
HAL Id: hal-00383821
https://hal.science/hal-00383821

Submitted on 13 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Node Location in Clustered Multi-hop
Wireless Networks

Nathalie Mitton, Eric Fleury

To cite this version:
Nathalie Mitton, Eric Fleury. Distributed Node Location in Clustered Multi-hop Wireless Networks.
Asian INTernet Engineering Conference (AINTEC’05)„ Dec 2005, Bangkok, Thailand. pp.112-127.
�hal-00383821�

https://hal.science/hal-00383821
https://hal.archives-ouvertes.fr

Distributed Node Location in clustered multi-hop
wireless networks.

Nathalie Mitton and Eric Fleury

INRIA/ARES - INSA de Lyon - 69621 VILLEURBANNE Cedex
tel: 33-(0)472-436-415

firstname.lastname@insa-lyon.fr

Abstract. Wireless routing protocols are all flat routing protocols and are thus
not suitable for large scale or very dense networks because of bandwidth and
processing overheads they generate. A common solution to this scalability prob-
lem is to gather terminals into clusters and then to apply a hierarchical routing,
which means, in most of the literature, using a proactive routing protocol inside
the clusters and a reactive one between the clusters. We previously introduced
a cluster organization to allow a hierarchical routing and scalability, which have
shown very good properties. Nevertheless, it provides a constant number of clus-
ters when the intensity of nodes increases. Therefore we apply a reactive routing
protocol inside the clusters and a proactive routing protocol between the clusters.
In this way, each cluster hasO(1) routes to maintain toward other ones. When
applying such a routing policy, a nodeu also needs to locate its correspondent
v in order to pro-actively route toward the cluster owningv. In this paper, we
describe our localization scheme based on Distributed Hashed Tables and Inter-
val Routing which takes advantage of the underlying clustering structure. It only
requiresO(1) memory space size on each node.
keywords: wireless networks, localization, DHT, interval routing.

1 Introduction
Wireless multi-hop networks suchad hocor sensor networks are mobile networks of
mobile wireless nodes, requiring no fixed infrastructure. Every mobile can indepen-
dently move, disappear or appear at any time. A routing protocol is thus required to
establish routes between terminals which are not in transmission range one from each
other. Due to the dynamics of such wireless networks (terminal mobility and/or instabil-
ity of the wireless medium), the routing protocols for fixed networks do not efficiently
fit. Ad hocrouting protocols proposed in the MANET working group are all flat routing
protocols: there is no hierarchy, all the terminals have thesame role and are potential
routers. If flat protocols are quite effective on small and medium size networks, they are
not suitable for large scale or very dense networks because of bandwidth and process-
ing overheads they generate [22]. A common solution to this scalability problem is to
introduce a hierarchical routing. Hierarchical routing often relies on a specific partition
of the network, calledclustering: the terminals are gathered into clusters according to
some criteria, each cluster is identified by a special node called cluster-head. In most of
the literature, a hierarchical routing means using a proactive1 routing protocol inside the

1 Nodes permanently keep a view of the topology. All routes areavailable as soon as needed.

clusters and a reactive2 one between the clusters [6,9,19,20]. In this way, nodes store
full information concerning nodes in their cluster and onlypartial information about
other nodes. We previously introduced a clustering algorithm [13]. Its builds clusters
by locally constructing trees. Every node of a same tree belong to the same cluster, the
tree root is the cluster-head. This algorithm has already been well studied by simula-
tion and theoretical analysis. It has shown to outperform some other existing clustering
schemes regarding structure and behavior over node mobility and link failure. It may
also be used to perform efficient broadcasting operations [15]. Nevertheless, it pro-
vides a constant number of clusters when the node intensity increases. Thus, there still
areO(n) nodes per cluster and using a proactive routing scheme in each cluster as in
a classical hierarchical routing, would imply that each node still storesO(n) routes,
which is not more scalable than flat routing. Therefore, we propose to use the reverse
approach,i.e., applying a reactive routing protocol inside the clusters and a proactive
routing protocol between the clusters. Indeed, as the number of clusters is constant, each
cluster has onlyO(1) routes to maintain toward other ones. As far as we know, only the
SAFARI project [21] has proposed such an approach, even if most of the clustering
schemes [1,19] present an increasing number of nodes per cluster with an increasing
node intensity and still claim to apply a proactive routing scheme inside the clusters.
When applying such a routing policy, a nodeu first needs to locate the nodev with
which it wants to communicate,i.e., it needs to know in which cluster nodev is. Once
it gets this information,u is able either to pro-actively route toward this cluster if it is
not the same than its, or to request a route toward nodev inside its cluster otherwise.
So, a localization function which returns for any nodeu, the name of the cluster to
which it belongs is needed. In this paper, we introduce our localization scheme which
takes advantage of the tree/cluster structure. It is based on Distributed Hashed Tables
(DHT) and Interval Routing. DHT are known to be scalable and allow to each node
u to register its cluster identity over the network on severalrendezvous points which
will be contacted by every node looking for nodeu. Interval routing is already known
to be a highly memory efficient routing for communication in distributed systems. In
addition, this scheme also takes advantage of the broadcasting feature of the wireless
communications to reduce even more the memory size. Yet, each node only requires a
memory size inO(1).

The remaining of this paper is organized as follows. The description of the initial
clustering algorithm as well as interesting features for the localization algorithm are
given in Section 2. Then, we describe in Section 3 how we propose to take advantage
of the underlying structure of our organization to perform our localization algorithm.
Then, we describe in Section 4 our proposition. Lastly, in Section 5, we discuss some
improvements and future works.

