface andD is a smooth curve of genus> 0.) Choose a
line bundle L on D which is not the restriction of a line bundle onX and setX1 = Proj(L ⊕OD) , X2 = X ,
D1 = Proj(L) and D2 = D .

We then have thatN∗
D|X1

= L , N∗
D|X2

= O(−D) and by definition, N∗
D|X1

⊗ N∗
D|X2

does not extend to a



line bundle onX2 . It follows that X cannot be embedded in any smooth variety as a normal crossingdivisor.

The obstruction given above toX being a normal crossing divisor is in factinfinitesimal: in other words, it
is an obstruction not only to the existence ofY but also to the existence of the schemeXǫ = zero(I2

X|Y) .

Indeed, suppose given a scheme supported onX , Xǫ , such that

1. IX|Xǫ
is a line bundle,L on X . (In particular, I2

X|Xǫ

= 0.)

2. The sheafΩ1
Xǫ

⊗OX is a locally free sheaf onX . (This condition means thatXǫ is “potentially” the first
infinitesimal neighbourhood ofX in a smoothvariety Y).

It then turns out that, as above, we can build an exact sequence

0 → IX|Xǫ
→ Ω

1
Xǫ

⊗ OX → Ω
1
X → 0.

Since Ω1
Xǫ

⊗ OX is assumed to be locally free, there is a surjective mapI∗X|Xǫ

→ Ext1(Ω1
X,OX). The sheaf

Ext1(Ω1
X,OX) is a line bundle onD which is proved in [1] (page 85) to be given byND|X1

⊗ ND|X2
. The

left-hand side is a line bundle onX : it follows that I∗X|Xǫ

|D ∼= N∗
D|X1

⊗N∗
D|X2

and henceN∗
D|X1

⊗N∗
D|X2

extends
to a line bundle onX .

1.2 DEFINITIONS AND STATEMENT OF THEOREMS.

Hopefully, the above example has convinced the reader that infinitesimal considerations can produce inter-
esting information about embeddings ofX and a systematic study of infinitesimal obstructions to the existence
of embeddings can be useful.

Throughout what follows we work overk, an algebraically closed field of characteristic zero. Given an
inclusion of k-schemesX ⊂ Y there is an associated sequenceX = X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ . . . of nilpotent
schemes supported onX given by Xi = zero(I i+1

X|Y) . Our aim is to classify these infinitesimal models under
certain assumptions. We start by defining infinitesimal neighbourhoods, which should be thought of as nilpotent
schemes whose underlying base scheme isX and which are potentially schemes of the form zero (In+1

X|Y ) for
“good” X and Y.

DEFINITION 1.2. Let X be a reduced locally complete intersectionk-variety, wherek is an algebraically
closed field. LetV be a vector bundle onX . An n-th order infinitesimal neighbourhood ofX with normal
bundle V , Xn , is the data of a tripleXn = (Xn, iXn, αXn) such that

1. Xn is a k-scheme of finite type,

2. The mapiXn : X → Xn is an inclusion,

3. The ideal sheafIn+1
X|Xn

= 0,

4. The mapαXn : V∗ → IX|Xn
/I2

X|Xn
is an isomorphism ofOX -modules,

5. The multiplication map Symn(αXn) : Symn(V∗) → In
X|Xn

is an isomorphism.

The bundleV∗ is called theconormalbundle of the infinitesimal neighbourhoodXn .

REMARK 1.3. If Xn = (Xn, iXn, αXn) is a n-th order infinitesimal neighbourhood ofX with normal bundle
V then for any 1≤ i ≤ n there is ani -th order infinitesima l neighbourhood ofX with normal bundleV ,
Xi = (Xi , iXi , αXi ) which is defined as follows :

Xi = zero (I i+1
X|Xn

); iXi = iXn|Xi ; αXi = αXn.

The infinitesimal neighbourhoodXi is called thei -th order truncation ofXn .

We fix an open setU ⊂ X . We will need to know what we mean by the restictions of an n-thorder
infinitesimal neighbourhood ofX to U . Note that if Xn = (Xn, iXn, αXn) then the nilpotent schemeXn can be
thought of as a sheaf of algebras onX . In particular, the restriction ofXn to U is well-defined. We denote
the restriction of the nilpotent schemeXn (resp. X1

n+1,X
2
n+1 ) to U by Un (resp U1

n+1 , U2
n+1 ).
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DEFINITION 1.4. Let Xn = (Xn, iXn, αXn) be an n-th order infinitesimal neighbourhood ofX with normal
bundle V and let U be an open set inX . The restriction ofXn to U , denotedUn , is the n-th order
infinitesimal neighbourhood ofU with normal bundleV|U given by Un = (Un, iXn|U, αXn|U) .

DEFINITION 1.5. An n-th order infinitesimal neighbourhoodXn = (Xn, iXn, αXn) is said to bepotentially
smoothif the sheafΩ1

Xn
⊗ OX is a locally free sheaf onX .

Consider an inclusion of schemesi : X → Y such that the conormal sheafV∗ def
= IX|Y/I2

X|Y is a vector
bundle onX . We can then form a series of triples

X
Y
n = (XY

n , iXY
n
, αXY

n
)

given by

XY
n = zero(In+1

X|Y ), iXY
n

= i|XY
n
, αXY

n
= id : IX/XY

n
/I2

X/XY
n
→ IX/XY

n
/I2

X/XY
n

= IX/Y/I
2
X/Y = V∗.

The above definitions are motivated by the following lemma.

LEMMA 1.6. Let iY : X →֒ Y be a closed embedding of X , a reduced l.c.i. k -variety. The space Y is
then smooth in an open neighbourhood of X if and only if the triple XY

n is a potentially smooth infinitesimal
neighbourhood of X for all n∈ N .

Proof of Lemma 1.6.

We start by proving that if the tripleXY
n is a potentially smooth infinitesimal neighbourhood for alln ∈ N

then Y is smooth alongX .

Let x ∈ X be a point. The schemeY is smooth at the pointx if and only if Ω1
Y ⊗ kx is a kx -vector

space of rank dimY (see [4] Theorem 8.15). We note thatΩ1
Y ⊗ kx = Ω1

XY
1
⊗ kx . By assumption,Ω1

XY
1
⊗OX is

a vector bundle onX : it remains only to show that this vector bundle is of rank dim(Y) . It will be enough
to prove thatΩXY

1
⊗ kx is a vector space of dimension dimY for any closed smooth point x ∈ X .

Let f1, . . . , fr be elements of the local ringOY(x) such thatdf1, . . . ,dfr form a basis ofΩ1
Y ⊗kx , df1, . . . ,dfm

form a basis ofΩ1
X ⊗ kx and fm+1, . . . , fr are elements inIX|Y . In particular, the classesf m+1, . . . , fr are

then independent elements of the vector spaceIX/Y/I2
X/Y ⊗ kx . We wish to show thatr ≤ dim(Y) (we know

that it is ≥ dim(Y) ) : to do this it will be enough to show that the elementsf1, . . . , fr are algebraically
independent overk. Suppose not : there is then an algebraic equation of the formP(f1, . . . , fr ) = 0, whereP
is a polynomial. We write

P(f1, . . . , fr ) = P1(f1, . . . , fr ) + . . .+ PD(f1, . . . , fr )

where Pi is of total degreei with respect to the functionsfm+1, . . . , fr . (We note that there is no termP0

because the functionsf1|X, . . . , fm|X are algebraically independent). There is at least onei ≥ 1 such that
Pi 6= 0. Let d be the smallest non-zero integer such thatPd 6= 0 : in a suitable Zariski neighbourhood ofx
we have that 0= Pd(f1, . . . , fm, fm+1, . . . fr ) ∈ Id

X|Y/I
d+1
X|Y . Since XY

d is supposed to be an infinitesimal neigh-
bourhood Pd(f1, . . . , fm, fm+1, . . . fr ) = 0 is therefore identically 0 as a polynomial in variablesfm+1, . . . , fr
with coordinates in the local ringOX(x) . But now asf1|X, . . . , fm|X are algebraically independent this implies
that Pd = 0, which is a contradiction.

Let us now prove that ifY is smooth thenXY
n is an infinitesimal neighbourhood for alln ∈ N . (It is

then immediate that it is potentially smooth.) The only thing we have to prove is that ifY is smooth then
the multiplication map

µn : Symn(IX|Y/I
2
X|Y) → In

X|Y/I
n+1
X|Y
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is an isomorphism. By Matsumura [?] p.121 we know thatY is Cohen Macaulay so by [?] p. 110 for any
ideal I generated by a regular sequence (f1, . . . , fm) we know that Symn : I/I2 → In/In+1 is an isomorphism.
But now sinceX is a locally complete intersectionIX/Y is generated by a regular series in any sufficiently
small open set inX . This completes the proof of Lemma 1.6. �

We will also need in what follows to have a definition of an isomorphism of infinitesimal deformations.

DEFINITION 1.7. Let Xn = (Xn, iXn, αXn) and X′
n = (X′

n, iX′
n
, αX′

n
) be two n-th order infinitesimal

neighbourhoods ofX with normal bundleV . An isomorphism of infinitesimal neighbourhoods betweenXn

and X′
n is an isomorphism of schemesjn : Xn → X′

n such thatjn ◦ iXn = iX′
n

and αXn ◦ j∗n = αX′
n
.

Here, j∗n : IX|X′
n
→ IX|Xn

is the pull-back map. Note that ifjn : Xn → X′
n is an isomorphism of infinitesimal

deformations of ordern with normal bundleV then for any 1≤ i ≤ n the truncated morphism

j i = j|Xi : Xi → X′
i

is an isomorphism of infinitesimal neighboourhoods of orderi with normal bundleV betweenXi and X′
i .

We define an extension of ann-th order infinitesimal neighbourhood as follows.

DEFINITION 1.8. Let Xn = (Xn, iXn, αXn) be ann-th order infinitesimal neighbourhood ofX with normal
bundle V . An extension ofXn is given by a pair (X′

n+1, jn) where

1. X′
n+1 is an (n + 1)st order infinitesimal neighbourhood ofX with normal bundleV and

2. jn : X′
n → Xn is an isomorphism betweenX′

n , the n-th order truncation ofX′
n+1 , and Xn .

By abuse of notation, if there is no risk of confusion we oftendenote the extension (X′
n+1, jn) by X′

n+1 .
We will also need to know what we mean by an isomorphism of extensions.

DEFINITION 1.9. Let Xn be ann-th order infinitesimal neighbourhood ofX with normal bundleV and let
(X1

n+1, j
1
n) , (X2

n+1, j
2
n) be two different extensions ofXn . An isomorphism between the extensions (X1

n+1, j
1
n)

and (X2
n+1, j

2
n) is an isomorphism of (n + 1)-th order infinitesimal neighbourhoods with normal bundle V

Jn+1 : X
1
n+1 → X

2
n+1

such thatj2n ◦ Jn = j1n

The aim of this article is to prove the following two theorems.

THEOREM 1.10. Let n be an integer≥ 1 and let Xn = (Xn, iXn, αXn) be an n-th order infinitesimal
neighbourhood of X with normal bundle V . Suppose that the setof extensions ofXn to (n + 1)-st order is
not empty. To any pair of extensions ofXn , (X1

n+1, j
1) and (X2

n+1, j
2) we can then associate a difference

D(X1
n+1,X

2
n+1) ∈ Ext1OX

(Ω1
Xn
⊗ OX,Symn+1(V∗))

in such a way that

1. D(X1
n+1,X

2
n+1) = 0 if and only if (X1

n+1, j
1
n+1) and (X2

n+1, j
2
n+1) are isomorphic as extensions ofXn ,

2. D(X1
n+1,X

2
n+1) + D(X2

n+1,X
3
n+1) = D(X1

n+1,X
3
n+1) for any triple of extensions(X1

n+1,X
2
n+1,X

3
n+1) ,

3. Given any extensionX1
n+1 and any elementω ∈ Ext1OX

(Ω1
Xn
⊗OX,Symn+1(V∗)) there is an extensionX2

n+1

such that
D(X1

n+1,X
2
n+1) = ω.

THEOREM 1.11. Given an n-th order infinitesimal neighbourhoodXn with normal bundle V we can
assign to it an element

obXn ∈ Ext2OX
(Ω1

Xn
⊗ OX,Symn+1(V∗))

such thatXn has an (n + 1)st order extension if and only ifobXn = 0.
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There are obvious analogies with the standard theorems of deformation theory (see [6], [11] and [10]
for more details). The related problem of constructing infinitesimal neighbourhoods seems to have received
relatively little attention : Illusie’s book [6] proves a classification/obstruction result for extensions of sheaves
of algebras by fixed sheaves (théor̀eme fondamental, page 162) but, surprisingly, does not in general deal
with the question of whether the algebras produced are infinitesimal neighbourhoods in the above sense. (See
page 191 of [6] for a related result, which works for much moregeneral choices ofX and Xn , but which
requires the presence of a base schemeYn+1 . The aim of the present article is to deal with the many cases
where no such base scheme can exist.)

REMARK 1.12. The sheafΩ1
Xn
⊗ OX which appears in the above statements is isomorphic toΩ1

X1
⊗ OX .

In particular it only depends on the first infinitesimal neighbourhood ofX .

REMARK 1.13. If Xn is potentially smooth then Ext1
OX

(Ω1
Xn

⊗ OX,Symn+1(V∗)) is isomorphic to
H1(Hom(Ω1

Xn
⊗ OX,Symn+1(V∗))) . Any two extensions are then locally isomorphic : this contrasts with the

deformation theory of singular varieties.

We have the following immediate corollary of 1.10.

COROLLARY 1.14. Let X be an l.c.i. reduced k-variety and let V be a vector bundle on X . LetX1 be
a first-order infinitesimal neighbourhood of X with normal bundle V and suppose there is a number k such
that Ext1OX

(Ω1
X1
⊗ OX,Symn+1(V∗)) vanishes for any n≥ k + 1. Suppose givenX1

n and X2
n , two n-th order

infinitesimal neighbourhoods of X , and isomorphisms j1
1 : X1

1 → X1 and j21 : X2
1 → X1 . Suppose we also

have an isomorphism Jk : X1
k → X2

k such that J1 = (j21)−1 ◦ j11 . There is then an isomorphism of infinitesimal
neighbourhoods with normal bundle V , Jn : X1

n → X2
n , such that the k-th truncation of Jn is Jk .

In the case wherek = C , V is a weakly negative vector bundle andX is smooth the above corollary
can be seen as a weaker version of Grauert’s theorem in [2].

THEOREM 1.15 (Grauert). Let X and X̃ be two smooth complex varieties, and let A (respectivelyÃ)
be a smooth codimension 1 subvariety of X (respectivelyX̃ ). Assume that the normal bundle of A in X is
weakly negative. Then there is an integerν0 such that for anyν ≥ ν0 any isomorphism Aν ∼= Ãν extends
to an isomorphism of the ringed spaces A∗ = OX|A and Ã∗ = OX̃|Ã .

In [5], Hironaka and Rossi proved the following generalisation of the above result.

THEOREM 1.16 (Hironaka/Rossi). Let A (resp.Ã) be a compact reduced complex subspace of a reduced
complex space X (resp.̃X ), such that X− A (resp. X̃ − Ã) is smooth. Assume that A is exceptional (i.e.
it can be blown down to a point). Then there is an integerν0 such that for anyν ≥ ν0 any isomorphism
Aν

∼= Ãν extends to an isomorphism of the ringed spaces A∗ = OX|A and Ã∗ = OX̃|Ã .

REMARK 1.17. When n = 0 condition 5 of definition 1.2 is empty and the first order infinitesimal
neighbourhoods ofX with normal bundleV are simply algebra extensions ofOX by V∗ . These have been
classified by Illusie in [6] (page 162, théor̀eme fondamental 1.2) : there are no obstructions to the existence
of such algebra extensions and they are classified by Ext1(Ω1

X,V
∗) .

Our proof uses embeddings of infinitesimal neighbourhoods and their morphisms, which are defined below.

DEFINITION 1.18. Let X be a reduced locally complete intersectionk-variety and letXn = (Xn, iXn, αXn)
be an n-th order infinitesimal neighbourhood ofX with normal bundleV . Let P be a smooth scheme and
let W be a vector bundle onP. An embedding ofXn over P with normal bundleW is given by a pair
(Pn, fn) where

1. Pn is an n-th order infinitesimal neighbourhood ofP with normal bundleW,
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2. fn : Xn → Pn is a closed inclusion of schemes such thatf ∗n (IP) = IX and the pull-back map

f ∗n : W∗
= IP|Pn

/I2
P|Pn

→ IX|Xn
/I2

X|Xn
= V∗

is surjective.

Note that in the above definition we do not ask thatf ∗n should be an isomorphism. As previously, we will
abusively writePn for the embedding (Pn, fn) when there is no risk of confusion.

DEFINITION 1.19. Let X be a reduced locally complete intersectionk-variety and letXn = (Xn, iXn, αXn)
be ann-th order infinitesimal neighbourhood ofX with normal bundleV . Let P and Q be smooth schemes
and let WP and WQ be vector bundles onP and Q, respectively. Let (Pn, fn) and (Qn, gn) be embeddings
of Xn over P and Q respectively. A map of embeddings fromPn to Qn is a map

h : Pn → Qn

such thath ◦ fn = gn and h∗(IQ|Qn
) = IP|Pn

.

1.3 OVERVIEW OF THE PROOF AND NOTATION.

We start by indicating a relatively elementary proof of standard deformation-theoretic results, and which
parts do and don’t work in our set-up.

1.4 REVIEW OF BASIC DEFORMATION THEORY.

Given a reduced locally complete intersectionk-variety X , there is a well-developped theory of deformations
of X . By a deformation ofX over a local Artinian ringA, we mean a commutative diagram

X

��

// XA

��
Spec(k) // Spec(A)

where XA is flat over A. Intuitively, we think of such schemes as being “fattenings” of the base schemeX .

The first systematic study of deformations of structures of manifolds was carried out in the complex analytical
category by Kodaira and Spencer in 1958 in [7]. The first comprehensive study of deformations in the
algebraic category was completed by Schlessinger in [9] in the late 1960s : an exposition of this work is also
contained in Grothendieck’s E.G.A [3].

In the particular case whereX0 is a local complete intersection the theorem on extensions of deforma-
tions of X can be stated as follows. LetA′ and A be Artinian rings, and consider an exact sequence

0 → a → A′ → A → 0

where a is an ideal of A′ such that mA′ .a = 0. If XA → Spec(A) is a deformation ofX over A and
XA′ → Spec(A′) is a deformation ofX over A′ then we say thatXA′ is an extension ofXA if there is
an isomorphismXA

∼= XA′ ⊗A′ Spec(A). Likewise, we say that two deformations ofX over A, X1
A and X2

A

are isomorphic as deformations ofA if and only if they are isomorphic asA-schemes. We then have the
following two theorems, which can be found in [11] or more generally in [6]. (See also the recent book [10]).

THEOREM 1.20. To any ordered pair(X1
A′ ,X2

A′ ) of extensions of XA over Spec(A′) , we can assign a
differenceD(X1

A′ ,X2
A′ ) ∈ Ext1(Ω1

X,OX ⊗ a) in such a way that the following hold.

1. We have thatD(X1
A′ ,X2

A′ ) = 0 if and only if X1
A′ and X2

A′ are isomorphic as extensions of XA .

2. For any triple of extensions over A′ , X1
A′ , X2

A′ and X3
A′ we have thatD(X1

A′ ,X2
A′ ) + D(X2

A′ ,X3
A′ ) =

D(X1
A′ ,X3

A′ ) .

3. If an extension X1A′ exists then for any E∈ Ext1(Ω1
X,OX ⊗ a) there is an extension X2A′ such that

D(X1
A′ ,X2

A′ ) = E.

6



THEOREM 1.21. We can associate to XA , a deformation of X overSpec(A) , an elementobXA ∈

Ext2(ΩX,OX ⊗ a), such that extensions of XA over Spec(A′) exist if and only ifobXA = 0.

We start by summarising an (elementary) proof of Theorem 1.20 (drawn from [11]) and indicating what
doesn’t work in our context. Our aim is to associate to a pair of extensionsX1

A′ and X2
A′ of XA a “difference”

D(X1
A′ ,X2

A′ ) in Ext1(ΩX,OX ⊗ a) .

