N
N

N

HAL

open science

Realisability Semantics for Intersection Types and
Expansion Variables
Fairouz Kamareddine, Karim Nour, Vincent Rahli, J. B. Wells

» To cite this version:

Fairouz Kamareddine, Karim Nour, Vincent Rahli, J. B. Wells. Realisability Semantics for Intersection
Types and Expansion Variables. 4th Workshop on Intersection Types and Related Systems (ITRS

'08), Mar 2008, Turin, Italy. hal-00383826

HAL Id: hal-00383826
https://hal.science/hal-00383826
Submitted on 13 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00383826
https://hal.archives-ouvertes.fr

Realisability Semantics for Intersection Types and
Expansion Variables

Fairouz Kamareddine, Karim Nour, Vincent Rahli and J. B. g/el

http://www.macs.hw.ac.uk/ultra/
May 13, 2009
Abstract

Expansiorwas invented at the end of the 1970s for calculagirigcipal typingsfor A-terms in type systems
with intersection typesExpansion variable¢E-variables) were invented at the end of the 1990s to sfynatid
help mechanise expansion. Recently, E-variables have foether simplified and generalised to also allow
calculating type operators other than just intersectidrerg& has been much work on denotational semantics for
type systems with intersection types, but none whatso@fer&now on type systems with E-variables. Building
a semantics for E-variables turns out to be challenging.implify the problem, we consider only E-variables,
and not the corresponding operation of expansion. We dpetealisability semantics where each use of an E-
variable in a type corresponds to an independent degreeich wbaluation occurs in the-term that is assigned
the type. In the\-term being evaluated, the only interaction possible betwortions at different degrees is that
higher degree portions can be passed around but never@ppl@ver degree portions. We apply this semantics
to two intersection type systems. We show these system@anel sthat completeness does not hold for the first
system, and completeness holds for the second system whear@nE-variable is allowed (although it can be
used many times and nested). As far as we know, this is thafirdy of a denotational semantics of intersection
type systems with E-variables (using realisability or atheo approach).

1 Introduction

Intersection types were developed in the late 1970s to A¢erms that are untypable with simple
types; they do this by providing a kind of finitary type polyrmpbism where the usage of types is
listed rather than quantified over. They have been usefutasaoning about the semantics of the
calculus, and have been investigated for use in static anoginalysis. Coppo, Dezani, and Venngri [5]
introduced the operation axpansionon typings(pairs of a type environment and a result type) for
calculating the possible typings of a term when using ietglisn types. Expansion is a crucial part
of a procedure for calculatingrincipal typingsand thus helps support compositional type inference.
As a simple example, the-term M = (A\zx.x(A\y.yz)) can be assigned the typingy = ((z : a) -
(((a—b)—b)—c)—c), which happens to be its principal typing. The telincan also be assigned the
typing @2 = ((z : a1Mag) F (((a1—b1)—b1)M((a2—ba) —b2) —c)—c), and an expansion operation
can obtain®, from &,. Because the early definitions of expansion were comptic&ievariables were
introduced in order to make the calculations easier to nréshaand reason about. For example, in
System E[[B], the typin@; from above is replaced by; = ((z : ea) I (e((a — b) — b) — ¢) — ¢),
which differs from®, by the insertion of the E-variableat two places, and, can be obtained from
3 by substituting fore the expansion ternty = (a := ay,b := b1) M (a := ag,b := by). Carlier and
Wells [3] have surveyed the history of expansion and alsaables.

Various kinds of denotational semantics have helped iroreag about the properties of entire type
systems and also of specific typed terms. E-variables poseisehallenges for semantics. Most com-
monly, a type’s semantics is given as a set of closeerms with behaviour related to the specification
given by the type. In many kinds of semantics, the meaningtgpa?’ is calculated by an expression
[T], that takes two parameters, the typand also a valuation that assigns to type variables the same
kind of meanings that are assigned to types. To extend thés tidl types with E-variables, we would
need to devise some space of possible meanings for E-wvesia@liven that a typeT" can be turned
by expansion into a new typ® (7°) 1.52(7"), whereS; andS, are arbitrary substitutions (in fact, they

can be arbitrary further expansions), and that this candoite an unbounded number of new variables
(both E-variables and regular type variables), the sibnas complicated.