2 Our cluster organization
In this section, we summarize our previous clustering work on which we apply our
localization scheme. Only basic features which are relevant for localization and routing
are mentioned here. For more details, please refer to [13,14,16].
Let’s first introduce some notations. We classically model awireless multi-hop network

2 Routes are searched on-demand. Only active routes are maintained.

by a random geometric graphG = (V, E) whereV is the set of mobile nodes (|V | = n)
ande = (u, v) ∈ E represents a bidirectional wireless link between a pair of nodesu
andv. If dist(u, v) is the Euclidean distance between nodesu andv, then∃(u, v) ∈ E
iff dist(u, v) ≤ R. R is thus the transmission range. Ifd(u, v) is the distance in the
graph between nodesu andv (minimum number of hops needed to reachv from u),
we noteΓk(u) the set of nodesv such thatd(u, v) = k. Note that nodeu does not
belong toΓk(u)∀k. δ(u) = |Γ1(u)| is called thedegreeof u. We noteC(u) the cluster
owning u. Let P(u) denote the parent node of nodeu in a tree andCh(u) the set
of children ofu, i.e., the set of nodesv such thatP(v) = u. Note thatu is a leaf
iff Ch(u) = ∅. Moreover, we notesT (u) the subtree rooted in nodeu. We say that
v ∈ sT (u) if v = u or if u is the parent of nodev (P(v) = u) or if the parent
of nodev is in the subtree rooted inu (P(v) ∈ sT (u)): {v ∈ sT (u) ∩ Γ1(u)} ⇔
{v ∈ Ch(u)} or

{

v ∈ sT (u) ∩ Γ̄1(u) \ {u}
}

⇔ {P(v) ∈ sT (u)}

2.1 The clustering heuristic
Our initial goal was to propose a way to use multi-hop wireless networks over large
scales. We proposed a clustering algorithm motivated by thefact that in a multi-hop
wireless environment, the less information exchanged or/and stored, the better. First, we
wanted a cluster organization with no-overlapping clusters with a flexible radius (Many
clustering schemes [5,11] have a radius of1, in [1,7] the radius is set a priori.), able to
adapt to the different topologies. Second, we wanted the nodes to be able to compute the
heuristic from local information, only using their2-neighborhood knowledge. (In [1],
if the cluster radius is set tod, the nodes need to gather information up tod hops away
before taking any decision.) Finally, we desired an organization robust and stable over
node mobility,i.e., which do not need to be recomputed at each single change in the
topology. For it, we introduced a new metric calleddensity[13]. The notion of density
of a nodeu (notedρ(u)) characterizes the ”relative” importance ofu in the network
and within its neighborhood. This link density smooths local changes down inΓ1(u)
by considering the ratio between the number of links and the number of nodes inΓ1(u).

Definition 1 (density).
The density of a nodeu ∈ V is: ρ(u) = |{e=(v,w)∈E | w∈{u}∪Γ1(u) and v∈Γ1(u)}|

δ(u)

Because of page restrictions, we only give here a sketch of the cluster/tree forma-
tion, but the algorithm and an example can be found in [13]. Ona regular basis, each
node locally computes its density value and regularly locally broadcasts it to its1-
neighbors (e.g., usingHello packets). Each node is thus able to compare its density
value to its1-neighbors’ and decides by itself whether it joins one of them (the one
with the highest density value) or it wins and elects itself as cluster-head. The node Id
are used to break ties. In this way, two neighbors can not be both cluster-heads. We
actually draw a treeT ′ = (V, E′) which is a subgraph ofG, such thatE′ ⊂ E. T ′ is
actually a directed acyclic graph (DAG). A DAG is a directed graph that contains no
cycles,i.e.a directed tree. The node which density value is the highest within its neigh-
borhood becomes the root of the tree and thus the cluster-head of the cluster. If nodeu
has joined nodew, we say thatw is nodeu’s parent (notedP(u) = w) in the cluster-
ing tree and that nodeu is a child of nodew (notedu ∈ Ch(w)). A node’s parent can

also have joined another node and so on. A cluster then extends itself until it reaches
another cluster. If none of the nodes has joined a nodeu (Ch(u) = ∅), u becomes a leaf.
All the nodes belonging to a same tree belong to the same cluster. We thus build the
clusters by building a spanning forest of the network in a distributed and local way. As
proved in [16], at the end of three message exchange rounds, each node is aware of its
parent in the tree, at the end of four message rounds, it knowsthe parent of each of its
neighbors and thus is able to determine whether one of them has elected it as parent and
thus learns its condition in the tree (root, leaf, regular node). A node is a leaf if no other
node has chosen it as its parent; a node is a cluster-head if ithas chosen itself as parent
and all its1-neighbors have joined it; a node is a regular node otherwise. It has also
been proved that in an expected constant and bounded time, every node is also aware of
its cluster-head identity and of the cluster-head identityof its neighbors. It thus knows
whether it is a border node. A node is a frontier node if at least one of its neighbors does
not belong to the same cluster than itself.

2.2 Some characteristics of our clustering algorithm
The cluster formation algorithm stabilizes when every nodeknows itscorrect cluster-
head value. In [16], it has been proved by theory and simulation to self-stabilize within
a low, constant and bounded time. It also has been proved thata cluster-head is aware
of an information sent by a frontier node in a constant and bounded time since the
tree depth is bounded. The number of clusters built by this heuristic has been studied
analytically and by simulation. It has shown to be upper bounded by a constant asymp-
tote when the number of nodes in the network increases. Compared to other clustering
schemes as DDR [19] or Max-Mind cluster [1], our cluster organization has revealed to
be more stable over node mobility and arrivals and to offer a better behavior over non-
uniform topologies (see [13]). Moreover, our algorithm presents a smaller complexity
in time and messages as it only needs information regarding the2-hop neighborhood of
a node while Max-Min needs information tod hops away and DDR nodes need to store
information about all the nodes belonging to the same cluster than themselves.

