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Abstract

We are interested in a model for diphasic fluids in thin flows taking into account
both the hydrodynamical and the chemical effects at the interface between the
two fluids. A limit problem in thin curved channels is introduced heuristically.
It is a system coupling the Reynolds equation and the Cahn-Hilliard equation.
We study the mathematical properties of this system, and prove an existence
result under some smallness condition on the data.

Keywords: Cahn-Hilliard equation; Reynolds equation; Thin flow.

1. Introduction

In many applications, the geometry of the flow is anisotropic (i.e. one di-
mension is small with respect to the others), e.g. in lubrication problems. In
the Newtonian case, the flow of a fluid between two close surfaces in relative
motion is described by an asymptotic approximation of the Navier-Stokes equa-
tions, the Reynolds equation. This equation makes it possible to uncouple the
pressure and the velocity. Indeed, in thin films, the pressure is considered to be
independent of the direction in which the domain is thin. Thus an equation on
the pressure only is obtained, and the velocity can be deduced from the pressure.
This approach was introduced by Reynolds, and has been rigorously justified
in [3] for the Stokes equation, and generalized afterwards in many works: for
the steady-case Navier-Stokes equations [1], for the unsteady case [4], for com-
pressible fluids with the perfect gases law [22]... It is of interest to investigate
how this approach can be used for the case of a two fluid flow.
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A first diphasic model consists in introducing a variable viscosity η, which
is either equal to the viscosity η1 of one fluid or the viscosity η2 of the other
fluid (that is to say that the fluids are considered to be non-miscible). The
behavior of η is described by a transport equation. In that case, when assuming
the interface between the two fluids to be the graph of a function, the asymp-
totic equations corresponding to the thin film approximation can be interpreted
as a generalized Buckley-Leverett equation, which governs the behavior of the
saturation (i.e. the proportion of one fluid in the mixture) inside the gap, cou-
pled with a generalized Reynolds equation, which governs the behavior of the
pressure. These equations are investigated in [24] without shear effects, and
in [7], [14] with shear effects. One of the main disadvantages of the method is
that the fluid interface is supposed to be the graph of a function, which hin-
ders for example the formation of bubbles. In addition, this kind of model only
takes into account hydrodynamical effects between the two phases, and surface
tension effects are neglected.

The second class of models describing diphasic flows, which has been used
up to now only for the Navier-Stokes equations, is the class of the so-called
diffuse interface models. They take into account chemical properties at the
interface between the two fluids, enabling an exchange between the two phases.
In this paper, we use a Cahn-Hilliard equation, which involves an interaction
potential, enhanced with a transport term. Thus this model describes both the
chemical and the hydrodynamical properties of the flow. An order parameter ϕ
is introduced, for example the volumic fraction of one phase in the mixture.
The surface tension can be taken into account via an additional term depending
on ϕ in the Navier-Stokes equations. This kind of model has been studied for
the complete Navier-Stokes equations in [8], and for viscoelastic fluids in [12].

In this paper, we consider an asymptotic system (i.e. a thin film approxima-
tion) for a diphasic fluid modelled by the Cahn-Hilliard equation. In a similar
way as for the Newtonian case, the Navier-Stokes equations are approximated by
a modified Reynolds equation, in which the viscosity is not constant anymore.
We study the Reynolds/Cahn-Hilliard system, and prove the existence and the
regularity of a weak solution under a smallness assumption on the initial data
and the geometry.

Let us describe briefly the main steps of the mathematical analysis. First, we
study the Reynolds equation and investigate the regularity of the pressure and
the velocity as functions of the order parameter. Next, we prove the existence
of a solution to the system Reynolds/Cahn-Hilliard, by using a Galerkin pro-
cess, which consists in introducing finite dimension approximations of ϕ. After
obtaining a priori estimates for these approximations, we conclude that they
converge to a solution of the system Reynolds/Cahn-Hilliard.

This paper is organized as follows. In Section 2, we introduce the two-
dimensional model for a diphasic fluid in a thin film, which consists of a gen-
eralized Reynolds equation and of a diffuse-interface model (the Cahn-Hilliard
equation). In Section 3, we state the main theorem, and give the main steps and
difficulties of the proof. In Section 4, we deal with the Reynolds equation, and
obtain some existence and regularity result on the velocity field and the pres-
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sure. In Section 5, we first introduce some specific results on trace estimates
and Poincaré inequalities. They are used in the rest of the section for obtaining
a priori estimates for the Cahn-Hilliard equation. At last, convergence results
are deduced from these estimates, and allow to conclude the proof of the main
theorem. Section 6 presents some preliminary numerical results obtained with
this model in order to highlight the features of the model.

2. Modelling a diphasic fluid in a thin film

In this section, we will first present how a fluid is described in a thin do-
main by the Reynolds equation. Next, we introduce the hydrodynamical Cahn-
Hilliard model for any fluid. Lastly, we combine both aspects and state the
model of a diphasic fluid in a thin domain.
We introduce the physical domain Ω̄

Ω̄ “
 

px̄, z̄q P R2, 0 ă x̄ ă L, 0 ă z̄ ă hpxq
(

. (1)

The thin film approximation for an incompressible fluid leads to the following
equations (see [3]), describing the behavior of the pressure p and the velocity
field u “ pu, vq, η being the viscosity of the fluid.

Bz̄ pη Bz̄uq “ Bx̄p, Bz̄p “ 0, Bx̄u` Bz̄v “ 0.

In these equations, the thin film assumption leads to the decoupling of the
pressure and the velocity, as well as the simplification of the equations.

We will see that it is possible to prove an existence theorem assuming a
small size condition on the physical domain Ω̄ (see Theorem 3.3). In order to
understand the dependance of the solution with respect to the domain Ω̄, we
rescale the spatial variable px̄, z̄q using a dilatation coefficient λ. More precisely,
we suppose that the domain is small and can be written as

Ω̄ “ tpx̄, z̄q P R2, 0 ă λx̄ ă λL, 0 ă λz̄ ă λhpxqu,

and we rewrite the system using the following change of variable and domain

λx̄Ñ x, λz̄ Ñ z, Ω̄ Ñ Ω “ tpx, zq P R2, 0 ă x ă L, 0 ă z ă hpxqu. (2)

We assume that there exists three constants phm, hM , h
1
M q P R3

` such that the
function h P C2pRq (see Fig. 1) satisfies

@x P r0, Ls, 0 ă hm ď hpxq ď hM and |h1pxq| ď h1M , (3)

and h1pLq “ 0 as well as

Dε̃ ą 0 such that @x P r0, ε̃s, h1pxq “ h2pxq “ 0,

Observe that the regularity of h ensures that the domain Ω defined by (2)
satisfies the segment property and cone property (see [2, § 4.2 and 4.3]).
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Figure 1: Domain Ω and boundary conditions on the velocity

The Reynolds equation now writes

Bz pη Bzuq “ λ Bxp, Bzp “ 0, Bxu` Bzv “ 0. (4)

We choose boundary conditions on u suitable for lubrication applications: Dirich-
let boundary conditions are imposed on the velocity on tz “ 0u and tz “ hpxqu
in order to model shear effects. The boundary conditions are written:

@x P r0, Ls upx, 0q “ s and upx, hpxqq “ vpx, 0q “ vpx, hpxqq “ 0. (5)

Without loss of generality, the constant shear velocity s is supposed to be posi-
tive. For the lateral part of the boundary, it has been showed in [3] that only the

input flow Q “

ż hp0q

0

up0, ξq dξ needs to be prescribed. Observe that according

to the divergence-free condition and the boundary conditions on u, this flow is
constant on any “vertical” section of the domain:

Bx

˜

ż hpxq

0

upx, ξqdξ

¸

“ h1pxqupx, hpxqq
loooooooomoooooooon

“0

`

ż hpxq

0

Bxupx, ξqdξ “ ´

ż hpxq

0

Bξvpx, ξqdξ

“ ´vpx, hpxqq ` vpx, 0q “ 0,

thus

Q “ λ

ż hpxq

0

upx, ξqdξ, @x P p0, Lq. (6)

Remark 2.1. We use the Reynolds equation to describe the behavior of the
fluid. This equation is an approximation of the (Navier)-Stokes system for thin
domains (in which the height is much smaller than the length). The anisotropy
of the physical domain is therefore taken into account in this step. Further, the
equation is written down in (4) in a rescaled form in the domain Ω (with length
and height of the same order of magnitude). No assumption on the shape is
needed for the domain Ω. As we already stated, the parameter λ will allow us
to control the smallness of the physical domain.

2.1. Modelling one fluid in a thin domain

The usual procedure [3] is to integrate twice the first equation of (4) with respect
to z, make use of the boundary conditions (5) and of the fact that Bzp “ 0. This
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allows us to express u as a function of p:

upx, zq “
zpz ´ hpxqq

2η
λ Bxppxq ` s

ˆ

1´
z

hpxq

˙

. (7)

Then, putting this expression in the divergence-free equation leads to the Reynolds
equation:

λ Bx

ˆ

h3

12η
Bxp

˙

“ sBx

ˆ

h

2

˙

. (8)

A first boundary condition on p is deduced from the ones on u. In fact, the
choice of the input flow Q corresponds to a Neumann condition for p at x “ 0.
This condition can be determined as a function of Q by

Q “ λ

ż hp0q

0

up0, ξqdξ “ ´λ2Bxpp0q
hp0q3

12η
`
λshp0q

2
.

Let us denote w :“
12ηpλshp0q{2´Qq

λ2hp0q3
“ Bxpp0q.

Moreover, the solution p of (8) with the Neumann boundary condition
Bxpp0q “ w is defined up to a constant. We can thus choose ppLq “ 0 to
gain a well-defined pressure p. It is to be noticed that once p is computed from
(8), then (7) allows us to compute u, while the other component v of the velocity
field is obtained by:

vpx, zq “ ´

ż z

0

Bxupx, ξq dξ.

2.2. Modelling a mixture

Since we want to study the mixture of two fluids, we introduce an order
parameter ϕ describing the volumic fraction of one fluid in the flow. All physical
parameters can be written as functions of ϕ, in particular the viscosity η. We
assume that the function η satisfies η P C1pRq such that

Dpηm, ηM , η
1
M q P R3; @ϕ P R, 0 ă ηm ď ηpϕq ď ηM and η1pϕq ď η1M . (9)

A possible explicit form of the viscosity is given in the following Remark:

Remark 2.2. For ϕ P r´1, 1s, we can use a specific realistic law as a function
of the viscosities of the two fluids η1 and η2 (see [10] or [23]):

1

ηpϕq
“

1` ϕ

2η1
`

1´ ϕ

2η2
for ϕ P r´1, 1s, (10)

so that ϕ “ 1 and ϕ “ ´1 correspond respectively to the fluids of viscosity η1

and η2 only. However, we will not always be able to prove mathematically that ϕ
remains in the interval r´1, 1s (see [8]).
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The effects of a possible variation of the density in the mixture will not be taken
into account in this paper. Therefore, the density of the mixture is assumed to
be constant (i.e. the two densities of the two incompressible phases ρ1 and ρ2 are
supposed to be equal). Let us notice that due to the loss of the local conservation
equation for the density, the non-homogeneous case ρ1 ‰ ρ2 induces further
difficulties (see [9]).
We choose the Cahn-Hilliard equation in order to describe the evolution of ϕ.
This equation consists of both a transport term, taking the mechanical effects
into account, and a diffusive term modelling the chemical effects. The Cahn-
Hilliard equation is written in the rescaled domain Ω:

λ Bt ϕ` u ¨∇ϕ´ 1

λPe
div pBpϕq∇µq “ 0, (11)

µ “ ´
α2

λ2
∆ϕ` F 1pϕq. (12)

Recall that the constant λ is a rescaling constant allowing us to follow the depen-
dance on the domain size. The variable µ is the chemical potential, Bpϕq is called
mobility, Pe is the Péclet number, α is a non-dimensional parameter measuring
the thickness of the diffuse interface, and the function F is called Cahn-Hilliard
potential. Physical considerations show that F must have a double-well struc-
ture, each of the wells representing one of the two fluids. A rational choice for F
is given by a logarithmic form (for more details, we refer to [16] or [20])

F pξq “ 1´ ξ2 ` c pp1` ξq logp1` ξq ` p1´ ξq logp1´ ξqq ,

for some constant 0 ă c ă 1, or its polynomial approximation

F pξq “ p1´ c1ξ2q2,

where c1 is another constant. These physically realistic potentials share several
mathematical properties. In the following, we prove mathematical results for
potentials F having these properties:

• The function F is supposed to be regular (e.g. of class C2pRq).