1. Prove a classification theorem for embeddedA- deformations. Given an embeddingX ∈ P, we consider
A-flat subschemes

XA ⊂ P× Spec(A) = PA

extendingX . Extensions of embedded deformations ofXA to XA′ form a torsor overH0(a ⊗ NX|P) .
2. To an elementh ∈ H0(a ⊗ NX|P) we associate the push-forward along the dual maph∗ of the exact

sequence
0 → N∗

X|P → Ω
1
P ⊗ OX → Ω

1
X → 0.

3. We can therefore construct local extensions encoding thelocal difference between embeddings ofX1

and X2 . Given two different embeddings of the pairX1
A′ ,X2

A′ as embedded deformations in two different
ambient spacesP and Q we can define canonical isomorphisms between the associatedextensions, based
on the the product diagram

PA ×A QA

zzuuuuuuuuu

$$I
IIIIIIII

PA QA

The point which does not work directly for infinitesimal neighbourhoods is 3). The problem is the following :
the construction of the gluing isomorphisms uses the product spacePA×A QA in which XA remains transverse
to the central fibre.For infinitesimal neighbourhoods, there is no base scheme Spec(A) . We can still define
embeddings of deformations,XA → Pn , but Pn is no longer the product of a smooth space and the spec of
an Artinian ring, but a simple kind of formal scheme. In particular, given two such objects,P and Q there
is no canonical way to take a product in whichX will be tranverse to the central fibre. For this reason, we
are obliged to consider embeddings of deformations into formal thickenings of a smooth varietyP in which
the schemeXn may not be transverse to the smooth schemeP. This is the fundamental reason for most of
the technical problems that we will meet and deal with in thisarticle. Globally, the proof follows closely the
ideas and methods of Vistoli’s article [11].

NOTATION

Throughout thi articlek will be an algebraically closed field of characteristic zero.

X denotes a reduced locally complete intersectionk-variety.

Xn denotes ann-th order infinitesimal neighbourhood ofX with normal bundleV .

To simplify the notation, we will denote byΩ the sheafΩ1
Xn

⊗ OX and we will denote byS the sheaf
Symn+1(V∗

X) .

For any open setU of X and any sheafA on X we will denote by AU the restriction of A to U .
(In particular, the sheafΩU is therefore not equal toΩ1

U .)

WheneverX is a subscheme of a schemeY we will denote by IX|Y the ideal sheaf ofX in Y.

ORGANISATION

The article is organised as follows. In section 2 below we prove some preliminary lemmas. In section 3
we will define extensions associated to pairs of embedded extensions and show how to glue them together in
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order to create an extension encoding the “difference” between them. In section 4 we complete the proof of
Theorem 1.10 by proving that this mapping turns the set of extensions of infinitesimal neighbourhoods into
a torsor over Ext1(Ω,S) and in section 5 we prove Theorem 1.11.

2. PRELIMINARY LEMMAS .

In this section we will prove some preliminary lemmas which will be useful in the rest of the proof.

Let X be a reduced l.c.i.k-variety. Let Xn be an n-th order infinitesimal neighbourhood ofX with
normal bundleV and let (Pn, fn) be an embedding ofXn with normal bundleW. Recall that we then have
a surjective map

f ∗n : W∗ → V∗.

DEFINITION 2.1. Let Xn and (Pn, fn) be as above. We then denote byLPn the kernel of the pullback
map f ∗n : W∗|X → V∗ . We denote byLPn the sheaf-theoretic kernel off ∗n : W∗ → V∗ , considered as a maps
of sheaves. We note thatLPn is a vector bundle onX .

We need to understand the structure of the ideal sheafIXn|Pn
. Note that IPn−1|Pn

is an OP -module; in
particular we have that

IX|P · IPn−1|Pn
= IXn|Pn

.IPn−1|Pn
⊂ IXn|Pn

∩ IPn−1|Pn
.

We have an isomorphism

Symn(αPn)|X : SymnW∗|X →
IPn−1|Pn

IX|P · IPn−1|Pn

We consider Symn(αPn)|
−1
X

(
IXn|Pn∩IPn−1|Pn

IX|P·IPn−1|Pn

)
, the inverse image under Symn(αPn)|X of the subsheaf

IXn|Pn∩IPn−1|Pn

IX|P·IPn−1|Pn
⊂

IXn|Pn ·IPn−1|Pn

IX|P·IPn−1|Pn
. The following lemma identifies this subsheaf explicitly.

LEMMA 2.2. Let X , Xn and Pn be as above. We then have that

Symn(αPn)|
−1
X

(
IXn|Pn

∩ IPn−1|Pn

IX|P · IPn−1|Pn

)
= [LPn · Symn−1(W∗)|X).

Proof of Lemma 2.2.

We consider the following commutative diagram.

Symn(W∗)|X
Symn(αPn )|X //

Symn(f∗n )

��

IPn−1|Pn
⊗ OX

f∗n

��
Symn(V∗)

Symn(αXn ) // IXn−1|Xn

where on the right-hand sidef ∗n is the pullback mapf ∗n : IPn−1|Pn
⊗ OX → IXn−1|Xn

and on the left hand side
f ∗n is the pullback mapf ∗n : W∗ → V∗ . The two horizontal maps are isomorphisms. On the right-hand side

of the equation, Ker(f ∗n ) =
IPn−1|Pn∩IXn|Pn

(IX·IPn−1|Pn ) . It follows that

IPn−1|Pn
∩ IXn|Pn

(IX · IPn−1|Pn
)

= Symn(αPn)|X(Ker(Symn(f ∗n ))

and hence

(Symn(αPn)|X)−1

(
IPn−1|Pn

∩ IXn|Pn

(IX · IPn−1|Pn
)

)
= Ker(Symn(f ∗n )) = LPn · Symn−1(W∗)|X.

This completes the proof of Lemma 2.2. �
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LEMMA 2.3. Let Xn be an n-th order infinitesimal neighbourhood of a reduced l.c.i. k -variety X with

normal bundle V . The sequence0 → V∗ d
→ Ω1

Xn
⊗ OX

i∗
Xn→ Ω1

X ⊗ OX → 0 is then exact.

Proof of Lemma 2.3.

By [4], II.8.12 it will be enough to show thatd : V∗ → Ω1
Xn
⊗OX is injective. As the question is local, it will be

enough to prove Lemma 2.3 on any small enough open set inX . We choose an affine open setU ⊂ X such that
V|U is trivial and U can be embedded in an affine spacekn as the zero locus of a regular series of functions
f1, . . . , fm. (This is possible becauseX is l.c.i..) We setU = Spec(A) where A = k[x1, . . . , xn]/〈f1, . . . , fm〉 .
Choose elementsǫ1, . . . , ǫk ∈ IU|Un

such that the elementsǫ1, . . . , ǫk ∈ IU|Un
⊗ OU = V∗

U form a basis of
sections ofV∗

U . We can then writeUn in the form Un = Spec(B) where

B = (k[x1, . . . , xn, ǫ1, . . . , ǫk]/Ĩ ⊕ J)

where I is an ideal of the formf̃1, . . . , f̃m, where f̃i |An = fi and J ⊂ 〈ǫ1, . . . , ǫk〉 . We setm = 〈ǫ1 . . . , ǫk〉 , the
ideal generated inB by the ǫi s : we have thatA = B/m . Since theǫi s form a basis of sections ofIU|Un

⊗OU ,
we have thatJ ⊂ Ĩ ⊕ m

2 . Now, Ω1
Un

⊗ OU = Ω1
U1

⊗ OU and U1 = Spec(k[x1, . . . , xn, ǫ1, . . . , ǫn]/Ĩ ⊕ m
2 . It

follows that theOU -module Ω1
U1

⊗ OU is the sheafification of theA-module
(

Bdx1 ⊕ . . .⊕ Bdxn ⊕ Bdǫ1 . . .⊕ Bdǫk
〈d(Ĩ ) ⊕ d(m2)〉

)
⊗B A.

We note thatd(m2) ⊂ m · (Bdx1 ⊕ . . . ⊕ Bdxn ⊕ Bdǫ1 . . . ⊕ Bdǫk) so Ω1
U1

⊗ OU is the sheafification of the
following A-module

Adx1 ⊕ . . .⊕ Adxn ⊕ Adǫ1 . . .⊕ Adǫk
〈df̃1 ⊗ A, . . . ,df̃m ⊗ A〉

.

V∗ is the sheafification of theA module Adǫ1 ⊕ . . .⊕ Adǫk so it remains to show that the map

Adǫ1 ⊕ . . .⊕ Adǫk →
Adx1 ⊕ . . .⊕ Adxn ⊕ Adǫ1 . . .⊕ Adǫk

〈df̃1 ⊗ A, . . . ,df̃m ⊗ A〉

is injective. In other words, we must show that〈df̃1 ⊗ A, . . . ,df̃m ⊗ A〉 ∩ Adǫ1 ⊕ . . .⊕ Adǫk = {0} . Suppose
now that there are elementsai ∈ A such that

∑
i aidf̃i ⊗ A ⊂ ⊕jAdǫj . We then have that

∑
i aidfi = 0 in

Ω1
kn
⊗ A. But now since thefi s are a regular series forIU|kn the dfi s are independent overA and it follows

that ai = 0 for all i . It follows that the above maps are injective and henceV∗|U
d
→ Ω1

Un
⊗ OU is also

injective. This completes the proof of Lemma 2.3. �

LEMMA 2.4. Let Xn be an n-th order infinitesimal neighbourhood of X and let U be an open set in
X . Let Pn be an embedding ofUn . Consider the map

τPn : IP|P1
∩ IU1|P1

→ IU1|P1
⊗ OU.

Then we have thatKer(τPn) = IU|P1
· IP|P1

. In particular, IP|P1
∩ IU1|P1

/Ker(τPn) = LPn .

Proof of Lemma 2.4.

It is immediate thatIU|P1
· IP|P1

⊂ Ker(τPn) . To prove the converse, we use the fact thatU is a local
complete intersection inP. Locally, we can choose a regular sequence ofm elements f1, . . . , fm ∈ IU|P

such that if F denotes the vector spacekf1 ⊕ kf2 . . . ⊕ kfm then IU|P/I2
U|P = F ⊗k OU and more generally

In
U/I

n+1
U = Symn(F) ⊗k OU.

We fix liftings f̃i of fi to IU1|P1
. Choose an elementv ∈ (IU1|P1

∩ IP|P1
) such that τPn(v) = 0 : our

aim is to show thatv ∈ IU|P1
· IU1|P1

. We know thatv can be written in the formv =
∑

i j igi where j i ∈ IU|P1

and gi ∈ IU1|P1
.
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LEMMA 2.5. Let U , P, U1 , P1 , f1 . . . , fm and f̃1 . . . f̃m be as above and letv ∈ (IU1|P1
∩ IP|P1

) be an
element ofKer(τPn) . There is then aw ∈ IU|P1

· IU1|P1
such thatv − w =

∑
i j′ig

′
i where for all i we have

that j′i , g
′
i ∈ 〈f̃1, f̃2 . . . f̃m〉 .

Proof of Lemma 2.5.

We can write v =
∑

i j igi . We can write gi = g′i + ǫi where g′i ∈ 〈f̃1, f̃2 . . . f̃m〉 and ǫi ∈ IP|P1
. On set-

ting w1 =
∑

i j iǫi ∈ IU|P1
· IU1|P1

we see thatv−w1 =
∑

i g
′
i j i . We can writej i = j′i +νi where j′i ∈ IU1|P1

and
νi ∈ IP|P1

. It follows that if we setw2 =
∑

i g
′
i νi ∈ IU|P1

· IU1|P1
then we have thatv − w1 − w2 =

∑
i g

′
i j
′
i .

And now we setj′i = j′′i + ǫ′i , where j′′i ∈ 〈f̃1, f̃2 . . . f̃m〉 and ǫ′i ∈ IP|P1
. On settingw3 =

∑
i ǫ

′
ig

′
i we see that

v − w1 − w2 − w3 =
∑

i g
′
i j
′′
i . On takingw = w1 + w2 + w3 , this completes the proof of Lemma 2.5. �

LEMMA 2.6. Let U , P, U1 , P1 , f1, . . . , fm and f̃1, . . . , f̃m be as above. Letv ∈ (IU1|P1
∩ IP|P1

) be an
element ofKer(τPn) which can be written in the form̃v =

∑
i j igi , where gi , j i ∈ 〈f̃1, f̃2, . . . , f̃m〉 for all i .

Then for all integers n we have that

v ∈ (IP|P1
· IU|P) ⊕ Symn(〈f̃1, . . . f̃m〉).

Proof of Lemma 2.6.

We will prove the lemma by induction onn. The casen = 2 holds by definition. Assume that the in-
duction hypothesis holds forn − 1. We then have ˜v = ǫ +

∑
I αI f̃ I where ǫ ∈ IP|P1

· IU|P and the sum is
taken over all multi-indicesI of degree (n− 1). Since f1, . . . , fm is a regular series forIU|P , the map

Symn−1(〈f1, . . . fm〉) ⊗ OU → In−1
U|P /I

n
U|P

is an isomorphism. It follows thatαI |U ∈ IU|P : in other words, we can writev = ǫ +
∑

I δI f̃ I + β where
β ∈ Symn(〈f1, . . . fm〉) and δI ∈ IP|P1

. But we then have thatǫ +
∑

I δI f̃ I ∈ IP|P1
· IU|P. This completes the

proof of Lemma 2.6. �

We now show how Lemma 2.6 implies Lemma 2.4. It will be enough to show that for any pointx ∈ X ,
the image ofv in the local ringOP1,x , which we denote byvx , is contained in the localised ideal (IP|P1

·IU|P)x .

We denote the ideal generated byf̃1 . . . f̃m in OP1,x by a . We denote the localised ideal (IP|P1
∩ IU|P)x

by Ix . We note that by the Artin-Rees lemma the following sequenceis exact

0 → Îx → ÔP1,x → ÔP1,x/Ix → 0

where M̂ indicates completion of the moduleM with respect toa .

By Lemma 2.6, we know that the image ofvx in ÔP1,x is contained inÎx . In particular, we know that the

image of vx in ÔP1,x/Ix is 0. Krull’s theorem says that there exists an elementf ∈ 1 + a such thatf v = 0
in OP1,x/Ix . But now the form off implies that f is invertible since it cannot be an element of the maximal
ideal of OX,x , so vx ∈ Ix . This completes the proof of Lemma 2.4. �

LEMMA 2.7. Consider the Artinian ring An = k[ǫ1, . . . , ǫm]/mn+1 . Let Xn → Spec(An) be an An -scheme
whose central fibre X= X0 is a reduced l.c.i. k-variety. Consider the tripleXn = (Xn, iXn, αXn) , where iXn

is the inclusion of X in Xn and αXn is the identification of V= OXǫ1 ⊕ . . .⊕ OXǫn with IX|Xn
/I2

X|Xn
. Then

the following are equivalent, a)Xn is an n-th order infinitesimal neighbourhood of X0 and b) Xn is a flat
An -scheme.

Proof of Lemma 2.7.

We prove the lemma by induction onn. We may assume thatXn is affine, Xn = Spec(Bn) , where Bn

is an An -algebra. Throughout this section for any 1≤ i ≤ n we setAi = k[ǫ1, . . . , ǫm]/mi+1 , Bi = Bn⊗An Ai ,
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Xi = Spec(Bi).

In the case wheren = 1 we have thatm2 = 0 so m is simply a k-vector space and an ideal ofA
is the same thing as ak-subspace ofm . Conditions 1), 2) and 3) of the definition of ann-th order infinitesi-
mal neighbourhood are immediately satisfied, and conditions 4) and 5) are equivalent. We have thatX1 is flat
if and only if for any subspacen ⊂ m the mapn⊗A1 B1 → B1 is injective. Now,n⊗A1 B1 = n⊗k B0 and the
above map is injective for anyn if and only if the mapm⊗k B0 → B1 is injective. But the sheafification of
this morphism is the morphismV → OX and since the mapm⊗k B0 → IB0 is surjective by definition, we see
that X1 is flat over A1 if and only if αXn is an isomorphism. This proves the lemma in the case wheren = 1.

Now, let us consider the case wheren > 1 : we want to show that if one of the two conditions a)
and b) hold then the other also holds. By the induction hypothesis we may assume thatXn has the property
that Xn−1 is flat over An−1 and is ann− 1-st order infinitesimal neighbourhood with normal bundleV . We
note thatXn is then an infinitesimal neighbourhood if and only if the map SymnαXn : m

n ⊗k OX → OXn is
injective, or in other words if the mapmn ⊗k B0 → Bn is injective.

Now, let I be an ideal of An . Since Bn−1 is flat over An−1 we know that 0→ Bn ⊗An (I ∩ m
n) →

Bn ⊗ I → Bn ⊗An (I/I ∩ m
n) → 0 is exact, sinceI , I ∩ m

n and I/(I ∩ m
n) are all An−1 -modules. We know

also that the mapBn−1 ⊗An−1 I/I ∩ m
n → Bn−1 is injective, sinceBn−1 is An−1 -flat. In particular, the map

Bn ⊗An I → Bn is injective for all idealsI if and only if the mapBn ⊗An (I ∩ m
n) → Bn is injective for

all ideals I . In other words,Bn is flat over An if and only if for any subspacen ⊂ m
n we have that

Bn⊗An n → Bn is an injection intom
n ·B0 . Since we have thatBn⊗An n = B0⊗k n this is the case if and only

if Bn ⊗An m
n → m

n · Bn is an isomorphism. But this is the case precisely if Symn(αXn) is an isomorphism,
that is, if Xn is an infinitesimal neighbourhood. This completes the proofof Lemma 2.7. �

3. CONSTRUCTION OF D(X1
n+1,X

2
n+1) .

Throughout this section, the following data will be fixed :

1. an n-th order infinitesimal neighbourhood ofX , Xn = (Xn, iXn, αXn) ,
2. two extensions ofXn , (X1

n+1, j
1
n+1) and (X2

n+1, j
2
n+1) .

The aim of this section is to construct the extensionD(X1
n+1,X

2
n+1) . We will now define categoriesC(U)

and E(U) associated to the extensionsX1
n+1 and X2

n+1 .

3.0.1 DEFINITION OF CATEGORIES C(U) AND E(U) .

DEFINITION 3.1. An elementP̃n+1 of the categoryC(U) is a 4-tupleP̃n+1 = (P,Pn+1, f 1
n+1, f

2
n+1) where

P is a smoothk-variety, Pn+1 = (Pn+1, iPn+1, αPn+1) is an infinitesimal neighbourhood of order (n + 1) of
P with normal bundleW and f 1

n+1 : U1
n+1 → Pn+1 and f 2

n+1 : U2
n+1 → Pn+1 are maps of schemes such that

(Pn+1, f i
n+1) are embeddings ofUi

n+1 and the truncated extension mapsf 1
n and f 2

n have the property that

f 1
n ◦ (j1n)−1

= f 2
n ◦ (j2n)−1.

(We recall that the mapsj1n and j2n are the isomorphismsj in : Un → Ui
n from the n-th order truncation of

Ui
n+1 to Un .)

If P̃n+1 = (P,Pn+1, f 1
n+1, f

2
n+1) is an element ofC(U) then we will denote the map

f 1
n ◦ (j1n)−1

= f 2
n ◦ (j2n)−1 : Un → Pn

by fn . The pair (Pn, fn) is then an embedding ofUn .

DEFINITION 3.2. Let P̃n+1 = (P,Pn+1, f 1
n+1, f

2
n+1) and Q̃n+1 = (Q,Qn+1, g

1
n+1, g

2
n+1) be two elements of

C(U) . A C(U) -morphism from P̃n+1 to Q̃n+1 is a map of infinitesimal neighbourhoodsF : Pn+1 → Qn+1

such thatF ◦ f 1
n+1 = g1

n+1 and F ◦ f 2
n+1 = g2

n+1 .
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(Recall that a map of infinitesimal neighbourhoodsF : Pn+1 → Qn+1 is a map of schemesF : Pn+1 → Qn+1

such thatF∗(IQ|Qn+1
) = IP|Pn+1

.)

For any pair of open setsV ⊂ U we define a restriction maprV
U : C(U) → C(V) .

DEFINITION 3.3. Let P̃n+1 = (P,Pn+1, f 1
n+1, f

2
n+1) be an element ofC(U) . We definerV

U(P̃n+1) ∈ C(V) as
follows :

rV
U(P̃n+1) = (Z,Zn+1, f

1
n+1|V1

n+1
, f 2

n+1|V2
n+1

)

where Z = P\(U \ V) .

We now define a category of extensions,E(U) , in the following way.

DEFINITION 3.4. The members ofE(U) are exact sequences ofOU -modules.

0 → SU
iE→ E

πE→ ΩU → 0.

Notation. Whenever dealing with an extension

0 → F → E → G → 0

we will denote the inclusion mapF → E by iE and the projection mapE → G by πE .

DEFINITION 3.5. Consider two elements ofE(U) ,

0 → SU
iE→ E

πE→ ΩU → 0,

0 → SU
iE′→ E′ πE′→ ΩU → 0.

A E(U) -morphism betweenE and E′ is a map ofOU -modules f : E → E′ such that the following diagram
commutes

0 // SU
iE //

iE′

  @
@@

@@
@@

@
E

f

��

πE

  A
A

A
A

A
A

A
A

E′
πE′ // ΩU

// 0

.

Note that all maps are isomorphisms in this category. There is an obvious functorrV
U : E(U) → E(V)

given by restriction of extensions ofOU -modules.