500 nodes600 nodes700 nodes800 nodes900 nodes1000nodes
clusters/trees 11.76 11.51 11.45 11.32 11.02 10.80
Cluster diameter 4.99 5.52 5.5 5.65 6.34 6.1
Cluster-head eccentricity 3.01 3.09 3.37 3.17 3.19 3.23
Node eccentricity 3.70 3.75 3.84 3.84 3.84 3.84
Tree depth 3.27 3.34 3.33 3.34 3.43 3.51
Degree in the tree of non-leaves 3.82 3.99 4.19 4.36 4.51 4.62
% leaves 73,48% 74,96% 76,14% 76,81% 77,71% 78,23%

Table 1.Some cluster and clustering trees characteristics.

Other interesting features for routing and locating obtained by simulations are gath-
ered in Table 1. These characteristics illustrate some of our motivations for our propo-
sition as explained later in Section 3. The eccentricity of anode is the greater distance
in number of hops between itself and any other node in its cluster. We can see in Ta-
ble 1 that the tree depth is low and close to the optimal (cluster-head eccentricity).

That means that the routes in the trees from the cluster-headto any other node within
its cluster are close to the shortest paths in the network. Clustering trees present some
interesting properties as a great proportion of leaves and asmall amount of non-leaf
children per node. This feature and the”Degree in the tree of non-leaf nodes”entry in
Table 1 show that, in average, an internal node does not have alot of children.

3 Basic ideas

In fixed networks, routing information is embedded into the topological-dependentnode
address. For instance, an IP address both identify a node andlocate it since the network
prefix is included in the IP node address. In wireless networks, nodes may arbitrar-
ily move, appear or disappear at any time. So, the permanent node identifier can not
include dynamic location information and thus, it has to be independent from the topol-
ogy, which implies an indirect routing between nodes. A routing operation is referred
as indirect when it is performed in two steps:(i) first locatethe target and then(ii) com-
municate with the target. This allows the network to dissociate the location of a node
from the location itself. With this approach, the routing information can be totally dis-
tributed, which is important for achieving scalability in large scale networks. Figure 1
illustrates such a routing process.

We propose to use such an indirect routing scheme for routingin large scale multi-
hop wireless networks. We are motivated by the fact that we want a very scalable so-
lution, thus our proposition aims to store as less information on nodes as possible. We
also want to avoid situations where the distance between thesource/requester (nodeu
in Figure 1) and the rendezvous node (nodew) is much greater than the distance be-
tween the source (nodeu) and the destination (nodev). Indeed, if the request has to
cross twice the whole network before two nodes are able to directly communicate, we
waste bandwidth and latency. Distributed Hash Tables (DHT)are a basis for indirect
routing.They provide a general mapping between any information and a location. They
use a virtual addressing spaceV . Partitions of this virtual space are assigned to nodes in
the network. The idea is to use ahash function to first distribute node location informa-
tion among rendezvous points. This samehash function is known by every node and
may then be used by a source to identify the rendezvous point which stores the position
of the target node. Each information ishashedinto a key (hash(v) = keyv ∈ V) of this
virtual addressing spaceV and is then stored on the node(s) responsible for the partition
of the virtual space this key belongs to.

DHT have been applied at two different levels: at the application level and at the
network level. Applying DHT at the application layer is widespread in peer-to-peer net-
works. The information hashed in such file-sharing systems is the identity of a file. The
node responsible for thekey = hash(file) stores the identifier of the nodes which
detain that file. DHT nodes form an overlay network on which the lookup queries are
routed. The main difference among the many proposals is the geometry of this over-
lay [24,8,12]. At the network layer, DHT are applied to distribute node location infor-
mation throughout the topology and are used to identify a node which is responsible
for storing a required node location. This is the way we intend to use DHT. When a
nodeu needs to send an information to a nodev, it first has to know wherev is. To
get this information, it first asks a nodew in charge of the keyk = hash(v) and thus

2. V is at (X,Y)

1: Where is v?

u

v

3. Route towards v

w

Fig. 1. Indirect Routing: Nodeu needs to askw wherev is.

knowing wherev is. In DHT-independent routing schemes,i.e., the virtual address is
not used for the routing operation. The nodes generally knowtheir geographic coordi-
nates, either absolute (by using a GPS for example) or relative, which is the location
information they associate to the key. By performinghash(target), a nodeu gets the
geographical coordinates of a rendezvous areaA. u then applies a geographic routing
protocol to join a nodev laying in A and which is aware of the geographical coordi-
nates of the target node. From it, nodeu is able to reach the destination by performing a
geographical routing again. This is the case for instance in[2,17,18], in the Terminodes
project [3] or in the Grid project [10]. As we do not want our nodes to depend on a
positioning system, we can not apply that DHT utilization. In DHT-dependent routing
schemes, the virtual space of the DHT is used not only for locating but at the same time
for routing toward the destination. The virtual address is dependent of the location. In
this way, the coherency of the routing protocols relies on the coherent sharing of the
virtual addressing space among all nodes in the network. Therouting is performed over
the virtual structure. In such scenarii, a nodeu performinghash(w) gets the virtual
address of the rendezvous point. From it,u routes in the virtual space tov which gives
it the virtual address ofw. u thus is able to reachw by performing a routing again in
the virtual space. The routing scheme used is generally a greedy routing: ”Forward to
the neighbor in the virtual space whose virtual address is the closest to the virtual ad-
dress of the destination”. This is for instance the case of Tribe [26] or L+ [4] on which
is based SAFARI [21]. The main challenge here is to disseminate the partitions of the
virtual space in such a manner that the paths in the virtual space are not much longer
than the physical routes.