• Since F is a physical potential, it is bounded from below. Moreover, only
the derivative of F occurs in the equations, therefore the addition of a
constant does not change the equations. It is thus realistic to make the
following assumption:

DF0 ą 0 ; @ξ P R F pξq ě F0. (13)

• The convexity of the potential corresponds to the stability of the mixture.
Usual potentials contain some stable and unstable regions (see for example
Figure 2). In order to include such cases, we impose:

DF5 ě 0 ; @ξ P R F 2pξq ě ´F5. (14)
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• Moreover, the following hypothesis on the growth of the potential is im-
posed:

DF1, F2 ą 0 Dr ą 1 ; @ξ P R

|F 1pξq| ď F1|ξ|
r ` F2 and |F 2pξq| ď F1|ξ|

r´1 ` F2.
(15)

This hypothesis is satisfied for any polynomial function.

• At last, we state a generalization of the convexity:

@γ P R DF3pγq ą 0, F4pγq ě 0 ;

@ξ P R pξ ´ γqF 1pξq ě F3pγqF pξq ´ F4pγq.
(16)

ϕ

F pϕq

Figure 2: Possible shape of the potential F pϕq

These assumptions are satisfied by a function of the form F pϕq “
ϕ4

4
´
ϕ2

2
`F0

(as in Figure 2), which can be used as a model case.
As far as the mobility B is concerned, it is supposed to be regular B P C2pRq,
positive, and bounded from above and from below:

DpBm, BM q P R2 ; @ξ P R 0 ă Bm ď Bpξq ď BM . (17)

Let us mention that other types of functions B can be considered, in particular
the degenerate case Bpξq “ p1´ ξ2qσ, with σ ě 0, which has been studied in [8]
and in [17], but introduces further mathematical difficulties.
Equations (11)-(12) must be equipped with boundary conditions on ϕ and µ.
We are interested here in injection phenomena, which arise for example in lu-
brication or polymer injection problems. To this end, it is important to control
the composition of the input. Thus we use Dirichlet boundary conditions on
some part of the boundary, namely where the fluid is supplied. For the other
part of the boundary, classical Neumann boundary conditions for both ϕ and µ
are considered. Let us observe that in previous works ([8] and [12]) Neumann
boundary conditions were imposed on the whole boundary.
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Ω
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Figure 3: Domain Ω and notations for the boundary

Let us define (see Figure 3)

Γl “ tp0, zq P R2, 0 ă z ă hp0qu, Γr “ tpL, zq P R2, 0 ă z ă hpLqu,

Γb “ tpx, 0q P R2, 0 ă x ă Lu, Γt “ tpx, zq P R2, z “ hpxqu,

Γ0 “ tpx, zq P BΩ, x ą 0u.

Thus, the boundary conditions are written, denoting n the exterior normal to
the domain, as follows:

ϕ|Γl
“ ϕl, µ|Γl

“ 0 and
Bϕ

Bn

ˇ

ˇ

ˇ

Γ0

“ 0,
Bµ

Bn

ˇ

ˇ

ˇ

Γ0

“ 0, (18)

for some given boundary value ϕl defined on Γl, satisfying the following hypoth-
esis:

Hypothesis 2.3. We assume that ϕl P H
7{2pΓlq satisfies

ϕ1lp0q “ ϕ1lphp0qq “ 0, |ϕ1l|L2pΓlq ă ε̄. (19)

for some small ε̄ ą 0 depending on all the data. We will explain further how ε̄
is determined (see Proposition 5.12).

Finally, let us define the initial condition: ϕ|t“0 “ ϕ0 P H
3pΩq, where ϕ0 is

supposed to be satisfying the same boundary conditions as ϕ. Compatibility

conditions also imply that µ0 defined by µ0 “ ´
α2

λ2 ∆ϕ0 ` F 1pϕ0q satisfies the
same boundary conditions as µ.

2.3. Modelling a mixture in thin films

A diphasic flow in a thin domain is described by a modified Reynolds system
of the form (4), where the viscosity η is not constant anymore but depends on
the order parameter ϕ. Because of the non-constant viscosity, the coefficients
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in the Reynolds equation (which depend on η) depend on ϕ. Let us introduce
the following expressions that will be useful in the following:

apx, zq “

ż z

0

dξ

ηpϕpx, ξqq
, bpx, zq “

ż z

0

ξdξ

ηpϕpx, ξqq
, cpx, zq “

ż z

0

ξ2dξ

ηpϕpx, ξqq
,

(20)
and

rapxq “ apx, hpxqq, rbpxq “ bpx, hpxqq, rcpxq “ cpx, hpxqq,

for all px, zq P Ω. We also define:

rdpxq “ rcpxq ´
rbpxq2

rapxq
and repxq “

rbpxq

rapxq
. (21)

Following the same procedure as in Section 2.1, we integrate twice the first
equation of (4) with non-constant viscosity and using the boundary conditions,
we obtain for all px, zq P Ω:

upx, zq “

˜

bpx, zq ´
rbpxq

rapxq
apx, zq

¸

λ Bxp pxq `

ˆ

1´
apx, zq

rapxq

˙

s, (22)

vpx, zq “ ´

ż z

0

Bxupx, ξq dξ. (23)

We use the fact that u is divergence-free and the boundary conditions in order
to write

ż hpxq

0

Bxupx, zq dz “ Bx

˜

ż hpxq

0

upx, zq dz

¸

“ 0. (24)

After integrating (22), we obtain

λ Bx

´

rdpxqBxp pxq
¯

“ sBx prepxqq , (25)

where the coefficients rd and re are given by (21). Therefore the whole system
(Reynolds/ Cahn-Hilliard) is written:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

λ Bxprd Bxpq “ s Bxre (26a)

u “

˜

b´
arb

ra

¸

λBxp` s
´

1´
a

ra

¯

(26b)

vp¨, zq “ ´

ż z

0

Bxup¨, ξqdξ (26c)

λ Bt ϕ` u Bxϕ` v Bzϕ´
1

λPe
divpBpϕq∇µq “ 0 (26d)

µ “ ´
α2

λ2
∆ϕ` F 1pϕq. (26e)

The coefficients a, b, ra, rb, rd, re are explicit functions of ϕ (given by (20)–(21)).
The functions B, F are also known functions of ϕ. The quantities Pe, α are
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physical constants. The boundary conditions on ϕ and µ are given in (18).
Let us notice that equations (26b)-(26c) imply that the following boundary
conditions are satisfied for u:

upx, 0q “ s, upx, hpxqq “ vpx, 0q “ vpx, hpxqq “ 0, (27)

λ

ż hp0q

0

up0, ξq dξ “ Q. (28)

As far as the pressure p is concerned, we impose an homogeneous Dirichlet
boundary condition at x “ L and a Neumann boundary condition at x “ 0,
which is given as a function of Q and s. These boundary conditions are written:

w :“ Bxpp0q “

Q´ sλ

˜

hp0q ´
1

rap0q

ż hp0q

0

ap0, ξq dξ

¸

λ2

˜

ż hp0q

0

bp0, ξq dξ ´
rbp0q

rap0q

ż hp0q

0

ap0, ξq dξ

¸ , ppLq “ 0.

(29)

3. Statement of the main result

3.1. Main theorem

Notations 3.1. Let us define some notations and function spaces.

(i) For the usual Sobolev spaces, we denote by | ¨ |p the Lp-norm in Ω, and
by } ¨ }s the Hs-norm in Ω. We also introduce ~ ¨ ~2 which contains the
second-order derivatives:

~ ¨ ~2
2 “ |Bz ¨ |

2
2 ` |B

2
x ¨ |

2
2 ` |B

2
xz ¨ |

2
2 ` |B

2
z ¨ |

2
2.

(ii) Let us define the following function spaces:

X pΩq “ tf P H1pΩq X L8pΩq, Bzf P H
1pΩqu,

Φ1
0 “ tφ P DpΩ̄q, φ|Γl

“ 0u
H1
pΩq
.

We introduce the weak form of (26).

Problem 3.2. Let ϕl P H
7{2pΓlq, and ϕ0 P H

3pΩq satisfying (18), and T ą 0.
Find pp, u, v, ϕ, µq such that

- the following regularity is satisfied:

p P L8p0, T ;H2p0, Lqq, u P L8p0, T ;X pΩqq, v P L8p0, T ;L2pΩqq,

ϕ P L8p0, T ;H1pΩqq X L2
locp0, T ;H3pΩqq X C0pp0, T q;H1pΩqq,

µ P L2
locp0, T ; Φ1

0q.
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- the velocity field uϕ “ pu, vq is given as a function of ϕ by (26a), (26b),
(26c) equipped with the boundary conditions (27), (28) and (29).

- for any ψ P Φ1
0,

λ

ż

Ω

Btϕψ `

ż

Ω

1

λPe
Bpϕq∇µ∇ψ `

ż

Ω

uϕ ¨∇ϕψ “ 0, (30)

with

µ “ ´
α2

λ2
∆ϕ` F 1pϕq. (31)

- the initial condition ϕ|t“0 “ ϕ0 is satisfied as well as the boundary condi-
tions (18) for ϕ.

The following sections are dedicated to the proof of the main theorem:

Theorem 3.3. Let T ą 0, ϕl satisfying Hypothesis (2.3), ϕ0 P H
3pΩq satisfying

(18), F and η satisfying the assumptions stated in Section 2.2. If λ is small
enough then there exists a solution pp, u, v, ϕ, µq to Problem 3.2.

3.2. Sketch of the proof

We present here the sketch of the proof of the main theorem. All the details
and computations are given in Sections 4 and 5. The proof is divided into
two main parts, since the Reynolds equation and the Cahn-Hilliard are treated
separately.
Step 1. As far as the Reynolds equation is concerned, we prove the following
proposition:

Proposition 3.4. Assume that the viscosity η satisfies (9). For any ϕ P H1pΩq,
the Reynolds equation (26a) equipped with the boundary conditions (29) admits
a unique solution which satisfies

Bxp P H
1p0, Lq.