Because it is unclear how to devise a space of meanings fansigns and E-variables, we instead
develop a space of meanings for types that is hierarchidhleisense of having many degrees. When
assigning meanings to types, we make each use of E-varisibi@sy change degrees. We specifically
avoid trying to give a semantics to the operation of expansimd instead treat only the E-variables.
Although this idea is not perfect, it seems to go quite fariing) an intuition for E-variables, namely
that each E-variable acts as a kind of capsule that isolaes pf thel-term being analysed by the
typing. Parts of the\-term that are typed inside the uses of the E-variable<iuitton typing rule for
a particular E-variable can interact with each other, and parts outgidan only pass the parts inside
e around. The E-variable of course also shows up in the types, and isolates the psrtibthe types
contributed by the portions of the term inside the corredpanuses of E-variable-introduction.

The semantic approach we useréglisability semantics Atomic types are interpreted as sets of
A-terms that aresaturated meaning that they are closed undeexpansion (i.e./-reduction in re-
verse). Arrow and intersection types are interpreted alijuby function spaces and set intersection.
Realisability allows showingoundness the sense that the meaning of a typeontains all closed
A-terms that can be assigné&das their result type. This has been shown useful in previau for
characterising the behaviour of typaderms [1#]. One also wants to sh@empletenesfhe converse
of soundness), i.e., that every closeterm in the meaning df’ can be assignedl as its result type.

Hindley [0, [11L[1P] was the first to study completeness fampk type system. Then, he gener-
alised his completeness proof for an intersection typeesy§8]. Using his completeness result for the
realisability semantics based on the seta-térms saturated by-equivalence, Hindley has shown that
simple types are uniquely realised by therms that are typable by these types in a type system simi-
lar to A_. [[]] augmented with &-equivalence rule (this rule assigns the same typingséquivalent
terms) [IP]. He proved this result using saturation/)yequivalence w.r.t. a type system similar to
A_, augmented with @n-equivalence rule too. Hindley also established compéstemising saturation
by 3-equivalence for his intersection type systdin [9]. In trapgr, our completeness result depends
instead only on a weaker notion th&requivalence (saturation grexpansion).

Other work on realisability we consulted includes that bpibaSami [1b], Farkh and Nouf][7], and
Coquand [[6], although none of this work deals with interisectypes or E-variables. Related work
on realisability that deals with intersection types ineladhat by Kamareddine and No{ir][13], which
gives a realisability semantics with soundness and coerpst for an intersection type system. The
system of Kamareddine and Nour is different from those is ffaper, because it allows the universal
type w. We do not know how to build a semantics that supports ho#imd E-variables. The method
of degrees we use in this paper would need to assitmevery degree, which is impossible. Further
work is needed on this point.

In this paper we study th&/-calculus typed with two representative intersection typ&ems. The
restriction toAl (where inAxz.M, the variablex must be free inM) is motivated by not knowing
how to support thev type. For one of these systems, we show that subject redu@iR) and hence
completeness do not hold whereas for the second system, I8Rdial completeness will hold if at
most one E-variable is used (although this E-variable maydeel in many places and also nested).
This is the first paper that studies denotational semanticgersection type systems with E-variables,
using realisability or any other approach. One of our cbntions is to outline the difficulties of doing
so.