Thus, in DHT-based systems, we can consider two phases of routing: (i) a routing
toward the rendezvous node which stores the needed information (Arrow 1 on Fig-
ure 1) and(ii) a routing toward the final destination node which location had been
obtained by the lookup operation (Arrow3 on Figure 1). In all proposals cited above,
both routing phases are performed in the same way, either in the physical network (for
DHT-independent routing proposals), or in the virtual one (for DHT-dependent routing
proposals). In the approach we propose, the two routing steps are completed in two
different manners. The first routing step is performed by using the virtual address of
the rendezvous point (DHT-dependent) whereas the routing toward the final destination

is performed over the physical network (DHT-independent).Indeed, as we propose to
distribute a virtual space over each cluster, routing to thedestination in the virtual space
is not possible as the destination node may not be in the same cluster as the sender node
and thus be in a different virtual space.

In our proposal, we propose nodes register their cluster Id as location information.
As seen in Section 2, we have a tree structure. We propose to partition the virtual space
V each tree and that each node registers on each cluster in order to add redundancy. In
this way, when a nodev looks for a nodeu, it just has to search the information in its
cluster. As the node eccentricity is low (Section 2), the latency is reduced. Moreover,
partitioning the virtual space in each cluster rather than once in the whole network
avoids situations where the distance between the source andthe rendezvous point is
much greater than the distance between the source and the destination, as in this way, the
source and the rendezvous point always are in the same cluster whereas the destination
may be anywhere in the network.

To distribute the partitions of the virtual space of the DHT in such a way that, given
a virtual address, a nodeu is able to find the node responsible for without any additional
information, we use a tree Interval Labeling Scheme to then allow an Interval Routing
on the virtual space. Interval Routing is was introduced in wired networks by Santoro
and Khatib in [23] to reduce the size of the routing tables. Itis based on representing the
routing table stored at each node in a compact manner, by grouping the set of destina-
tion addresses that use the same output port into intervals of consecutive addresses. The
main advantage of this scheme is the low memory requirementsto store the routing on
each nodeu: O(δ(u)). The routing is computed in a distributed way with the following
algorithm: at each intermediate nodex, the routing process ends if the destinationy cor-
responds tox, otherwise, it is forwarded with the message through an edgelabeled by
a setI such thaty ∈ I. The Interval Labeling Scheme (ILS) is the manner to assign the
intervals to the edges of each node, in order to perform an efficient interval routing with
routes as short as possible. Yet, the authors of [25] showed that undirected trees can
support an Interval Routing Scheme with shortest paths (in the tree) and with only one
interval per output port when performing a Depth-First-Search ILS. In wired networks,
nodes have to store an interval for each of its output edge. Therefore the size of the
routing table is inO(δ(u)). But in wireless environments, a transmission by each node
can reach all nodes within radius distance from it. Edges actually are hyper-edges (see
Figure 2). Thus the problematic is a bit different as querying unicast transmission actu-
ally are broadcast transmission. Indeed, as from a nodeu, there is only one hyper-edge,
nodes can store only one interval for it and thus for all theirneighbors. In our proposal,
nodes only store the interval for which their subtree is responsible (and the intervals of
each of their neighbors). This gives a table routing size inO(1). When a query is sent,
as all neighbors receive it in any way, only the one(s) concerned by it answer(s).

Summary and complexity analysis.To sum up, we propose to apply an indirect rout-
ing scheme over our clustered network by using DHT which associate each node iden-
tifier to a virtual address of a spaceV . The set of virtual addressesV is partitionedd
times over the nodes of each cluster. As the number of clusteris constant and clusters
are homogeneous, each node finally storesO(1) location information.

1

[1,5]

[6,4]
[6]

[5]

[0,3]

[4,2]

[4,6]

[3]

[1,2][3,0]

[2]

[3,1]

4

6

5

0

32

(a) Routing in wired environ-
ments. Nodes store one interval
per output edge.

[6]

[3]

[5]

[0,6]

[4,6]

[1 2]

[2]

4

6

0

3

2

1

5

(b) Routing in wireless en-
vironments. Nodes store only
one interval (one per hyper-
edge).

Fig. 2.Edges in wired networks (a) Vs hyper-edges in wireless networks (b).

When a nodeu wants to communicate with a nodev, it first uses the DHT to find out
the virtual address ofv: hash(v) = keyv ∈ V . Then, by using an Interval Routing over
the virtual spaceV of its own tree, it reaches at least one node in its cluster responsible
for storing the location ofv, i.e., C(v). As the intervals of the neighbors are not stored
on the node, this one only stores its own interval and the sizeof its routing table is in
O(1). As the number of clusters is constant when the intensity of nodes increases, each
cluster hasO(1) routes to maintain toward other ones for the proactive routing phase.

4 Our proposition

In this section, we describe how we wish to use DHT and Interval Routing over our
cluster organization. However, because of page restriction, several details have been
eluded but can be found in [14].

Virtual space partitioning. In this section, we present the way we distribute the par-
titions of V , which leads to a Depth-First Search (DFS) ILS,i.e., the optimal ILS for
a tree . LetI(u) be the partition ofV nodeu is assigned.i(u) is the first element of
I(u): I(u) = [i(u), ...[|i(u) 6= hash(u). i(u) is used as the virtual identifier of nodeu
in the virtual spaceV . Let Itree(sT (u)) =

⋃

v∈sT (u) I(v) be the interval/partition ofV
of which the subtree of nodeu is in charge.|I| is used to refer to the size of intervalI.
Partitions ofV are distributed in such a way that, for every nodeu ∈ V :

– The intervals of the nodes insT (u) form a contiguous interval.
– The size of the interval a subtree is in charge of is proportional to its size:
|Itree(sT (u))| ∝ |sT (u)|. We thus have, for every nodev ∈ sT (u),
|Itree(sT (u))| ≥ |Itree(sT (v))|.