3.1 THE CONTRAVARIANT FUNCTOR F(U) : C(U) → E(U) : DEFINITION OF F(P̃n+1) .

We shall now construct a contravariant functorF(U) : C(U) → E(U) which will be compatible with
localisation (i.e.rV

U ◦ F(U) = F(V) ◦ rV
U .) This will be based on the conormal bundle which is constructed

below.

3.1.1 CONSTRUCTION AND PROPERTIES OF THE CONORMAL BUNDLEN∗
Pn

.

DEFINITION 3.6. Let (Pn, fn) be an embedding of an infinitesimal neighbourhood ofU , Un , with normal
bundle W. The conormal bundle of (Pn, fn) , N∗

Pn
, is defined byN∗

Pn
= IUn|Pn

⊗ OU .

We will need a good understanding ofN∗
Pn

in what follows. We start with the following proposition.

LEMMA 3.7. Let (Pn, fn) be an embedding of an infinitesimal neighbourhood of U ,Un , with normal
bundle W . We then have that N∗

Pn
= IU1|P1

⊗ OU.
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Proof of Lemma 3.7.

We prove that for anyn ≥ i ≥ 1 we have thatIUi |Pi
⊗OPn

OU = IUi+1|Pi+1
⊗OPn

OU . We consider the
surjective mapπi+1 : IUi+1|Pi+1

→ IUi |Pi
. The kernel ofπi+1 is IUi+1|Pi+1

∩ IPi |Pi+1
. It will be enough to show

that the ideal sheafIUi+1|Pi+1
∩ IPi |Pi+1

is contained inIU|Pi+1
· IUi+1|Pi+1

. But now by Lemma 2.2 we know that

(IUi+1|Pi+1
∩ IPi |Pi+1

)/(IPi |Pi+1
· IU|Pn+1

) = Symi+1(αPn)|U(LPn · SymiW∗|U)

or in other words
(IUi+1|Pi+1

∩ IPi |Pi+1
) = Symi+1(αPn)(LPn · Symi(W∗))

= ×(LPn ⊗ IPi−1|Pi
)

where here× : IP|P1
⊗OP IPi−1|Pi

→ IPi |Pi+1
is the multiplication map. Let us consider×(a ⊗ b) for

some a ∈ LPn = IU1|P1
∩ IP|P1

and b ∈ IPi−1|Pi
. Locally, there is ana′ ∈ IUi+1|Pi+1

∩ IP|Pi+1
such

that a′|P1 = a and a b′ ∈ IPi−1|Pi+1
such that b′|Pi = b. We have that×(a ⊗ b) = a′ · b′ . Since

a′ ∈ IUi+1|Pi+1
and b′ ∈ IPi−1|Pi+1

⊂ IU|Pi+1
we have that×(a ⊗ b) ∈ IU|Pi+1

· IUi+1|Pi+1
. It follows that

(IUi+1|Pi+1
∩ IPi |Pi+1

) ⊂ IU|Pi+1
· IUi+1|Pi+1

. This completes the proof of Lemma 3.7. �

We will now break N∗
Pn

into N∗
U|P and a part, LPn , arising because the normal bundle ofP in Pn

may be larger than the normal bundle ofU in Un .

DEFINITION 3.8. Let (Pn, fn) be an embedding of the infinitesimal neighbourhoodUn . We define a map
rPn : LPn → N∗

Pn
as follows. Let l be an element ofLPn : as by definitionLPn = (IP|P1

∩ IU1|P1
)/(IP|P1

· IU|P)

locally we can find an element̂l ∈ IP|P1
∩ IU1|P1

such that the class of̂l in the quotientLPn is l . The element

rPn(l) is then the class of̂l in the quotientIU1|P1
⊗OP1

OU .

We note thatrPn(l) is well-defined : if̂ l′ is an alternative lifting ofl then (̂l− l̂′) ∈ IP|P1
·IU1|P1

⊂ IU|P1
·IU1|P1

.

PROPOSITION 3.9. Let (Pn, fn) be an embedding of the infinitesimal neighbourhoodUn . Let

πPn : N∗
Pn

= IUn|Pn
⊗ OU → N∗

U|P = IU|P ⊗ OU

be the map induced by the restriction map i∗
Pn

: IUn|Pn
→ IU|P . There is then an exact sequence

0 → LPn

rPn→ N∗
Pn

πPn→ N∗
U|P → 0.

where rPn is the map defined in Definition 3.8.

Proof of Proposition 3.9.

By Lemma 3.7, we know thatN∗
Pn

= IU1|P1
⊗ OU. We consider the exact sequence of ideals

0 → IP|P1
∩ IU1|P1

→ IU1|P1

i∗
Pn→ IU|P → 0.

There is an induced exact sequence obtained by tensoring with the two right hand terms byOU

(IP|P1
∩ IU1|P1

)
τPn→ IU1|P1

⊗ OU
πPn→ IU|P ⊗ OU → 0,

from which it follows that the sequence

0 → (IU1|P1
∩ IP|P1

)/Ker(τPn)
τPn→ N∗

Pn

πPn→ N∗
U|P → 0

is exact. But now by Lemma 2.4 we know that Ker(τPn) = IU|P1
· IP|P1

and (IU1|P1
∩ IP|P1

)/Ker(τPn) = LPn .
It follows from the definitions ofτPn and rPn that τPn : LPn → N∗

Pn
= rPn . This completes the proof of

Proposition 3.9. �

This summarises the results we need on the conormal bundleN∗
Pn

. Our next step will be to construct
a map f

P̃n+1
: N∗

Pn
→ SU associated to the data of̃Pn+1 = (P,Pn+1, f 1

n+1, f
2
n+1) .
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3.1.2 CONSTRUCTION OF THE MAP f
P̃n+1

: N∗
Pn

→ SU . Our aim is to define f
P̃n+1

(β) for any

β ∈ N∗
Pn

= IUn|Pn
⊗ OU . We will in fact define a mapf

P̃n
: IUn|Pn

→ SU which we will then tensorise
with OU .

DEFINITION 3.10. Let Xn , X1
n+1 and X2

n+1 be as above; letU be an open set inX and let P̃n+1 be an
element ofC(U) . Let βn be a section of the sheafIUn|Pn

over an affine open subset ofUn . There are surjective
maps of coherent sheavesπ1 : IU1

n+1|Pn+1
→ IUn|Pn

and π2 : IU2
n+1|Pn+1

→ IUn|Pn
and we letβ1

n+1 ∈ IU1
n+1|Pn+1

and β2
n+1 ∈ IU2

n+1|Pn+1
be sections such thatπi(β i

n+1) = βn : we then have that (β1
n+1 − β2

n+1) ∈ IPn|Pn+1
. We

define a map of sheavesf
P̃n+1

: IUn|Pn
→ Symn+1(V∗)|U = SU by

f
P̃n

(βn) = Symn+1f ∗n ((Symn+1αPn+1)
−1(β1

n+1 − β2
n+1))|U

where f ∗n here denotes the pullback mapf ∗n : W∗|U → V∗
U∗ .

LEMMA 3.11. The mapf
P̃n+1

is well-defined.

Proof of Lemma 3.11.

We have to prove that the element Symn+1f ∗n ((Symn+1αPn+1)
−1(β1

n+1 − β2
n+1))|U is independent of the

choice of β1
n+1 and β2

n+1 . Let β1′
n+1 and β2′

n+1 be another possible choice. We set (β1
n+1 − β1′

n+1) = δ1

and (β2
n+1 − β2′

n+1) = δ2 : we then have thatδi ∈ IPn|Pn+1
∩ IUi

n+1|Pn+1
. By Lemma 2.2, ifδi is the class ofδi

in the quotientIPn|Pn+1
/IU|P · IPn|Pn+1

then we have thatδi ∈ Symn+1(αPn+1)|U((LPn ⊗Symn(W∗))|U . It follows
in particular that Symn+1(f ∗n )(Symn+1(αPn+1)

−1(δi))|U = 0. In particular,

Symn+1(f ∗n )(Symn+1(αPn+1)
−1(β1′

n+1 − β2′
n+1))|U

= Symn+1(f ∗n )(Symn+1(αPn+1)
−1(β1

n+1 + δ1 − β2
n+1 − δ2))|U

= Symn+1(f ∗n )(Symn+1(αPn+1)
−1(β1

n+1 − β2
n+1))|U.

This completes the proof of Lemma 3.11. �

DEFINITION 3.12. Let Xn , X1
n+1 and X2

n+1 be as above. LetU be an open set inX and let P̃n+1 be
an element ofC(U) . As SU is an OU -module, we can definef

P̃n+1
to be the unique map ofOU -modules

f
P̃n+1

: IUn|Pn
⊗OU = N∗

P̃n+1
−→ SU such thatf

P̃n+1
(σ) = f

P̃n+1
(σ) for any sectionσ ∈ IUn|Pn

. Here, σ denotes

the class ofσ in the quotient sheafIUn|Pn
⊗ OU .

3.1.3 CONSTRUCTION OF THE EXTENSIONF(P̃n+1) . We now show how to associate to the embedding
(Pn, fn) of Un a canonical exact short sequence ofOU -modules.

DEFINITION 3.13. Let Xn be ann-th order infinitesimal neighbourhood ofX with normal bundleV , let
U be an open subset ofX and let (Pn, fn) be an embedding ofUn . We denote byEPn the following short
exact sequence ofOU -modules.

(1) 0→ N∗
P

dPn→ Ω
1
Pn

⊗ OU
f∗n→ ΩU → 0.

where f ∗n is simply pull-back along the map of schemesfn : Un → Pn and dPn is the map defined below.
(Of course, we have not yet established that this sequence isexact.)

DEFINITION 3.14. LetXn , X1
n+1 andX2

n+1 be as above. LetU be an open set inX and letd : IUn|Pn
→ Ω1

Pn

be the map of sheaves given by derivation. Tensoring on the right by OU we obtain a map

d⊗ OU : IUn|Pn
→ Ω

1
Pn
⊗ OU.

Unlike d, d ⊗ OU is an OPn -module map, since for anyu ∈ IUn and any f ∈ OPn we have that
d ⊗ OU(fu) = fdu + udf = fdu becauseudf = 0 in Ω1

Pn
⊗ OU . As Ω1

Pn
⊗ OU is an OU -module there

is a uniqueOU -module map
dPn : IUn|Pn

⊗ OU = N∗
Pn

→ Ω
1
Pn
⊗ OU

14



such that for any sectionσ of IUn|Pn
d⊗ OU(σ) = dPn(σ) , where σ is the class ofσ in the quotient sheaf

IUn|Pn
⊗ OU .

It remains to be seen that the sequenceEPn is exact.

PROPOSITION 3.15. Let (Pn, fn) be an embedding with normal bundle W of an n-th order infinitesimal
neighbourhoodUn of U with normal bundle V . The exact sequence EPn defined above is then exact.

Proof of Proposition 3.15.

It is only necessary to prove that the mapdPn is injective. We consider the following commutative di-
agram, whose middle row is simplyEPn .

0

��

0

��

0

��
0 // LPn

//

rPn

��

W∗|U
f∗n //

d
��

V∗ //

��

0

0 // N∗
Pn

dPn //

i∗
Pn

��

Ω1
Pn
⊗ OU

f∗n //

i∗
Pn

��

Ω1
Un

⊗ OU
//

i∗
Un

��

0

0 // N∗
U|P

d //

��

Ω1
P ⊗ OU

f∗ //

��

Ω1
U

//

i∗
Un

��

0

0 0 0

In the above diagram,f is the restriction of the mapfn : Un → Pn to U . Suppose thatσ is a section of
N∗

Pn
such thatdPn(σ) = 0. We then have thati∗

Pn
◦ dPn(σ) = 0 so d ◦ i∗

Pn
(σ) = 0. As the bottom row of

the diagram is exact becauseU is a local complete intersection we have thati∗
Pn

(σ) = 0. As the left-hand
column is exact by Proposition 3.9 there is a sectionµ ∈ LPn such thatσ = rPn(µ) . We considerµ as an
element ofW∗ , which is possible becauseLPn is defined as a sub-bundle ofW. We have thatd(µ) = 0 and
it follows from Lemma 2.3 thatµ = 0. This completes the proof of Proposition 3.15. �

We now define the extensionF(P̃n+1) .

DEFINITION 3.16. Let P̃n+1 = (P,Pn+1, f 1
n+1, f

2
n+1) be an element ofC(U) and let (Pn, fn) be the associated

embedding ofUn . The extensionF(P) is defined to be the pushforward alongf
P̃n+1

of the extensionEPn

defined above.

We recall the definition of the pushforward because it will beimportant in what follows.

DEFINITION 3.17. In any abelian category, let 0→ F
iE→ E

πE→ G → 0 be an extension ofG by F . Let
f : F → F′ be a morphism fromF to F′ . We then define the pushforward ofE by f to be the following
extension

0 → F′ iE′→ E′ πE′→ G → 0

where E′ = F′⊕E
(f (σ),0)=(0,iE(σ))∀σ∈F , iE′(µ) = [(µ,0)] for any µ ∈ F′ and πE′ [(µ, ν)] = πE(ν) for any

(µ, ν) ∈ F′ ⊕ E. If E′ is the pushforward of an extensionE under a morphismf : F → F′ then for
any e∈ E and f ′ ∈ F we denote the class of (e, f ′) in the quotientE′ by [e, f ′]E′ .

In the particular case above, this means thatF(P̃n+1) is the extension

0 → SU

i
F(P̃n+1)

→
SU ⊕ (Ω1

Pn
⊗ OU)

(f
P̃n+1

(σ),0) = (0,dPn(σ))∀σ ∈ N∗
Pn

π
F(P̃n+1)

→ Ω
1
Un

⊗ OU → 0
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where π
F(P̃n+1)([s, ω]) = ω|Un and i

F(P̃n+1)(s) = [s,0].

DEFINITION 3.18. Let P̃n+1 be an element ofC(U) . For any choice ofs∈ SU and ω ∈ Ω1
Pn

⊗ OU we

denote by [s, ω]
P̃n+1

the class of (s, ω) in the quotientF(P̃n+1) . The inclusionSU →
SU⊕(Ω1

Pn
⊗OU )

(f
P̃n+1

(s,0)=(0,dPn (σ))∀σ∈N∗
Pn

given by s→ [s,0]
P̃n+1

will be denoted byi
P̃n+1

and the projection
SU⊕(Ω1

Pn
⊗OU )

(f
P̃n+1

(σ),0)=(0,dPn (σ))∀σ∈N∗
Pn

→ ΩU given

by [s, ω]
P̃n+1

→ ω|Un will be denoted byπ
P̃n+1

.

3.2 CONSTRUCTION OF THE FUNCTORF : C(U) → E(U) : CONSTRUCTION OF F(F) .

Suppose that we have elements ofC(U) , P̃ = (P,Pn+1, f 1
n+1, f

2
n+1) and Q̃ = (Q,Qn+1, g

1
n+1, g

2
n+1) . Consider

a map F : P → Q which is a C(U) -morphism. (Recall thatF is just a mapF : Pn+1 → Qn+1 satisfying
various compatibility conditions.) There is an induced commutative diagram

0 // N∗
Qn

dQn //

F∗

��

Ω1
Qn

⊗ OU

g∗
n

##G
GGGGGGGG

F∗

��
0 // N∗

Pn

dPn // Ω1
Pn

⊗ OU
f∗n // ΩU

// 0

The following lemma holds.

LEMMA 3.19. Let P̃ = (P,Pn+1, f 1
n+1, f

2
n+1) and Q̃ = (Q,Qn+1, g

1
n+1, g

2
n+1) be elements ofC(U) and let

F : P → Q be a C(U) -morphism. We have then have that f
Q̃n+1

= f
P̃n+1

◦ F∗ : N∗
Qn

→ SU .

Proof of Lemma 3.19.

We consider an elementσ ∈ N∗
Qn

= IUn|Qn
⊗ OU = IU1

n+1|Qn+1
⊗ OU = IU2

n+1|Qn+1
⊗ OU . Let σ̃1 be a

lifting of σ to IU1
n+1|Qn+1

and let σ̃2 be a lifting of σ to IU2
n+1|Qn+1

. We have then thatF∗(σ̃1) ∈ IU1
n+1|Pn+1

and F∗(σ̃2) ∈ IU2
n+1|Pn+1

by definition of C(U) -morphisms. By definition,

f
P̃n+1

(F∗σ) = Symn+1(f ∗n )(Symn+1(αPn+1)
−1(F∗(σ̃1) − F∗(σ̃2)))|U.

Since F is a map of infinitesimal neighbourhoods, we have thatF∗ ◦ αQn+1 = αPn+1 so

f
P̃n+1

(F∗σ) = Symn+1(f ∗n )(Symn+1(αQn+1)
−1(σ̃1 − σ̃2))|U = f

Q̃n+1
(σ).

This completes the proof of Lemma 3.19. �

We are now in a position to defineF(F) .

DEFINITION 3.20. Let P̃n+1 and Q̃n+1 be two elements ofC(U) , and let F : Pn+1 → Qn+1 be a
C(U) -morphism from P̃n+1 to Q̃n+1 . The mapF(F) : F(Q̃n+1) → F(P̃n+1) is then defined by

F(F)([s, ω]
Q̃n+1

) = [s,F∗(ω)]
P̃n+1

for any s∈ SU and anyω ∈ Ω1
Qn
⊗OU . (This map is well-defined on the quotient becausef

Q̃n+1
= f

P̃n+1
◦F∗ .)

We note that the mapF : C(U) → E(U) is indeed a contravariant functor because ifF : P̃n+1 → R̃n+1

and G : R̃n+1 → Q̃n+1 are C(U) -morphisms then for anys∈ SU and ω ∈ Ω1
Qn

⊗ OU we have that

F(F ◦ G)[s, ω]
Q̃n+1

= [s, (F ◦ G)∗ω]
P̃n+1

= [s,G∗(F∗(ω))]
P̃n+1

= F(G)[s,F∗(ω)]
R̃n+1

= F(G) ◦ F(F)[s, ω]
Q̃n+1

.

Further, since the above construction is entirely local we have that rV
U ◦ F = F ◦ rV

U . This completes the
construction of the functorF : C(U) → E(U).
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3.3 THE CANONICAL ISOMORPHISMS IN C(U) .

Throughout this subsection we fix two elements ofC(U) , P̃n+1 and Q̃n+1 . The aim of this subsection
is to construct a canonical isomorphism between the extensions F(P̃n+1) and F(Q̃n+1) . The first step will
be to create products in the categoryC(U) . To do this, we will need first of all products of infinitesimal
neighbourhoods.

DEFINITION 3.21. Let P = (Pn, iPn, αPn) and Q = (Qn, iQn, αQn) be infinitesimal neighbourhoods of
order n ≥ 1 of varieties P and Q with normal bundlesWP and WQ respectively. We denote the
projections from P × Q to P and Q by πP and πQ respectively. We define the product (Pn × Qn) to
be the infinitesimal neighbourhood of ordern of P × Q with normal bundleπ∗

P(WP) ⊕ π∗
Q(WQ) given by

(Zn, iPn × iQn, φ ◦ π∗
Pn

(αPn) ⊕ π∗
Qn

(αQn) where hereZ is the subscheme ofPn × Qn defined by the ideal
In+1
P×Q|Pn×Qn

and φ is the isomorphism

φ : π∗
P(IP|Pn

/I2
P|Pn

) ⊕ π∗
Q(IQ|Qn

/I2
Q|Qn

) → IP×Q|Pn×Qn
/I2

P×Q|Pn×Qn

given by pullback alongπP and πQ .

We can now define products inC(U) .

DEFINITION 3.22. Let P̃n+1 = (P,Pn+1, f 1
n+1, f

2
n+1) and Q̃n+1 = (Q,Qn+1, g

1
n+1, g

2
n+1) be two members of

C(U) . We then define the product̃Pn+1 × Q̃n+1 as follows :

P̃n+1 × Q̃n+1 = (P× Q,Pn+1 × Qn+1, f
1
n+1 × g1

n+1, f
2
n+1 × g2

n+1).

For any pair P̃n+1 and Q̃n+1 there are projection mapsπ
P̃n+1

: P̃n+1 × Q̃n+1 → P̃n+1 and π
Q̃n+1

:

P̃n+1 × Q̃n+1 → Q̃n+1 which are C(U) -morphisms. It follows that there are induced contravariant maps
F(π

P̃n+1
) : F(P̃n+1) → F(P̃n+1 × Q̃n+1) and F(π

Q̃n+1
) : F(Q̃n+1) → F(P̃n+1 × Q̃n+1) .

DEFINITION 3.23. Let P̃n+1 and Q̃n+1 be two elements ofC(U) . There is then a canonical isomorphism

JQ̃n+1

P̃n+1
: F(P̃n+1) → F(Q̃n+1) defined by

JQ̃n+1

P̃n+1
= F(π

Q̃n+1
)−1 ◦ F(π

P̃n+1
).