The semantics we build in this paper, defines sets of realienctions/programs satisfying the
requirements of some specification) of types. Such a moaehekp to highlight the relation between
typable terms of the untyped lambda-calculus and types. a.type system. Interpreting types in
a model helps to understand the meaning of a type (w.r.t. thaéeth which is defined as a purely
syntactic form and is clearly used as a meaningful exprassior example, the integer type, whatever
its notation is, is always used as the type of each integeithdnopen problems published in the

proceedings of the Lecture Notes in Computer Science syinposelp in 1975[[8], it is suggested
that an arrow type expresses functionality. In that way, el®btased on term-models have been built
for intersection type systemf [0,]13]. In these works, Beetion types (introduced to be able to type
more terms than in the Simply Typed Lambda Calculus) arepreéed by set-theoretical intersection
of meanings. Even if expansion variables have been intedtite give a simple formalisation of the
expansion mechanism, i.e., as a syntactic object, we arefted in the meaning of such a syntactic
object. We are patrticularly interested by answering thesstipns: What does an expansion variable
applied to a type stand for? What are the realisers of suclpeftyHow can the relation between
terms and types w.r.t. a type system be described? How camtergdemodels such as the one built by
Kamareddine and Nou[IL3] to a type system with expansion?

Section[lz introduces th&IN-calculus, which is the\I-calculus with each variable marked by a
natural numbedegree SectionB introduces the syntax and terminology for types, also the real-
isability semantics. Sectidij 4 introduces our two intetisectype systems with E-variables. In one
system, the syntax of types is not restricted but in the otlgetem it is restricted but then extended
with a subtyping relation. We show that SR and completenes®thold for the first system, and that
SR holds for the second system. We also show the soundnells w#dlisability semantics for both
systems and give a number of examples. Sedtion 5 shows cemeds does not hold for the second
system if more than one expansion variable is used, but dudddr a restriction of this system to one
single E-variable (which can be used in many places and asted). This is an important study in
the semantics of intersection type systems with expansioahbles. Sectiofi 6 concludes. Full proofs
can be downloaded from the web page of the authors as wellréefuresults that include strong
normalisation of the typable terms and the relation to theabgnindexed\7-calculus.

2 The pure \/N-calculus

In this section we give\I", an indexed version of th&/-calculus where indices (which range over
the set of natural numbel$ = {0,1,2,...}) help categorise thgood termswhere the degree of a
function is never larger than that of its argument. This am®to having the full/-calculus at each
degree (index) and creating new-terms through a mixing recipe. Latm be metavariables which
range over the set of natural numb@&rs We assume that if a metavariableanges over a s& then

v; for i > 0 andv’,v”, etc. also range ove$. A binary relation is a set of pairs. Let/ range over
binary relations. Letlom(rel) = {z | (z,y) € rel} andran(rel) = {y | (x,y) € rel}. A function is

a binary relationfun such that if{ (x, y), (x, z) } C fun theny = z. Let fun range over functions. Let
s — & = {fun | dom(fun) C s Aran(fun) C s'}. We sometimes write : s instead ofr € s.

Definition 1
i) Let V be a denumerably infinite set of variables. The set of tewhsthe set of good terms
M C M, the set of free variableBV (M) of M € M, the degreel(M) of a termM and the
joinability M < N of termsM andN (which ensures that in any term, each variable has a unique
degree) are defined by simultaneous induction:
e If z €V, neN, thenz" e MNM, FV(2") = {z"}, andd(z") = n.
o If M, N € M suchthatM ¢ N (see below), then
- (MN)e M,FV((MN))=FV(M)UFV(N)and
d((M N)) = min(d(M),d(N)) (wheremin is the minimum)
—If M eM, N e Mandd(M) < d(N)then(M N) € M.
o If M € Mandz" € FV (M), then
— (A" M) e M, FV((Ax".M)) = FV(M) \ {z"}, andd((Ax".M;)) = d(My).
— If M € Mthen\x"™.M € M.
i) LetM, N € M. We say thaf\/ andN are joinable and writd/ o N iff Vo € V, if 2™ € FV (M)

andz" € FV(N), thenm = n. If X C M such thatVM, N € X, M o N, we write,oX. If
X C MandM € M suchthaVN € X, M o N, we write, M o X.