– V is completely shared among the nodes of the cluster:V =
⋃

v∈C(u) I(v).
– Regions are mutual exclusive:∀v ∈ C(u),∀w ∈ C(u),v 6= w I(v) ∩ I(w) = ∅

We propose a parallel interval distribution over the different branches of each tree.
This distribution can be qualified of quasi-local accordingto the taxonomy established

in [27] as each nodeu needs information up todtree(u,H(u)) only, wheredtree(u,H(u))
is the number of hops in the tree betweenu and its cluster-headH(u) in the tree. Our
algorithm runs in two steps: a step up the tree (from the nodesto the cluster-head) and
a step down the tree (from the cluster-head to the nodes). Thecomplexity in time of
our distribution algorithm for a cluster/tree is2 × (Tree depth). As the tree depth is
bounded by a constant, the complexity in time isO(1). Each step has a time complexity
of O(Treedepth). A nodeu which has been assigned an intervalI(u) is responsible
for storing location information of all nodesv such thathash(v) ∈ I(u). Note that,
asV is much smaller than the domain of the node identifiers, they are several nodesv
such thathash(vi) = hash(vj). As each internal node only has few children to which
distribute the partitions of the virtual space (Section 2),this ILS does not include a lot
of computing on nodes.
Step 1. As seen in Section 2, every nodeu might be aware in an expected bounded
time, of the parent of each its neighbors. It thus is able to determine whether one of
them has elected it as parent and thus learns its condition inthe tree (root, leaf, reg-
ular node). Thus, in a low and constant time, each internal node in the tree is aware
of the number of its children. If every node sends its parent the size of its subtree
(|sT (u)| = |u

⋃

v∈Ch(u) sT (v)| = 1 +
∑

v∈Ch(u) |sT (v)|) up to the cluster-head, each
node is expected to know the size of the subtree of each of its neighbors in a low time
and so the cluster-head.
Step2. Once the cluster-head is aware of the size of the subtree of each of its neigh-
bors/children, it sharesV between itself and its children. Each nodev is assigned a
partition ofV : Itree(sT (v)) proportional to the size of its subtree. Each internal node
then re-distributes the partition its parent assigned it, between itself and its own chil-
dren, and so on, till reaching the terminal leaves. Once an internal nodeu has assigned
partitions of the virtual space among its children, it only stores the intervalItree(sT (v))
for which its subtree is responsible (and not intervals eachof its children is in charge
of). Then, it stores location information for nodes which key is in I(u) only (and not
for all keys inItree(sT (u))).

Departures and arrivals. When a node arrives in a tree, it is responsible for none
interval for a while. When a node leaves, the information forwhich it was responsible
is lost (but is still expected to be found in other clusters).Each internal nodeu is aware
of the departures and arrivals of its children. When it sees too many changes among
its children, it locally re-distributesItree(sT (u)) among itself and its children. When
intervals are re-assigned, in order to maintain the previous information stored by the
nodes and not to loose it, every node keeps the latter information it was responsible for,
in addition to the new one, for a period time∆(t), ∆(t) being the period at which nodes
register their location.

Routing in the virtual space. In this section, we detail how the Interval Routing is
performed in a tree. The routing is performed till reaching the node responsible for this
key. In our model, each nodeu has a unique identifierId(u). As in every DHT scheme,
we assume that every node knows a specific functionhash which associates each node
identifier to a value in the logical spaceV : hash : IR → V , Id(u) → hash(u). As
V is much smaller than the domain of the node identifiersIR, several nodes may have

the same value returned by thehash function. We use the following tuple as a key for
a nodex: {hash(x), id(x)}. In the following, we may use onlyx instead ofId(x). A
nodeu uses that kind of routing when it needs to reach a node responsible for a given
key, which can happen for three reasons:

– u wants to register a position:u may need to register its position. In this case,u is
looking for the node responsible for its own virtual address: hash(u). u then sends
a Registration Request (RR)〈RR, key = {hash(u), u} , C(u), f lag〉.

– u needs to locatex: in this case,u is looking for the node responsi-
ble for the virtual address ofx: hash(x). u sends a Location request (LR)
〈LR, key = {hash(x), x} , i(u), f lag〉. i(u), which is the identifier ofu in the vir-
tual space, will then be used to reply to nodeu.

– u needs to answer a location request for a key it is responsiblefor
(key ∈ I(u)): in this case, nodeu has received a Location Request such
that 〈LR, key = {hash(x), x} , i(v), f lag〉 initiated on nodev such thatkey ∈
I(u). It has to answer to nodev by sending a Location Reply (Reply)
〈Reply, key = {i(v),−1} , C(x), f lag〉.

The routing process is the same whatever the kind of message (LR, RR or Reply) as the
routing decision is only based on the key. In every case, the valueflag is set to1 by the
node forwarding the message ifkey belongs to the interval its subtree is responsible for,
it is set to0 otherwise. As detailed later, it is useful for the routing decisions. Remark
that nodeu already knows the location (cluster Id) of its neighbors, ofits cluster-head
and of the nodes it is responsible for. Thus, if nodev is such thatv ∈ H(u) ∪ Γ1(u) or
hash(v) ∈ I(u), nodeu directly routes toward nodev, skipping the localization steps
(skipping steps1 and2 on Figure 1).