By construction, the isomorphismJQ̃n+1

P̃n+1
is compatible with restriction to an open subset. We need the

following proposition :

PROPOSITION 3.24. Let P̃n+1, Q̃n+1 and R̃n+1 be elements ofC(U) . We then have that JQ̃n+1

R̃n+1
◦ JR̃n+1

P̃n+1
=

JQ̃n+1

P̃n+1
.

Proof of Proposition 3.24.

Consider the following diagram :

P̃n+1 × Q̃n+1 × R̃n+1

π1vvlllllllllllll

π3

��

π2

((RRRRRRRRRRRRR

P̃n+1 × Q̃n+1

π5

��

π6

((RRRRRRRRRRRRRRR
Q̃n+1 × R̃n+1

π4

vvlllllllllllllll
π9

((RRRRRRRRRRRRRRR
P̃n+1 × R̃n+1

π7

vvlllllllllllllll

π8

��
Q̃n+1 P̃n+1 R̃n+1

We have thatπ4 ◦ π3 = π5 ◦ π1 , π6 ◦ π1 = π7 ◦ π2 and π8 ◦ π2 = π9 ◦ π3 . It follows that F(π3) ◦ F(π4) =

F(π1) ◦ F(π5) , F(π1) ◦ F(π6) = F(π2) ◦ F(π7) and F(π2) ◦ F(π8) = F(π3) ◦ F(π9) . Re-arranging, we see that
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F(π1)−1 ◦ F(π3) = F(π5) ◦ F(π4)−1

F(π3)−1 ◦ F(π2) = F(π9) ◦ F(π8)−1

F(π2)−1 ◦ F(π1) = F(π7) ◦ F(π6)−1.

Multiplying, we get that

Id = F(π5) ◦ F(π4)−1 ◦ F(π9) ◦ F(π8)−1 ◦ F(π7) ◦ F(π6)−1

which we then write as

F(π5)−1 ◦ F(π6) = F(π4)−1 ◦ F(π9) ◦ F(π8)−1 ◦ F(π7)

or in other wordsJQ̃n+1

P̃n+1
= JQ̃n+1

R̃n+1
◦ I R̃n+1

P̃n+1
. This completes the proof of Proposition 3.24. �

3.4 DEFINITION OF D(X1
n+1,X

2
n+1) .

We start by checking thatX can be covered by open sets such thatC(U) is non-empty.

LEMMA 3.25. Let U be an affine open set in X such that V|U is trivial. Then C(U) is not-empty.

Proof of Lemma 3.25.

Let P be a smooth variety and letf : U → P be an inclusion ofU in P. Let W be a trivial vector bundle on
P whose rank is the same asV . Choose elementsǫ11, . . . , ǫ

1
r ∈ IU|U1

n+1
such that{ǫ1

i } ⊂ IU|U1
n+1
/I2

U|U1
n+1

forms

a basis of sections ofIU|U1
n+1
/I2

U|U1
n+1

. Choose elementsǫ21, . . . , ǫ
2
r ∈ IU|U2

n+1
such thatǫ2i |Un = ǫ1i |Un . These

choices give rise to mapsπi : Ui
n+1 → Spec(An+1) where An+1 = k[ǫ1, . . . , ǫr ]/mn+1 and by Lemma 2.7

the choice of the mapsπi turns Ui
n+1 into a flat An+1 -scheme. Moreover, by choice of theǫij s, π1|Un = π2|Un .

Now, let f : U → P be a closed immersion ofU in a smoothk-variety P and considerPn+1 = P×Spec(An+1) .
By Lemma 2.7 Pn+1 = (Pn+1, iPn+1, αPn+1) is an n + 1-st infinitesimal neighbourhood ofPn+1 . It will
be enough to show that there are flat subschemesVi

n+1 of Pn+1 such that there are isomorphisms of
An+1 -schemesφi : Ui

n+1 → Vi
n+1 such that φ1|Un = φ2|Un and φi |U = f . We start by recursively

constructing flat subschemesVi ⊂ Pi = P × Spec(Ai) which are isomorphic toUi for any i ≤ n.
Suppose thatVi−1 exists and is isomorphic toUi−1 . We then know by [10] that flat subschemes of
Pi extending Vi−1 are a torsor over Hom(N∗

U|P,m
i/mi+1 ⊗k OU) , that isomorphism classes of flatAi -

schemes extendingVi−1 are a torsor over Ext1(Ω1
U,m

i/mi+1 ⊗k OU) and that the forgetful map sending
a flat subscheme ofPi extending Vi−1 to its isomorphism class as a flat scheme is the boundary map
δ : Hom(N∗

U|P,m
i/mi+1 ⊗k OU) → Ext1(Ω1

U,m
i/mi+1 ⊗k OU) associated to the exact sequence

0 → N∗
U|P → Ω

1
P ⊗ OU → Ω

1
U → 0.

But now sinceP is smooth andU is affine we know thatδ is a surjection. In particular, there is anAi -flat
subscheme ofPi , Vi , which extendsVi−1 and which is isomorphic as anAi -scheme toUi . Iterating this
procedure, we obtain a flatAn -subscheme ofPn which is isomorphic toUn . The same argument then also
shows that there are flat subschemesV1

n+1 and V2
n+1 in Pn+1 which areAn+1 -isomorphic toU1

n+1 and U2
n+1

respectively and which satisfy all the required conditions. This completes the proof of Lemma 3.25. �

We now choose an open affine coveringUi of X such that VUi is trivial for each i . For each i , we
choose an element̃Pi

n+1 = (Pi ,Pi
n+1, f

1i
n+1, f

2i
n+1) of C(Ui) . We denote byP̃ij

n+1 the elementrUi∩Uj

Ui
(P̃i

n+1) in
C(Ui ∩ Uj) .

DEFINITION 3.26. Let Xn be an n-th order infinitesimal neighbourhood ofX with normal bundleV .
Let X1

n+1 and Xn+1 be two extensions ofX to n + 1st order, letUi be a covering ofX by open affines
such thatV|Ui is trivial for each i . For eachi , let P̃i

n+1 be an element ofC(Ui) . To the choice of elements
{P̃i

n+1} we associate the unique extensionD(P̃i
n+1) ∈ E(X) such that :
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1. There is an isomorphisms
P̃i

n+1
: D(P̃i

n+1) → F(P̃i
n+1) ,

2. The mapJj
i : F(P̃i

n+1)|Uij → F(P̃j
n+1)|Uij given by Jj

i = s
P̃

j
n+1

◦ s−1
P̃i

n+1
satisfiesJj

i = J
P̃

ji
n+1

P̃
ij
n+1

.

It follows from the various compatibilities proved above that

PROPOSITION 3.27. Let Xn , X1
n+1 , X2

n+1 and Ui be as above. Let(P̃i
n+1) and (Q̃i

n+1) be two different
choices of elements ofC(Ui) . There is then a unique isomorphism

J
D(Q̃i

n+1)

D(P̃i
n+1)

: D(P̃i
n+1) → D(Q̃i

n+1)

such that over Ui we have that s̃
Qi

n+1
◦ J

D(Q̃i
n+1)

D(P̃i
n+1)

◦ s−1
P̃i

n+1
= J

Q̃
i
n+1

P̃i
n+1

Proof of Proposition 3.27. We defineJ
D(Q̃i

n+1)

D(P̃i
n+1)

|Ui by J
D(Q̃i

n+1)

D(P̃i
n+1)

|Ui = s−1
Q̃i

n+1
◦ J

Q̃
i
n+1

P̃i
n+1

◦ s
P̃i

n+1
. It will be enough

to show that these definitions are compatible on the intersections Uij , or in other words that

s−1
Q̃i

n+1
◦ J

Q̃
i
n+1

P̃i
n+1

◦ s
P̃i

n+1
= s−1

Q̃
j
n+1

◦ J
Q̃

j
n+1

P̃
j
n+1

◦ s
P̃

j
n+1

or in other words that

J
Q̃

j
n+1

Q̃i
n+1

◦ J
Q̃

i
n+1

P̃i
n+1

◦ J
P̃

i
n+1

P̃
j
n+1

= J
Q̃

j
n+1

P̃
j
n+1

.

But this has already been established in Proposition 3.24. This completes the proof of Proposition 3.27.�

DEFINITION 3.28. Let Xn , X1
n+1 , X1

n+1 and Ui be as above. We identify any pair of extensions

of the form D(P̃i
n+1) and D(Q̃i

n+1) using the isomorphismsJ
D(Q̃i

n+1)

D(P̃i
n+1)

. After this identification, we set

D(X1
n+1,X

2
n+1) = D(P̃i

n+1) for any choice of elements̃Pi
n+1 ∈ C(Ui) .

Throughout the rest of the paper, we denote bys
P̃i

n+1
the isomorphism

D(X1
n+1,X

2
n+1)|U → F(P̃i

n+1)

for any elementP̃i
n+1 ∈ C(Ui) . Having thus constructed the elementD(X1

n+1,X
2
n+1) , in the next section we

will show that it has the required properties

4. TORSOR CHARACTER OFD(X1
n+1,X

2
n+1) .

To complete the proof of Theorem 1.10, it remains to prove thefollowing.

1. D(X1
n+1,X

2
n+1) ∼= S⊕Ω as an extension if and only ifX1

n+1 and X2
n+1 are isomorphic extensions ofXn .

2. For any triple of extensionsX1
n+1 , X2

n+1 and X3
n+1 we have thatD(X1

n+1,X
3
n+1) ∼= D(X1

n+1,X
2
n+1) +

D(X2
n+1,X

3
n+1) .

3. That if one extensionX1
n+1 exists, then for anyE ∈ E(X) there is anX2

n+1 such thatD(X1
n+1,X

2
n+1) ∼= E.

We will begin by proving 1. In fact, we will prove something more, namely that there exists a canonical
correspondence between splittings ofD(X1

n+1,X
2
n+1) and isomorphisms betweenX1

n+1 and X2
n+1 .

4.1 THE CANONICAL CORRESPONDENCE BETWEEN SPLITTINGS OFD(X1
n+1,X

2
n+1) AND ISOMORPHISMS BE-

TWEEN X1
n+1 AND X2

n+1 .

Throughout this section,X1
n+1 and X2

n+1 will be a pair of fixed extensions ofXn . We start by setting up
some notation.

DEFINITION 4.1. Let Xn be an n-th order neighbourhood ofX and let X1
n+1 and X2

n+1 be a pair of
extensions ofXn . For any open set inX , U , we let R(U) be the set of splittings ofD(U1

n+1,U
2
n+1) and we

let J(U) be the set of isomorphisms of extensionsjn+1 : U1
n+1 → U2

n+1 .
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In this subsection we will prove the following proposition.

PROPOSITION 4.2. Let Xn be an n-th order neighbourhood of X with normal bundle V and let X1
n+1

and X2
n+1 be extensions ofXn . Let U be an open set in X . There is then a canonical bijection of sets

b(U) : J(U) → R(U) such that for any V⊂ U and j∈ J(U) we have that b(V)(j|V) = (b(U)(j))|V .

REMARK 4.3. Note that since the mapsU → R(U) and U → J(U) define sheaves of sets, it will be
enough to prove the existence of the mapb(U) for all sufficiently small open setsU .

Proof of Proposition 4.2.

By Remark 4.3, it will be enough to prove the existence ofb(U) for any U such that C(U) is not
empty. Let U be such an open set inX and let P̃n+1 be an element ofC(U) . We introduce setsT(P̃n+1)
and R(P̃n+1) .

DEFINITION 4.4. Let U be an open set inX and let P̃n+1 be an element ofC(U) . The setT(P̃n+1) is
the set of allOU -linear mapst : Ω1

Pn
⊗ OU → SU such that t ◦ dPn = f

P̃n+1
. The setR(P̃n+1) is the set of

splittings of F(P̃n+1) .

There is a canonical isomorphisms
P̃n+1

: D(U1
n+1,U

2
n+1) → F(P̃n+1) . We have therefore a bijection

(s
P̃n+1

)∗ : R(P̃n+1) → R(U) We now construct a bijectionb(P̃n+1) : J(U) → R(P̃n+1) . Recall that

F(P̃n+1) =
SU ⊕ (Ω1

Pn
⊗ OU)

(f
P̃n+1

(σ),0) = (0,dPn(σ)) ∀σ ∈ N∗
Pn

.

An element r ∈ R(P̃n+1) is therefore a mapr : SU ⊕ (Ω1
Pn

⊗ OU) → SU such that

1. r(s,0) = s for any sections∈ SU .
2. for any sectionσ ∈ N∗

Pn
we have thatf

P̃n+1
(σ) = r([0,dPn(σ)]

P̃n+1
) .

Note that by 1) the mapr is characterised by the mapt1(r) : Ω1
Pn
⊗OU → S given by t1(r)(ω) = r([0, ω]

P̃n+1
)

for any ω ∈ Ω1
Pn

⊗ OU . We note that 2) is equivalent to the fact that for anyσ ∈ N∗
Pn

we have that
f
P̃n+1

(σ) = t1(r)(dPn(σ)) . In other words, the mapt1(r) is an element ofT(P̃n+1) . We now prove the
following lemma.

LEMMA 4.5. The map t1 : R(P̃n+1) → T(P̃n+1) given by r→ t1(r) is a bijection.

Proof of Lemma 4.5.

We construct an inverse mapr1 by letting r1(t) be the splitting given byr1(t)[s, ω]
P̃n+1

= s + t(ω) for

any t ∈ T(P̃n+1) , any ω ∈ Ω1
P̃n+1

⊗ OU and anys∈ SU . Note that for any sectionσ ∈ N∗
Pn

r1(t)[dPn(σ),−f
P̃n+1

(σ)]
P̃n+1

= t(dPn(σ)) − f
P̃n+1

(σ) = 0

by definition of T(P̃n+1) so r1(t) is a well defined splitting ofF(P̃n+1) . It is immediate thatr1(t1(r)) = r
and t1(r1(t)) = t . This completes the proof of Lemma 4.5. �

We now construct a bijection betweenJ(U) and T(P̃n+1) . An element jn+1 ∈ J(U) is determined by
j∗n+1 : OU2

n+1
→ OU1

n+1
, the corresponding map of algebra sheaves. AsOU2

n+1
is a quotient algebra sheaf of

OPn+1 this can be seen as a map of algebra sheavesj∗n+1 : OPn+1 → O1
Un+1

such that Ker(j∗n+1) = IU2
n+1|Pn+1

and for any f ∈ OPn+1 we have thatj∗n+1(f )|Un = f |Un .

Likewise, any sheaf mapj∗n+1 : OPn+1 → OU1
n+1

such that Ker(j∗n+1) = IU2
n+1|Pn+1

and for any f ∈ OPn+1

we have thatj∗n+1(f )|Un = f |Un gives rise to an elementjn+1 ∈ J(U) . Given such a mapjn+1 , we consider
the mapd(jn+1) : OPn+1 → SU given by

20



d(jn+1)(f ) = (Symn+1αU1
n+1

)−1(−f |U1
n+1

+ j∗n+1(f )).

Note that sincej∗n+1(f )|Un = f |Un we do indeed have that (−f |U1
n+1

+ j∗n+1(f )) ∈ IUn|U1
n+1

∼= Symn+1(V∗) . The
map d(jn+1) is a derivation because for any sectionsf , g ∈ OPn+1 we have that

d(jn+1)(f g) = (Symn+1αU1
n+1

)−1(−f g|U1
n+1

+ j∗n+1(f g))

= f · (Symn+1αU1
n+1

)−1(−g|U1
n+1

+ j∗n+1(g)) + (Symn+1(αU1
n+1

)−1(−f · j∗n+1(g) + j∗n+1(f ) · j∗n+1(g)))

= f · d(jn+1)(g) + j∗n+1(g) · (Symn+1(αU1
n+1

)−1((f + j∗n+1(f )).

= f · d(jn+1)(g) + j∗n+1(g) · d(jn+1)(f ).

Since SU is an OU -module, andj∗n+1(g)|U = g|U , it follows that

d(jn+1)(f g) = f · d(jn+1)(g) + g · d(jn+1)(f ).

By the universal property of derivations, it follows that there is a uniqueOU -linear map,

t2(jn+1) : Ω
1
Pn+1

⊗ OU → SU

such that for anyf ∈ OPn+1 we have thatt2(jn+1)(df |U) = d(jn+1)(f ) . We consider the mapt2 : J(U) → T(P̃n+1)
given by t2 : jn+1 → t2(jn+1) . We now prove thatt2(jn+1) is a member ofT(P̃n+1) . Let σ be a section of
N∗

P̃n+1
= IUn|Pn

⊗ OU = IU1
n+1|Pn+1

⊗ OU = IU2
n+1|Pn+1

⊗ OU . Locally, we choose sectionsσ1 ∈ IU1
n+1|Pn+1

and

σ2 ∈ IU2
n+1|Pn+1

which lift σ . We may assume thatσ1|Pn = σ2|Pn . By definition, t2(jn+1)(dPnσ) = d(jn+1)(σ2).

We know thatσ2 ∈ Ker(j∗n+1) , and henced(jn+1)(σ2) = −(Symn+1αU1
n+1

)−1σ2|U1
n+1
. But now, by definition,

f
P̃n+1

(σ) = Symn+1(f ∗n )((Symn+1αPn+1)
−1(σ1−σ2))|U, where heref ∗n is the pull-back mapf ∗n : W∗|U → V∗|U .

We know that Symn+1(f ∗n )(Symn+1αPn+1)
−1|U = (Symn+1αU1

n+1
)−1◦f 1∗

n+1 , where here the mapf 1∗
n+1 : IPn|Pn+1

→

IUn|U1
n+1

is the pull-back map. It follows thatf
P̃n+1

(σ) = (Symn+1αU1
n+1

)−1 ◦ f 1∗
n+1(−σ2) = t2(jn+1)(dPnσ) . We

therefore have thatt2(jn+1) ∈ T(P̃n+1) .

LEMMA 4.6. The map t2 : J(U) → T(P̃n+1) given by jn+1 → t2(jn+1) is a bijection.

Proof of Lemma 4.6.

We will do this by constructing an explicit inverse mapjn+1 : T(P̃n+1) → J(U) . Let t : Ω1
Pn

⊗ OU → SU

be an element ofT(P̃n+1) . We let jn+1(t) be the map whose associated pull-back map is given by
j∗n+1(t)(v) = v|U1

n+1
+ Symn+1(αU1

n+1
)(t(dv)) for any v ∈ OPn+1 . We need to show thatj∗n+1 is indeed an

algebra morphism, thatj∗n+1(t)(f )|Un = f |Un and that Ker(j∗n+1(t)) = IU2
n+1|Pn+1

.

The map j∗n+1(t) is an algebra morphism because

j∗n+1(t)(vw) = v · w + Symn+1(αU1
n+1

)t(d(vw)) = vw + v · Symn+1(αU1
n+1

)(t(dw)) + w · Symn+1(αU1
n+1

)(t(dv))

= j∗n+1(t)(v) · j∗n+1(t)(w) − Symn+1(αU1
n+1

)(t(dv)) · Symn+1(αU1
n+1

)(t(dw)) = j∗n+1(t)(v) · jn+1(t)(w)

where the last equality follows because Symn+1(αU1
n+1

)(t(dv)) and Symn+1(αU1
n+1

)(t(dw)) are both contained

in IUn|U1
n+1

. Moreover, j∗n+1(t)(f )|Un = f |Un by definition. It remains only to show that Kerj∗n+1(t) = IU2
n+1|Pn+1

.

Suppose thatv|U1
n+1

+Symn+1(αU1
n+1

)(t(dv)) = 0 for somev ∈ OPn+1 ; we then have thatv|Un = 0. We choose

v1 ∈ IU1
n+1|Pn+1

and v2 ∈ IU2
n+1|Pn+1

such thatv1|Pn = v2|Pn = v|Pn, so that−v|U1
n+1

= Symn+1(αU1
n+1

)(t(dv)) =

Symn+1(αU1
n+1

)(f
P̃n+1

(v)) = (v1 − v2)|U1
n+1

. (Here by v we mean the class ofv|Pn ∈ IUn|Pn
in IUn|Pn

⊗ OU .)

This implies that (v − v2)|U1
n+1

= 0. Sincev − v2|Pn = 0, we have thatv − v2 ∈ IPn|Pn+1
∩ IU1

n+1|Pn+1
. But we

know that
IPn|Pn+1

∩ IU1
n+1|Pn+1

/(IU|Pn+1
· IPn|Pn+1

) = Symn+1αPn+1(LPn · Symn(W|U))

= IPn|Pn+1
∩ IU2

n+1|Pn+1
/(IU|Pn+1

· IPn|Pn+1
).
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It follows that (v − v2) ∈ IU2
n+1|Pn+1

and hencev ∈ IU2
n+1|Pn+1

since by definitionv2 ∈ IU2
n+1

.

The mapst2 and jn+1 are easily seen to be inverses. This completes the proof of Lemma 4.6. �

We therefore have a bijectionb(P̃n+1) : J(U) → R(P̃n+1) given by b(P̃n+1) = r1 ◦ t2 .