The velocity field u “ pu, vq given as a function of p by (26b)-(26c) satisfies

u P H1pΩq X L8pΩq and v P L2pΩq, with Bzv P L
2pΩq.

Moreover, we have the following estimates

|u|8 ď C and |v|2 ď C}ϕ}1, (32)

where the constant C does not depend on the scaling defined by λ.

Let us sketch the main steps of the proof of Proposition 3.4:

11



• The Reynolds equation can be solved explicitly, so that p is given as a
function of the coefficients rd and re (given as functions of ϕ by (21)):
recalling definition (29) of w, we can integrate the Reynolds equation
once and obtain

λ rd Bxp “ s re` λ rdp0qw ´ s rep0q, (33)

where the coefficients rdp0q and rep0q only depend on ϕl and are thus known.

If rd does not vanish, we compute formally Bxp, and then p using the
boundary condition ppLq “ 0. In order to obtain estimates on the pressure,

we have to prove that the coefficients rd and re are regular enough (see

Lemma 4.1), and that rdpϕq is greater than a strictly positive constant (i.e.
the operator Bxpd Bx¨q must be coercive, see Lemma 4.2).

• As far as the velocity is concerned, u is given by

u “ λ fBxp` g,

where the coefficients are given by f “
´

b ´
rb

ra
a
¯

and g “
´

1´
a

ra

¯

s

(and a, b, ra, rb are defined in (20)). It is enough to prove the regularity
of f and g in order to deduce the needed estimate on u from the estimate
on Bxp (see Lemma 4.3).

• The velocity v is given by

vpx, zq “ ´

ż z

0

Bxupx, ξq dξ,

and the regularity of v follows from the regularity of u (see Lemma 4.4).

Step 2. As far as the Cahn-Hilliard equation is concerned, we proceed as in the
earlier works on Cahn-Hilliard equation (e.g. [8]), and we apply the Galerkin
method in order to prove the existence of a solution to the system (30)-(31). This
process consists in building approximate solutions pϕn, µnq in finite dimension
(see Section 5.2), for which the existence follows from the Cauchy-Lipschitz the-
orem. For these approximate solutions pϕn, µnq, we prove the following propo-
sition (see Section 5.5):

Proposition 3.5. For all 0 ď t ď T , let

Yptq “ α2

2λ2
|∇ϕnptq|22 `

ż

Ω

F pϕnptqq,

Zptq “ α2

2λ2
|∇ϕnptq|22 ` |∇µnptq|22 ` |∆ϕnptq|22 `

ż

Ω

F pϕnptqq.

Then the following estimate is satisfied:

Y 1ptq ` C1Zptq ď fpYptqqZptq ` C2,

where C1, C2 are positive constants, and f : R Ñ R is a continuous function
satisfying fp0q “ 0.

12



Let us emphasize the main features of the proof:

• Although estimates on the Cahn-Hilliard equation are similar to the ones
in [8] or [13], they involve supplementary terms due to the different bound-
ary conditions: because of the non-homogeneous Dirichlet condition on ϕn
on the left-hand side of the domain (fluid injection), the conservation of
the quantity of each fluid is not satisfied anymore (in the sense that the

mean value mpϕnq “
1
|Ω|

ż

Ω

ϕn is not constant with respect to time). For

example, since mpϕnq is not constant, we cannot apply classical inequali-
ties on ϕn´mpϕnq, such as the Poincaré inequality, and we have to work
with the boundary value of ϕn on the left-hand side of the domain (see
Sections 5.3 and 5.4).

• In order to control the boundary and source terms with the ones on the
left-hand side of the estimate, we have to work in adequate function spaces
and choose in a suitable way the coefficients in front of each term. This
is obtained only by imposing a smallness assumption on λ which depends
on all other data of the problem.

From Proposition 3.5, we deduce the convergence of the linear terms. However,
it is not enough to conclude the convergence of the nonlinear terms and the
initial condition. To this end, we need more regularity on ϕn and will prove the
following proposition:

Proposition 3.6. There exists C ą 0 such that for any T ą 0:

}ϕn}L2p0,T ;H3pΩqq ď CT ` C,

›

›

›

›

dϕn
dt

›

›

›

›

L2p0,T ;H´1pΩqq

ď CT ` C.

This proposition allows us to deduce the convergence of all terms in adequate
function spaces, using classical compacity results from [25].

4. About the Reynolds equation

The letter C will then denote any constant depending on physical parameters
(s, Q, ηM , ηm, Pe, α, F1, F2, F3, F4, Bm, L, hpxq,...), but independent of the
unknowns (u, p, ϕ, µ) and of λ.

4.1. Regularity of the coefficients

Lemma 4.1. Assume that the viscosity η satisfies (9). If ϕ P H1pΩq, the
coefficients defined in (20), (21) have the following regularity:

a, b, c P X pΩq,

ra, rb, rc, rd, re P H1p0, Lq.

13



Proof. Assume ϕ P H1pΩq. The terms a, b, c are of the form

ż z

0

ξi{ηpϕpx, ξqq dξ,

for i “ 0, 1, 2 (see definition (20) of a, b, c). We will present the details of the
proof for the case i “ 1. The same computations can be used to obtain the
regularity results for i “ 0, i “ 2. Let

bpx, zq “

ż z

0

ξ

ηpϕpx, ξqq
dξ.

Let us prove that b P X pΩq for any ϕ P H1pΩq.

Ź First we prove that b P L2pΩq : for any px, zq P Ω, we have

bpx, zq2 “

ˆ
ż z

0

ξ

ηpϕpx, ξqq
dξ

˙2

ď

´ 1

ηm

ż z

0

ξdξ
¯2

ď Cz4.

After integrating with respect to z and x, we get

ż L

0

ż hpxq

0

bpx, zq2dz dx ď C.

Ź Next, we show that b P H1pΩq and Bzb P H
1pΩq:

– On one hand,

Bxbpx, zq “ ´

ż z

0

ξη1pϕpx, ξqq

ηpϕpx, ξqq2
Bxϕpx, ξq dξ,

with Bxϕ P L
2pΩq. Let px, zq P Ω. Using hypothesis (9), we compute

|Bxbpx, zq|
2 “

˜

ż z

0

ξη1pϕpx, ξqq

ηpϕpx, ξqq
Bxϕpx, ξqdξ

¸2

ď
η1M

2

η2
m

ż z

0

ξ2dξ

ż z

0

|Bxϕpx, ξq|
2dξ ď Cz3

ż hpxq

0

|Bxϕpx, ξq|
2dξ.

After integrating with respect to z and then with respect to x, we
get

ż hpxq

0

|Bxbpx, yq|
2dy ď C

ż hpxq

0

|Bxϕpx, ξq|
2dξ,

|Bxb|
2
2 “

ż L

0

ż hpxq

0

|Bxbpx, yq|
2dy dx ď C|Bxϕ|

2
2 ă 8.

It follows that Bxb P L
2pΩq.

– On the other hand, Bzbpx, zq “ z{ηpϕpx, zqq P H1pΩq, since ϕ P

H1pΩq and using (9).

14



Ź Next we show that b P L8pΩq: since Bzb P L
2pΩq, we can write

bpx, zq “ bpx, 0q `

ż z

0

Bξbpx, ξq dξ.

By definition of b, we know that bpx, 0q “ 0, @x P r0, Ls. Therefore, the
usual trace theorem for the Sobolev space H1pΩq implies that

|bpx, zq|2 ď z

ż z

0

pBξbpx, ξqq
2dξ ď hM

ż hpxq

0

pBξbpx, ξqq
2dξ “ hM |Bzb|

2
L2p0,hpxqq

ď C}Bzb}
2
H1{2p0,hpxqq ď C}Bzb}

2
1,

thus
|b|28 ď C}Bzb}

2
1 ă 8.

It remains to prove the regularity of ra, rb, rc, rd, re.

Ź For the coefficients of the form rapxq “ apx, hpxqq, rbpxq “ bpx, hpxqq, rcpxq “
cpx, hpxqq, H1-regularity can be obtained using the same procedure as in
the first part of the proof.

Ź For rd and re, the key point of the proof is to observe that H1p0, Lq (which
is embedded in L8p0, Lq) is an algebra:

pf, gq P H1p0, Lq2 ñ fg P H1p0, Lq.

Recalling the definitions rd “

˜

rc´
rb2

ra

¸

and re “
rb

ra
, and using the fact

that ra, rb, rc belong to H1p0, Lq, we need to show that 1{ra remains bounded.
Since η ď ηM , we have

rapxq “

ż hpxq

0

1

ηpϕpx, ξqq
dξ ě

hm
ηM

i.e.
1

ra
ď C. (34)

From the regularity of ra, rb, rc, from the algebra structure and from (34),
we deduce that

rd P H1p0, Lq, re P H1p0, Lq.

4.2. Coercivity of the operator

Lemma 4.2. Assume that the viscosity η satisfies (9). Let rd be defined by (21).
It satisfies the following estimate:

@x P p0, Lq, rdpxq ě δ :“
h3
m

12ηM
ą 0. (35)

15



Proof. By definition (21), rdpxq can be written in the form:

rdpxq “ rcpxq ´
rbpxq2

rapxq
“

ż hpxq

0

z2

ηpx, zq
dz ´

˜

ż hpxq

0

z

ηpx, zq
dz

¸2

ż hpxq

0

1

ηpx, zq
dz

.

In order to prove the assertion, it suffices to prove that there exists δ ą 0 such
that

˜

ż h

0

z2

η
dz

¸˜

ż h

0

1

η
dz

¸

´

˜

ż h

0

z

η
dz

¸2

ě δ

˜

ż h

0

1

η
dz

¸

.

Let us denote by P the following polynomial

P : ν ÞÑ

ż hpxq

0

˜

z
a

ηpϕpx, zqq
`

ν
a

ηpϕpx, zqq

¸2

dz

“

ż hpxq

0

z2

ηpϕpx, zqq
`

ν2

ηpϕpx, zqq
`

2zν

ηpϕpx, zqq
dz.

From (9), we get

P pνq ě
1

ηM

ż hpxq

0

´

z2 ` 2zν ` ν2
¯

dz “
1

3ηM
phpxq3 ` 3hpxq2ν ` 3hpxqν2q.

A simple study of the right-hand side polynomial proves that

@ν P R, @x P p0, Lq, hpxq2 ` 3hpxqν ` 3ν2 ě
hpxq2

4
,

thus

P pνq ě
hpxq3

12ηM
, i.e. P pνq ´

hpxq3

12ηM
ě 0,

therefore the discriminant of the polynomial

P pνq ´
hpxq3

12ηM
“ ν2

ż h

0

1

η
` 2ν

ż h

0

z

η
`

ż h

0

z2

η
´
hpxq3

12ηM

is negative:

4

˜

ż hpxq

0

zdz

ηpϕpx, zqq

¸2

´4

˜

ż hpxq

0

dz

ηpϕpx, zqq

¸«˜

ż hpxq

0

z2dz

ηpϕpx, zqq

¸

´
hpxq3

12ηM

ff

ď 0,

that is to say
˜

ż h

0

z2

η
dz

¸˜

ż h

0

1

η
dz

¸

´

˜

ż h

0

z

η
dz

¸2

ě
h3
m

12ηM

˜

ż h

0

1

η
dz

¸

, i.e. rd ě
h3
m

12ηM
ą 0.

