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Abstract: The aim of this paper is to develop a subspace method for state-space identification
of continuous-time systems using fractional commensurate models. As compared to the classical
state-space representation, the commensurate differentiation order must be estimated besides
the state-space matrices. The latter are estimated with conventional subspace-based techniques
using QR and singular value decompositions, whereas the commensurate order is estimated
using nonlinear programming. This is the first method developed for multi-input multi-output
system identification of fractional models. The performances are demonstrated by simulations
at various signal-to-noise ratios assuming a known then an unknown commensurate order.

Keywords: Fractional state-space representation, continuous-time identification, subspace
method, multivariable model.

1. INTRODUCTION

Fractional models have witnessed a growing interest during
the last years. Many diffusive phenomena can be modeled
by fractional transfer functions. In electrochemistry for
instance, diffusion of charges in acid batteries is governed
by Randles models [Sabatier et al. (2006)] that involve
Warburg impedance with an integrator of order 0.5. Elec-
trochemical diffusion showed to have a tight relation with
derivatives of order 0.5 [Oldham and Spanier (1973)]. In
thermal diffusion of a semi-infinite homogeneous medium,
Battaglia et al. (2001) have shown that the exact solution
of the heat equation links thermal flux to a half order
derivative of the surface temperature on which the flux is
applied.

Time-domain system identification using fractional models
was initiated in the late nineties. Oustaloup et al. (1996)
developed a method based on the discretization of the
fractional differential equation using Grünwald definition
and on the estimation of its coefficients using least squares.
Trigeassou et al. (1999) based their identification method
on the approximation of a fractional integrator by a ratio-
nal model. Then, they deduced the fractional model after
estimating its rational approximation. Cois et al. (2001)
proposed several extensions of equation error methods,
such as the state variable filters and the instrumental
variable (IV), to fractional system identification. Aoun
et al. (2007) synthesized fractional orthogonal bases gen-
eralizing various bases (Laguerre, Kautz,...) to fractional
differentiation orders for identification issues. Recently,
Malti et al. (2008b) have extended the concept of optimal
IV methods to fractional systems. For an overview of these
identification methods refer to Malti et al. (2008a).

In this paper, we consider the problem of identifying a
continuous-time (CT) fractional system in its state-space
form. Only few papers deal with system identification us-

ing fractional state-space representation [Cois et al. (2001);
Poinot and Trigeassou (2004)]. They are based on the
minimization of an output error criterion by nonlinear pro-
gramming. These methods are well suited for single-input
single-output (SISO) systems, and are generally difficult
to apply in the multi-input multi-output (MIMO) case
because the number of parameters to estimate becomes
large. Here, a subspace method to estimate the matrices of
the CT fractional state-space representation is proposed.
It is an extension of the methods presented in the literature
for rational systems [Haverkamp et al. (1996); Johansson
et al. (1997, 1999)] to the fractional ones. Other subspace
techniques for identifying CT systems with rational models
can be found in Bastogne et al. (2001); Ohsumi et al.
(2002); Mercère et al. (2007). So, the proposed method
inherits the advantages of subspace methods which stem
from the reliability of the numerical algorithms using the
QR and the singular value decompositions [Katayama
(2005)]. Thus, it does not involve nonlinear optimization
to obtain state-space matrices. In addition, no canonical
form (such as modal or companion) of the state-space
representation is required. Finally, the proposed subspace
algorithms can be applied to the identification of both
SISO and MIMO fractional systems. As will be seen later,
the state-space representation of a fractional commen-
surate system involves an additional parameter which is
the commensurate order. This parameter is the only one
computed by minimizing an output error criterion with a
nonlinear optimization technique.

In section 2, some recalls about fractional systems are
given. Section 3 presents the method proposed to estimate
the matrices of the CT fractional state-space representa-
tion, followed by simulation examples in Section 4. Finally,
Section 5 is devoted to the estimation of the fractional
commensurate order. Monte Carlo simulations are made
to check the statistical properties of the estimator.
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2. FRACTIONAL SYSTEMS

The concept of differentiation to an arbitrary non-integer
order α, with α ∈ R

+∗ (set of strictly positive real

numbers), Dα ∆
=

(

d
dt

)α
, was defined in the 19th century by

Riemann and Liouville. The α-order fractional derivative
of f(t) is defined as an integer derivative of order ⌊α⌋ + 1
(⌊.⌋ stands for the floor operator) of a non-integer integral
of order α − ⌊α⌋ [Samko et al. (1993)]:

Dαf(t) =
d⌊α⌋+1

dt⌊α⌋+1

{ 1

Γ(⌊α⌋ + 1 − α)

∫ t

0

f(τ)

(t − τ)α−⌊α⌋
dτ

}

where the Euler gamma function Γ(β) is defined for every
β ∈ R

+∗ by:

Γ(β) =

∫ ∞

0

zβ−1e−zdz.