LEMMA 4.7. For any elements̃Pn+1 and Q̃n+1 in C(U) we have that s∗
P̃n+1

◦ b(P̃n+1) = s∗
Q̃n+1

◦ b(Q̃n+1)

Proof of Lemma 4.7.

We have to prove thatb(P̃n+1) = (s−1
P̃n+1

)∗◦s∗
Q̃n+1

◦b(Q̃n+1) or alternativelyb(P̃n+1) = (s
Q̃n+1

◦s−1
P̃n+1

)∗◦b(Q̃n+1) .
This can be re-written as

b(P̃n+1) = (JQ̃n+1

P̃n+1
)∗ ◦ b(Q̃n+1).

In other words, we have to prove that for anyjn+1 ∈ J(U) we have that

b(P̃n+1)(jn+1) = b(Q̃n+1)(jn+1) ◦ JQ̃n+1

P̃n+1

considered as maps fromF(P̃n+1) to SU . We start by proving that ifF : Q̃n+1 → P̃n+1 is any C(U) -morphism
then for any jn+1 ∈ J(U) we have thatb(P̃n+1)(jn+1) = b(Q̃n+1)(jn+1) ◦ F(F). We recall that for anys∈ SU

and f ∈ OPn+1 we have that

b(P̃n+1)(jn+1)[s,df ⊗ OU]
P̃n+1

= s+ t2(df |U) = s+ Symn+1f ∗n ◦ (Symn+1α
P̃n+1

)−1(−f |U1
n+1

+ j∗n+1f ).

Likewise, for anys∈ SU and f ∈ OPn+1 we have that

b(Q̃n+1)(jn+1)◦F(F)[s,dfOU]
P̃n+1

= b(Q̃n+1)(jn+1)[s,dF∗f⊗OU]
Q̃n+1

= s+Symn+1(f ∗n )(Symn+1αQn+1)
−1(−F∗f |U1

n+1
+j∗n+1F∗f ).

But by definition of C(U) -morphisms we know thatF∗f |U1
n+1

= f |U1
n+1

and F∗f |U2
n+1

= f |U2
n+1

, which implies
that j∗n+1F∗f = j∗n+1f . In particular it follows that

b(P̃n+1)(jn+1) = b(Q̃n+1)(jn+1) ◦ F(F).

By definition JQ̃n+1

P̃n+1
= F(πQn+1)

−1 ◦F(πPn+1) so it follows that for any pair (̃Pn+1, Q̃n+1) of elements inC(U)
we have that

b(P̃n+1)(jn+1) = b(Q̃n+1)(jn+1) ◦ JQ̃n+1

P̃n+1
.

This completes the proof of Lemma 4.7 �

We now set b(U) = s∗
P̃n+1

◦ b(P̃n+1) for any U such that C(U) has an element̃Pn+1 . The local nature
of this map follows from the local nature of all the constructions involved. This completes the proof of
Proposition 4.2. �

There is a special case of this isomorphism whenX1
n+1 = X2

n+1 and jn+1 = Id.

DEFINITION 4.8. Let X1
n+1 be an extension of an-th order infinitesimal neighbourhood ofXn of X , and

consider the extension

0 → S
i
D(X1

n+1
,X1

n+1
)

−→ D(X1
n+1,X

1
n+1)

π
D(X1

n+1
,X1

n+1
)

−→ Ω → 0.

We denote byrId the isomorphismD(X1
n+1,X

1
n+1)

b(X)(Id)⊕π
D(X1

n+1
,X1

n+1
)

−→ S⊕ Ω .

Let now P̃n+1 ∈ C(U) be of the form (P,Pn+1, f 1
n+1, f

1
n+1) . The maprId ◦ s−1

P̃n+1
: F(P̃n+1) → SU ⊕ ΩU is

then given by the formularId([s, ω]
P̃n+1

) → (s, ω|U1
n+1

) for any s∈ SU and ω ∈ Ω1
Pn

⊗ OU .
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4.2 THE ISOMORPHISM D(X1
n+1,X

3
n+1) = D(X1

n+1,X
2
n+1) + D(X2

n+1,X
3
n+1).

In this section we will construct a natural isomorphism between D(X1
n+1,X

3
n+1) and D(X1

n+1,X
2
n+1) +

D(X2
n+1,X

3
n+1).

In what follows we will need a certain number of facts on sums and differences of extensions, which
we now summarise.

4.2.1 SUM AND DIFFERENCE MAPS ON EXTENSIONS. We place ourselves in an arbitrary abelian category
C : let F and G be two elements of this category. Whenever 0→ F → E → G → 0 is an extension in the
categoryC the inclusion mapF → E will be denoted byiE and the projection mapE → G will be denoted
by πE . Let E1 , E2 be two extensions ofF and G,

0 → F
iE1→ E1

πE1→ G → 0

0 → F
iE2→ E2

πE2→ G → 0

By definition, E1 + E2 is the spaceU(E1,E2)/V(E1,E2) where U(E1,E2) is defined by

U(E1,E2) = {(e1,e2) ∈ E1 ⊕ E2|πE1(e1) = πE2(e2)}

and V(E1,E2) is defined by
V(E1,E2) = {(iE1(f ),−iE2(f ))|f ∈ F}.

For any e1 ∈ E1 , e2 ∈ E2 such thatπE1(e1) = πE2(e2) we write [e1,e2] for the equivalence class inE1 + E2

of (e1,e2) . There is an exact sequence

0 → F
iE1+E2→ E1 + E2

πE1+E2→ G → 0

where by definition

iE1+E2(f ) = [iE1(f ),0] = [0, iE2(f )], and πE1+E2([e1,e2]) = πE1(e1).

Note that if we have two extension mapsφ1 : E1 → E′
1 and φ2 : E2 → E′

2 then the sum

φ1 ⊕ φ2 : E1 ⊕ E2 → E′
1 ⊕ E′

2

descends to an extension map
φ1 + φ2 : E1 + E2 → E′

1 + E′
2.

We note further that if we consider the trivial extensionF ⊕ G, then there is a natural isomorphism
(F ⊕ G) + E → E given by

[(f , g),e] → iE(f ) + e.

By abuse of notation, we will frequently identify the extensions (F ⊕ G) + E and E

More generally, given extensionsE1,E2, . . . ,En , we have a multiple sum extension,E1 + E2 + . . . + En =

U(E1, . . .En)/V(E1 . . .En) where by definitionU(E1 . . .En) ⊂ E1 ⊕ . . . ⊕ En is defined by (e1, . . . ,en) ∈

U(E1 . . .En) if and only if πE1(e1) = πE2(e2) . . . = πEn(en) and V(E1 . . .En) is given by

V(E1 . . .En) = {(iE1(f1), . . . , iEn(fn))|f1, . . . , fn ∈ F,
∑

i

fi = 0}.

We denote the equivalence class of (e1, . . . ,en) under this map by [e1, . . . ,en] . For any permutation
σ of [1, . . . ,n] there is a canonical isomorphismE1 + . . . + En → Eσ(1) + . . . + Eσ(n) given by
[e1, . . . ,en] → [eσ(1), . . . ,eσ(n)] . We will therefore considerE1 + . . . + En and Eσ(1) + . . . + Eσ(n) to be
equivalent. We have an extension.

0 → F
iE1+...+En

→ E1 + . . .+ En
πE1+...+En

→ G → 0

given by iE1+...+En(f ) = [iE1(f ),0, . . . ,0] and πE1+...+En([e1, . . . ,en]) = πEi (ei) for all i. Moreover, given an
extension
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0 → F
iE→ E

πE→ G → 0

we can define an extension−E in a similar way :−E is equal toE as an element of the categoryC, the
extension maps are given as follows

0 → F
i−E=−iE
−→ −E

πE→ G → 0.

We define the difference of extensions,E1 − E2 , to be equal toE1 + (−E2) . Explicitly, this space can be
constructed as follows :E1 − E2 is the spaceU′(E1,E2)/V′(E1,E2) where U′(E1,E2) is defined by

U′(E1,E2) = {(e1,e2) ∈ E1 ⊕ E2|πE1(e1) = πE2(e2)}

and V′(E1,E2) is defined by
V′(E1,E2) = {(iE1(f ), iE2(f ))|f ∈ F}.

We will write [e1,e2]′ for the equivalence class inE1 − E2 of (e1,e2) . There is an exact sequence

0 → F
iE1−E2→ E1 − E2

πE1−E2→ G → 0

where by definition

iE1−E2(f ) = [iE1(f ),0]′ = [0,−iE2(f )]′, πE1−E2[e1,e2]′ = πE1(e1).

We will need the contraction maps in what follows.

DEFINITION 4.9. Let E be an extension ofF by G in an abelian categoryC. We then denote bycE

the contraction mapcE : E− E → F ⊕ G given by

[e1,e2]′ → (i−1
E (e1 − e2), πE(e1)).

4.2.2 LOCAL CONSTRUCTION OF THE CANONICAL ISOMORPHISM. Throughout this section ann-th order
infinitesimal neighbourhood ofX , Xn , and three extensions ofXn , X1

n+1 , X2
n+1 and X3

n+1 , are fixed. For
any open setU ⊂ X and any pair of distinct integersi, j ∈ {1,2,3} we define a categoryCi,j(U) as follows.

DEFINITION 4.10. An elementP̃i,j
n+1 of Ci,j(U) is a quadruple (P,Pn+1, f i

n+1, f
j
n+1) , where P is a smooth

variety, Pn+1 is an (n + 1)-th order infinitesimal neighbourhood ofP with normal bundleW and each
f i
n+1 : Ui

n+1 → Pn+1 is a scheme morphism such that :

1. (Pn+1, f k
n+1) is an embedding ofUk

n+1 for k = i, j .

2. f i
n+1|Un = f j

n+1|Un .

Given two elements ofCi,j(U) , P̃
i,j
n+1 = (P,Pn+1, f i

n+1, f
j
n+1) and Q̃

i,j
n+1 = (Q,Qn+1, g

i
n+1, g

j
n+1) , a Ci,j(U) -

morphism fromP̃
ij
n+1 to Q̃

i,j
n+1 is a mapF : Pn+1 → Qn+1 such thatF is a map of infinitesimal neighbourhoods

and F ◦ f k
n+1 = gk

n+1 for k = i or j .

We will prove the following proposition.

PROPOSITION4.11. Let Xn be an n-th order infinitesimal neighbourhood with normal bundle V and let
(X1

n+1,X
2
n+1,X

3
n+1) be three extensions ofXn . There is then a canonical morphism

φX1
n+1,X

2
n+1,X

3
n+1

: D(X1
n+1,X

2
n+1) + D(X2

n+1,X
3
n+1) → D(X1

n+1,X
3
n+1).

Proof of Proposition 4.11. In order to construct this isomorphism, we will need an extrastructure which
we will call a triple.

DEFINITION 4.12. Let U be an open set ofX . A triple P̂n+1 over U is given by a data set
(P,Pn+1, f 1

n+1, f
2
n+1, f

3
n+1) where P is a smooth variety,Pn+1 is an (n + 1)-th infinitesimal neighbourhood

of P and the mapsf i
n+1 : Ui

n+1 → Pn+1 are maps of schemes such that for each pairi, j the 4-tuple
(P,Pn+1, f i

n+1, f
j
n+1) is an element ofCi,j(U) . We denote (P,Pn+1, f i

n+1, f
j
n+1) by P̃

i,j
n+1 .
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DEFINITION 4.13. Let P̂n+1 = (P,Pn+1, f 1
n+1, f

2
n+1, f

3
n+1) and Q̂ = (Q,Qn+1, g

1
n+1, g

2
n+1, g

3
n+1) be triples

over U . A map F : Pn+1 → Qn+1 is said to be a map of triples if for all pairsi, j ∈ {1,2,3} the mapF is
a Ci,j(U) -morphism. The mapF considered as aCi,j(U) -morphism will be denotedFi,j .

Given a triple P̂n+1 there are associated maps

f
P̃

1,2
n+1
, f

P̃
2,3
n+1
, f

P̃
1,3
n+1

: N
∗
Pn

→ SU

and associated extensionsF(P̃1,2
n+1) , F(P̃2,3

n+1) and F(P1,3
n+1) . By definition of the mapsf

P̃
i,j
n+1

we have that

f
P̃

1,3
n+1

= f
P̃

1,2
n+1

+ f
P̃

2,3
n+1
. There is therefore an induced map of extensions

φ
P̂n+1

: F(P̃1,2
n+1) + F(P̃2,3

n+1) → F(P̃1,3
n+1).

given by
φ

P̂n+1
([[s1, ω]

P̃
1,2
n+1
, [s2, ω]

P̃
2,3
n+1

]) = ([s1 + s2, ω]
P̃

1,3
n+1

)

for any choice ofs1, s2 ∈ SU and ω ∈ Ω1
Pn

⊗ OU .

(We note that any element [e1,e2] of F(P̃1,2
n+1) + F(P̃2,3

n+1) , e1 = [s1, ω1]
P̃

1,2
n+1

, e2 = [s2, ω2]
P̃

2,3
n+1

, can be

written in the above form because of the condition thatπ
P̃

1,2
n+1

(e1) = π
P̃

2,3
n+1

(e2) . There are, of course, several

choices ofs1, s2 , and ω giving rise to different representations of the same element of F(P̃1,2
n+1) + F(P̃2,3

n+1) :
we leave it to the reader to prove that the above definition is independent of the choice of representation.)

DEFINITION 4.14. Let P̂n+1 be a triple overU . We then letψ
P̂n+1

be the map

ψ
P̂n+1

: D(U1
n+1,U

2
n+1) + D(U2

n+1,U
3
n+1) → D(U1

n+1,D
3
n+1)

given by
ψ

P̂n+1
= s−1

P̃
1,3
n+1

◦ φ
P̂n+1

◦ (s
P̃

1,2
n+1

+ s
P̃

2,3
n+1

).

4.2.3 GLOBALISATION OF THE CANONICAL ISOMORPHISM. To complete the proof of Proposition 4.11, it
will be enough to prove the following proposition.

PROPOSITION 4.15. Let Xn , X1
n+1 , X2

n+1 and X3
n+1 be as above and let U be an open set in X . The

map ψ
P̂n+1

defined above is then independent of the choice of tripleP̂n+1 ∈ C(U) .

Proof of Proposition 4.15.

We have that prove that for any pair of tripleŝPn+1 and Q̂n+1 we have that

s−1
P̃

1,3
n+1

◦ φ
P̂n+1

◦ (s
P̃

1,2
n+1

+ s
P̃

2,3
n+1

) = s−1
Q̃

1,3
n+1

◦ φ
Q̂n+1

◦ (s
Q̃

1,2
n+1

+ s
Q̃

2,3
n+1

)

which is equivalent to

φ
P̂n+1

◦ (s
P̃

1,2
n+1

+ s
P̃

2,3
n+1

) ◦ (s
Q̃

1,2
n+1

+ s
Q̃

2,3
n+1

)−1
= s

P̃
1,3
n+1

◦ s−1
Q̃

1,3
n+1

◦ φ
Q̂n+1

which we can also write as

φ
P̂n+1

◦ (J
P̃

1,2
n+1

Q̃
1,2
n+1

+ J
P̃

2,3
n+1

Q̃
2,3
n+1

) = J
P̃

1,3
n+1

Q̃
1,3
n+1

◦ φ
Q̂n+1

.

We start by proving that ifP̂n+1 and Q̂n+1 are two triples overU and F : Pn+1 → Qn+1 is a morphism of
triples then

φ
P̂n+1

◦ (F(F1,2) + F(F2,3)) = F(F1,3) ◦ φ
Q̂n+1

considered as maps fromF(Q̃1,2
n+1)+F(Q̃2,3

n+1) to F(P̃1,3
n+1) . Consider elementse1 ∈ F(Q̃1,2

n+1) and e2 ∈ F(Q̃2,3
n+1)

such thatπ
Q̃

1,2
n+1

(e1) = π
Q̃

2,3
n+1

(e2) and consider the element [e1,e2] ∈ F(Q̃1,2
n+1) + F(Q̃2,3

n+1) . We write [e1,e2]
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in the form [[s1, w]
Q̃

1,2
n+1
, [s2, w]

Q̃
2,3
n+1

] . The mapφ
Q̂n+1

is then given byφ
Q̂n+1

([e1,e2]) = [s1 + s2, w]
Q̃

1,3
n+1
. We

have that
F(F1,3) ◦ φ

Q̂n+1
([e1,e2]) = F(F1,3)([s1 + s2, w]

Q̃
1,3
n+1

)

= [s1 + s2,F
∗(w)]

P̃
1,3
n+1
.

But on the other hand, we have that

φ
P̂n+1

◦ (F(F1,2) + F(F2,3))([[s1, w]
Q̃

1,2
n+1
, [s2, w]

Q̃
2,3
n+1

])

= φ
P̂n+1

([[s1,F
∗(w)]

P̃
1,2
n+1
, [s2,F

∗(w)]
P̃

2,3
n+1

]) = [s1 + s2,F
∗(w)]

P̃
1,3
n+1
.

It now follows that if P̂n+1 , Q̂n+1 are two triples thenJ
Q̃

1,3
n+1

P̃
1,3
n+1

◦ φ
P̂n+1

= φ
Q̂n+1

◦ (J
Q̃

1,2
n+1

P̃
1,2
n+1

+ J
Q̃

2,3
n+1

P̃
2,3
n+1

). Indeed, if

P̂n+1, Q̂n+1 are triples then (P×Q,Pn+1×Qn+1, f 1
n+1× g

1
n+1, f

2
n+1× g

2
n+1, f

3
n+1× g

3
n+1) is again a triple, which

we denote by (̂P × Q̂)n+1 . The projection mapsπPn+1 : (P× Q)n+1 → Pn+1 and πQn+1 : (P× Q)n+1 → Qn+1

are then maps of triples, so

φ(P̂×Q̂)n+1
◦ (F(π1,2

Pn+1
) + F(π2,3

Pn+1
)) = F(π1,3

Pn+1
)(φ

P̂n+1
).

Likewise, we have that
φ(P̂×Q̂)n+1

◦ (F(π1,2
Qn+1

) + F(π2,3
Qn+1

)) = F(π1,3
Qn+1

)(φ
Q̂n+1

).

Taking the inverse of the second equation multiplied by the first, we get that

(F(π1,2
Qn+1

) + F(π2,3
Qn+1

))−1 ◦ (F(π1,2
Pn+1

) + F(π2,3
Pn+1

)) = (φ
Q̂n+1

)−1
F(π1,3

Qn+1
)−1

F(π1,3
Pn+1

)(φ
P̂n+1

)

or in other wordsJQ̃
1,2

P̃1,2 + JQ̃
2,3

P̃2,3 = (φ
Q̂n+1

)−1 ◦ JQ̃
1,3

P̃1,3 ◦ φP̂n+1
. This completes the proof of Proposition 4.15.�

DEFINITION 4.16. For anyn-th order infinitesimal neighbourhood ofX , Xn and any tripleX1
n+1 , X2

n+1

and X3
n+1 of extensions ofXn we setφX1

n+1,X
2
n+1,X

3
n+1

|U = ψ
P̂n+1

|U for any triple P̂n+1 defined overU .

Throughout the rest of this paper we will refer to the mapsφX1
n+1,X

2
n+1,X

3
n+1

as contraction maps.

In particular, this establishes condition 2). To prove the theorem it remains only to prove condition 3)
(surjectivity) : in the next section we will prove some results on the contraction maps that will be useful in
what follows.

4.2.4 CALCULATIONS. In what follows, by abuse of notation, the subscriptn + 1 in expressions of the
form Xα

n+1 will frequently be dropped in order to make the formulae manageable.

PROPOSITION 4.17. Let X1
n+1 , X2

n+1 , X3
n+1 , X4

n+1 be extensions ofXn , an n-th order infinitesimal
neighbourhood of X . We then have that

φX1,X2,X4 ◦ (IdD(X1,X2) + φX2,X3,X4) = φX1,X3,X4 ◦ (φX1,X2,X3 + IdD(X3,X4))

as maps fromD(X1
n+1,X

2
n+1) + D(X2

n+1,X
3
n+1) + D(X3

n+1,X
4
n+1) to D(X1

n+1,X
4
n+1) .

Proof of Proposition 4.17.

Since the question is local onX , it will be enough to prove the proposition in any suitably small open set
in X . Let U be an open set inX which is small enough that we can find a smooth varietyP, an (n+ 1)-th
order infinitesimal neighbourhood ofP, Pn+1 , and mapsf i

n+1 : Ui
n+1 → Pn+1 such that (Pn+1, f i

n+1) is an

embedding ofUi
n+1 for all i and f i

n+1|Un = f j
n+1|Un for all i, j . Let P̂

i,j,k
n+1 be the triple (P,Pn+1, f i

n+1, f
j
n+1, f

k
n+1) .