Upon reception of a messageM (RR, LR or Reply) containing the key{hash(x), x}
coming from nodeu (u ∈ Γ1(v)), nodev decides to end routing, forwardM or discard
M . Note that nodeu may just forward itself the message and is not necessarily the re-
quest initiator. The routing ends whenM reaches a nodev which either is responsible
for the wantedkey (key ∈ I(v)) or is the wanted node (key = {hash(v), v}).
If key 6= {hash(v), v}, nodev forwardsM in three cases:

– If u = P(v) andkey ∈ Itree(sT (v)) (the message is coming from nodev’s parent
and the key is in its subtree’s interval). See Figure 3(a).

– If u ∈ Ch(v) (the message is coming from a child of nodev), v forwardsM :
• if key /∈ Itree(sT (v)) (the key is not in its subtree, and obviously neither in

the subtree of its childv): the message has to follow its way up the tree. See
Figure 3(b).

• if key ∈ Itree(sT (v)) andkey /∈ Itree(sT (u)) (flag = 0) (the key is in
its subtree but not in the subtree of its child from which it has received the
request): the message has to be forwarded down its subtree toanother child.
See Figure 3(c).

And nodev discardsM in all other cases, which means:

– If u /∈ P(v) ∪ Ch(v) (M is coming from a node which is neither the parent nor a
child of nodev). Figure 4(a).

a I(a) = [0, 8[

q = <6, a, 1>

d I(d) = [3, 8[

h I(h) = [7, 8[

f I(f) = [4, 5[e I(e) = [5, 8[

g I(g) = [6, 7[

c I(c) = [2, 3[

b I(b) = [1, 3[

(a) Case1: The message is go-
ing down the tree.a is looking
for the node in charge of6.

a I(a) = [0, 8[

q = <1, e, 0 >

d I(d) = [3, 8[

h I(h) = [7, 8[

f I(f) = [4, 5[e I(e) = [5, 8[

g I(g) = [6, 7[

c I(c) = [2, 3[

b I(b) = [1, 3[

(b) Case2: The message is go-
ing up the tree.e is looking for
the node in charge of1.

d I(d) = [3, 8[
q = <4, e, 0>

a I(a) = [0, 8[

b I(b) = [1, 3[

c I(c) = [2, 3[

g I(g) = [6, 7[

e I(e) = [5, 8[f I(f) = [4, 5[

h I(h) = [7, 8[

(c) Case3: The message is go-
ing up and down the tree.e is
looking for the node in charge
of 4.

Fig. 3.Different cases of figures of when a message received on noded is forwarded.

– If u ∈ Ch(v) andkey ∈ ItreesT (u)) (flag = 1) (M is coming from a childv
which subtree is responsible for the key). Thanks to the flag,u knows it does not
need to forward as the message goes up and down the tree viav. Figure 4(b).

– If u ∈ P(v) andkey /∈ Itree(sT (v)) (M is coming fromv’s parent but the subtree
of v is not responsible of the key).u is not concerned by the request, it does not
forward. One of its siblings will. Figure 4(c).

Algorithm 1 describes the routing operation. When a RR message
〈RR, key = {hash(u), u} , C(u), f lag〉 reaches its final destinationv, v updates the lo-
cation ofu in its table. When a Reply message〈Reply, key = {i(u),−1} , C(x), f lag〉
reaches its final destinationu, u is thus able to route toC(x) using the hierarchical
routing. When a LR message〈LR, key = {hash(x), x} , i(w), f lag〉 reaches its final
destinationv (in charge ofhash(x)), v answers the sender by initiating a Reply
message〈Reply, {i(w),−1} , C(x), f lag〉.

Algorithm 1 Query Forwarding

For all node u, upon reception of a message〈Type, key = {hash(x), x} , X, flag〉, X ∈
{RR,Reply,LR} coming from a nodev ∈ Γ1(u) and initiated at a nodey:

if (u = x) then Reply sending〈Reply, {X = i(y),−1} , C(u), flag〉 and Exitend
⊲ u is the wanted node. It can answer nodey.
if (key ∈ I(u)) then
⊲ u is responsible for storing the key. The message has reached its final destination.

if (Type = LR)then Send〈Reply,{X = i(y),−1} , C(x), flag〉 and Exitend
if (Type = RR)then Register the location of nodex and Exitend
if (Type = Reply)then Route toward the destination clusterX, Exit end

end
if (v = P(u)) then
⊲ The message is going down the tree.

if (key ∈ Itree(sT (u))) then Setflag to 1 and Forward.
⊲ ∃w ∈ sT (u) such thatkey ∈ I(w). See Figure 3(a).
elseDiscard.⊲ See Figure 4(b).
end

else
if (v ∈ Ch(u)) then ⊲ The query is coming up the tree from a child of nodeu.

if (key /∈ Itree(sT (u))) then Setflag to 0 and Forward.
⊲ The query is forwarded up the tree. See Figure 3(b).
else⊲∃w ∈ sT (u) \ {u, v} such thatkey ∈ I(w).

if (flag = 0) then Setflag to 1 and Forward.
⊲ key /∈ Itree(sT (v)) but askey ∈ Itree(sT (u)), u has to forward the
query to its other children. The query goes up and down. Figure 3(c).
elseDiscard.⊲ The query goes up and down viav. See Figure 4(c).
end

end
elseDiscard.⊲ See Figure 4(a).
end

end

q = <key, b, flag>

d I(d) = [3, 8[

h I(h) = [7, 8[

f I(f) = [4, 5[e I(e) = [5, 8[

g I(g) = [6, 7[

c I(c) = [2, 3[

b I(b) = [1, 3[

a I(a) = [0, 8[

(a) Case 1: The message is
coming from a neighbor of node
d but does not concern noded.

q = <7, e, 1 >

a I(a) = [0, 8[

b I(b) = [1, 3[

c I(c) = [2, 3[

g I(g) = [6, 7[

e I(e) = [5, 8[f I(f) = [4, 5[

h I(h) = [7, 8[

d I(d) = [3, 8[

(b) Case2: e is looking for the
key 4. The message is going up
and down the tree on nodee but
is heard by noded.

d I(d) = [3, 8[

q = <2, a, 1>

a I(a) = [0, 8[

b I(b) = [1, 3[

c I(c) = [2, 3[

g I(g) = [6, 7[

e I(e) = [5, 8[f I(f) = [4, 5[

h I(h) = [7, 8[

(c) Case3: a is looking for the
key 2. Noded is not in charge
of the researched key. One of its
sibling will forward.