The Laplace transform, denoted by L , is a more concise
algebraic tool which allows to write, in case of zero initial
conditions, [Oldham and Spanier (1974)]:

L

{

Dαf(t)
}

= sαF (s), with F (s) , L

{

f(t)
}

where s is the Laplace variable.

A SISO fractional system is governed by a fractional
differential equation:

y (t) + a1D
α1y (t) + · · · + amA

DαmA y (t) =

b0D
β0u (t) + b1D

β1u (t) + · · · + bmB
DβmB u (t)

where (aj , bi) ∈ R
2, and the differentiation orders α1 <

α2 < . . . < αmA
, β0 < β1 < . . . < βmB

are allowed to be
non-integer positive numbers. State space representation
was extended by Matignon and d’Andréa Novel (1996) to
commensurate fractional systems, where all the differenti-
ation orders are multiple integers of α. The extension was
done by allowing the differentiation order of the state vec-
tor to be any commensurate order α ∈ R

+∗. The fractional
state space representation is presented in a MIMO case as:

Dαx(t) = Ax(t) + Bu(t), (1)

y(t) = Cx(t) + Du(t) (2)

where x ∈ R
n is the state vector, u ∈ R

m the input
vector, y ∈ R

p the output vector, A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n, D ∈ R
p×m are constant matrices. Zero initial

conditions are considered: x(t) = 0 for t ≤ 0. Matignon
(1998) proved that the fractional system (1)-(2) is stable
if and only if:

0 < α < 2 and | arg(λk)| > α
π

2
∀k = 1, . . . , n

where λk is the kth-eigenvalue of A and | arg(λk)| ≤ π.

The conversion of (1)-(2) to the MIMO transfer function
form is obtained as for the rational systems by:

G(s) = C(sαI − A)−1B + D.

In the following, assume that (A, B) is reachable and (C,
A) is observable. The controllability and the observability
conditions of a state space representation of a commensu-
rate fractional system are the same as for rational systems
[Matignon and d’Andréa Novel (1996)].

One of the main difficulties with fractional models is the
time-domain simulation. This problem has been exten-
sively studied and an overview of the principal methods
can be found in Aoun et al. (2004). The most commonly
used approximation of fractional operators is the recursive

distribution of zeros and poles, proposed by Oustaloup
(1995), which approximates the frequency behavior of sα

in the frequency range [ωA, ωB]. Nevertheless, this approx-
imation has null asymptotic behaviors at low and high
frequencies, which can introduce a static error between
the fractional model and its approximation. To avoid
this drawback, Trigeassou et al. (1999) suggested to use
the conventional integrator outside the frequency range
[ωA, ωB]:

s−α
[ωA,ωB ] =

Gα

s

Nc
∏

k=1

1 + s/ω′
k

1 + s/ωk
(3)

where:

• Nc is the number of cells (directly related to the
quality of the approximation),

• Gα is fixed so that s−α has the same gain as s−α
[ωA,ωB]

in the middle of the interval [ωA, ωB],
• ω′

k and ωk are respectively zeros and poles recur-
sively distributed in the frequency range [ωb, ωh] =
[σ−1ωA, σωB ] where σ is generally set to 10 to mini-
mize border effects. They are defined by the following
relations:

ω′
k = γωk, ωk+1 = ηω′

k, α = 1 −
log γ

log γη
.

This approximation is used to simulate the fractional
systems presented in this paper with the parameters:
Nc = 20, ωA = 10−5 and ωB = 105.

3. SUBSPACE ALGORITHMS FOR FRACTIONAL
STATE-SPACE IDENTIFICATION

Consider the linear CT fractional state-space representa-
tion (1)-(2). The problem in this section is to estimate the
system matrices A, B, C, D from sampled input-output
data 1 {uk}

N−1
k=0 and {yk}

N−1
k=0 . The commensurate order

α is assumed to be known. The case where α is unknown
will be discussed in section 5.