iii) We adopt the usual definitior] [[[,]14] of subterms and the eotiwn for parentheses and their
omission. Note that a subterm &f € M (resp.M) is also inM (resp.M). We letz, y, z, etc.
range oved) and M, N, P, etc. range oveM and use= for syntactic equality.

iv) Foreachn e N,welett e M"={M e M |d(M)=n}

o MP" = M2 e MZM = {M € M |d(M) >n} eM" =MNM"

v) Form > 0, M[(z]" := N;)1<i<m] (OF simply M[(z" := Nj;),]), the simultaneous substitution
of N; for all free occurrences af’* in M only matters wherX whereX’ = {M} U{N; | 1 <
i < m} C M. Hence we restrict substitution accordingly to incorperéitec condition. With
X as above M|[(z]" := N;)n] is only defined wherX. We write M[(z]" := N;)i<i<1] @s
M[w?l = Nl].

vi) We take terms modula-conversiongiven by: Ax™. M = \y™.(M[z" := y"]) whereVm, y" ¢
FV(M). We use the Barendregt convention (BC) where the names ofbaariables differ from
the free ones and where we rewrite terms so that not kethand Az"* co-occur whem # m.

vii) A relation R on M is compatibleiff for all M, N, P € M:

e If (M,N) e Randz" € FV (M) N FV(N)then(\z".M, \z".N) € R.
e If (M,N) € R, Mo PandN o Pthen(MP,NP) € Rand(PM, PN) € R.
viii) The reduction relation-3 on M is defined as the least compatible relation closed undewutae r
(Az™ . M)N >g M[z" := NJif d(N) =n.

ix) We denote by>g the reflexive and transitive closure of;. We denote by~ the equivalence

relation induced by>7.

Beta reduction is well defined on thé"-calculus, i.e., i/ € M andM >N thenN € M. (Note
that becausé(z”) = 0 # 1 = d(z'), then(Az".2%°)z" £ 2'y".) Hence>7 is also well defined on
M. Beta reduction preserves the free variables, degreesauthgss of terms, i.e., It/ > N then
FV(M)=FV(N),d(M)=d(N)andM is good iff N is good.

The next definition turns terms of degreénto terms of higher degrees and also if> 0, they can
be turned into terms of lower degrees. Note thatnd ~ are well behaved operations with respect to
all that matters (free variables, reduction, joinabilgypstitution, etc.).

Definition 2

i) We define” : M — Mand~ : M>? — M by:
o (z™)F = 2"t o (M My)T = M;" M e (Aa".M)" = \g" L. M+
o (z")" =2l o (My My)” =M, My e(Ax". M)~ =Xz""L. M~

i) LetX C M. IfVM e X, d(M) > 0, we writed(X') > 0. We define:
e Xt ={M*t|Mecx} elf d(X) >0, X" ={M~ | Mec X}

i) We defineM ~—" by induction ond(M) > n > 0. If n = 0thenM~" = M and ifn > 0 then
M—(n—H) _ (M—n)—.

3 The types and their realisability semantics

This paper studies two type systems. In the first, there amestactions on where the arrow occurs.
In the second, arrows cannot occur to the left of intersastmr expansions. The next definition gives
these two basic sets of types and the notions of a degree péatyd of a good type.

Definition 3 (TYPES, GOOD TYPES DEGREE OF A TYPB

i) Assume two denumerably infinite setis(atomic types) and (expansion variables). Let b, c,
etc. range ovedd ande range oveg.

i) The sets of type§, U andT are defined by ::= A |7 —7 |7N7T | ET and
U:=UnNuU|&U|T where T ::= A | U — T (note thatl andU are defined simultaneously).
Note thatT C U C 7. We letT, U, V, W (resp.T’, resp.U, V, W) range overZ (resp.T, resp.
U). We quotient types by taking to be commutative, associative, idempotent, and to satisfy
e(U1 M UQ) = eU; MelUs.

iii) Denotee;, ... e;, by €.,y @aNdUy, MUp1 ... MUy By M2, Us (n < m).