The two previous lemmas 4.1 (regularity of the coefficients) and 4.2 (coercivity
of the operator) with formula (33) imply that Bxp P H

1p0, Lq, thus p P H2p0, Lq.
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4.3. Estimates of |u|8 and |v|2

Lemma 4.3. Assume that the viscosity η satisfies (9). Assume ϕ P H1pΩq.
The horizontal velocity u given by (26b) satisfies

|u|8 ď C.

Proof. The regularity of u follows from the regularity of p, equation (26b) and
the regularity of the coefficients (Lemma 4.1):

u “ pb´
arb

ra
qλ Bxp` sp1´

a

ra
q P XpΩq.

Moreover, we know that u is a combination of coefficients of the form

ż z

0

ξ{ηpϕqdξ.

Indeed

|u|8 ď

¨

˝|b|8 `
|a|8|rb|8
min
xPp0,Lq

rapxq

˛

‚λ|Bxp|8 ` s

¨

˝1`
|a|8

min
xPp0,Lq

rapxq

˛

‚, (36)

and Bxp is given by (33), thus:

λ|Bxp|8 ď
1

min
xPp0,Lq

rdpxq

´

s|re|8 ` λ|rdp0q||w| ` s|rep0q|
¯

. (37)

Let us obtain estimates for these coefficients.

Ź Using the boundedness hypothesis on η, and applying the Cauchy-Schwarz
inequality and the fact that @x P p0, Lq, hpxq ď hM , we can write for all
px, zq P Ω

apx, zq “

ż z

0

dξ

ηpϕpx, ξqq
ď
hM
ηm

ď C, thus |a|8, |ra|8 ď C. (38)

Ź Similar computations for b, c and rb, rc give

|b|8, |rb|8 ď C, |c|8, |rc|8 ď C. (39)

Ź Recalling definition (21) of re, and using (34), it follows from (39):

|re|8 “
|b|8

min
xPp0,Lq

rapxq
ď C. (40)

Ź We compute also from (29)

λ|w| ď C. (41)
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Thus, using all these estimates in (37), we get

λ|Bxp|8 ď C, (42)

and combined with (36) and obvious estimates for a, ra, b, rb, we obtain the
needed estimate:

|u|8 ď C.

Lemma 4.4. Assume that the viscosity η satisfies (9). Assume ϕ P H1pΩq.
Then the vertical velocity v given by (26c) satisfies

|v|2 ď C}ϕ}1.

Proof. The regularity of v follows from the regularity of u, equation (26c) and
the regularity of the coefficients (Lemma 4.1):

vpx, zq “ ´

ż z

0

Bxupx, ξqdξ.

From the Cauchy-Schwarz inequality, we deduce that

|v|2 ď hM |Bxu|2. (43)

Let us introduce the coefficients f “ b´
arb

ra
and g “ 1´

a

ra
, so that u “ λfBxp`sg.

Therefore
|Bxu|2 ď λ|Bxf |2|Bxp|8 ` λ|f |8|B

2
xp|2 ` s|Bxg|2, (44)

and B2
xp is given by taking the derivative of (33) with respect to x:

λ|B2
xp|2 ď

1

min
xPp0,Lq

rdpxq

´

s|Bxre|2 ` λ|Bx rd|2|Bxp|8

¯

. (45)

Let us obtain estimates for each coefficient separately:

Ź We have
|f |8 ď |rb|8 ` C|a|8|rb|8. (46)

Ź It remains to obtain estimates of the derivatives of the coefficients with

respect to x. We can compute Bxa “

ż y

0

η1pϕq

ηpϕq2
Bxϕ, and the Cauchy-

Schwarz inequality yields

|Bxa|
2
2 ď

η1M
2

η4
m

ż

Ω

ˆ
ż y

0

Bxϕpx, zq dz

˙2

ď C

ż

Ω

ż y

0

|Bxϕ|
2 ď C}ϕ}21, (47)

and similar estimates for all the other coefficients:

|Bxa|2, |Bxra|2 ď C}ϕ}1,

|Bxb|2, |Bxrb|2 ď C}ϕ}1,

|Bxc|2, |Bxrc|2 ď C}ϕ}1.

(48)
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Ź Let us write

Bx

´a

ra

¯

“
Bxara´ a Bxra

ra2
.

From (34), we know that ra ě
hm
ηM

. This estimate combined with (38) and

(48) suffices to prove that
ˇ

ˇ

ˇ
Bx

´a

ra

¯
ˇ

ˇ

ˇ

2
ď C}ϕ}1, (49)

and
ˇ

ˇ

ˇ

ˇ

ˇ

Bx

˜

rb

ra

¸
ˇ

ˇ

ˇ

ˇ

ˇ

2

ď C}ϕ}1. (50)

Ź Since

Bxd “ Bxc´ Bxrb
rb

ra
´rbBx

˜

rb

ra

¸

, Bxe “ Bx

˜

rb

ra

¸

,

Bxf “ Bxb´ Bxa
rb

ra
´ aBx

˜

rb

ra

¸

, Bxg “ Bx

´a

ra

¯

,

(51)

it follows, using (48), (49), (50) in (51), that

|Bx rd|2 ď C}ϕ}1, |Bxre|2 ď C}ϕ}1,

|Bxf |2 ď C}ϕ}1, |Bxg|2 ď C}ϕ}1.
(52)

Putting (35), (52), (37) in (45) and (44), we deduce an estimate for each of the
three terms in (44):

Ź The first term is estimated by:

λ|Bxf |2|Bxp|8 ď C}ϕ}1.

Ź For the second term, we have:

|f |8
δ

´

s|Bxre|2 ` λ|Bx rd|2|Bxp|8

¯

ď C}ϕ}1.

Ź The third term |Bxg|2 is exactly estimate (52).

Therefore, using (43) and these three estimates for |Bxu|2, we obtain:

|v|2 ď C|Bxu|2,

which proves the lemma.

Remark 4.5. Observe that it is not straightforward to prove that v P L8pΩq if ϕ
only lies in H1pΩq. We get easily |v|8 ď C|Bxu|8, however the H1-regularity
of ϕ is not sufficient to conclude.

Remark 4.6. Since (26a)-(26b)-(26c) are steady-state equations, the constants
in the previous estimates are also independent of time, so that the L8pΩq-
and L2pΩq-estimates of Lemma 4.3 and 4.4 can also be written in L8p0, T ;L8pΩqq
and L8p0, T ;L2pΩqq for any T ą 0.
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5. About the Cahn-Hilliard equation

5.1. Useful results and inequalities

5.1.1. Boundary conditions and lift operator

We need a lift operator for the boundary value ϕl of the order parameter ϕ.

Lemma 5.1. Let ϕl P H7{2pΓlq satisfy Hypothesis 2.3. There exists ϕ̂l P
H7{2pΩq such that the following conditions are satisfied

ϕ̂l|Γl
“ ϕl, ∇ϕ̂l|Γ0

¨ n “ 0,

α2

λ2
∆ϕ̂l|Γl

“ F 1pϕlq, ∇∆ϕ̂l|Γ0
¨ n “ 0.

Proof. For any px, zq P Ω, let us define ϕ̂lpx, zq “ χpxqϕl

´

hp0qz
hpxq

¯

`F , where F
is the solution of the following problem:

$

’

’

&

’

’

%

∆F “ λ2

α2ψpxqF
1

´

ϕl

´

hp0qz
hpxq

¯¯

´
hp0q
hpxqχpxqϕ

2
l

´

hp0qz
hpxq

¯

in Ω,

F |Γl
“ 0,

∇F |Γ0
¨ n “ 0,

and the functions χ and ψ are smooth functions satisfying the following condi-
tions:

χp0q “ 1, χ1p0q “ 0, χ2p0q “ 0,

ψp0q “ 1,

@x P rε̃, Ls χpxq “ χ1pxq “ χ2pxq “ χ3pxq “ 0,

@x P rε̃, Ls ψpxq “ ψ1pxq “ 0.

By regularity of the Laplacian [19], it follows immediately that F P H7{2pΩq,
thus ϕ̂l P H

7{2pΩq.
Since h1pxq ” 0 for x P r0, ε̃s, the two last conditions imply that χh1 is identically
zero, and so are the other functions χ1h1, χ2h1, χ3h1, ψh1, ψ1h1 and χh2.

x
Lε̃

1 hpxqχ

ψ

Figure 4: Possible shapes of function χ and ψ

Let us check that this function ϕ̂l satisfies the claimed conditions:

• On Γl, F is zero, and since χp0q “ 1, ϕ̂l has the right value.
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• On Γ0, we know that ∇F |Γ0 ¨ n “ 0, and we have to treat separately the
three different boundaries for the other term:

– On Γb, Byϕ̂lpx, 0q “ χpxq hp0qhpxqϕ
1
lp0q “ 0 by (19).

– On Γt, h
1pxqBxϕ̂lpx, hpxqq ´ Byϕ̂lpx, hpxqq “ h1pxqχ1pxqϕlphp0qq ´

χpxqh
1
pxq2hp0q
hpxq ϕ1lphp0qq´χpxq

hp0q
hpxqϕ

1
lphp0qq “ 0 by (19) and using that h1χ1

is identically zero.

– On Γr, all the terms of Bxϕ̂lpL, yq contain either χpLq or χ1pLq, which
are both equal to zero.

Let us compute the Laplacian of ϕ̂l. In order to improve the readibility, we

denote Y “ hp0qy
hpxq :

∆ϕ̂l “χ
2pxqϕlpY q ´ 2

h1pxqY

hpxq
χpxqχ1pxqϕ1lpY q `

h1pxq2Y 2

hpxq2
χpxqϕ2l pY q

´
h2pxqh2pxq ´ 2h1pxq2hpxq

hpxq3
Y χ1pxqϕ1lpY q `���

���
��hp0q

hpxq
χpxqϕ2l pY q

`
λ2

α2
ψpxqF 1 pϕlpY qq

��
���

���
´
hp0q

hpxq
χpxqϕ2l pY q.

• We can compute the Laplacian on Γl: ∆ϕ̂lp0, yq “
λ2

α2F
1pϕlpyqq, since

χ1p0q “ χ2p0q “ 0, h1p0q “ 0 and ψp0q “ 1.

• For Γ0, we treat again each boundary separately:

– On Γb, we have to compute By∆ϕ̂l at px, 0q. Using that y “ 0 and
ϕ1lp0q “ 0, we obtain that By∆ϕ̂lpx, 0q “ 0.

– On Γt, we compute h1pxqBx∆ϕ̂l´By∆ϕ̂l at px, hpxqq. The terms in h1

are multiplied by either χ, χ1, χ2, χ3, ψ, or ψ1, and are therefore
identically zero. For the other terms, we use the same arguments
and that ϕ1lphp0qq “ 0 to conclude that the normal derivative of ∆ϕ̂l
is zero on Γt.

– On Γr, we observe that χpLq “ χ1pLq “ χ2pLq “ χ3pLq “ ψpLq “
ψ1pLq “ 0, thus Bx∆ϕ̂lpL, yq “ 0.

5.1.2. Useful inequalities

Sobolev embeddings. Let us recall the Poincaré inequality and usual Sobolev
embeddings.