The Laplace transform of (1)-(2) gives:

sαX(s) = AX(s) + BU(s) (4)

Y (s) = CX(s) + DU(s). (5)

The problem in these relations is the use of the sα-operator
which amplifies noise in the time domain, especially at high
frequencies. To avoid this problem, the low-pass filter:

λ =
1

1 +
(

s
ωf

)α =
1

1 + τsα
with τ = (1/ωf )α (6)

is introduced. Then, (4) is transformed into:

X(s) = Aλ[λX(s)] + Bλ[λU(s)] (7)

with Aλ = I+τA and Bλ = τB. Application of the inverse
Laplace transform leads to the following system of linear
equations:

x(t) = Aλ[λx(t)] + Bλ[λu(t)] (8)

y(t) = Cx(t) + Du(t) (9)

where λx(t) and λu(t) correspond to the states and the
inputs prefiltered by λ in (6). Then, from (9), it is found
by recursion that:
1 The discrete-time variables are denoted by xk and correspond to
the time sampling with a constant sampling period Ts of the CT
variable x(t): xk = x(kTs).
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y(t) = Cx(t) + Du(t)

= CAλ[λx(t)] + CBλ[λu(t)] + Du(t)
...

= CAk
λ[λkx(t)] +

k
∑

j=1

CAk−j
λ Bλ[λk−j+1u(t)] + Du(t)

for k ∈ N
∗, where λkx(t) denotes the signals obtained from

x(t) by filtering through a series of k low-pass filters λ. In
the same way, it is found for l ∈ N

∗:

λly(t) = Cλlx(t) + Dλlu(t)

= CAλ[λl+1x(t)] + CBλ[λl+1u(t)] + Du(t)
...

= CAk−l
λ [λkx(t)] +

k−l
∑

j=1

CAk−j−l
λ Bλ[λk−j+1u(t)]

+ Du(t)

with k ≥ l. As a consequence, the input-output data can
be formulated as the following extended linear model:

Y(t) = Oi X (t) + Ψi U(t) (10)

with input-output and state variables:

Y(t) =













λi−1y(t)
λi−2y(t)

...
λ1y(t)
y(t)













, U(t) =













λi−1u(t)
λi−2u(t)

...
λ1u(t)
u(t)













, X (t) = λi−1x(t)

and:

Oi =









C
CAλ

...
CAi−1

λ









, Ψi =













D 0 · · · 0

CBλ D
. . .

...
...

. . .
. . . 0

CAi−2
λ Bλ · · · CBλ D













where Oi ∈ R
ip×n is the extended observability matrix

and Ψi ∈ R
ip×im is a block Toeplitz matrix. Now, from N

input-ouput available samples observed at discrete times
tk = kTs for k = 0, . . . , N − 1, the extended linear model
(10) can be rewritten as:

YN = Oi XN + Ψi UN (11)

where

UN =













[λi−1u]0 [λi−1u]1 · · · [λi−1u]N−1

[λi−2u]0 [λi−2u]1 · · · [λi−2u]N−1

...
...

...
[λu]0 [λu]1 · · · [λu]N−1

u0 u1 · · · uN−1













∈ R
mi×N

by using the following notation for sampled filtered data:

[λju]k = λju(tk). (12)

The matrices YN ∈ R
pi×N and XN ∈ R

n×N are con-
structed in a similar way. Equation (11) enables to use
subspace identification algorithms as in their original non-
factional discrete-time version. We have chosen to use
the ordinary MOESP (MIMO Output-Error State Space)
algorithm [Katayama (2005)]. The principle of this algo-
rithm is as follows:

(1) Compute an LQ decomposition of the data matrix:
[

UN

YN

]

=

[

L11 0
L21 L22

] [

QT
1

QT
2

]

(13)

where L11 ∈ R
im×im, L21 ∈ R

ip×im, L22 ∈ R
ip×ip

with L11, L22 lower triangular, and Q1 ∈ R
N×im,

Q2 ∈ R
N×ip are orthogonal.

(2) Compute a singular value decomposition (SVD) of the
L22 matrix approximating the column space of Oi:

L22 = [U1 U2]

[

Σ1 0
0 0

] [

V T
1

V T
2

]

(14)

where U1 ∈ R
ip×n and U2 ∈ R

ip×(ip−n). The state
order n can be estimated from the SVD since n =
dimΣ1 in the noiseless case.

(3) Estimate the extended observability matrix:

Ôi = U1Σ
1/2
1 . (15)

(4) Estimate the C matrix: Ĉ = Ôi(1 : p, 1 : n).
(5) Estimate Aλ by solving the linear equation:

Ôi

(

1 : p(i−1), 1 : n
)

Aλ = Ôi

(

p+1 : ip, 1 : n
)

. (16)

(6) Estimate the Bλ and D matrices. For that purpose,
it can be shown that:

UT
2 Ψi = UT

2 L21L
−1
11 (17)

which is a linear equation with respect to Bλ and D.
Define:

UT
2 , [L1 L2 · · · Li] (18)

UT
2 L21L

−1
11 , [M1 M2 · · · Mi] (19)

with Lk ∈ R
(ip−n)×p and Mk ∈ R

(ip−n)×m for
k = 1, . . . , i. Thus, from (17):

L1D + L2ĈD + · · · + LiĈÂi−2
λ Bλ = M1

L2D + L3ĈD + · · · + LiĈÂi−3
λ Bλ = M2

...
Li−1D + LiĈD = Mi−1

LiD = Mi.