iv) We define a functionl : 7 — N by (henced is also defined oft)):
ed(a)=0 e d(U — T) =min(d(U),d(T))
ed(el)=d(U)+1 e ((UMV) =min(d(U),d(V)).

v) We define the good types @h by (this also defines good types on:
elf a € A, thenaisgood e lf U isgoodand € &, theneU is good
e If U, T are good and(U) > d(T"), thenU — T is good
o If U,V are good and(U) = d(V), thenU M V' is good

Definition 4 (ENVIRONMENTS) i) Atype environmentis a sdte;” : U; | 1 < i < nwheren >
0andvl <i,j <mn, if i # j thenz]" # x}”}. We denote such environment (callif by z7* :
Ui,zy? : Ug, ...,z = U, or simply by (z;" : U;),, and definelom(T") = {z]" | 1 <1i < n}.
We usel’, A to range over environments and writefor the empty environment.

Of course or7, type environments take variables)rto 7. OnU, they take variables i to U.
e We say thal" is good iff , for everyl < i < k, U; is good.
e We say thatl(I") > 0 iff for every 1 < i < k, d(U;) > 0 andn; > 0.
i) If T = (z" : Uy), andz™ ¢ dom(T'), then we writel', 2™ : U for the type environment
)t Uy, Uy 2™ UL
i) LetD'y = (2" : U,-)n,(y;“j : Vi)m andly = (2] : U))p, (2, + Wg),. We writeI'; M T, for
the type environmentz}"" : U; 11U, (y; 7 = Vi)m, (2" : W), Note thatdom(T'y M Ty) =
dom(T'1) U dom(T'2) and that1is commutative, associative and idempotent on environsnent
iv) el = (¢ : eT}),, wherel' = (27 : T}),,. Soe(I'y MTy) = el Mels.
v) We say that’; is joinable withI'y; and writel’; ¢ Iy iff
Ve eV, if 2™ € dom(I'1) andz™ € dom(I'y), thenm = n.

Definition 5 (DEGREE DECREASING OF ATYPE 1) If d(U) > 0, we inductively define the typ&—
by:e (U1 MUz)~ =U; NU; o(cU)"=U
If d(U) > n >0, U " is defined as fod/ ~" in definition[}.
i) If 0 = (2 : U;), andd(T) > 0, then we lel"~ = (21 ~' : U"),.
If d(T') > n >0, " is defined as foA/ " in definition[2.
i) If U is a type andl is a type environment such thdfl') > 0 andd(U) > 0, then we let
(L2 U))" = (0™ k2 U7)).

Saturated sets and the interpretations and meanings & &yperucial to a realisability semantics:

Definition 6 (SATURATED SETY LetX,) C M.
i) We useP(X) to denote the powerset éf, i.e.{Y | Y C X'}.
i) WeletX ~Y={M e M |VN e X,if Mo NthenM N €)}.
iii) X is saturated iff whenever/ Dg N andN € X, thenM ¢ X.

Definition 7 (INTERPRETATIONS AND MEANING OF TYPE} LetV = V; UV, whereV; NV, = 0 and
V1, Vs are both denumerably infinite.
i) Letx € V; andn € N. We defineN! = {2 N;...N, € M | k > 0}.
i) AninterpretationZ : A — P(M?") is a function such that for all € A:
e Z(a) is saturated and ez eV, N) CZ(a) C M.

T good d(T)=n L O (ref)

2"z T)H T) (az)

O EDy Py C Py (tr)
®; C O3 g

T good
20 (20 T) o T)

(ax)
Us good d(Uy) = d(Us)
unu, C U, (M)

M:(T,(2":U); T)

v (=1)
A" M T+ U —T) U0CVE U, CV, A
U1|_|U2EV1|_|V2()

]\/[1<1—‘1|—1U—>T> M22<F2|—iU> 1—‘101—‘2()
_
MiMs : (T; NT F; T) r UEUL TLETy

U —-T1 EU; —1T>

M: <1—‘1 l_i U1> M: <1—‘2 l_i U2>

M:<F1|_|F2FiU1|_|U2> () Ui EU, (E)
¢l C el =
— X
M* (el ety 7 U E U =

Lo(y":U) C T, (y" 2 Ua)
M: (T Uy (D U) (It U')
M : (T" +y, U')