Fig. 4.Different cases of figures when a message received on noded is discarded ond.
The dashed arrows represent the possible paths followed by the message.

Routing in the physical network. In this section, we detail how we perform our hier-
archical routing over our cluster topology by using a reactive routing protocol inside the
clusters and a proactive routing protocol between the clusters. Such a proactive routing
scheme implies for a nodeu to know the sequence of clusters to go through from its own
clusterC(u) toward any other one. Algorithm 2 describes our hierarchical routing (We
use This function is known by every node as the routing between clusters is proactive.).

Suppose nodeu needs to reach nodev. If nodeu does not already know how to
reachv, it uses thehash function to learnC(v) before applying the routing rules. The
routing process is illustrated on Figure 5. IfC(v) = C(u), thenu initiates a reactive
routing within its cluster to reachv. Otherwise, it looks at its routing table for the next
clusterC(w) on the route towardC(v) and initiates a reactive routing in its cluster to
look for a nodex ∈ C(u) which is a frontier node ofC(w) (x such thatx ∈ C(u)
and∃y ∈ Γ1(x) ∩ ¯C(u)). Note thatC(u) andC(w) may be two neighboring clusters,
in this caseC(v) = C(w). The message is thus sent tox which forwards it to one of
its neighborsy in the neighboring clusterC(w). The routing process is thus reiterated
on nodey and so on till reaching the final destination. As the reactiverouting step is
confined in clusters which have low diameters, the induced flooding and its undesirable
aspects are limited. Note that it can also be enhanced as in [15].

Cluster A 5

4

2 3

1

T
Z

Y
X

V

U

Cluster C

Cluster B

Fig. 5. Nodeu needs to communicate with nodev. It uses successive reactive routing
protocols to cross all clusters on its routes towardC(v) and then to reach nodev.

Algorithm 2 Routing

For a messageM sent by nodex ∈ C(x) to nodey ∈ C(y)
Ccurrent = C(x)
while (Cnext 6= C(y))

Cnext = Next Hop(Ccurrent, C(y))
Reactively routeM toward nodeu ∈ Ccurrent such that∃v ∈ Γ1(u) ∩ Cnext.
Nodeu sendsM to nodev.
Ccurrent = Cnext

end
⊲ The message has reached the cluster of the destination node.
Reactively routeM toward destination nodey.

Stretch Factor. The stretch factoris the difference between the cost (or length) of
the route provided by the routing protocol and the optimal one. Flat routing protocols
generally provide optimal routes. The length of the routes provided by our proposed
routing scheme is equal to twice the length of the route in thetree for locating the target
node (Step1 of the indirect routing), more the length of the final route tothe target (Step
2 of the indirect routing). In our proposition, as, the routing process of the second step
is performed over the physical topology with flat protocols,the stretch factor of this
step is close to1. Thus, only the stretch factor induced by the first step (routing in the
virtual space) is noticeable. Our global stretch factors is such thats = 1 + 2 × l(u, v)
wherel(u, v) is the length of the path in the virtual space (tree) from nodeu to nodev, v
being the rendezvous point soring the information needed byu. As this routing scheme
is performed within a cluster only, we can boundl(u, v) by the length of the longer path
in the tree:l(u, v) ≤ 2 × Tree depth. Finally, we haves ≤ 1 + 4 × Tree depth. As
already mentioned,Tree depth is a low constant (between3 and4 hops). Thus, routes
provided by our locating/routing proposition may be costlyin term of number of hops
only for small path in the graph since, as we evolute in a largescale environment, this
constant can be expected negligible in front of most of the path lengths. It is not the
case only for some routes within a cluster.

We evaluated the length and the stretch factor of paths of ourindirect routing first
step by simulation. We used a simulator we developed. Nodes are randomly deployed
using a Poisson point process in a1×1 square with various levels of intensityλ. In such
a process,λ represents the mean number of nodes per surface unit. The communication
rangeR is set to0.1 in all tests. In each case, each statistic is the average over1000

simulations. We compared the length of paths between two nodes of the cluster in the
graph (physical topology) and in the tree (logical topology) to know the cost for routing
in the tree. Results are shown in Figure 6. As we can note, pathlengths are quite constant
when the number of nodes increase and remains low (between3 and4 hops). To reach a
rendezvous nodev, nodeu has to use the tree (as it needs to perform the interval routing
in the logical space). Using the tree only adds1 hop in average than using the physical
graph (so2 hops for a round trip) and induce much less traffic overhead and memory
requirements than using a classical routing in a cluster. Nevertheless, we remind that
the total stretch factor for a nodeu looking for a nodev, actually is equal to the length
round trip path from nodeu to nodew responsible forhash(v). It does thus not exactly
correspond to this additional hop, but as the direct routingwhich is used in the second
routing step has a negligible stretch factor, it is not far from it. So, we can say that the
locating/routing approach we propose does not add much latency, except when a node
tries to locate a node in the same cluster than its. However, as we are dealing with a
great amount of nodes, the proportion of such communications is low.