Proposition 5.2 (Poincaré inequality). Let Ω Ă R2 defined by (2). For any
f P H1pΩq such that f |Γi

“ 0 on one of the three parts Γl, Γb, Γr of the
boundary,

|f |2 ď C|∇f |2. (53)
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Proposition 5.3 (Sobolev embeddings). Let Ω Ă R2 defined by (2). Then for
any 2 ď q ă `8, we have H1

0 pΩq ãÑ LqpΩq. More precisely, for any f P H1pΩq
with f |Γi

“ 0 on one of the three parts Γl, Γb, Γr of the boundary, we have

|f |q ď C}f}1. (54)

Equivalence of norms. (see [15] for a proof)

Proposition 5.4. Let f P H2pΩq such that f |Γi
“ 0 on one of the three parts Γl,

Γb, Γr of the boundary. We have

}f}2 ď C|∆f |2. (55)

Trace estimates. (see [2] for a proof)

Proposition 5.5. For any f P H1pΩq such that f |Γi “ 0 on one of the three
parts Γl, Γb, Γr of the boundary, we have

|f |L2pΓlq ď C|∇f |2.

Corollary 5.6. For ϕ P H2pΩq satisfying the boundary conditions (18), we can
apply this proposition to Bxϕ, since Bxϕ|Γr

“ 0, and deduce that

|Bxϕ|L2pΓlq ď C|∇Bxϕ|2,

and if we combine this relation with Proposition 5.4, we obtain

|Bxϕ|L2pΓlq ď C|∆ϕ|2. (56)

5.2. Galerkin approximations

Let us build Galerkin approximations of ϕ and µ. Since H1pΩq is a se-
parable Hilbert space, there exists an Hilbertian basis pψiqiě1 of H1pΩq. The
functions ψi can be chosen to be eigenfunctions of the Laplacian ´∆ with the
boundary conditions

Bψi
Bn
|Γ0
“ 0, ψi|Γl

“ 0,

and we denote by λi the corresponding eigenvalues. As far as the regularity of
the functions ψi is concerned, we have ψi P H

2pΩq (this result can be deduced
from [15]). We define Ψn “ Spanpψ1, ¨ ¨ ¨ , ψnq, and PΨn

the orthogonal projector
on Ψn in L2pΩq. As a projector, PΨn

satisfies:

pPΨnf, gq “ pf,PΨngq, @pf, gq P L2pΩq2, (57)

where p¨, ¨q denotes the scalar product in L2pΩq.
Recalling that ϕ̂l P H

7{2pΩq is a lifting of the boundary condition ϕl defined in
Lemma 5.1, we consider the following approximation of ϕ:

ϕnptq “
n
ÿ

i“1

βiptqψi ` ϕ̂l,

where βi are unknown functions to be determined. In this setting, ϕnp0q ´ ϕ̂l
is the orthogonal projection of ϕ0 ´ ϕ̂l on Ψn. Let us introduce the following
auxiliary function a, which will be useful in order to define µn:
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Proposition 5.7. There exists a P H1pΩq such that

a|Γl
“ F 1pϕlq, ∇a ¨ n|Γ0

“ 0.

Proof. Let us define a by apx, zq “ F 1
´

ϕl

´

hp0qz
hpxq

¯¯

. We check that a satisfies

the claimed conditions.

• On Γl, ap0, zq “ F 1pϕlpzqq.

• On Γb, Bzapx, 0q “ ´
hp0q
hpxqϕ

1
lp0qF

2pϕlp0qq “ 0 by (19).

• On Γt, the normal derivative is written h1pxqBxapx, hpxqq ´ Bzapx, hpxqq.
The two terms are again equal to zero thanks to (19).

• On Γr, BxapL, zq “ ´
h1pLqhp0qz
hpLq2 ϕ1l

´

hp0qz
hpxq

¯

F 2
´

ϕl

´

hp0qz
hpxq

¯¯

, which is also

zero since h1pLq “ 0.

Taking (30)-(31) into account, let us define pϕn, µnq as the solution of the
following weak problem:

Problem 5.8. Find ϕn “
n
ř

i“1

βiptqψi ` ϕ̂l and µn such that

λ

ż

Ω

Btϕnψ `

ż

Ω

1

λPe
Bpϕnq∇µn∇ψ `

ż

Ω

uϕn
¨∇ϕnψ “ 0, @ψ P Ψn, (58)

µn “ ´
α2

λ2
∆ϕn ` a` PΨnpF

1pϕnq ´ aq, (59)

with the initial condition ϕn|t“0 “ ϕ0 and the boundary conditions

µn|Γl
“ 0, ϕn|Γl

“ ϕl, ∇µn ¨ n|Γ0
“ ∇ϕn ¨ n|Γ0

“ 0, (60)

and where uϕn
is defined for each ϕn by the formulas (22)-(23) and (25).

This problem can indeed be obtained from (26) because the boundary term
vanishes, as proved in the following proposition.

Proposition 5.9. Let pϕn, µnq solution of Problem 5.8. Then the boundary
term coming from the integration by parts cancels:

ż

Γ

Bpϕnq∇µn ¨ nψ “ 0.
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Proof. Ź On Γ0, we can compute ∇µn ¨n|Γ0 , using that the functions ψi are
eigenfunctions of ´∆:

∇µn ¨ n|Γ0
“ ´

α2

λ2
∇∆ϕn ¨ n|Γ0

` ∇a ¨ n|Γ0
loooomoooon

“0 by Def. 5.7

`∇PΨn
pF 1pϕnq ´ aq ¨ n|Γ0

looooooooooooooomooooooooooooooon

“0, since PΨn pF
1pϕnq´aqPΨn

“ ´
α2

λ2
∇

˜

n
ÿ

i“1

βiλiψi

¸

¨ n|Γ0
` ∇∆ϕ̂l ¨ n|Γ0

loooooomoooooon

“0 by Lem. 5.1

.

Since ψi P Ψn for any i ď n, we have∇ψi¨n|Γ0 “ 0, we deduce∇µn¨n|Γ0 “

0.

Ź On Γl, the boundary term is also equal to zero, since ψ P Ψn, and thus
vanishes on Γl.

Observe that the weak formulation (58)-(59) is well-defined since ψi P H
1
0 pΩq

implies that µn P H
1pΩq. Indeed, the functions ψi are eigenfunctions of ´∆,

thus the regularity follows from definition (59).

Remark 5.10. Observe that the chosen approximation (59) of µ satisfies the
same boundary conditions as µ, because of the definition of ϕ̂l in Lemma 5.1.

Moreover, if it converges, it is towards µ “ ´α2

λ2 ∆ϕ`F 1pϕq, since PΨn
converges

towards the identity. Indeed, F 1pϕnq ´ a satisfies the right boundary conditions
in Φ1

0 (by construction of a, see Proposition 5.7):

Ź F 1pϕnq ´ a “ 0 on Γl,

Ź ∇pF 1pϕnq ´ aq ¨ n “ 0 on Γ0.

Lemma 5.11. For n P N, there exist tn ą 0 and pβiq1ďiďn P C1p0, tnq such that

ϕnptq “
n
ř

i“1

βiptqψi ` ϕ̂l is a solution of Problem 5.8.

Proof. Replacing ϕn by its expression as a function of βi, the system (58)-(59)
becomes:

λ
n
ÿ

i“1

β1iptq

ż

Ω

ψi ψ`

ż

Ω

1

λPe
B

˜

n
ÿ

i“1

βiptqψi ` ϕ̂l

¸

∇µn∇ψ

`

n
ÿ

i“1

βiptq

ż

Ω

u
t

n
ř

i“1
βiptqψi`ϕ̂lu

¨∇ψiψ “ 0, @ψ P Ψn,

µn “ ´
α2

λ2

n
ÿ

i“1

βiptqλiψi ` a` PΨn
F 1

˜

n
ÿ

i“1

βiptqψi ` ϕ̂l ´ a

¸

.

This formulation is an ordinary differential equation on pβiq1ďiďn. The func-
tions B and F 1 are of class C1 on R. Moreover, the function u as a function of ϕn
given by (26b)-(26c)-(26a) is also C1 on R` (with respect to time): indeed, uϕn
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is given as a combination of coefficients of the form

ż z

0

ξ{ηpϕnpx, ξqqdξ, and the

function η is C1 by assumption (9). The second component of the velocity v is
given as a function of u, and is also C1 on R`. Therefore, the Cauchy-Lipschitz
theorem ensures the existence of a unique solution pβiq1ďiďn on a time inter-
val r0, tnq.

Last, let us introduce another auxiliary function b, which is another lifting
of the boundary condition ϕl and will be used to apply Poincaré inequality:

Proposition 5.12. There exists b P H2pΩq such that for some small ε ą 0 that
will be determined later,

b|Γl
“ ϕl, ∇b ¨ n|Γ0

“ 0, |Bxb|2 ă ε.

Proof. Let us define b by bpx, zq “ ϕl

´

hp0qz
hpxq

¯

. Let us check that b satisfies the

claimed conditions. The first ones are the sames as in Proposition 5.7, and are
satisfied in the same way:

• On Γl, bp0, zq “ ϕlpzq.

• On Γb, Bzbpx, 0q “
hp0q
hpxqϕ

1
lp0q “ 0 by (19).

• On Γt, the normal derivative is written h1pxqBxbpx, hpxqq ´ Bzbpx, hpxqq.
The two terms are again equal to zero thanks to (19).

• On Γr, BxbpL, zq “ ´
h1pLqhp0qz
hpLq2 ϕ1l

´

hp0qz
hpxq

¯

, which is also zero since h1pLq “

0.

Last, we observe that

|Bxb|
2
2 “

ż

Ω

h1pxq2hp0q2z2

hpxq4

ˇ

ˇ

ˇ

ˇ

ϕ1l

ˆ

hp0qz

hpxq

˙
ˇ

ˇ

ˇ

ˇ

2

dxdz ď C|ϕ1l|
2
L2p0,1q,

and thus by (3) and (19), this term can be arbitrarily small. Therefore, in
order to ensure the smallness of |Bxb|2, we have to choose ε sufficiently small.
Therefore, this determines the smallness assumption on ε̄ in (19) in Hypothe-
sis 2.3.

5.3. Equation on ϕ

Let us now focus on obtaining estimates of ϕn, µn in appropriate function
spaces. In the sequel, we drop the subscripts n for the sake of readability, and
we write ϕ, µ instead of ϕn, µn.

Lemma 5.13. For ϕ and µ solutions of (58)-(60), the following applies:

λ
d

dt

˜

α2

2λ2
|∇ϕ|22 `

ż

Ω

F pϕq

¸

`

´ Bm
λPe

´ 1
¯

|∇µ|22

ď C

˜

´

|u|28 ` |v|
2
2

¯

|∆ϕ|22 ` |v|
2
2~b~

2
2

¸

.

(61)
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Proof. Let us take ψ “ µ P Ψn in the weak formulation (58). Using Definition
(59) for µ, we get

λ

ż

Ω

Btϕp´
α2

λ2
∆ϕ` a` PΨnpF

1pϕq ´ aqq
looooooooooooooooooooooooomooooooooooooooooooooooooon

“:A

`
1

λPe

ż

Ω

Bpϕq|∇µ|2
looooooooooomooooooooooon

“:B

“ ´

ż

Ω

u ¨∇ϕµ
looooooomooooooon

“:D

.