() Uy EU; T CEIY
(T1 ko Up) E (Ta o Uy)

Figure 1: Typing rules / Subtyping rules

(Co)

iii) Let an interpretatior? : A — P(M?). We extendZ to 7 (hence this include®) as follows:
e Z(elU)=Z(U)*" e Z(UNV)=Z(U)NZ(V) e I(U—-T)=I(U)~Z(T)
Because) is commutative, associative, idempotent, 8ad1))™ = XNy, T is well defined.

iv) LetU € 7 (henceU can be inU). We define the meanind@/] of U by:

[U] ={M € M | M is closed and/ € [\ interpretationZ(U)}-

It is easy to show that it N;...N, € N thenV 1 < i <k, d(V;) > n.
Type interpretations are saturated and interpretatiog®od types contain only good terms.

4 The typing systems-; and i

In this section we introduce; andrs, our two intersection type systems with expansion vargbie

F1, types are not restricted and SR failsH# the syntax of types is restricted in the sense that arrows
cannot occur to the left of intersections or expansions. rifeoto guarantee SR for this type system
(and hence completeness later on), we introduce a subtyglation which will allow intersection type
elimination (something not available in the first type sgste

Definition 8 Leti € {1,2}. The type systerf; (resp.l-») uses the sef (resp.U) of definition[3. We
follow [4]] and write type judgements a¥ : (I' - U) instead of the traditional format &f+ A/ : U.
The typing rules of-; are (recall that when used fér;, U andT range overZ, and when used for
o, U ranges ovelt) andT ranges ovefl) of figure[} (left). In the last clause, the binary relatioris
defined orlU by the rules of figurg]4 (right).

Let ® denote types ifJ, or environmentd” or typings(I" k5 U). When® C &', then® and ¢’
belong to the same séll/{fenvironments/typings). Ldt be an environment/ € 7 andM € M.
e We say thal" is -;-legal iff there areM, U such thatV : (T' +; U).
e We say that{T" -; U) is good iff " andU are good.
e We say thatl((I' -; U)) > 0iff d(I') > 0 andd(U) > 0.

We show that typable terms are good, have good types, anditresame degree as their types and
that all legal contexts are good. We also show thapwedexes are blocked in a typable term.

SR for 3 using- fails: leta,b,c be different elements ofl. Although (Az°.292°)(y%2°) >4
(y°29)(°2°) and (Az®.2%2°) (°2°) : (4° : b — ((a — ¢) M a),2° : b 1 ¢), itis not possible that
22N %) (b — ((a — c)Ma), 20 : by).

Nevertheless, we show that SR and subject expansioft tising- holds. This will be used in the
proof of completeness (more specifically in lemmp 18 whidbeisic for the completeness theorfr 19).

Lemma 9(SUBJECT REDUCTION AND EXPANSION FOR3)
) If M : (T, U)andM >3 N, thenN : (T =5 U).
i) If N:(I'ty U)and M >% N thenM : (I' - U).

The semantics given in sectifin 3 is sound with respelet tandt-», because if is an interpretation
andU C V thenZ(U) C Z(V).

Lemma 10(SOUNDNESS OF-1/i,) Leti € {1,2}, T be an interpretationM : ((z}’ : Uj), b U)
andv1 < j <n, N; € Z(Uj). If M[(z}7 := Nj)n] € M, thenM[(z}’ := N;),] € Z(V).

Hence, ifM : (() F; U), thenM € [U]. The next lemma puts the realisability semantics in use.

Lemmall i)[(aMb) —a] ={M e M| M >} A\y’y°}.
i) Itis not possible thaty.y° : () F1 (aMb) — a).
i) A%y : () F2 (aMb) — a).