Our aim is to show that

φ
P̂

1,2,4
n+1

◦ (Id
F(P̃1,2

n+1) + φ
P̂

2,3,4
n+1

) = φ
P̂

1,3,4
n+1

◦ (φ
P̂

1,2,3
n+1

+ Id
F(P̃3,4

n+1)).
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as maps fromF(P̃1,2
n+1) + F(P̃2,3

n+1) + F(P̃3,4) to F(P̃1,4
n+1) . Let [e1,e2,e3] be an element ofF(P̃1,2

n+1) +

F(P̃2,3
n+1) + F(P̃3,4

n+1) , where e1 ∈ F(P̃1,2
n+1),e2 ∈ F(P̃2,3

n+1) and e3 ∈ F(P̃3,4
n+1). We write [e1,e2,e3] in the form

[[s1, w]
P̃

1,2
n+1
, [s2, w]

P̃
2,3
n+1
, [s3, w]

P̃
3,4
n+1

] for some choice ofs1, s2, s3 ∈ SU and w ∈ Ω1
Pn

⊗ OU .

We have that
φ

P̂
1,2,4
n+1

◦ (Id
F(P̃1,2

n+1) + φ
P̂

2,3,4
n+1

)[e1,e2,e3] = [s1 + s2 + s3, w]
P̃

1,4
n+1
.

Likewise, we calculate that

φ
P̂

1,3,4
n+1

◦ (φ
P̂

1,2,3
n+1

+ Id
F(P̃3,4

n+1))[e1,e2,e3] = [s1 + s2 + s3, w]
P̃

1,4
n+1
.

This completes the proof of Proposition 4.17. �

In other words, the order of a sequence of contraction maps isnot important.

DEFINITION 4.18. Let Xn be ann-th order infinitesimal neighbourhood. LetX1
n+1 . . .X

m
n+1 be an ordered

sequence of extensions ofXn . We define the contraction map

φX1...Xm : D(X1,X2) + . . .+ D(Xm−1,Xm) → D(X1,Xm)

by
φX1,...,Xm = φX1,Xm−1,Xm ◦ . . . ◦ φX1,X3,X4 ◦ φX1,X2,X3.

We can in fact introduce a more general version of these isomorphisms : to do so we introduce some
notation.

DEFINITION 4.19. A chain of extensions ofXn is a finite ordered setI = (i1, i2, . . . , ik) together with a
choice of extensionXim

n+1 of Xn for each indexim.

DEFINITION 4.20. Given a chain of extensions ofXn , C = (Xi1
n+1,X

i2
n+1, . . . ,X

ik
n+1) , we set

D(C) = D(Xi1
n+1,X

i2
n+1) + D(Xi2

n+1,X
i3
n+1) + . . .+ D(Xik−1

n+1,X
ik
n+1)

DEFINITION 4.21. Let C = (Xi1
n+1, . . . ,X

ik
n+1) be a chain of extensions ofXn indexed by an ordered set

I = (i1, . . . , ik) . A subchain ofC is a chain of the formC′ = (Xi′1
n+1, . . . ,X

i′k′
n+1)) where I ′ = (i′1, . . . , i

′
k′ ) is

a sub-ordered set ofI which containsi1 and ik .

Suppose thatC = (Xi1
n+1, . . . ,X

ik
n+1) is a chain andC′ = (Xi1

n+1, . . . , 6 X
i l
n+1, . . . ,X

ik
n+1)} is a chain obtained

from C by removing X
i l
n+1 . We then define a contraction mapφC′

C : D(C) → D(C′) by

φC′

C = IdD(C1) + φX
il−1,Xil ,Xil+1 + IdD(C2)

where C1 is the chain (Xi1
n+1, . . . ,X

i l−1

n+1) and C2 is the chain (Xi l+1

n+1, . . . ,X
ik
n+1)

DEFINITION 4.22. Let C be a chain of extensions and letC′ be a subchain ofC. Let C1,C2, . . . ,Cl be
a sequence of subchains ofC such thatC1 is C, Cl is C′ and Ci is obtained fromCi−1 by deleting one
element for all i ∈ [2, . . . , l] . We then define a mapφC′

C : D(C) → D(C′) by

φC′

C = φCl
Cl−1

◦ . . . ◦ φC2
C1
.

REMARK 4.23. Proposition 4.17 implies that the mapφC′

C does not depend on the choice of intermediate
subchainsC2 . . .Cl−1 . We note further that ifC is a chain of extensions,C′ is a subchain ofC and C′′ is a
subchain ofC′ then φC′′

C = φC′′

C′ ◦φC′

C . If C is the concatenation ofC1 and C2 (that is, C1 = (X1,X2, . . . ,Xi) ,
C2 = (Xi ,Xi+1, . . . ,Xn) and C = (X1, . . . ,Xi−1,Xi ,Xi+1, . . . ,Xn) ) then

D(C) = D(C1) + D(C2)

and if C′
1 and C′

2 are subchains ofC1 and C2 whose concatenation isC′ then φC′

C = φ
C′

1
C1

+ φ
C′

2
C2
.
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DEFINITION 4.24. Let C be a chain of extensions ofXn and let C′ be a sub-chain ofC. We then denote
the inverse map (φC′

C )−1 by φC
C′ .

In the special case whereC contains a pair of identical neighbours (ie.C = (. . . ,Xim,Xim+1, . . .) with
Xim = Xim+1 then there are two (a priori distinct) ways of contractingD(C) to D(C′) , where C′ is the chain
(. . .Xim,Xim+2, . . .) . We can either use the mapφC′

C or we can use the map

IdD(C1)+rId+IdD(C2) : (D(C1)+D(Xim,Xim+1)+D(C2)) → (D(C1)+S⊕Ω+D(C2)) = D(C1)+D(C2) = D(C′).

where C1 is the chain (Xi1, . . . ,Xim) , C2 is the chain (Xim+1, . . . ,Xik) and rId is the map constructed at the
end of section 4.1.

LEMMA 4.25. Let C= (Xi1, . . . ,Xik) be a chain of extensions ofXn and suppose thatXim = Xim+1 . Let
C′ be the subchain obtained from C by deletingXim+1 . Then we have thatφC′

C = IdD(C1) + rId + IdD(C2)

where C1 is the chain (Xi1, . . . ,Xim) and C2 is the chain (Xim+1, . . . ,Xik) .

Proof of Lemma 4.25. By remark 4.23, it will be enough to deal with the case whereC = (X1,X1,X2)
or C = (X2,X1,X1) . We treat the case whereC = (X1,X1,X2) below : the same argument works for
C = (X2,X1,X1) .

Since the problem is local onX , we may assume there is a a triplêPn+1 over X of the form
(P,Pn+1, f 1

n+1, f
1
n+1, f

2
n+1) . We have thatφC′

C ([[s1, ω]
P̃

1,2
n+1
, [s2, ω]

P̃
2,3
n+1

]) = [s1 + s2, ω]
P̃

1,3
n+1

for any s1, s2 ∈ SU

and ω ∈ Ω1
Pn

⊗ OU . Further,

rId([[s1, ω]
P̃

1,2
n+1
, [s2, ω]

P̃
2,3
n+1

]) = [(s1, ω|Un), [s2, w]
P̃

2,3
n+1

] = [s1 + s2, ω]
P̃

1,3
n+1
.

This completes the proof of Lemma 4.25. �

We now consider the particular case whereC = (X1,X2,X1) and C′ = (X1,X1) . In this case we ob-
tain a contraction map

φC′

C : D(X1,X2) + D(X2,X1) → D(X1,X1).

We have a canonical isomorphismrId : D(X1,X1) → S⊕ Ω and hence in particular, we have a map

(rId ◦ φ
C′

C ) : D(X1,X2) + D(X2,X1) → S⊕ Ω.

DEFINITION 4.26. For any pair of extensionsX1
n+1,X

2
n+1 of an n-th order neighbourhoodXn we denote

the map (rId ◦ φ
C′

C ) : D(X1,X2) + D(X2,X1) → S⊕ Ω by τX1,X2 .

This gives rise to a map

(τX1,X2) + Id(−D(X2,X1)) : D(X1,X2) + D(X2,X1) + (−D(X2,X1)) → −D(X2,X1)

and since we have for anyE a canonical isomorphismcE : E+ (−E) → S⊕Ω this gives rise to a map which
we denote byτ ′X1,X2 ,

τ ′
X1,X2 = (rId(X1) ◦ φ

C′

C ) + Id) ◦ (IdD(X1,X2) + c−1
D(X2,X1)) : D(X1,X2) → −D(X2,X1).

We can restate Lemma 4.25 in the following form.

LEMMA 4.27. Let Xn be an n-th order infinitesimal neighbourhood of X and letX1 and X2 be two
extensions of Xn . Let C= (. . .X1,X2,X1 . . .) be a chain of extensions ofXn and let C′ be the sub-chain
of C obtained on suppressing theX2 term and the secondX1 term. The following diagram then commutes.

(. . .+ D(X1,X2) + D(X2,X1) + D(X1,X3) . . .)
φC′

C //

τ ′
X1,X2

��

(. . .+ D(X1,X3) + . . .)

(. . .+ D(X1,X2) + (−D(X1,X2)) + D(X1,X3) . . .)

Id+c
D(X1,X2)+Id

33fffffffffffffffffffffff
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4.3 SURJECTIVITY.

In this paragraph, we will assume that at least one extensionof Xn exists. We shall denote this “base”
extension byX1

n+1 . Our aim is to prove the following proposition.

PROPOSITION4.28. Let Xn be an n-th order infinitesimal neighbourhood of a reduced l.c.i. k -variety X
and suppose there is at least one extension ofXn to n+ 1st order, X1

n+1 . Then for any extension E ofΩ
and S there existsX2

n+1 , an extension to n+ 1st order of Xn , such thatD(X1
n+1,X

2
n+1) = E.

Let E be an extension 0→ S
iE→ E

πE→ Ω → 0. If Ui is an open cover ofX then we denoteE|Ui by Ei .
We denote the intersectionUi1∩, . . . ∩ Uin by Ui1...in and the restrictionE|Ui1...in

by Ei1...in .

PROPOSITION 4.29. Let Xn be an n-th order infinitesimal neighbourhood of a reduced l.c.i. k -variety X
with normal bundle V . LetX1

n+1 be an extension ofXn and let E be an element ofE(X) . Suppose that there
exists an open covering of X by sets Ui such that Ei is trivial for each i . Then there exists an extension of
Xn , X2

n+1 , such thatD(X1
n+1,X

2
n+1) = E.

Proof of Proposition 4.29.

For eachi we choose an isomorphismr i : Ei → SUi ⊕ΩUi . This choice of isomorphism gives rise over each
Ui,j to an map

φ̃i,j : SUi,j ⊕ ΩUi,j → SUi,j ⊕ ΩUi,j .

given by φ̃i,j = r j ◦ IdE ◦ r−1
i . Since φ̃i,j is a map of extensions, it is of the following form

φ̃i,j(s, w) = (s+ φi,j(w), w)

where φi,j : ΩUi,j → SUi,j is a linear map. It is immediate from the definition ofφ̃i,j that φ̃j,k ◦ φ̃i,j = φ̃i,k.

and it follows that φi,j + φj,k = φi,k. Over Ui,j = Ui ∩ Uj , there is an automorphism of algebra sheaves
Ai,j : OX1

n+1
→ OX1

n+1
given by Ai,j(f ) = f − Symn+1(αXn)(φi,j(df |U)). Let X2

n+1 be the unique extension of
Xn up to isomorphism that satisfies the following properties.

1. For every i there is an isomorphismti : U2
i,n+1 → U1

i,n+1 , where U2
i,n+1 is the restriction ofX2

n+1 to Ui ,
such thatti |Ui,n = Id.

2. The isomorphism,hi,j : U1
i,n+1 → U1

j,n+1 defined byhi,j = tj ◦ IdU2
i,j,n+1

◦ t−1
i is given by the dual formula

h∗i,j(f ) = Ai,j(f ) for all f ∈ OU1
i,j,n+1

.

Since φi,j + φj,k = φi,k we have thathj,k ◦ hi,j = hi,k so X2
n+1 does indeed exist.

PROPOSITION 4.30. The elementD(X1
n+1,X

2
n+1) is isomorphic to E.

Proof of Proposition 4.30.

For eachi we choose an element̃Pi,n+1 ∈ C(Ui) of the form (P,Pn+1, f 1
n+1, f

1
n+1◦ ti) . We let P̃i,n+1 have nor-

mal bundleWPi . For any pairi, j we will denote byπPi,n+1 the projection mapπPi,n+1 : (Pi ×Pj)n+1 → Pi,n+1 .
It is immediate from the definition off

P̃in+1
that f

P̃i,n+1
= 0. It follows that for everyi we have a map

Ri : F(P̃i,n+1) → SUi ⊕ Ω
1
Ui

given by Ri([s, w]
P̃i,n+1

) = (s, w|Ui ) for any wheres∈ SUi and w ∈ Ω1
Pi,n

⊗ OU . We now seek to prove the
following equation.

(2) Rj ◦ JPj,n+1

P̃i,n+1
◦ R−1

i = φ̃i,j .

Throughout the proof of this equation we will tacitly assumeourselves to be working on a small enough
neighbourhood for all necessary constructions. This is possible because of the local nature of all our
constructions. We consider the following diagram
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U1
i,j,n+1

f 1
i,n+1×f 1

j,n+1 // (Pi × Pj)n+1

U2
i,j,n+1

(f 1
i,n+1◦ti )×(f 1

j,n+1◦tj )

OO

We will now attempt to determine the elementJP̃j,n+1

P̃i,n+1
([s, w]

P̃i,n+1
) for any s ∈ SUi and w ∈ Ω1

Pi,n+1
⊗ OUi .

It will be enough to establish equation (2) for anyw of the form dgi , where gi ∈ OPi,n+1 . We fix an
elementgi ∈ OPi,n+1 and denote its restriction toU1

i,n+1 by g . We choose an elementgj ∈ OPj,n+1 such that
gj |U1

j,n+1
= g . We note that

π∗
Pi,n+1

(gi) − π∗
Pj,n+1

(gj) ∈ IU1
n+1|(Pi×Pj )n+1

.

We denote the functionπ∗
Pi,n+1

(gi)−π∗
Pj,n+1

(gj) on (Pi×Pj)n+1 by h and we leth be the equivalence class ofh in

N∗
(P̃i×P̃j )n+1

. We now show thatf(P̃i×P̃j )n+1
(h) = φi,j(dg). We have thath|U2

n+1
= (π∗

Pi,n+1
(gi)−π∗

Pj,n+1
(gj))|U2

n+1
=

g ◦ ti − g ◦ tj = g ◦ (Id − tj ◦ t−1
i ) ◦ ti . By definition, g ◦ tj ◦ t−1

i = Ai,j(g) so h|U2
n+1

= (g − Ai,j(g)) ◦ ti =

Symn+1αU1
n+1

(φi,j(dg)) ◦ ti = Symn+1(αU2
n+1

)(φi,j(dg)) . It follows that if Φi,j(dg) is an arbitrary lifting of

φi,j(dg) ∈ Symn+1(V∗
U) to Symn+1(WPi ×WPj ) then h′ = h−α(Pi×Pj )n+1(Φi,j(dg)) is a lifting to IU2

n+1|(Pi×Pj )n+1

of g|Un . By definition of f(P̃i×P̃j )n+1
we therefore have that

f(P̃i×P̃j )n+1
(h) = Symn+1(f ∗n )Symn+1(α(P̃i×P̃j )n+1

)−1(h− (h− Symn+1(α(P̃i×P̃j )n+1
Φi,j(dg)))

where here Symn+1(f ∗n ) is the surjective pull-back map

Symn+1(W∗
Pi
⊕ W∗

Pj
) → Symn+1(V∗

Ui,j
)

and hence
f(P̃i×P̃j )n+1

(h) = Symn+1(f ∗n )(Φi,j(dg)) = φi,j(dg).

By definition of F(πPi,n+1) we have that for anys∈ S and g ∈ OPi,n+1

F(πPi,n+1)[s,dg]
P̃i,n+1

= [s,dπ∗
Pi,n+1

g](P̃i×P̃j )n+1
.

But we have seen thatf(P̃i×P̃j )n+1
(h) = φi,j(dg) and hence inF((P̃i × P̃j)n+1) we have that

[−φi,j(dg),d(π∗
Pi,n+1

gi − π∗
Pj,n+1

gj) ⊗ OU](P̃i×P̃j )n+1
= 0

and hence
[0,dπ∗

Pi,n+1
gi ](P̃i×P̃j )n+1

= [φi,j(dg),dπ∗
Pj,n+1

gj ](P̃i×P̃j )n+1
.

We therefore have that

F(πPi,n+1)[s,dgi ]P̃i,n+1
= [s+ φi,j(dg),dπ∗

Pj,n+1
gj ](P̃i×P̃j )n+1

= [s+ φi,j(dg),dπ∗
Pj,n+1

gj ](P̃i×P̃j )n+1

and hence
F(πPi,n+1)[s,dgi ]P̃i,n+1

= F(πPj,n+1)[s+ φi,j(dg),dgj ]P̃j,n+1
.

We note that for anys∈ SU and anygi ∈ OPi,n+1 Ri [s,dgi ⊗ OU]
P̃i,n+1

= (s,dg) and

Rj [s+ φi,j(dg),dgj ⊗ OU] = (s+ φi,j(dg),dg)

and so it follows that for anys∈ SU and ω ∈ Ω1
Pi,n+1

⊗ OU we have that

Rj ◦ F(πPj,n+1)
−1 ◦ F(πPi,n+1) ◦ R−1

i (s, w) = (s+ φi,j(w), w) = φ̃i,j(s, w).

or in other wordsRj ◦ JP̃j,n+1

P̃i,n+1
◦ R−1

i = φ̃i,j(s, w) which completes the proof of equation 2. But Proposition

4.29 now follows because this implies that the maps

R′
i : D(X1

n+1,X
2
n+1)|Ui → Ei

given by R′
i = (r i)−1 ◦ Ri ◦ s

P̃i,n+1
satisfy the equation

(R′
j ) ◦ R

′−1
i = r−1

j ◦ Rj ◦ JP̃j,n+1

P̃i,n+1
◦ R−1

i ◦ r i = r−1
j ◦ φ̃ij ◦ r i = IdE

for any pair (i, j) . These maps therefore glue together to give a global isomorphism of extensions. �

The following lemma establishes the existence ofX2
n+1 locally.
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LEMMA 4.31. Let Xn , X1
n+1 be as above. Let U be an open affine subset of X such that VU is a trivial

bundle. There is then an extension ofUn , U2
n+1 such thatD(U1

n+1,U
2
n+1) is isomorphic to E|U .

Proof of Lemma 4.31.

By Lemma 3.25 there is a smooth affine varietyP, an n + 1-th order infinitesimal neighbourhood of
P, Pn+1 and a mapf 1

n+1 : U1
n+1 → Pn+1 such that (P,Pn+1, f 1

n+1) is an embedding. We consider the exact
sequence

(3) 0→ N∗
Pn

→ Ω
1
Pn
⊗ OU → ΩU → 0.

Since P is smooth and affine andΩ1
Pn
⊗ OU is a locally free sheaf, the map Hom(N∗

Pn
,SU) → Ext1(ΩU,SU)

is a surjection. We can therefore find aφ ∈ Hom(N∗
Pn
,S) such that the pull back of (3) alongφ is ∼= Ei .

We define a subschemeU2
n+1 ∈ Pn+1 by

IU2
i,n+1

= {g′ − ǫ|g′ ∈ IU1
n+1
, ǫ ∈ IPn|Pn+1

,Symn+1(f ∗n )(Symn+1(αPn+1)
−1ǫ) = φ(g)}.

Let P̃i,n+1 be the element ofC(Ui) defined by takingPi,n+1 , U1
n+1 and U2

n+1 , with f 1
n+1 and f 2

n+1 given by
the inclusion maps. It is immediate from the definition offPi that f

P̃i,n+1
= φ , and henceD(U1

i,n+1,U
2
i,n+1) ,

which is simply the push-forward of (3) alongf
P̃i,n+1

, satisfiesD(U1
i,n+1,U

2
i,n+1) = Ei . This completes the

proof of Lemma 4.31. �

LEMMA 4.32. Let Xn and X1
n+1 be as above. Let Ui be a covering of X by open affines such that VUi

is trivial for every Ui and for each i letU2
i,n+1 be an extension ofUi,n such thatD(U1

i,n+1,U
2
i,n+1) ∼= E.

Then there is an extension ofXn , X2′
n+1 such thatX2′

n+1|Ui is isomorphic toU2
n+1 for every i .

Proof of Lemma 4.32.

For eachi we let j i : D(U1
i,n+1,U

2
i,n+1) → Ei be an isomorphism.