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

500 600 700 800 900 1000 1100

of

 h
op

s

Intensity Process (Number of nodes)

CH eccentricity in the tree (tree depth)
CH eccentricity in the graph (cluster radius)

Route length in the graph
Route length in the tree

Fig. 6.Comparisons of distances in the logical and physical topologies.(CH eccentricity
+: in the tree(tree depth) and×: in the graph (cluster radius); Route length∗:in the
graph and�: in the tree;)

5 Conclusion
In this paper, we have proposed a way for locating a node and routing toward it in a large
scale clustered wireless multi-hop network. This scheme lies on a hierarchical and in-
direct routing which only needsO(1) memory size and generates low traffic overhead
and latency. It takes advantages of the underlying tree structure to perform an efficient
Interval Routing within clusters. Then, unlike what is usually proposed in the litera-
ture, we use a pro-active routing approach between clustersand a reactive one inside
the clusters. In future works, we intend to analyze deeper our algorithm concerning re-
freshing periods of node location registration and re-assignment of the partitions of the
logical space over different trees. Then, we plan to compareour proposition to other
existing ones as for instance SAFARI [21] which also uses this reverse approach for the
hierarchical routing.

References

1. A. Amis, R. Prakash, T. Vuong, and D. Huynh. Max-Mind-cluster formation in wireless ad
hoc networks. InINFOCOM, Tel-Aviv, Israel, 2000.

2. F. Araujo, L. Rodrigues, J. Kaiser, L. Changling, and C. Mitidieri. CHR: A Distributed Hash
Table for Wireless Ad Hoc Networks. InDEBS’05, Columbus, USA, 2005.

3. L. Blazevic, S. Giordano, and J.-Y. Le Boudec. Self-organized Terminode routing.Journal
of Cluster Computing, 5(2), April 2002.

4. B. Chen and R. Morris. L+: Scalable landmark routing and address lookup for multi-hop
wireless networks. Mit lcs technical report 837, March 2002.

5. G. Chen, F. Garcia, J. Solano, and I. Stojmenovic. Connectivity-basedk-hop clustering in
wireless networks. InHICSS’02, Hawaii, USA, 2002.

6. Y. P. Chen, A. L. Liestman, and J. Liu. Clustering algorithms for ad hoc wireless networks.
Ad Hoc and Sensor Networks, 2004.

7. Y. Fernandess and D. Malkhi.k-clustering in wireless ad hoc networks. InPOMC’02,
Toulouse, France, 2002.

8. P. Fraigniaud and P. Gauron. An overview of the content-addressable network D2B. In
PODC’03, July 2003.

9. P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan.A cluster based approach for
routing in dynamic networks. InACM SIGCOMM, pages 49–65, April 1997.

10. J. Li, R. Morris, J. Jannotti, D. S. Decouto, and D. R. Karger. A scalable location service for
geographic ad hoc routing. InMobicom’00, pages 120 – 130, 2000.

11. C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks.IEEE Journal of
Selected Areas in Communications, 15(7):1265–1275, 1997.

12. P. Maymounkov and D. Mazires. Kademlia: A peer-to-peer information system based on the
XOR metric. InIPTPS ’02, MIT Faculty Club, Cambridge, USA, 2002.

13. N. Mitton, A. Busson, and E. Fleury. Self-organization in large scale ad hoc networks. In
MED-HOC-NET 04, Bodrum, Turkey, 2004.

14. N. Mitton and E. Fleury. Distributed node location in clustered multi-hop wireless networks.
Technical Report In proceed, INRIA, 2005.

15. N. Mitton and E. Fleury. Efficient broadcasting in self-organizing multi-hop wireless net-
work. In Ad Hoc Now’05, Cancun, Mexico, 2005.

16. N. Mitton, E. Fleury, I. Gurin-Lassous, and S. Tixeuil. Self-stabilization in self-organized
multihop wireless networks. InWWAN’05, Columbus, USA, 2005.

17. E. T. Ng and H. Zhang. Predicting Internet network distance with coordinates-based ap-
proaches. InINFOCOM, New-York, USA, 2002.

18. D. Niculescu and B. Nath. Ad hoc positioning system (APS). In GLOBECOM’01, 2001.
19. N. Nikaein, H. Labiod, and C. Bonnet. DDR-distributed dynamic routing algorithm for

mobile ad hoc networks. InMobiHoc, Boston, USA, 2000.
20. C. Perkins.Ad hoc networking.Addison-Wesley, 2001.
21. R. Riedi, P. Druschel, Y. C. Hu, D. B. Johnson, and R. Baraniuk. SAFARI: A self-organizing

hierarchical architecture for scalable ad hoc networking networking. Technical Report TR04-
433, Rice University, February 2005.

22. C. Santivanez, B. McDonald, I. Stavrakakis, and R. R. Ramanathan. On the scalability of ad
hoc routing protocols. InINFOCOM, New-York, USA, 2002.

23. N. Santoro and R. Khatib. Labeling and implicit routing in networks.The computer Journal,
28:5–8, 1985.

24. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications. InSIGCOMM’01), 2001.

25. J. Van Leeuven and R. Tan. Interval routing.The computer Journal, 30:298–307, 1987.
26. A. C. Viana, M. Dias de Armorim, S. Fdida, and J. Ferreira de Rezende. Self-organization

in spontaneous networks: the approach of DHT-based routingprotocols.Ad Hoc Networks
Journal, 2005.

27. J. Wu and W. Lou. Forward node set based broadcast in clustered mobile ad hoc networks.
Wireless Communications and Mobile Computing, 3(2):141–154, 2003.