Define L̄k = [Lk . . . Li] ∈ R
(ip−n)×(i+1−k)p, k =

2, . . . , i, and get the following overdetermined system
of linear equations:















L1 L̄2Ôi−1

L2 L̄3Ôi−2

...
...

Li−1 L̄iÔ1

Li 0















[

D
Bλ

]

=













M1

M2

...
Mi−1

Mi













(20)

where the block coefficient matrix in the left-hand
side is of dimensions i(ip− n)× (p + n). Estimates of
Bλ and D are estimated by finding the least-squares
solution of (20).

The matrices of the fractional CT state-space representa-
tion (4)-(5) are then deduced as follows: Â = 1

τ (Âλ − I),

B̂ = 1
τ B̂λ. The Ĉ and D̂ matrices do not change.

4. EXAMPLE

The algorithm is applied to input-output data of length
N = 1023 generated by simulating the linear system (1)-
(2) with α = 0.9,

A =

[

0 −0.1
1 −0.2

]

, B =

[

1
0

]

, C =

[

0 0.1
0.5 −0.1

]

, D =

[

0
0

]

,

and zero initial conditions. The input signal is a pseudo-
random binary sequence (PRBS) with maximum length.
The sampling period is Ts = 0.05s. The outputs (Fig. 1)
are corrupted by white noise with a signal-to-noise ratio
(SNR) of 20 dB. The algorithm parameters are set to i = 8
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Fig. 1. Output data y and output of the estimated model
ŷ for a PRBS as input (SNR=20 dB).
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Fig. 2. The 16 (= ip) singular values of L22 (n̂ = 2).

and ωf = 6 and the commensurate order α is set to its
true value. In these conditions, a second-order state-space
representation is estimated with a good accuracy with the
following companion form:

Â =

[

0 −0.0984
1 −0.1853

]

, B̂ =

[

1
0

]

,

Ĉ =

[

0.0002 0.1015
0.5114 −0.0962

]

, D̂ =

[

0.0004
0.0024

]

.

The estimated outputs ŷ are plotted in Fig. 1. The normal-
ized prediction error norm (‖ŷ − y‖2/‖y‖2) equals 0.1109
(−19.1 dB) for the first output and 0.1082 (−19.3 dB)
for the second one. The singular values of L22 are plotted
in Fig. 2. The state-space order was easily deduced since
we observe an abrupt change at n̂ = 2. Different order
estimation criteria may also be used [Bauer (2001)].

Fig. 3 shows the influence of the method parameters (the
number of block rows i and the filter frequency ωf ) on the
normalized error norm ‖ŷ − y‖2/‖y‖2 for the first output
(similar results are obtained with the second output).
The estimation is considered incorrect if the normalized
error norm is greater than or equal to one (i.e. if its
logarithm is greater than or equal to zero). So, in Fig. 3,
all normalized errors greater than one are set to one. These
figures also show the sensitivity to stochastic disturbance
by considering various SNRs: 20, 15 and 10 dB. The
contour levels indicate that ωf can be chosen in a suitable
range over one decade, between 1 and 10 for a SNR
greater than 15 dB. In the case of a higher noise level,
this range is slightly reduced and the choice of i acts more
on the results: fine results are obtained from i = 6 with
wf ∈ [3, 10] for SNR=10 dB.

To analyze the estimator statistical properties, 500 data
sets, each with different realization of the noise, are gener-
ated for three SNRs (20, 15 and 10 dB). The means of the
normalized error norms, obtained with i = 8 and ωf = 6,
are given in table 1 and Fig. 4 shows the estimated poles.
The normalized mean squared error (MSE) of the poles
are indicated in table 2. It can be seen that the estimator
is biased. Indeed, the persistent excitation of the input,
obtained with a PRBS for example, may not be enough
to guarantee the consistency of the estimates for MOESP
[Bauer and Jansson (2000)].

Table 1. Means of the normalized error norms
over 500 runs (α known).

output SNR=20 dB SNR=15 dB SNR=10 dB

mean of the
normalized
error norm

1
0.1041 0.1859 0.3414

(−19.66 dB) (−14.62 dB) (−9.34 dB)

2
0.1032 0.1846 0.3419

(−19.72 dB) (−14.67 dB) (−9.32 dB)
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(c) SNR=10 dB

Fig. 4. Estimated poles over 500 runs for various SNRs,
where + denotes the true poles (α known)

Table 2. Normalized MSE of poles (α known).