It will be enough to construct for each pair (i, j) an isomorphismBi,j : U2
i,n+1 → U2

j,n+1 which are compatible
on the triple intersections. Over the open setUi ∩Uj = Ui,j we have chainsCi,j = (U2

i,n+1,U
1
i,n+1,U

2
j,n+1) and

C′
i,j = (U2

i,n+1,U
2
j,n+1) . For each pair (i, j) we have a series of maps

Ji,j : D(U2
i,n+1,U

2
j,n+1)

φ
Ci,j

C′
i,j

→ D(U2
i,n+1,U

1
i,n+1) + D(U1

i,n+1,U
2
j,n+1)

τ ′

U2
i,n+1

,U1
i,n+1

→(4)

−D(U1
i,n+1,U

2
i,n+1) + D(U1

i,n+1,U
2
j,n+1)

−j i+j j
→ −Ei |Ui,j + Ej |Ui,j

(5)

where Ci,j is the chain (U2
i,n+1,U

1
i,n+1,U

2
j,n+1) and C′

i,j is the chain (U2
i,n+1,U

2
j,n+1) We have a canonical map

c−Ei,j : −Ei |Ui,j + Ej |Ui,j → SUi,j ⊕ ΩUi,j and hence for every pairi, j there is a map

Si,j = c−Ei,j ◦ Ji,j : D(U2
i,n+1,U

2
j,n+1) → SUi,j ⊕ ΩUi,j .

By Proposition 4.2, this splitting corresponds to a gluingb(Sij ) = Bi,j : U2
i,n+1 → U2

j,n+1. It will be enough to
show that these gluings are compatible on the triple intersections. We start with the following lemma.

LEMMA 4.33. Let Un be an n-th order infinitesimal neihgbourhood of U and letU1
n+1 , U2

n+1 and U3
n+1

be three extensions ofUn . Suppose given three isomorphisms of extensions

φ1,2 : U
1
n+1 → U

2
n+1, φ

2,3 : U
2
n+1 → U

3
n+1 and φ1,3 : U

1
n+1 → U

3
n+1.

Let Si,j : D(Xi
n+1,X

j
n+1) → S⊕Ω be the isomorphism associated toφi,j . We then have thatφ1,3 = φ2,3 ◦φ1,2

if and only if
cS⊕Ω ◦ (S1,2 + S2,3) = S1,3 ◦ φX1,X2,X3

where cS⊕Ω : (S⊕ Ω) + (S⊕ Ω) → S⊕ Ω is the canonical contraction map.
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Proof of Lemma 4.33.

The statement of the lemma may be checked locally, so we may assume that there is a triple overU
of the form (P,Pn+1, f 3

n+1 ◦φ
1,2 ◦φ2,3, f 3

n+1 ◦φ
2,3, f 3

n+1) , where f 3
n+1 : U3

n+1 → Pn+1 is an embedding. We then
have that the isomorphism associated toφ2,3 ◦ φ1,2 is given by

[s, ω]
P̃13

n+1
→ [s, ω|Xn]

for any s ∈ S and ω ∈ Ω1
Pn+1

⊗ OU . In particular, we have thatφ13 = φ23 ◦ φ12 if and only if
S1,3[s, ω]

P̃13
n+1

= [s, ω|Xn] . We also have thatφX1,X2,X3[[s1, ω]
P̃

1,2
n+1

[s2, ω]
P̃

2,3
n+1

] = [s1 + s2, ω]
P̃

1,3
n+1

. It is therefore

the case thatφ1,3 = φ2,3 ◦ φ1,2 if and only if S1,3 ◦ φX1,X2,X3[[s1, ω]
P̃

1,2
n+1

[s2, ω]
P̃

2,3
n+1

] = [s1 + s2, ω|Xn . On the

other hand we have that

S2,3[s2, ω]
P̃

2,3
n+1

= [s2, ω|Xn]

and

S1,2[s1, ω]
P̃

1,2
n+1

= [s1, ω|Xn].

In particular,

cS⊕Ω ◦ (S1,2 + S2,3)[[s1, ω]P1,2
n+1

[s2, ω]
P̃

2,3
n+1

] = [s1 + s2, ω|Xn].

This completes the proof of Lemma 4.33. �

To prove the lemma 4.32 it will therefore be enough to show that the following diagram commutes.

D(U2
i,n+1,U

2
j,n+1) + D(U2

j,n+1,U
2
k,n+1)

cEi,j,k◦Ji,j+cEi,j,k◦Jj,k
//

φ
C2
C′

2

��

S⊕ Ω + S⊕ Ω

cS⊕Ω

��
D(U2

i,n+1,U
2
k,n+1)

cEi,j,k◦Ji,k
// S⊕ Ω

where hereC′
2 is the chain (U2

i,n+1,U
2
j,n+1,U

2
k,n+1) and C2 is the chain (U2

i,n+1,U
2
k,n+1) . Since the diagram

(Ei − Ej) + (Ej − Ek)
cEi,j +cEi,j //

Id−Ei +cEj +IdEk

��

S⊕ Ω + S⊕ Ω

cS⊕Ω

��
−Ei + Ek

cE // S⊕ Ω

is commutative it will be enough to show that the following diagram commutes

D(U2
i,n+1,U

2
j,n+1) + D(U2

j,n+1,U
2
k,n+1)

Ji,j+Jj,k //

φ
C2
C′

2��

−Ei + Ej − Ej + Ek

Id−Ei +cEj +IdEk

��
D(U2

i,n+1,U
2
k,n+1)

Ji,k // −Ei + Ek

The following diagram commutes since it simply says that thecontraction maps commute with isomorphisms :

−D(U1
i,n+1,U

2
i,n+1) + D(U1

i,n+1,U
2
j,n+1)

−D(U1
j,n+1,U

2
j,n+1) + D(U1

j,n+1,U
2
k,n+1)

−j i+j j−j j+jk //

c
D(U1

j,n+1
,U2

j,n+1
)

��

−Ei + Ej − Ej + Ek

Id−Ei +cEj +IdEk

��
D(U2

i,n+1,U
1
i,n+1,U

2
k,n+1)

−j i+jk // −Ei + Ek

so it will be enough to show that the following diagram commutes
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D(U2
i,n+1,U

2
j,n+1) + D(U2

j,n+1,U
2
k,n+1)

τ ′
i ◦φ

Ci,j

C′
i,j

+τ ′
j ◦φ

Cj,k

C′
j,k

//

φ
C2
C′

2

��

−D(U1
i,n+1,U

2
i,n+1) + D(U1

i,n+1,U
2
j,n+1)

+D(U1
j,n+1,U

2
j,n+1) + D(U1

j,n+1,U
2
k,n+1)

c
D(U1

j,n+1
,U2

j,n+1
)

��
D(U2

i,n+1,U
2
k,n+1)

τ ′
i ◦φ

Ci,k
C′

i,k// −D(U1
i,n+1,U

2
i,n+1) + D(U1

i,n+1,U
2
k,n+1)

where here for any indiceα the mapτ ′α denotesτ ′U2
α,n+1,U

1
α,n+1

. But this diagram commutes by Remark 4.23

and Lemma 4.27. This completes the proof of Lemma 4.32. �

End of the proof of Proposition 4.28.We consider the extensionX′2
n+1 constructed in the above lemma.

We have thatD(X1
n+1,X

′2
n+1)|Ui = Ei . It follows that the extensionE−D(X1

n+1,X
′2
n+1)|Ui is trivial and hence,

by Proposition 4.29, there exists a global extensionX2
n+1 such that

D(X′2
n+1,X

2
n+1) − D(X1

n+1,X
′2
n+1)

or in other words
D(X1

n+1,X
′2
n+1) + D(X′2

n+1,X
2
n+1) ∼= E.

By Proposition 4.11 we have thatD(X1
n+1,X

2
n+1) = E. This completes the proof of the torsor character of

D(X1
n+1,X

2
n+1) . �

This completes the proof of Theorem 1.10. �

5. OBSTRUCTIONS.

This section will be devoted to a proof of the following theorem.

THEOREM 5.1. Let Xn be an n-th order infinitesimal neighbourhood of a reduced l.c.i. k -variety X of
finite type with normal bundle V . We can associate an elementobXn ∈ Ext2(Ω,S) to Xn in such a way that
there exists an extension ofXn if and only if obXn = 0.

Proof of Theorem 5.1.

We will use the notion of anextension cocycle. Section 5.1 below is slightly adapted from Vistoli [11] : we
include it for completeness’s sake.

5.1 EXTENSION COCYCLES AND CLASSES OF EXTENSION COCYCLES.

We fix an open affine coveringUi of X which has the following property : for anyi there exists an
extensionUi,n+1 of Ui,n . Throughout this section,Ui will refer to this choice of open affine covering and if
0 → F

iE→ E
πE→ G → 0 is an extension of sheaves then we will denoteiE(s) by sE for any s∈ F . We will

also denote the intersectionUi1 ∩ Ui2 . . . ∩ Uik by Ui1,...,ik . Given a sheafF or a map of sheavesφ which
is defined on a set containngUi1,...,ik we denote the restriction ofF (resp. φ ) to Ui1,...,ik by Fi1,...,ik (resp.
φi1,...,ik ).

DEFINITION 5.2. An extension cocycle ofΩ by S with respect toUi is a collection{Ei,j ,Fi,j,k} such
that for every pair (i, j) Ei,j is an extension ofΩUi,j by SUi,j in the category ofOUi,j -modules and for every
triple (i, j, k) Fi,j,k is an isomorphism defined overUi,j,k , Fi,j,k : Ei,j + Ej,k → Ei,k , such that for anyi, j, k, l
we have the following associativity relation

Fi,j,l ◦ (Fi,j,k + idEk,l ) = Fi,k,l ◦ (idEi,j + Fj,k,l).
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DEFINITION 5.3. Let {Ei,j ,Fi,j,k} and {E′
i,j ,F

′
i,j,k} be two extension cocycles ofΩ by S with respect to

Ui . An isomorphismΦ : {Ei,j ,Fi,j,k} → {E′
i,j ,F

′
i,j,k} is a collection of morphisms of extensionsφi,j : Ei,j → E′

i,j

indexed by pairs (i, j) such that for all triplesi, j, k

φi,k ◦ Fi,j,k = F′
i,j,k ◦ (φi,j + φj,k).

From now on, we will deal not with the set of extension cocycles but with the set of isomorphism classes
of extension cocycles.

REMARK 5.4. Let G1,{Ui}(Ω,S) be the set of isomorphism classes of extension cocycles ofΩ by S with
respect toUi . G1,{Ui}(Ω,S) is then an abelian group with group law given by

[{Ei,j ,Fi,j,k}] + [{E′
i,j ,F

′
i,j,k}] = [{Ei,j + E′

i,j ,Fi,j,k + F′
i,j,k}].

The zero element is the element [(Si,j ⊕ Ωi,j), cSi,j,k⊕Ωi,j,k] .

We will now define coboundaries of collections of extensions.

DEFINITION 5.5. Let Ui be an open affine covering ofX and for everyi let Ei be an extension ofSi

and Ωi over Ui . We define the coboundary of the collection{Ei} , denoted byδ({Ei}) , by

δ({Ei}) = {Ei − Ej , IdEi + c−Ej + Id−Ek}.

REMARK 5.6. The setG2,{Ui}(Ω,S) = ⊕iExt1Ui
(ΩUi ,SUi ) is an abelian group with group law given by

addition of extensions. The mapδ : G2,{Ui}(Ω,S) → G1,{Ui}(Ω,S) is a group morphism.

We are now in a position to define the set of cocycle classes ofS and Ω .

DEFINITION 5.7. Let Ui be an open affine cover ofX as above. We defineE{Ui}(Ω,S) , the set of cocycle
classes ofS and Ω with respect toUi , by

E{Ui}(Ω,S) = G1,{Ui}(Ω,S)/δ(G2,{Ui}(Ω,S)).

PROPOSITION 5.8. Under the above hypotheses, there is a group isomorphismγΩ,S,{Ui} : E{Ui}(Ω,S) →
Ext2(Ω,S).

Proof of Proposition 5.8.

Let [{Ei,j ,Fi,j,k}] be an element ofG1,{Ui}(S,Ω) . We now constructγΩ,S,{Ui}[{Ei,j ,Fi,j,k}] Choose an exact

sequence ofOX -modules 0→ S
iK→ K

πK→ Q → 0 such that K is an injective sheaf onX and hence
Ext2(Ω,S) = Ext1(Ω,Q) . As Ext2(Ω,S) = Ext1(Ω,Q) and Ext2(Ω,S) = 0 since X is a locally complete
intersection, it follows that Ext1(Ω,Q) = H1(Hom(Ω,Q)).

Over eachUi,j , we have the following digram :

0 // Si,j

iEi,j //

iKi,j

��

Ei,j

πEi,j // Ωi,j // 0

Ki,j

Since K is injective, there exist mapsfi,j : Ei,j → Ki,j such thatfi,j ◦ iEi,j = iKi,j . We say that the mapsfi,j are
compatible with theFi,j,ks if for any triple i, j, k we have thatfi,j ◦ Fi,j,k = (fi,j + fj,k) .

LEMMA 5.9. There exist maps fi,j : Ei,j → Ki,j such that for all pairs i, j we have that fi,j ◦ iEi,j = iKi,j

and for all triples i, j, k we have that fi,j ◦ Fi,j,k = (fi,j + fj,k) .
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Proof of Lemma 5.9.

We note that ifs is an element ofSi,j,k then

iKi,k(s) = fi,k ◦ Fi,j,k(sEi,j+Ej,k) = (fi,j + fj,k)(sEi,j+Ej,k).

In particular, for eachi, j, k there is a unique mapτi,j,k : Ωi,j,k → Ki,j,k, such that

τi,j,k ◦ πEi,j+Ej,k = fi,k ◦ Fi,j,k − (fi,j + fj,k).

For any i, j, k, l we have thatτi,j,k − τi,j,l + τi,k,l − τj,k,l = 0. In particular, theτi,j,k form a Čech cocycle
and hence determine an element ofH2(Hom(Ω,K)) . Since K is injective, H2(Hom(Ω,K)) = 0, so there are
elementsτi,j ∈ Hom(Ωi,j ,Ki,j) such that for all i, j, k we have thatτi,j,k = τi,j − τi,k + τj,k. We now define
maps f ′i,j : Ei,j → Ki,j by setting f ′i,j = fi,j + τi,j ◦ πEi,j . We note that thef ′i,j s form an alternative choice of
liftings of the mapsiKi,j : Si,j → Ki,j . It remains only to show that

f ′i,k ◦ Fi,j,k = f ′i,j + f ′j,k.

We note that

f ′i,k ◦ Fi,j,k − (f ′i,j + f ′j,k) = fi,k ◦ Fi,j,k − (fi,j + fj,k) + τi,k ◦ πEi,k ◦ Fi,j,k − (τi,j + τj,k) ◦ πEi,j+Ej,k

= τi,j,k ◦ πEi,j+Ej,k + (τi,k − τi,j − τj,k) ◦ (πEi,j+Ej,k) = 0.

This completes the proof of Lemma 5.9. �

Henceforth, we assume that the mapsfi,j are compatible with theFi,j,k s. Projecting ontoQi,j , we obtain
maps f i,j = πKi,j ◦ fi,j : Ei,j → Qi,j . Since f i,j(sEi,j ) = 0 for any s∈ Si,j there are unique mapsgi,j : Ωi,j → Qi,j

such thatf i,j = gi,j ◦ πEi,j .

LEMMA 5.10. The mapsgi,j : Ωi,j → Qi,j defined above have the property that for any pair(i, j) we have
that gi,k = gi,j + gj,k over Ui,j,k .

Proof of Lemma 5.10.

We note that fi,k ◦ Fi,j,k = (fi,j + fj,k) whence f i,k ◦ Fi,j,k = (f i,j + f j,k). Since Fi,j,k is a morphism of
extensions we have that (πEi,j+Ej,k) = πEi,k ◦ Fi,j,k and we deduce that

f i,k ◦ Fi,j,k = gi,k ◦ πEi,k ◦ Fi,j,k = gi,k ◦ πEi,j+Ej,k.

It follows that
gi,k ◦ (πEi,j+Ej,k) = (f i,j + f j,k)

whence, for allei,j ∈ Ei,j , ej,k ∈ Ej,k such thatπEi,j (ei,j) = πEj,k(ej,k) we have that

gi,k ◦ (πEi,j+Ej,k)[ei,j ,ej,k] = (f i,j + f j,k)[ei,j ,ej,k]

where [ei,j ,ej,k] is the equivalence class of (ei,j ,ej,k) in Ei,j + Ej,k . It follows that

gi,k(πEi,j (ei,j)) = fi,j(ei,j) + fj,k(ej,k)

gi,k(πEi,j (ei,j)) = gi,j(πEi,j (ei,j)) + gj,k(πEj,k(ej,k)).

But by definition of Ei,j + Ej,k we have thatπEi,j (ei,j) = πEj,k(ej,k) and it follows that

gi,k(πEi,j (ei,j)) = gi,j(πEi,j (ei,j) + gj,k(πEi,j (ei,j))

for any ei,j ∈ Ei,j and hencegi,k = gi,j + gj,k . This completes the proof of Lemma 5.10. �

DEFINITION 5.11. The elementγΩ,S,{Ui}[{Ei,j ,Fi,j,k}] ∈ E{Ui}(Ω,S) = H1(Hom(Ω,Q)) is defined to be
[gi,j ] , the class inH1(Hom(Ω,Q)) represented by thěCech cocycle (gi,j) .
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It remains only to prove the three following results.

LEMMA 5.12. Let {Ei,j ,Fi,j,k} be an extension cocycle of S andΩ with respect to the open covering
Ui . Let fi,j : Ei,j → Ki,j be a set of maps such that fi,j(sEi,j ) = sKi,j for any s∈ S and for all i, j, k we have
that fi,k ◦ Fi,j,k = (fi,j + fj,k) . Let gi,j : Ωi,j → Qi,j be the unique maps such thatgi,j ◦ πEi,j = πKi,j ◦ fi,j . The
cohomology class[gi,j ] ∈ H1(Hom(Ω,Q)) is then independent of the choice of the maps fi,j .

PROPOSITION 5.13. Let {Ei,j ,Fi,j,k} be an extension cocycle ofΩ by S. We then have that
γΩ,S,{Ui}({Ei,j ,Fi,j,k}) = 0 if and only if there exists a collection of extensions{Ei} such that{Ei,j ,Fi,j,k} is
isomorphic to the boundary classδ({Ei}) .

LEMMA 5.14. The mapγΩ,S,{Ui} : E{Ui}(Ω,S) → Ext2(Ω,S) is surjective.

Proof of Lemma 5.12.

Let f ′i,j be an alternative choice of liftings and letg′i,j be the associated elements ofHom(Ωi,j ,Qi,j) . We have
that f ′i,j − fi,j |Si,j = 0, so there is a unique maphi,j : Ωi,j → Ki,j such thatf ′i,j − fi,j = hi,j ◦ πEi,j . In particular,
(g′i,j − gi,j) = πKi,j ◦ hi,j . This implies that the cohomology class [g′i,j − gi,j ] has the property that

[g′i,j − gi,j ] ∈ πK(H1(Hom(Ω,K))) = {0}

where the last equality holds becauseK is injective. This completes the proof of Lemma 5.12. �

Proof of Proposition 5.13.

Assume that the class of [gi,j ] is 0. Then there exist mapsgi : Ωi → Qi such that for all (i, j) we
have thatgi,j = gi − gj . We consider an extensionEi , which will be the pullback alonggi of the extension

0 → Si
iKi→ Ki

πKi→ Qi → 0. The extensionEi is then an extension ofSi by Ωi equipped with a mapfi : Ei → Ki ,
such that the following diagram commutes :

0 // Si
iEi //

iKi

��?
??

??
??

?
Ei

fi
��

πEi // Ωi
//

gi

��

0

Ki
πKi // Qi

// 0

and Ei has the following universality property.

REMARK 5.15. Universality property of pullbacks. LetEi be the pullback of

0 → Si → Ki → Qi → 0.

along the morphismgi : Ωi → Qi . If any extension 0→ Si → Fi → Ωi → 0 is equipped with a morphism
φ : Fi → Ki such thatφ(sFi ) = sKi and for all v ∈ F πKi ◦φ(v) = gi ◦πFi (v) then there is a unique morphism
of extensionsΦ : Fi → Ei such thatfi ◦ Φ = φ.

In particular, two extension maps,g1, g2 : E → Ei are equal if and only iffi ◦ g1 = fi ◦ g2.

We now prove thatδ{Ei} ∼= {Ei,j ,Fi,j,k} .

LEMMA 5.16. The extension(Ei −Ej) is isomorphic to the pull back alonggi,j of 0 → Si
iKi→ Ki

πKi→ Qi → 0

Proof of Lemma 5.16.

