
HAL Id: hal-00383820
https://hal.science/hal-00383820v1

Preprint submitted on 1 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric phases and polarization patterns in multiple
light scattering

A. C. Maggs, Vincent Rossetto

To cite this version:
A. C. Maggs, Vincent Rossetto. Geometric phases and polarization patterns in multiple light scatter-
ing. 2001. �hal-00383820�

https://hal.science/hal-00383820v1
https://hal.archives-ouvertes.fr


ar
X

iv
:c

on
d-

m
at

/0
11

10
11

 v
1 

  1
 N

ov
 2

00
1

Geometric phases and polarization patterns in multiple light scattering

A.C. Maggs, V. Rossetto
Laboratoire de Physico-Chimie Théorique, CNRS-ESPCI, 10 Rue Vauquelin, 75005 Paris, France.

Multiple light scattering is widely used to characterize dense colloidal systems as well as in deep
tissue imaging; experiments are often interpreted via a theory of diffusion of the light intensity
within a sample, neglecting the vector nature of the electromagnetic wave. Recent experiments
on diffuse backscattering with linearly polarized light from colloidal suspensions of micron size
particles were found to display strong intensity variations with fourfold rotational symmetry when
observed through an arbitrarily oriented linear analyzer. We show that these polarization patterns
are manifestations of a Berry phase of the multiple scattered beam.

The quality of imaging in strongly scattering media
such as biological tissue is enhanced if polarization dis-
crimination is used to filter the light. Rather surpris-
ingly, it is found that circularly and linearly polarized
light do not display the same quality and resolution in
imaging [1]. These puzzling observations have motivated
a detailed characterization of the backscattering char-
acteristics of strongly scattering media. Systematic ex-
periments characterizing of the scattering properties of
dilute colloids of latex beads in solution [2] as a model
of tissue scattering found surprisingly rich results. In the
experiments a beaker of a strongly scattering suspension
is illuminated by a polarized light source focused to a
small point. The surface of the beaker is then imaged
with various analyzers. With a linear analyzer and a lin-
early polarized beam the experiments on 2µm diameter
latex beads showed strong variations in intensity exhibit-
ing a fourfold symmetry about the incident spot, some-
what like the petals of a daisy, Fig. (1). An additional
striking result is that when the analyzer is rotated an
angle π/4 the pattern of intensity rotates just one half
this angle, π/8, without changing shape. While analytic
approaches [3] have been successful in treating problems
in the propagation of the intensity of multiple scattered
light, many treatments of the evolution of the polariza-
tion state have been purely numerical, [4, 5, 6] using
Monte-Carlo techniques to trace light through a multi-
ply scattering medium. Analytical work has been based
on the idea that polarization states should be rapidly ran-
domized and that polarization dependent effects should
be weak and transient [7]. We show in this report that
simple geometric considerations allow one to gain a qual-
itative understanding of the observed polarization pat-
terns. The patterns are due to Berry phases in the mul-
tiply scattered beam.

The evolution of the plane of polarization of light
propagating in a smoothly disordered medium was first
treated by Rytov [8] in the eikonal approximation. The
geometry of the propagation was then rediscovered by
Berry [9] and applied to many other wave phenomena, in-
cluding quantum mechanics. The results of these studies
are best illustrated by experiments in which light propa-
gates along a tortuous fiber optic [10, 11]. While propa-
gating along a uniform fiber the polarization state of the
light evolves in such a way to minimize twisting [12] of

FIG. 1: False color image of polarization patterns [18] on the
surface of a beaker of a colloidal solution [16]. Linearly polar-
ized light is incident at a spot at the center of the image. The
surface of the beaker is imaged with a camera through a linear
analyzer. The experimentalists have plotted an element of the
Mueller matrix characterizing the transfer function between
the incident and backscattered light as a function of position
on the surface. For 2µm diameter beads the other elements of
this matrix implied in the scattering of linearly polarized light
are circularly symmetric; the image thus reflects the variation
of brightness of a backscattered linearly polarized beam ob-
served with a linear polarizer. Red corresponds to brighter
than average regions, blue to darker areas.

the polarization vector E, in fact one speaks of the evo-
lution of E by parallel transport. This evolution law is
locally trivial, however it leads to a global rotation of the
polarization state. This effect of coupling of polarization
to the propagation path is now generally considered as a
simple example of a geometric phase. The main conclu-
sion of the present letter is that identical phenomena are
to expected even in the absence of the guiding fiber, as
for instance is the case for light multiply scattered in a
colloidal suspension; In this report we shall firstly justify
the use of the Rytov-Berry result, valid for the evolu-
tion of the polarization in a continuous medium, in the
case of multiple scattering by distinct particles. We then
show that a geometric phase naturally leads to fourfold
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symmetric polarization patterns in retro-diffusion.

If the polarization state of a light beam is to evolve by
parallel transport we require that helicity flipping events
are rare; such events are for instance generated by large
angle deflections such as reflections at an interface. Spec-
ular reflection at a surface preserves the linear polar-
ization state of an incident beam and can not lead to
fourfold symmetric patterns in the back scattered beam.
It has been shown both numerically [5, 6] and analyti-
cally [13] that helicity flipping events occur on a charac-
teristic length scale which is somewhat larger than the
length over which the the beam is deviated in the case
of strongly forward scattering. From now on we neglect
these events. Furthermore using the Born approxima-
tion it has been shown [13, 14] that under multiple scat-
tering conditions the polarization vector of the forward
scattered beam evolves so that Ej ∼ Ej−1 − (Ej−1.tj)tj,
where Ej is the polarization vector after the j’th collision
and tj is the direction of propagation of the light. In the
limit of many small angle scattering events this evolution
law is equivalent to parallel transport of the polarization
vector. This result is valid for scattering from micron
sized latex particles, used in the experiments.