(62)
Let us obtain estimates for each term A, B, D:

Ź The A-term is composed of two parts:

A “ ´
α2

λ2

ż

Ω

Btϕ∆ϕ`

ż

Ω

Btϕa
loooooooooooooooomoooooooooooooooon

“:A1

`

ż

Ω

Bt ϕPΨn
pF 1pϕq ´ aqq

loooooooooooooomoooooooooooooon

“:A2

.

‹ For A1, we use integration by parts:

A1 “ ´
α2

λ2

ż

Ω

Btϕ∆ϕ`

ż

Ω

Btϕa

“
α2

2λ2

d

dt
|∇ϕ|22 ´

α2

λ2

ż

Γ

Btϕ∇ϕ ¨ n`
ż

Ω

Btϕa.

The boundary condition ∇ψi ¨ n|Γ0
“ 0, and the fact that ϕl is

independent of t allow us to treat the boundary term:

´
α2

λ2

ż

Γ

Btϕ
loomoon

“ 0 on Γl

∇ϕ ¨ n
loomoon

“ 0 on Γ0

“ 0,

thus

A1 “
α2

2λ2

d

dt
|∇ϕ|22 `

ż

Ω

Btϕa. (63)

‹ For the second term, observe that from the time-independency of ϕ̂l
and ψi P Ψn, it yields

PΨn
Bt ϕ “ PΨn

˜

n
ÿ

i“1

β1iptqψi

¸

“

n
ÿ

i“1

β1iptqψi “ Bt ϕ. (64)

Now, we use property (57) and (64):

A2 “ pBtϕ,PΨnpF
1pϕq´aqq “ pPΨnBt ϕ, F

1pϕq´aq “ pBt ϕ, F
1pϕq´aq.

Thus, A2 can be expressed as a time derivative plus a second term
which will cancel with the last term in (63):

A2 “

ż

Ω

Bt ϕF
1pϕq ´

ż

Ω

Btϕa “
d

dt

ż

Ω

F pϕq ´

ż

Ω

Btϕa. (65)

26



Ź The B-term is trivially estimated using that Bpϕq ě Bm (see (17)):

B “
1

λPe

ż

Ω

Bpϕq|∇µ|2 ě Bm
λPe

|∇µ|22. (66)

Ź For the D-term, we split it into two terms:

D “

ż

Ω

uBxϕµ
loooomoooon

“D1

`

ż

Ω

vByϕµ
loooomoooon

“D2

.

‹ We use Poincaré inequality (53) and Young’s inequality

D1 “

ż

Ω

uBxϕµ ď |u|8|Bxϕ|2|µ|2 ď C|u|8|Bxϕ|2|∇µ|2

ď
1

2
|∇µ|22 ` C|u|28|Bxϕ|22.

Now, observe that Bxϕ is zero on Γr, and thus the Poincaré inequality
yields

|Bxϕ|
2
2 ď L|B2

xϕ|
2
2 ď C|∆ϕ|22.

Combining these two estimates, we obtain

D1 ď
1

2
|∇µ|22 ` C|u|28|∆ϕ|22. (67)

‹ For D2, we apply Hölder’s inequality with two exponents q and q1

strictly greater than 2 such that 1
q`

1
q1 “

1
2 and the Sobolev inequality

(54) for |µ|q1 with the Poincaré inequality (53):

D2 “

ż

Ω

vByϕµ ď |v|2|Byϕ|q|µ|q1 ď C|v|2|Byϕ|q}µ}1 ď C|v|2|Byϕ|q|∇µ|2.

Now, we use (54) for |Byϕ|q, and Young’s inequality

D2 ď C|v|2}Byϕ}1|∇µ|2 ď
1

2
|∇µ|22 ` C|v|22}Byϕ}21.

It remains to apply (55) with a function equals to zero on Γl. This
is done using b defined in Definition 5.12. Since }Bypϕ ´ bq}1 ď
C|∆pϕ´ bq|2, we have

D2 ď
1

2
|∇µ|22 ` C|v|22p|∆ϕ|22 ` ~b~2

2q. (68)

Putting (63), (65), (66), (67), (68) into (62), and rearranging terms, we get

λ
d

dt

˜

α2

2λ2
|∇ϕ|22 `

ż

Ω

F pϕq

¸

`

´ Bm
λPe

´ 1
¯

|∇µ|22

ď C

˜

´

|u|28 ` |v|
2
2

¯

|∆ϕ|22 ` |v|
2
2~b~

2
2

¸

.

(69)

This proves inequality (61).
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5.4. Equation on µ

Lemma 5.14. For ϕ and µ solutions of (58)-(60), the following inequality
applies:

α2

λ2
|∇ϕ|22`F3p0q

ż

Ω

F pϕq ď
C

λ2
|∆ϕ|22`

1

2
|∇µ|22`C|∇ϕ|2r2 `C|∇ϕ|22`Tl. (70)

where Tl is independent of ϕ, µ and of time t, and is given by:

Tl “ C
`

1` }b}21 ` |ϕ̂l|
2
2 ` }b}

2r
1

˘

` |a|2|ϕ̂l|2 ` C

ˆ

1

λ2
` 1

˙

}b}21.

Proof. If we multiply (59) by ϕ, we get

pµ, ϕq
loomoon

“:A

“ p´
α2

λ2
∆ϕ` a, ϕq

looooooooomooooooooon

“:B

`pPΨn
pF 1pϕq ´ aq, ϕq

looooooooooomooooooooooon

“:D

. (71)

As before, let us treat each term separately.

Ź For B, we use integration by parts, and obtain:

B “
α2

λ2
|∇ϕ|22 ´

α2

λ2

ż

Γ

ϕ∇ϕ ¨ n
loooooooomoooooooon

“:B1

`

ż

Ω

aϕ
loomoon

p‹q

. (72)

Observe that since ∇ϕ ¨ n|Γ0
“ 0, the boundary term B1 is zero on ΓzΓl.

Using (56) and Young’s inequality, it follows:

|B1| “
α2

λ2

ˇ

ˇ

ˇ

ˇ

ż

Γl

ϕl Bxϕ

ˇ

ˇ

ˇ

ˇ

ď
α2

λ2
|ϕl|L2pΓlq|Bxϕ|L2pΓlq

ď
C

λ2
|ϕl|L2pΓlq|∆ϕ|2 ď

C

λ2
p|∆ϕ|22 ` }b}

2
1q,

(73)

where we used b as a lift of ϕl.

Ź For the D-term, let us use the projector property (57) and the fact that
ϕ´ϕ̂l P Ψn (i.e. PΨnpϕ´ϕ̂lq “ ϕ´ϕ̂l, and thus PΨnϕ “ ϕ´pId´PΨnqϕ̂l):

D “ pPΨnpF
1pϕq ´ aq, ϕq “ pF 1pϕq ´ a,PΨnϕq

“ pF 1pϕq, ϕq
loooomoooon

“:D1

´pa, ϕq
loomoon

´p‹q

´pF 1pϕq, pId´ PΨnqϕ̂lq
loooooooooooooomoooooooooooooon

“:D2

`pa, pId´ PΨnqϕ̂lq
looooooooooomooooooooooon

“:D3

.

The term ´p‹q cancels with the one in (72). Hypothesis (16) with γ “ 0
yields

D1 “

ż

Ω

F 1pϕqϕ ě

ż

Ω

F3p0qF pϕq ´ F4p0q|Ω| ě

ż

Ω

F3p0qF pϕq ´ C. (74)
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As far as D2 is concerned, we use the fact that Id ´ PΨn is a projector,
thus its operator norm (in L2pΩq) is equal to 1. We also use the property
(15) for |F 1pϕq| and (54) for |ϕ|r2r to obtain (if r ą 1):

|D2| “ |pF
1pϕq, pId´ PΨn

qϕ̂lq| ď |ϕ̂l|2|F
1pϕq|2

ď C|ϕ̂l|2pF1|ϕ|
r
2r ` F2|Ω|q ď C|ϕ̂l|2p}ϕ}

r
1 ` 1q

ď C|ϕ̂l|2

´

|∇ϕ|r2 ` }b}r1 ` 1
¯

ď C
´

|ϕ̂l|
2
2 ` |∇ϕ|2r2 ` }b}2r1 ` 1

¯

,

(75)

where in the third line, we used the lifting b of the boundary condition ϕl
defined in Definition 5.12 to apply Poincaré inequality. Observe that we
proved the following estimate on F 1pϕq, which will be used in the following:

|F 1pϕq|22 ď C
´

|∇ϕ|2r2 ` }b}2r1 ` 1
¯

. (76)

Last, we use again the fact that the operator norm of Id ´ PΨn is equal
to 1, and write

D3 ď |a|2|ϕ̂l|2. (77)

Ź For the A-term, Young’s inequality combined with the Poincaré inequality
for ϕ (using b as a lifting of ϕl) and (53) for µ yields:

A “

ż

Ω

µϕ ď |µ|2|ϕ|2 ď C|∇µ|2pC|∇ϕ|2 ` }b}1q

ď C|∇µ|2p|∇ϕ|2 ` }b}1q ď
1

2
|∇µ|22 ` C

`

|∇ϕ|22 ` }b}21
˘

.

(78)

Putting (72)-(78) in (71), and rearranging terms, it follows:

α2

λ2
|∇ϕ|22 ` F3p0q

ż

Ω

F pϕq ď
C

λ2
|∆ϕ|22 `

1

2
|∇µ|22 ` C|∇ϕ|2r2 ` C|∇ϕ|22

` C
´

|ϕl|
2
L2pΓlq

` |ϕ̂l|
2
2 ` }b}

2r
1

¯

` |a|2|ϕ̂l|2 ` C

ˆ

1`
1

λ2

˙

}b}21 ` C,

which is the inequality (70) we claimed.

Lemma 5.15. For ϕ and µ solutions of (58)-(60), the following estimate ap-
plies for any θ, κ ą 0:

p
α2

λ2
´ 3κq|∆ϕ|22 ď

1

2
|∇µ|22 `

1

2
|∇ϕ|22 `

C

κ
|∇ϕ|2r2 ` Sl, (79)

where Sl is independent of ϕ, µ and of time t, and is given by:

Sl “
C

κ

`

}b}2r1 ` 1
˘

`
1

κ
|a|22.
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Proof. Multiplying (59) by ´∆ϕ and integrating by parts, we get

α2

λ2
|∆ϕ|22 “ ´pµ,∆ϕq

loooomoooon

“:A

`

ż

Ω

PΨn
pF 1pϕq ´ aq∆ϕ

looooooooooooomooooooooooooon

“:B

`pa,∆ϕq
loomoon

“:D

. (80)

Ź We treat the D-term with Young’s inequality with some constant κ ą 0:

D “ pa,∆ϕq ď
1

κ
|a|22 ` κ|∆ϕ|

2
2. (81)

Ź For the B-term, we use the projector property (57) and Young’s inequality
to obtain the following estimate:

B “ pPΨnpF
1pϕq ´ aq,∆ϕq ď F 1pϕq|2|∆ϕ|2 ` |a|2|∆ϕ|2

ď
1

κ
|a|22 ` κ|∆ϕ|

2
2 ` κ|∆ϕ|

2
2 `

C

κ
|F 1pϕq|22.