SNR=20 dB −0.0676.10−4 ± i 0.3257.10−4

SNR=15 dB −0.0684.10−3
± i 0.2475.10−3

SNR=10 dB −0.0834.10−2
± i 0.2665.10−2

5. FRACTIONAL ORDER ESTIMATION

In this section, we assume that the fractional derivative
order α ∈]0, 2[ is unknown and has to be estimated by
minimizing a quadratic criterion:

α̂ = arg min
α∈]0,2[

1

2
‖ŷc(α) − yc‖

2
2, (21)

where yc is the vector (of length pN) resulting from the
concatenation of the p system outputs and ŷc(α) is the
vector resulting from the concatenation of the p outputs
estimated with the MOESP method presented in section 3
for a given α. The value of α in (21) is obtained through a
nonlinear optimization technique. The iterative algorithm
used is based on a subspace trust-region method and on
the interior-reflective Newton method. As a consequence,
the proposed MOESP algorithm is executed at each iter-
ation of the optimization technique. The number of state
variables n is assumed to be known.
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Fig. 3. Normalized error norm ‖ŷ − y‖2/‖y‖2 in dB versus the number of block rows i and the filter frequency ωf for
various SNRs.

This method is applied on the same data set used in the
first example, with SNR=20 dB. The algorithm parame-
ters are also the same. The estimation results are:

Â =

[

0 −0.1008
1 −0.1757

]

, B̂ =

[

1
0

]

, α̂ = 0.8894,

Ĉ =

[

0.0012 0.1012
0.4997 −0.0923

]

, D̂ =

[

1.3782 10−3

−0.6763 10−3

]

.

The normalized prediction error norm is equal to 0.1050
(−19.57 dB) for the first output and 0.1008 (−19.93 dB)
for the second one. As expected, the normalized errors ob-
tained here are better than those obtained in the previous
section for α fixed to its true value because α is optimized
so as to minimize the prediction error. In Fig. 5, the
criterion to be minimized to estimate the commensurate
order α is plotted. We observe that the minimum can be
easily reached by the optimization algorithm.

0 0.5 1 1.5 2

10
0

10
10

commensurate order α

1 2
‖
ŷ

c
(α

)
−

y
c
‖
2 2

Fig. 5. Criterion to minimize with respect to α for a data
set with SNR=20 dB (true commensurate order: 0.9)

Now, in the context of commensurate order optimization,
we present results obtained using a Monte Carlo simulation
with 500 runs for three values of the SNR (20, 15 and
10 dB). The histograms of the estimated order α are given
in Fig. 6. We observe a bias which increases with the
noise level. This is obviously due to the bias introduced
by the MOESP algorithm. Table 3 gives the means of the
normalized error norms. Again, they are slightly better
than the ones obtained in table 1 when α is fixed to its
true value. Nevertheless, concerning the estimates of the
poles, the previous results are better than those obtained
here (see Fig. 7). Indeed, the normalized MSEs of the poles
presented in table 4 are larger than the ones in table 2.
Note that similar results are obtained by considering
systems with an other commensurate order.

Table 3. Means of the normalized error norms
over 500 runs (α estimated).

output SNR=20 dB SNR=15 dB SNR=10 dB

mean of the
normalized
error norm

1
0.1026 0.1834 0.3327

(−19.78 dB) (−14.73 dB) (−9.56 dB)

2
0.1005 0.1797 0.3282

(−19.95 dB) (−14.91 dB) (−9.68 dB)
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Fig. 7. Estimated poles over 500 runs for various SNRs,
where + denotes the true poles (α estimated)

Table 4. Normalized MSE of poles.

SNR=20 dB −0.4952.10−4 ± i 0.8875.10−4

SNR=15 dB −0.2530.10−3 ± i 0.6315.10−3

SNR=10 dB −0.1208.10−2 ± i 0.5740.10−2

6. CONCLUSION

This paper focuses on the identification of CT systems
using fractional state-space models. Thanks to an adapted
data filtering, we have shown that subspace-based algo-
rithms can be used to estimate the state-space matrices.
Simulation results have shown that the estimation results
are not very sensitive to small variations of the tuning
parameters. The commensurate differentiation order is
estimated by using nonlinear programming. Simulation
examples have shown that the estimators are biased. So, a
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Fig. 6. Histograms of the estimated commensurate order α for various SNRs

future work consists in developing stochastic methods to
eliminate this bias.
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