The angle of rotation of a polarization vector due to
a geometric phase is calculated from the propagation di-
rection t(s) expressed as a function of the path length
s. It is identical to the solid angle enclosed by the path
t(s) on a sphere [9, 11]. We now proceed by translating
the backscattering geometry into an ensemble of paths
on the unit sphere, {t} in order to apply this result. As
shown in Fig. (2) backscattered light corresponds to a
path from the south to north poles of the sphere, t(s),
describing the direction of propagation. We take as a
reference state light scattered to the left, polarized in the
plane of the page. We see that an original polarization
vector EA is parallel transported around the sphere, Fig.
(2, bottom) so that the initial and final vectors are an-
tiparallel. The indicated path Fig (2, top) is scattered
preferentially to the left; since the real space scattering
of the beam is linked to the tangent curve by the equation
r(s) =

∫s

0
t(s ′) ds ′, the path t(s) must remain largely on

the western latitude as shown in the Fig (2, bottom). We
now change the point of observation on the surface of the
sample, generating a second trajectory t ′(s). This new
trajectory together with the reference path form a closed
loop on the sphere which allow us to apply the Berry
result. As we change the point of observation on the
sample, B, and wind an angle of 2π about the incident
beam, A, the new path t ′(s) on the sphere sweeps out a
solid angle of 4π. We thus deduce that the polarization
at the surface of the sample rotates two full turns as we
move just once about the incident beam. Since a linear
analyzer is sensitive to the angle of rotation modulo π we
understand that there are four radial directions in which
an analyzer detects a maximum in the intensity. We also
understand that if the analyzer rotates an angle θ then
the intensity pattern rotates just θ/2.

The geometry of this result is strongly reminiscent of
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FIG. 2: top: Light is incident on a multiple scattering
medium. The direction of propagation is randomly bent back
and the light escapes from the surface. bottom The direction
of propagation of the scattered light is plotted on a sphere.
Incident light corresponds to the south pole, A. The escaping
light corresponds to the north pole, B. The indicated path
is scattered principally to the left so that on the sphere the
path remains, on average on the western area of the sphere.
As the point of observation goes around the incident beam,
an angle of 2π, the path between the poles sweeps out an area
on the sphere of 4π. Polarized light with polarization state
EA is parallel transported to the state EB .

the plate trick demonstration for spinor rotations [15]. If
one holds a plate horizontally in the palm of one’s hand
one can spin it about a vertical axis by performing a suit-
able contortion of the arm. Against all intuition the plate
can be turned an arbitrarily large angle; for each single
cycle of the arm the plate spins twice. Parameterizing
the shape of the arm by its direction t(s) and plotting
this on the sphere one sees that this trick can also be
understood by the fact that during a cycle t(s) sweeps
out a solid angle of 4π on a sphere translating giving two
full rotations in a plane for each cycle.

Clearly the geometry of Fig. (2) is simplified; we have
neglected fluctuations in the light paths. In order to cal-
culate the full illumination state of the light at B one
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should sum over all scattering paths from A to B; the
path sketched in Fig. (2) is just one contribution to this
sum. However, paths that exit at the same point of the
surface are correlated so that the Berry phases corre-
sponding to each path are also correlated and do not av-
erage to zero. The superposition leads to modifications
in the geometry when imaging at small distances from
the incident beam. For light which returns directly on
axis, all paths around the sphere are equally likely and
the polarization state is undetermined [14]. Away from
the central spot the sum is dominated by the most direct
paths, such as the path shown in the figure. We note that
with a coherent light source the speckle structure of the
radiation field can never be neglected. There are natu-
rally strong fluctuations in the polarization state due to
the existence of zeros in the instantaneous speckle pat-
tern for each component of the polarization vector. The
experimental image, Fig. (1), is in fact a time average so
no speckles can be seen.

In this report we have considered the problem of scat-
tering from particles in the Mie and Rayleigh-Gans scat-
tering regimes in the limit of strong forward scattering
where individual scattering events show weak polariza-
tion dependence. Small particles have very different scat-
tering properties and show strong polarization depen-
dence in the scattering. In this limit [4] the fourfold

symmetric pattern due to parallel transport is not seen.
Our results can also be used to understand the scatter-
ing of circularly polarized light. In this case the Berry
phase is just a simple phase shift of the backscattered
beam, rather than a rotation in polarization plane. No
polarization patterns are to be expected on the surface of
a uniform colloid. We understand that the difference in
the coupling of the Berry phase to linearly and circularly
polarized light is partially responsible for the different
imaging qualities of circularly polarized light in colloidal
suspensions and tissue fantoms [17] . An object hidden
deep under the surface of the beaker in Fig. (1) can only
weakly modify the intensity at the surface. This weak
modification is easily hidden by the strong variation due
to the Berry phase.

Finally, a number of interesting variations can be
played on the geometry of the figures observed in dif-
fuse backscattering. Addition of an strongly optically
active molecule in the solution should lead to systematic
bending of the daisy giving rise to helical patterns in the
polarization state on the surface of the colloidal solution.
This would be of interest as a method of measuring path
lengths in the solution as a function of the distance be-
tween the incident beam and the detection point.
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