Then we can use (76) to deduce that

B ď 2κ|∆ϕ|22 `
1

κ
|a|22 `

C

κ

´

|∇ϕ|2r2 ` }b}2r1 ` 1
¯

. (82)

Ź As far as the A-term is concerned, it is computed by integration by parts:

A “ ´pµ,∆ϕq “

ż

Ω

∇µ∇ϕ
loooomoooon

“:A1

´

ż

Γ

µ
loomoon

“0 on Γl

∇ϕ ¨ n
loomoon

“0 on Γ0

.

Thanks to Young’s inequality, we have

A “ ´p∇µ,∇ϕq ď 1

2
|∇µ|22 `

1

2
|∇ϕ|22. (83)

Finally, we use (81)-(83) in (80) to obtain

p
α2

λ2
´ 3κq|∆ϕ|22 ď

1

2
|∇µ|22 `

1

2
|∇ϕ|22 `

C

κ
|∇ϕ|2r2 `

C

κ

`

}b}2r1 ` 1
˘

`
1

κ
|a|22.

This concludes the proof.

5.5. Convergence results

5.5.1. A priori estimates

Let us sum (61), (70) and c3ˆ (79), where c3 is a positive constant that will
be determined in the sequel. We obtain

λ
d

dt

ˆ

α2

2λ2
|∇ϕ|22 `

ż

Ω

F pϕq

˙

`

´ Bm
λPe

´
3

2
´
c3
2

¯

|∇µ|22 `
´α2

λ2
´ C ´

c3
2

¯

|∇ϕ|22

`

´

c3p
α2

λ2
´ 3κq ´

C

λ2

¯

|∆ϕ|22 ` F3p0q

ż

Ω

F pϕq

ď C
´

p|u|28 ` |v|
2
2q|∆ϕ|

2
2 ` |v|

2
2~b~

2
2

¯

`

´

C `
c3C

κ

¯

|∇ϕ|2r2 ` c3Sl ` Tl.

(84)
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To control the right hand side member of (84) we recall that we proved in (32)
that

|u|8 ď C, |v|2 ď C}ϕ}1.

We apply the Poincaré inequality choosing b as a lift for ϕ to gain

|u|28 ď C, |v|22 ď C|∇ϕ|22 ` C}b}21. (85)

Estimate (84) becomes

λ
d

dt

ˆ

α2

2λ2
|∇ϕ|22 `

ż

Ω

F pϕq

˙

`

´ Bm
λPe

´
3

2
´
c3
2

¯

|∇µ|22 `
´α2

λ2
´ C ´

c3
2

¯

|∇ϕ|22

`

´

c3p
α2

λ2
´ 3κq ´

C

λ2
´ C

¯

|∆ϕ|22 ` F3p0q

ż

Ω

F pϕq

ď C|∇ϕ|22|∆ϕ|22 ` C
´

1`
c3
κ

¯

|∇ϕ|2r2 ` C `
C

λ2
`
C c3
κ

.

(86)

In order to ensure

Bm
λPe

´
3

2
´
c3
2
ě
Bm

2λPe
,

α2

λ2
´ C ´

c3
2
ě

α2

2λ2
,

c3p
α2

λ2
´ 3κq ´

C

λ2
´ C ě

c3α
2

2λ2
,

we will choose c3, λ such that

3

2
`
c3
2
ď
Bm

2λPe
,

C `
c3
2
ď

α2

2λ2
,

3κc3 `
C

λ2
` C ď

c3α
2

2λ2
.

We choose c3 with c3α
2 large enough such that the third condition can be

rewritten as

3κc3 ` C ď

ˆ

c3α
2

2
´ C

˙

looooooomooooooon

ą0

1

λ2
.

Newt, choosing λ ą 0 small enough ensures the required inequalities.
Estimate (86) becomes

λ
d

dt

ˆ

α2

2λ2
|∇ϕ|22 `

ż

Ω

F pϕq

˙

`
Bm

2λPe
|∇µ|22 `

α2

2λ2
|∇ϕ|22 `

c3 α
2

2λ2
|∆ϕ|22 ` F3p0q

ż

Ω

F pϕq

ď C|∇ϕ|22|∆ϕ|22 ` C
´

1`
c3
κ

¯

|∇ϕ|2r2 ` C `
C

λ2
`
C c3
κ

.

(87)

31



Let us define for all t ě 0,

Yptq “ α2

2λ2
|∇ϕptq|22 `

ż

Ω

F pϕptqq,

Zptq “ α2

2λ2
|∇ϕptq|22 ` |∇µptq|22 ` |∆ϕptq|22 `

ż

Ω

F pϕptqq,

so that 0 ď Yptq ď Zptq, since F ą 0 (by assumption (13)).

Lemma 5.16. There exists strictly positive constants C1, C2 and f : R Ñ R
an increasing continuous function satisfying fp0q “ 0 satisfying
• C1 ą 0;
• there exists M ą 0 such that

‹ fpMq ă C1{2;

‹ C2 ăMC1{2.

such that the a priori estimate (87) can be rewritten in the following form:

Y 1ptq ` C1Zptq ď fpYptqqZptq ` C2. (88)

Proof. In order to rewrite (87) as the inequality (88), we have to set apart the
linear terms (with respect to Z) and the nonlinear terms (which will appear in
fpYqZ).
Defining

C1 :“
1

λ
min

"

Bm
2λPe

, 1,
c3 α

2

2λ2
, F3p0q

*

ą 0

and

C2 :“
C

λ

´

1`
1

λ2
`
c3
κ

¯

ą 0,

we rewrite (87) as

Y 1ptq ` C1Zptq ď fpYptqqZptq ` C2.

We can also give explicitely the form of f , which is given, up to a multiplicative
constant, by

fpxq “ C
2λ2

α2
x` C

´

1`
c3
κ

¯

ˆ

2λ2

α2

˙2r

xr´1.

For r ą 1, it is always possible to find M ą 0 such that fpMq ă C1{2.
It remains to impose that the right-hand side is controlled by C1, i.e. that

C2 ă MC1{2. This is achieved by imposing some smallness conditions on λ.

Indeed, if λ „ 0 then we have C1 „
1`F3p0q

λ and C2 „
C
λ

´

1 ` c3
κ

¯

. It is then

possible to find M ą 0 satisfying the desired property, since the two constants
are of the same order in λ. This concludes the proof.

From now on, let us come back to the notations with the subscripts n intro-
duced in Section 5.2, denoting the Galerkin approximations. The proof of the
main theorem consists in showing that tn “ `8 for any n ě 1, and that ϕn
converges in appropriate function spaces.
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Lemma 5.17. For any n P N, under a smallness assumption on λ and Hypoth-
esis 2.3, there exists C ą 0 such that for any T ą 0,

}ϕn}L8pR`;H1pΩqq ď C, }ϕn}L2p0,T ;H2pΩqq ď CT, }µn}L2p0,T ;Φ1
0q
ď CT. (89)

Proof. Let n P N, T ą 0. The assumptions are enough to apply Lemma 5.16
with Proposition 7.1 (given in Appendix) which implies that Yn P L8p0, T q with
a bound independent of T , and Zn P L1p0, T q with a bound depending on T .
From this, we deduce several results on ϕn, µn:

• The quantity ∇ϕn is bounded in L8p0,8;L2pΩqq, uniformly with respect
to n.

• The quantities ∇µn, ∇ϕn and ∆ϕn are bounded in L2
locp0,8;L2pΩqq,

uniformly with respect to n.

• Furthermore, applying the Poincaré inequality to ϕn allows us to control
the whole H1pΩq-norm by the L2-norm of the gradient.

• As far as the H2-norm of ϕn is concerned, we know by Proposition 5.4
that it is equivalent to the L2-norm of the Laplacian, and thus control-
ling |∆ϕn|2 is enough to control the whole H2pΩq-norm.

• For µn, the Poincaré inequality (53) also allows us to control the H1-norm
by the L2-norm of the gradient.

From these arguments, we conclude that there exists C ą 0 such that for any
T ą 0, estimate (89) is satisfied.

Let us observe that the first estimate of (89) is enough to show that the time
interval p0, tnq on which the functions ϕn exist is p0,`8q.
Estimates (89) are not enough to conclude for the convergence of the nonlinear
terms and of the initial condition ϕnp0q. Therefore, some more regularity on ϕn
and Bt ϕn will be proved in the next subsection. We also note that the value of
the scaling λ is now fixed: the constants C which appear from now can depend
on λ.

5.5.2. H3-estimate for ϕ

Lemma 5.18. For any n P N, under a smallness assumption on λ, there exists
C ą 0 such that for any T ą 0

}ϕn}L2p0,T ;H3pΩqq ď CT ` C. (90)

Proof. We compute the gradient of (59):

α2

λ2
∇∆ϕn ´∇a “ ∇PΨnpF

1pϕnq ´ aq
looooooooooomooooooooooon

“:A

´∇µn. (91)
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Ź Let us prove that |A|22 ď |∇F 1pϕnq|22. The difficulty here is to switch the
two operators ∇¨ and PΨn ¨. We have by integration by parts

|A|22 “

ż

Ω

∇PΨnpF
1pϕnq ´ aq ¨∇PΨnpF

1pϕnq ´ aq

“ ´

ż

Ω

∆PΨn
pF 1pϕnq ´ aqPΨn

pF 1pϕnq ´ aq

`

(((
((((

(((
((((

(((
((ż

Γ

∇PΨnpF
1pϕnq ´ aq ¨ nPΨnpF

1pϕnq ´ aq,

where the boundary term on Γ cancels since PΨnpF
1pϕnq´aq P Ψn. Let us

denote Φ1 Q F 1pϕnq ´ a “
8
ř

i“1

γiψi. We have PΨnpF
1pϕnq ´ aq “

n
ř

i“1

γiψi.

Thus, we can compute

|A|22 “ ´

ż

Ω

n
ÿ

i“1

λiγiψi

n
ÿ

i“1

γiψi,

and since the ψi are orthogonal, we have

|A|22 “ ´
n
ÿ

i“1

pλiγiψi, γiψiq “ ´
n
ÿ

i“1

p∆γiψi, γiψiq “
n
ÿ

i“1

p∇γiψi,∇γiψiq

“ pPΨn
∇pF 1pϕnq ´ aq,PΨn

∇pF 1pϕnq ´ aqq
“ |PΨn∇pF 1pϕnq ´ aq|22 ď |∇pF 1pϕnq ´ aq|22 ď |∇F 1pϕnq|22 ` |∇a|22,

since the operator norm of PΨn is equal to 1.

Ź It follows from hypothesis (15) on F that:

|∇F 1pϕnq|22 ď
ż

Ω

pF1|ϕn|
r´1 ` F2q

2|∇ϕn|2 ď Cp|∇ϕn|22 ` |ϕr´1
n ∇ϕn|22q.