Remark 12(FAILURE OF COMPLETENESS FOR-;) Lemma[I]L shows that we can not have a complete-
ness result (a converse of lemifna 10 for closed terms)-forTo type the term\y®.y° by the type
(aMb) — a, we need an elimination rule for which we have irt-». However, we will see that we
have completeness fér, if only one expansion variable is used.

5 Completeness of-, with one expansion variable

Leta € A, e1,e2 € £, 1 # e andNatg = (eyja — a) — (ega — a). Then:
1) AfO.f9 € [Nato] and 2) It is not possible thatf°. 0 : (() F2 Naty).

Hence)f0. f € [Natg] but A f0.£0 is not typable byNat, and we do not have completeness in the
presence of more than one expansion variable. The problerasfsom the fact that for the realisability
semantics that we considered, we identify all expansiorabbas. In order to give a completeness
theorem we will in what follows restrict our system to onlyeoexpansion variable. In the rest of this
section, we assume that the Satontains only one expansion varialle

The need of one single expansion variable is clear in part Bnema[IB which would fail if we use
more than one expansion variable. For example; # e, thene;(esa)™ = eja # eza. This lemma
is crucial for the rest of this section and hence, a singleesion variable is also crucial.

Lemmal3 LetU,V e Uandd(U) =d(V) >0.1)e. U~ =Uand 2) fU~ =V, thenU = V.
Next, we divide{y" | y € V»} disjointly amongst types of order.

Definition 14 Let U € U. We define sets of variabl€g;; by induction ond(U). If d(U) = 0,
then: Vi is an infinite set of variables of degréeif 4 ¢ Vi, theny € Vo, and if U # V and
d(U) =d(V) =0, thenVy NVy = 0. If d(U) = n + 1, then we putvy = {y" ! | y™ € V- }.

Our partition of), allows useful infinite sets which contain type environmehi will play a crucial
role in one particular type interpretation. These sets amd@ments are given in the next definition.

Definition 15 i) Letn € N. We letG" = {(y" : U) | U € U, d(U) = n andy™ € Vy} and
H" = ,,>, G™. Note thatG" andH" are not type environments because they are infinite sets.
i) Letn € N, M € M andU € U, we write M : (H™ |9 U) iff there is a type environment C H"
whereM : (T' ko U)

Now, for everyn, we define the set of the good terms of ordewhich contain some free variable
x' wherez € V; andi > n.

Definition 16 Letn € NandV" = {M € M" | z* € FV (M) wherex € V; andi > n}. Obviously,
if n € Nandz € Vi, then\]! C V",

Here is the crucial interpretatidinfor the proof of completeness:

Definition 17 LetI be the interpretation defined by:
for all type variables:, I(a) = V' U{M € M° | M : (H 5 a)}.

I is indeed an interpretation and the interpretation of a tyfperdern contains the good terms of
ordern which are typable in the special environments which aresgzithe infinite sets of definitidn[L5:

Lemma 18 i)lisaninterpretation. l.eYa € A, I(a) is saturated an&/z € V;, N C I(a) C M°.
i) If U € Uisgood andl(U) = n, thenl(U) =V"U{M e M" | M : (H" o U)}.

I'is used to prove completeness (the proof is on the authorgpags).

Theorem 19 (CompLETENESY LetU € U be good such that(U) = n.
) [U)={MeM" | M:{()F U)}.
if) [U] is stable by reduction: i.e., #/ € [U]and M > N, thenN € [U].
iii) [U]is stable by expansion: i.e.,. ¥ € [U] andM >3 N, thenM € [U].

6 Conclusion and future work

We studied the\IN-calculus, an indexed version of thd-calculus. This indexed version was typed
using first an intersection type system with expansion éegbut without an intersection elimination
rule, and then using an intersection type system with expangriables and an elimination rule.