We recall that for anyei ∈ Ei and ej ∈ Ej such thatπEi (ei) = πEj (ej) we denote by [ei ,ej ]′ the equivalence
class of (ei ,ej) in Ei − Ej .
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By remark?? it will be enough to produce a map̃fi,j : Ei − Ej → Ki,j such thatπKi,j ◦ f̃i,j = gi,j ◦ πEi−Ej . and
f̃i,j(s) = iKi (s) . We define f̃i,j as follows :

f̃i,j([ei ,ej ]
′) = fi(ei) − fj(ej).

for all ei ∈ Ei and ej ∈ Ej such thatπEi (ei) = πEj (ej) . We note that for alls∈ S

f̃i,j(iEi (s), iEj (s)) = iKi,j (s) − iKi,j (s) = 0

and hence the above map is well defined on the equivalence class [ei ,ej ] . We have that̃fi,j(iEi (s),0) = fi(sEi ) =

iKi (s). Further, we have that

πKi,j ◦ f̃i,j([ei ,ej ]
′) = πKi,j (fi(ei) − fj(ej)) = gi(πEi (ei)) − gj(πEj (ej))

= (gi − gj) ◦ πEi−Ej ([ei ,ej ]
′) = gi,j ◦ πEi−Ej ([ei ,ej ]

′).

where in the last equation we have used the fact thatπEi−Ej ([ei ,ej ]′) = πEi (ei) = πEj (ej) . This completes the
proof of Lemma 5.16. �

But now, applying Remark 5.15 to the mapsfi,j (which is possible becauseπKi,j ◦ fi,j = gi,j ◦ πEi,j ) we
see that for alli, j there is a unique isomorphism of extensionsΦi,j : (Ei −Ej) → Ei,j such thatfi,j ◦Φi,j = f̃i,j .
The following lemma says that the collectionΦi,j is in fact an isomorphism of extension cocycles between
δ{Ei} and {Ei,j ,Fi,j,k} .

LEMMA 5.17. We have that for all i, j, k

Φi,k ◦ (IdEi + c−Ej + Id−Ek) = Fi,j,k ◦ (Φi,j + Φj,k).

Proof of Lemma 5.17.

By Remark 5.15 it will be enough to show that

fi,k ◦ Φi,k ◦ (IdEi + cEj + Id−Ek) = fi,k ◦ Fi,j,k ◦ (Φi,j + Φj,k).

This is equivalent to
f̃i,k ◦ (IdEi + c−Ej + Id−Ek) = fi,k ◦ Fi,j,k ◦ (Φi,j + Φj,k).

by definition of fi,j and this is equivalent to

f̃i,k ◦ (IdEi + c−Ej + Id−Ek) = (fi,j + fj,k) ◦ (Φi,j + Φj,k).

We calculate that for allei,j ∈ Ei,j , ej,k ∈ Ej,k such thatπEi,j (ei,j) = πEj,k(ej,k) , we have that

(fi,j + fj,k) ◦ (Φi,j + Φj,k)[ei,j ,ej,k] = (fi,j + fj,k)([Φi,j(ei,j),Φj,k(ej,k)])

= fi,j ◦ Φi,j(ei,j) + fj,k ◦ Φj,k(ej,k) = f̃i,j(ei,j) + f̃j,k(ej,k).

So it is enough to show that̃fi,k ◦ (IdEi + c−Ej + Id−Ek) = f̃i,j(ei,j) + f̃j,k(ej,k) . We calculate that for allei ∈ Ei ,
ej ∈ Ej , ek ∈ Ek , we have that

f̃i,k ◦ (IdEi + c−Ej + Id−Ek)([[ei ,ej ]
′, [ej ,ek]

′] = f̃i,k([ei ,ek]
′) = fi(ei) − fk(ek)

But on the other hand

(f̃i,j + f̃j,k)([[ei ,ej ]
′, [ej ,ek]

′]) = f̃i,j([ei ,ej ]
′) + f̃j,k([ej ,ek]

′) = fi(ei) − fk(ek).

This completes the proof of Lemma 5.17. �

This proves that if [gi,j = 0] then γΩ,S,{Ui}({Ei,j ,Fi,j,k} = 0. It remains to prove the converse. Sup-
pose that γΩ,S,{Ui}({Ei,j ,Fi,j,k} = 0, or in other words there exist extensionsEi over Ui such that

{Ei,j ,Fi,j,k}
Φ
∼= δEi . We can choose mapsfi : Ei → Ki lifting iKi : Si → Ki which give rise to lift-

ings fi − fj : Ei − Ej → Ki given by fi − fj([ei ,ej ]′) = fi(ei) − fj(ej) . Since there are isomorphisms
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Φi,j : Ei,j → Ei − Ej we have a mapfi,j = (fi − fj) ◦ Φi,j : Ei,j → Ki,j lifting iKi,j : S → Ki,j . We
note that fi,k ◦ Fi,j,k = (fi − fk) ◦ Φi,k ◦ Fi,j,k = (fi − fk) ◦ (Id + c−Ej + Id) ◦ Φi,j + Φj,k . We note that
(fi − fk) ◦ (Id + c−Ej + Id)([[ei ,ej ]′[ej ,ek]′]) = (fi − fk)([ei ,ej ]′) = fi(ei)− fk(ek) . On the other hand we have that
(fi − fj + fj − fk)([ei ,ej ]′, [ej ,ek]′) = fi(ei) − fj(ej) + fj(ej) − fk(ek) = (fi − fk) ◦ (Id + c−Ej + Id)([[ei ,ej ]′[ej ,ek]′]) .
We then have thatfi,k ◦ Fi,j,k = fi,j + fj,k so the fi,j s defined above are compatible with theFi,j,k s. But the
associatedgi,js are simplygi,j = gi − gj where gi is the unique mapgi : Ωi → Qi such thatπKi ◦ fi = gi ◦πEi .
It follows that [gi,j ] = 0.

This completes the proof of Proposition 5.13. �

Proof of Lemma 5.14.

Let [gi,j ] be a cocycle class inH1(Hom(Ω,Q)) . We define Ei,j to be the pull-back of the extension

0 → Si,j

iKi,j
→ Ki,j

πKi,j
→ Qi,j → 0 along gi,j . There is therefore a unique mapfi,j : Ei,j → Ki,j such that the

following diagram commutes

0 // Si,j //

  A
AA

AA
AA

A
Ei,j

fi,j

��

πEi,j // Ωi,j //

gi,j

��

0

Ki,j

πKi,j // Qi,j // 0

By remark 5.15, to construct a mapFi,j,k : Ei,j + Ej,k → Ei,k it will be enough to find a map
f̃i,j,k : Ei,j + Ej,k → Ki,j,k such that f̃i,j,k(sEi,j+Ej,k) = sKi,j,k and πKi,j,k ◦ f̃i,j,k = gi,k ◦ πEi,j+Ej,k.

We define f̃i,j,k as follows. For anyei,j ∈ Ei,j and ej,k ∈ Ej,k we set

f̃i,j,k([ei,j ,ej,k]) = fi,j(ei,j) + fj,k(ej,k).

It is readily checked that̃fi,j,k satisfies the two given conditions. There is therefore a map of extensions
Fi,j,k : Ei,j +Ej,k → Ei,k such thatfi,k◦Fi,j,k = f̃i,j,k . It will now be enough to check the compatibility condition

Fi,j,l ◦ (Fi,j,k + idEk,l ) = Fi,k,l ◦ (idEi,j + Fj,k,l).

It will be enough to check that

fi,l ◦ Fi,j,l ◦ (Fi,j,k + idEk,l ) = fi,l ◦ Fi,k,l ◦ (idEi,j + Fj,k,l).

This is equivalent tof̃i,k,l ◦ (Fi,j,k + idEkl ) = f̃i,k,l ◦ (idEi,j + Fj,k,l). We calculate that forei,j ∈ Ei,j ,ej,k ∈ Ej,k

and ek,l ∈ Ek,l such thatπEi,j (ei,j) = πEj,k(ej,k) = πEk,l (ek,l) we have that

f̃i,k,l ◦ (Fi,j,k + idEkl )[ei,j ,ej,k,ek,l ] = f̃i,k,l [Fi,j,k([ei,j ,ej,k]),ek,l ])

= fi,k ◦ Fi,j,k([ei,j ,ej,k]) + fk,l(ek,l) = f̃i,j,k([ei,j ,ej,k]) + fk,l(ek,l)

= fi,j(ei,j) + fj,k(ej,k) + fk,l(ek,l).

A similar calculation show that

f̃i,k,l ◦ (idEi,j + Fj,k,l)([ei,j ,ej,k,ek,l ]) = fi,j(ei,j) + fj,k(ej,k) + fk,l(ek,l).

This completes the proof of Lemma 5.14. �

This completes the proof of Proposition 5.8. �

In the next section, we will use the isomorphism described above to prove Theorem 5.1.

38



5.2 PROOF OF THEOREM 5.1.

Throughout this section,D(Ui,n+1,Uj,n+1) will be denoted byDi,j , D(Ui,n+1,U
′
j,n+1) will be denoted by

Di,j′ , D(U′
i,n+1,Uj,n+1) will be denoted byDi′,j and D(U′

i,n+1,U
′
j,n+1) will be denoted byDi′,j′ . Likewise,

τ (Ui,n+1,Uj,n+1) (resp. τ (Ui′,n+1,Uj,n+1) , τ (Ui,n+1,Uj′,n+1) , τ (Ui′,n+1,Uj′,n+1) ) will be denoted byτi,j (resp
τi′,j τi,j′ τi′,j′ ) and τ ′(Ui,n+1,Uj,n+1) (resp. τ ′(Ui′,n+1,Uj,n+1) , τ ′(Ui,n+1,Uj′,n+1) , τ ′(Ui′,n+1,Uj′,n+1) ) will
be denoted byτ ′i,j (resp τ ′i′,j τ

′
i,j′ τ ′i′,j′ ). We choose an open coverUi such thatC(Ui) is not empty for any

i .

DEFINITION 5.18. For eachi let Ui,n+1 be an extension ofUi,n (which exists because of our choice of
the open coverUi ). We set

obXn = γΩ,S,{Ui}([{D(Ui,n+1,Ui,n+1), φUi ,Uj ,Uk}]).

PROPOSITION 5.19. Let Xn be an n-th order infinitesimal neighbourhood of X of normal bundle V
and let Ui be an open cover of X such that an extensionUi,n+1 of Ui,n exists for all i . The element
[{D(Ui,n+1,Ui,n+1), φUi ,Uj ,Uk}] ∈ E{Ui}(Ω,S) is then independent of the choice of extensions Ui,n+1 .

Proof of Proposition 5.19.

Let U′
i,n+1 be another possible choice of extensions. We wish to show that [{Di,j , φUi ,Uj ,Uk}] and

[{Di′,j′ , φU′
i ,U

′
j ,U

′
k
}] are the same class inE{Ui}(Ω,S) . We consider the element ofG2,{Ui}(Ω,S) given

by {Di,i′} . Over any set of the formUi,j we seek isomorphismsΦi,j : δ{Di,i′}+ Di′,j′ → Di,j such that the
following diagrams commute

Di,i′ − Dj,j′ + Di′,j′

+Dj,j′ − Dk,k′ + Dj′,k′

Φi,j+Φj,k//

c−Dj,j′
+F′

i,j,k+Id

��

Di,j + Dj,k

Fi,j,k

��
Di,i′ − Dk,k′ + Di′,k′

Φi,k // Di,k

For all pairs (i, j) we consider the maps

Γi,j
def
= IdDi,i′+Di′,j′

+ τ ′j′,j
−1 : Di,i′ + Di′,j′ − Dj,j′ → Di,i′ + Di′,j′ + Dj′,j

and
φ

C′
i,j

Ci,j
: Di,i′ + Di′,j′ + Dj′,j → Di,j

where Ci,j is the chain (Ui ,U
′
i ,U

′
i ,U

′
j ,Uj) and C′

i,j is the subchain (Ui ,Uj) .

PROPOSITION5.20. The collection of mapsΦi,j = φ
C′

i,j

Ci,j
◦Γi,j : Di,i′ −Dj,j′ +Di′,j′ → Di,j is an isomorphism

of extension cocycles.

Proof of Proposition 5.20. We consider the following chains of extensions ofUn .

1. C1 = (Ui ,U
′
i ,U

′
j ,Uj ,U

′
j ,U

′
k,Uk)

2. C2 = (Ui ,U
′
i ,U

′
k,Uk)

3. C3 = (Ui ,Uj ,Uk)
4. C4 = (Ui ,Uk)

The following diagram of contraction maps commutes by Proposition 4.17.

D(C1)
φ

C2
C1 //

φ
C3
C1

��

D(C2)

φ
C4
C2

��
D(C3)

φ
C4
C3 // D(C4)
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Expanding, we get a commutative diagram

Di,i′ + Di′,j′ + Dj′,j + Dj,j′ + Dj′,k′ + Dk′,k

φ
C2
C1 //

φ
C3
C1

��

Di,i′ + Di′,k′ + Dk′,k

φ
C3
C2

��
Di,j + Dj,k

φ
C4
C3 // Di,k

We note thatφC3
C1

is simply φ
C′

i,j

Ci,j
+ φ

C′
j,k

Cj,k
and thatφC3

C2
is φ

C′
i,k

Ci,k
. We thus rewrite this diagram as

Di,i′ + Di′,j′ + Dj′,j + Dj,j′ + Dj′,k′ + Dk′,k

φ
C2
C1 //

φ
C′i,j
Ci,j

+φ
C′j,k
Cj,k��

Di,i′ + Di′,k′ + Dk′,k

φ
C′i,k
Ci,k��

Di,j + Dj,k

φ
C4
C3 // Di,k

So, to establish that the choiceΦi,j = φ
C′

i,j

Ci,j
◦ Γi,j is a cocycle isomorphism it will be enough to establish that

the following diagram commutes.

Di,i′ − Dj,j′ + Di′,j′

+Dj,j′ − Dk,k′ + Dj′,k′

c−Dj,j′
+φ

C4
C3 //

Id+τ ′−1
j,j′

+Id+τ ′−1
k,k′

+Id

��

Di,i′ − Dk,k′ + Di′,k′

τ ′
k,k′

−1

��
Di,i′ + Di′,j′ + Dj′,j + Dj,j′ + Dj′,k′ + Dk′,k

φ
C2
C1 // Di,i′ + Di′,k′ + Dk′,k

Eliminating Di,i′ and Dk,k′ and permuting the terms we see that this is equivalent to proving that the
following diagram commutes

Di′,j′ − Dj,j′ + Dj,j′ + Dj′,k′
φ

C′2
C′

1
◦c(−Dj,j′ )

**UUUUUUUUUUUUUUUUUUUU

τ
′−1
j,j′

��
Di′,j′ + Dj′,j + Dj,j′ + Dj′,k′

φ
C′2
C′

3

// Di′,k′

where hereC′
1 = (U′

i ,U
′
j ,U

′
k) , C′

2 = (U′
i ,U

′
k) and C′

3 = (U′
i ,U

′
j ,Uj ,U

′
j ,U

′
k) . But this follows from Lemma

4.27 and Remark 4.23. This concludes the proof of Proposition 5.20. �

This completes the proof of Proposition 5.19. �

LEMMA 5.21. Let Xn be an n-th order infinitesimal neighbourhood of X with normalbundle V . If there
exists an extension ofXn then the cocycle classobXn = 0 ∈ Ext2(Ω,S) .

Proof of Lemma 5.21.

Let Xn+1 be the extension in question. We chooseUi,n+1 to be the restriction toUi of Xn+1 and we
consider the associated extension cocycle{D(Un+1,Un+1)|Ui,j , φUn+1,Un+1,Un+1|Ui,j,k} . For each pairi, j we set

Φi,j = rId|Ui,j : D(Xn+1,Xn+1)|Ui,j → Si,j ⊕ Ωi,j

It remains to show that the following diagram commutes.

D(Xn+1,Xn+1) + D(Xn+1,Xn+1)
φC′

C //

IdD(Xn+1,Xn+1)+rId

��

D(Xn+1,Xn+1)

rId

��
D(Xn+1,Xn+1)

rId // S⊕ Ω
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where hereC = (Xn+1,Xn+1,Xn+1) and C′ = (Xn+1,Xn+1) . But this follows from Lemma 4.25. �

This completes the proof of Lemma 5.21. �

PROPOSITION5.22. Let Xn be an n-th order infinitesimal neighbourhood of X . IfobXn is 0 then there
exists an extensionXn+1 of Xn .

Proof of Proposition 5.22.

We choose extensionsUi,n+1 of Ui,n and we consider the associated extension cocycle{D(Ui,n+1,Uj,n+1), φUi ,Uj ,Uk} .
The fact that [{Ei,j ,Fi,j,k}] = 0 in E{Ui}(Ω,S) means we can choose extensionsEi over Ui and isomorphisms
I i,j : D(Ui ,Uj) → Ei − Ej such that the following diagram commutes

Di,j + Dj,k
φC′

C //

I i,j+I j,k

��

Di,k

I i,k

��
(Ei − Ej) + (Ej − Ek)

c−Ej // Ei − Ek

where hereC is the chain (Ui,n+1,Uj,n+1,Uk,n+1) and C′ is the chain (Ui,n+1,Uk,n+1) .

Alternatively, by Proposition 4.28 we can fix the following data.

1. ExtensionsU′
i of X over Ui ,

2. IsomorphismsI ′i,j : D(Ui ,Uj) → D(Ui ,U
′
i ) − D(Uj ,U

′
j ) such that the following diagram commutes.

Di,j + Di,j
φC′

C //

I ′i,j+I ′j,k

��

Di,k

I ′i,k

��
(Di,i′ − Dj,j′ ) + (Dj,j′ − Dk,k′ )

c−Dj,j′ // Di,i′ − Dk,k′

There are maps

φ
C′

i,j

Ci,j
: Di′,i + Di,j + Dj,j′ → Di′,j′

(τi,i′ + c−Dj,j′
) : (Di′,i + Di,i′ ) + (−Dj,j′ + Dj,j′ ) → SUi,j ⊕ ΩUi,j .

where Ci,j is the chain (U′
i,n+1,Ui,n+1,Uj,n+1,U

′
j,n+1) and C′

i,j is the chain (U′
i,n+1,U

′
j,n+1) . Combining these

maps, we get an isomorphism

Ti,j = (τi,j + cD(Uj ,U′
j )) ◦ (Id + I ′i,j + Id) ◦ φCi,j

C′
i,j

: D(U′
i ,U

′
j ) → S⊕ Ω.

We can now consider the isomorphismJi,j = b(Ui,j)−1(Ti,j) : U′
i → U′

j constructed in Section 4.1. To show that
the U′

i,n+1s actually glue together to get a global extension ofXn , we will have to prove thatJj,k ◦ Ji,j = Ji,k.

By Lemma 4.33 this is the case if and only ifcS⊕Ω ◦ (Ti,j + Tj,k) = Ti,k ◦ φUi ,Uj ,Uk.

LEMMA 5.23. We have that the following diagram commutes.

Di′,j′ + Dj′,k′
φC′

C //

Ti,j+Tj,k

��

Di′,k′

Ti,k

��
(S⊕ Ω) + (S⊕ Ω)

cS⊕Ω // S⊕ Ω.

where here C is the chain(U′
i ,U

′
j ,U

′
k) and C′ is the chain (U′

i ,U
′
k) .

Proof of Lemma 5.23.
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We consider the following diagram. Here we defineC1 , C2 , C3 and C4 to be the following chains :
C1 = (U′

i ,U
′
j ,U

′
k) , C2 = (U′

i ,U
′
k) , C3 = (U′

i ,Ui ,Uj ,U
′
j ,Uj ,Uk,U

′
k) and C4 = (U′

i ,Ui ,Uk,U
′
k) .

D(C1)
φ

C2
C1 //

φ
C3
C1

��

D(C2)

φ
C4
C2

��
D(C3)

φ
C4
C3 //

=
��

D(C4)

=

��Di′,i + Di,j + Dj,k+

Dk,k′ + Dj,j′ + Dj′,j

Id+τj,j′ //

Id+I ′i,j+I ′j,k+Id

��

D(C4)

Id+I ′i,k+Id

��Di,i′ + Di,i′ − Dj,j′ + Dj,j′

−Dk,k′ + Dk,k′ + Dj′,j + Dj,j′

Id+cDj,j′
+Id+τj,j′

//

τi′,i+Id+cDk,k′
+Id

��

Di′,i + Di,i′ − Dk,k′ + Dk,k′

τi,i′+cDk,k′

��
−Dj,j′ + Dj,j′ + Dj′,j + Dj,j′

cS⊕Ω◦(cDj,j′
+τj,j′ )

// S⊕ Ω

The first square of the diagram commutes by Proposition 4.23.The second square commutes by Lemma 4.27.
The third square commutes by assumption and the last square commutes because ifE1 and E2 are extensions
and φ1 : E1 → E3 and φ2 : E2 → E4 are extension maps then (Id+ φ2) ◦ (φ1 + Id) = (φ1 + Id) ◦ (Id + φ2) .
But now, the right hand side map isSi,k and the the left hand side composed with the bottom map is
cS⊕Ω ◦ (Si,j + Sj,k) . This completes the proof of Lemma 5.23. �

This completes the proof of Proposition 5.22. �

This completes the proof of Theorem 5.1. �
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