We gave a realisability semantics for both type systems sigpthat the first type system is not
complete in the sense that there are types whose semantiingésinot the set ohI"-terms having
this type. In particular, we showed thag.;/ is in the semantic meaning ¢& 1 b) — a but it is
not possible to give\y°.y" the type(a M b) — a. The main reason for the failure of completeness
in the first system is associated with the failure of the stthjeduction property for this first system.
We showed that the second system has the desirable prepafriabject reduction and expansion and
strong normalisation but that completeness fails if we useerthan one expansion variable. We then
showed that completeness succeeds if we restrict the systeng single expansion variable.

Because we show in the appendixes of the long version of ttitdea(which can be downloaded on
the web page of the authors) that each of these type systdmsg, wstricted to the normal-calculus
represents a well known intersection type system with esipanvariables, our study can be said to
be the first denotational semantics study of intersectipe gystems with expansion variables (using
realisability or any other approach) and outlines the diffies of doing so. Although we have in this

paper limited the study to th&/-calculus, future work will include extending this work toet full
A-calculus and with an-type rule as well.

References

[1] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantidorth-Holland, revised
edition, 1984.

[2] H. P. Barendregt. Lambda calculi with types. In S. Abream®. M. Gabbay, T. S. E. Maibaum,
eds.,Handbook of Logic in Computer Sciene®l. 2, chapter 2. Oxford University Press, 1992.

[3] S. Carlier, J. Polakow, J. B. Wells, A. J. Kfoury. SystemrExpansion variables for flexible typing
with linear and non-linear types and intersection typesProgramming Languages & Systems,
13th European Symp. Programmingpl. 2986 ofLNCS Springer-Verlag, 2004.

[4] S. Carlier, J. B. Wells. Expansion: the crucial mechanfer type inference with intersection
types: A survey and explanation. Proc. 3rd Int'l Workshop Intersection Types & Related
Systems (ITRS 20Q4005. The ITRS '04 proceedings appears as vol. 136 (20083)6f Elec.
Notes in Theoret. Comp. Sci.

[5] M. Coppo, M. Dezani-Ciancaglini, B. Venneri. Princiggpe schemes ang-calculus semantics.
In J. R. Hindley, J. P. Seldin, edslp H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and FormalismAcademic Press, 1980.

[6] T. Coguand. Completeness theorems and lambda-calclnlé® Urzyczyn, ed.TLCA vol. 3461
of Lecture Notes in Computer Scien&pringer, 2005.

[7] S. Farkh, K. Nour. Résultats de complétude pour desselside types du systeme AFBeoretical
Informatics and Applications31(6), 1998.

[8] G. Goos, J. Hartmanis, eds-Calculus and Computer Science Theory, Proceedings ofimp&-
sium Held in Rome, March 15-27, 197&ml. 37 ofLecture Notes in Computer Scien&pringer-
Verlag, 1975.

[9] J. R. Hindley. The simple semantics for Coppo-DezaniéSipes. In M. Dezani-Ciancaglini,
U. Montanari, eds.]nternational Symposium on Programming, 5th Colloquiwul. 137 of
LNCS Turin, 1982. Springer-Verlag.

[10] J. R. Hindley. The completeness theorem for typhatgrms. Theoretical Computer Scienc22,
1983.

[11] J. R. Hindley. Curry’s types are complete with respedttsemantics tooTheoretical Computer
Science22, 1983.

[12] J. R. Hindley. Basic Simple Type Theqryol. 42 of Cambridge Tracts in Theoretical Computer
Science Cambridge University Press, 1997.

[13] F. Kamareddine, K. Nour. A completeness result for disehility semantics for an intersection
type systemAnnal of Pure and Applied Logid 46, 2007.

[14] J. Krivine. Lambda-Calcul : Types et Métes Etudes et Recherches en Informatique. Masson,
1990.

[15] R. Labib-Sami. Typer avec (ou sans) types auxiliéres.

http://www.macs.hw.ac.uk/~jbw/papers/Carlier+Polakow+Wells+Kfoury:System-E:ESOP-2004.pdf
http://www.macs.hw.ac.uk/~jbw/papers/Carlier+Wells:Expansion:ITRS-2004.pdf