Since r ą 1, the Hölder inequality implies

|∇F 1pϕnq|22 ď Cp|∇ϕn|22 `
ˆ
ż

Ω

|ϕ2pr´1q
n |q

˙1{q ˆż

Ω

|∇ϕn|2q
1

˙1{q1

q

“ Cp|∇ϕn|22 ` |ϕn|
2pr´1q
2pr´1qq|∇ϕn|

2
2q1q,

with
1

q
`

1

q1
“ 1, for any q ą 1. Let q “

1

r ´ 1
. Then 2pr ´ 1qq ě 2, thus

H1pΩq ãÑ L2pr´1qqpΩq and 2q1 ě 2, thus H1pΩq ãÑ L2q1pΩq. We finally
obtain

|A|22 ď Cp|∇ϕn|22`}ϕn}r´1
1 }ϕn}

2
2q`α

2|∇∆ϕ̂l|
2
2|∇F 1pϕnq|22` |∇a|22, (92)
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Ź At last, taking the L2-norm of (91), it follows from (92) that

α2

λ2
|∇∆ϕn|

2
2 ď Cp|∇µn|22 ` |∇ϕn|22 ` }ϕn}r´1

1 }ϕn}
2
2q ` |∇a|22,

This estimate combined with (89) and the regularity of ϕ̂l (Lemma 5.1)
allows us to conclude that estimate (90) is satisfied.

5.5.3. Time derivative estimate for ϕ

Lemma 5.19. For any n P N, under a smallness assumption on λ, there exists
C ą 0 such that for any T ą 0,

›

›

›

›

dϕn
dt

›

›

›

›

L2p0,T ;H´1pΩqq

ď CT ` C. (93)

Proof. We introduce the dual operator P˚Ψn
of PΨn

. Equation (58) can be rewrit-
ten in the following form:

pλBt ϕn,PΨn
χq`puϕn

¨∇ϕn,PΨn
χq´

1

λPe
pdivpBpϕnq∇µnq,PΨn

χq “ 0, @χ P Φ1
0,

which becomes

λ
dϕn
dt

“ ´P˚Ψn

´

uϕn Bxϕn ` vϕn Bzϕn ´
1

λPe
divpBpϕnq∇µnq

¯

.

Let us treat each term separately:

Ź By Proposition 3.4, we have

uϕn P L
8p0, T ;H1pΩqq, vϕn P L

8p0, T ;L2pΩqq.

Moreover, previous estimate (90) implies that ϕn belongs to L2p0, T ;H3pΩqq.
By a classical result on the multiplicative algebra structure of the Sobolev
spaces proved e.g. in [21], we deduce that

uϕn Bxϕn P L
2p0, T ;H1pΩqq, vϕnBzϕn P L

2p0, T ;L2pΩqq,

with the following estimate:

}uϕn Bxϕn}L2p0,T ;H1q ` }vϕn Bzϕn}L2p0,T ;L2q

ď C
`

}uϕn}L8p0,T ;H1q ` }vϕn}L2p0,T ;L2q ` }ϕn}L2p0,T ;H3q

˘

.

Ź Furthermore, since B ď Bm:

} divpBpϕnq∇µnq}H´1 ď Bm|∇µn|2.

It follows the claimed estimate (93).
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5.5.4. Final convergence results

It is now possible to prove the main theorem 3.3, re-stated here for the sake
of readibility:

Theorem. Let T ą 0, ϕl satisfying Hypothesis (2.3), ϕ0 P H
3pΩq satisfying

(18), F satisfy the assumptions stated in Section 2.2. Under a smallness as-
sumption on λ, there exists a solution pp,u, ϕ, µq of Problem 3.2.

Proof. From the previous Lemmas 5.17, 5.18 and 5.19 (i.e. estimates (89), (90),
(93)), we obtain the following convergence results (up to a subsequence):

ϕn á ϕ in L8pR`;H1pΩqq ˚-weak,

ϕn á ϕ in L2
locpR`;H3pΩqq weak,

µn á µ in L2
locpR`; Φ1

0q weak,

dϕn
dt

á
dϕ

dt
in L2

locpR`;H´1pΩqq weak.

Moreover, Proposition 3.4 combined with the previous global convergence result
on ϕ implies the following convergence results (up to a subsequence):

un á u in L8pR`;X pΩqq ˚-weak,

vn á v in L8pR`;L2pΩqq ˚-weak,

pn á p in L8pR`;H2p0, Lqq ˚-weak.

Therefore, from the convergences of ϕn, we deduce

ϕn Ñ ϕ in L2
locpR`;H2pΩqq strong.

Furthermore, by a classical embedding result due to [25], we deduce from (90)
and (93) that for any T ą 0

ϕn Ñ ϕ in C0pr0, T q;L2pΩqq strong,

ϕn á ϕ in C0pr0, T q;H1pΩqq weak.

Therefore, we can conclude for the convergence of the nonlinear terms:

• Since ϕn converges strongly in C0pr0, T q;L2pΩqq X L2
locpR`;H2pΩqq, the

nonlinear terms Bpϕnq and F 1pϕnq converge strongly in C0pr0, T q;L2pΩqq.

• As far as the convection term uϕn
¨∇ϕn is concerned, we know from Lem-

mas 4.3 and 4.4 that uϕn
is bounded in L8pR`;L2pΩqq. From the strong

convergence of ∇ϕn in L2
locpR`;L2pΩqq, we conclude the convergence of

uϕn ¨∇ϕn.

Lastly, we deduce from the last convergence result that ϕnp0q converges weakly
to ϕp0q in H1pΩq, and thus ϕp0q “ ϕ0 because PΨn

converges to the identity for
the strong topology of operators. For the boundary conditions on ϕ, the previous
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convergence result in H3pΩq also allows us to conclude that both the Dirichlet
(on Γl) and the Neumann condition (on Γ0) pass to the limit for ϕn. Using
again the convergence of PΨn

and the fact that ψi satisfies the homogeneous
Dirichlet and Neumann boundary conditions, we deduce that ϕ satisfies (60).
For µ, we know that µn converges weakly to µ in Φ1

0.
It remains to prove that the functions uϕ, ϕ and µ satisfy (58), (59). Let

ρ P D1pR`q, and let N ą 1. For any n ě N , ϕn satisfies (58) with ψ “ µN . We
multiply this equation by ρptq and integrate by parts. From the convergence
results stated above, we can pass to the limit in this equation. The limit equation
obtained is fulfilled for any N ě 1, and any ρ P D1pR`q, thus we conclude from
the density of Spanpψiqiě1 in H1pΩq that uϕ, ϕ and µ satisfy (58), where uϕ is
defined by the formulas (22)-(23) and (25).

Lastly, since PΨn converges to the identity for the strong topology of op-
erators (see Remark 5.10), the dominated convergence theorem allows us to
conclude that ϕ and µ also satisfy (59).

6. Numerical illustration

In this section, we present some preliminary numerical results solving sys-
tem (26), in order to show some features of the model. Let us emphasize that
in contrary to other bifluid models, this model does not assume that the in-
terface between the two fluids is a graph, and therefore allows more general
configurations, such as drops.

The equations are discretized in a standard way by finite differences. In
order to deal with the fact that the domain is not rectangular, we rescaled
the equations to work in the rescaled domain Ωrescaled “ tpx, yq, x P p0, Lq, y P
p0, 1qu. In order to preserve a maximal principle on ϕ, we use the same flux
limiters for the Cahn-Hilliard equation as in [5]. The boundary conditions are
treated by introducing artificial variables in fictive cells on the boundary of the
domain.

6.1. Influence of the different viscosities

Viscosity is widely used for fluid characterization, and allows us to model
different types of behavior for the fluids, even for Newtonian ones (which is the
framework of this study). It is of interest to compare the results obtained in
both scenarios, when a drop of a less viscous fluid is immersed in a more viscous
one, or when a drop of a more viscous fluid is immersed in a less viscous one.
Indeed, the results can vary in a qualitative way.

In order to focus on the influence of the viscosity, we use a simple domain of
constant thickness h ” 1, and we neglect the shear effects by choosing the shear
velocity s “ 0. The test cases are carried out with the parameter α related
to the thickness of the interface chosen equal to α “ 0.015, with an input flow
Q “ 0.5. The time step δt is adapted from the C.F.L. condition, with δt ď 0.01.
Thus, we model a situation in which the flow “pushes” the drop in the other
fluid, from the left hand side to the right.
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• If we want to model for example a drop of oil in water, we choose η2{η1 “

80. We obtain the results presented in Figure 5. We observe that a viscous
drop is not really deformed when immersed in a less viscous fluid.
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Figure 5: A drop of oil (in yellow) in water (in dark blue)

• On the other hand, choosing η2{η1 “ 1{80, we model a drop of water in
oil. The results are given in 6. On the contrary to the previous case, the
drop is strongly deformed.
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Figure 6: A drop of water (in dark blue) in oil (in yellow)

Of course, these numerical results could be enhanced with a model taking the
surface tension into account.

6.2. Drop transport applications

Another example which allows to validate the program corresponds to the
observation of recirculations inside a drop. Indeed, numerical and experimental
works [11], [26] have showed that due to the blending dynamics, recirculations
are observed.

If we compute the relative velocity, we observe recirculations inside the drops,
as in Figure 7. To this end, we define a mean value of the velocity ū, for example
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Figure 7: Recirculations in a drop and shape of the drop

the value on Γl (outside the drop), and we compute u´ ū, which is represented
in the figure.

It is of interest to note that this asymptotic model, which is in fact a very
simple one when comparing to the whole Navier-Stokes system coupled with the
Cahn-Hilliard equation, allows us nevertheless to observe very fine phenomena,
such as recirculations inside a drop.

7. Appendix

Proposition 7.1. Let T ą 0. Let Y and Z be two functions in C1pr0, T sq, such
that there exists three real constants C1, C2 and a function f : RÑ R satisfying

Y 1 ` C1Z ď fpYqZ ` C2, 0 ď Y ď Z on r0, T s. (94)

Assume that
• f is an increasing continuous function such that fp0q “ 0,
• C1 ą 0,
• there exists M ą 0 such that

fpMq ă
C1

2
and C2 ă

MC1

2
.

If Yp0q ăM , then there exists a constant C such that

}Y}L8p0,T q ďM.

Moreover, we have
}Z}L1p0,T q ď CT ` C.

Proof. Suppose that there exists 0 ă T˚ ă T , such that YpT˚q “ M and
Y 1pT˚q ą 0. Then, evaluating (94) at T˚, and using the hypothesis on C2, we
get

0 ă Y 1pT˚q ď ZpT˚qpfpMq ´C1q `C2 ď ´
C1

2
ZpT˚q `C2 ď

C1

2
pM ´ZpT˚qq.
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But since M “ YpT˚q ď ZpT˚q, we have M ´ ZpT˚q ď 0, which leads to a
contradiction.
The regularity of Z follows by integrating (94) over p0, T q, and using the regu-
larity of Y:

C1

2
}Zptq}L1p0,T q ď YpT q `

C1

2
}Zptq}L1p0,T q ď Yp0q ` C2T ďM ` C2T,

which is written }Zptq}L1p0,T q ď CT ` C.
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Anal. Non Linéaire, 18(2) (2001) 225–259.

[10] F. Boyer, A theoretical and numerical model for the study of incompressible
mixture flows, Computers and Fluids, 31(1) (2002) 41–68.

40



[11] T.Colin, G. Cristobal, C. Galusinski, K. Khadra and P. Vigneaux,
Ecoulement de gouttes dans des microcanaux: simulations numériques et
expériences, Proceedings du 18e congrès français de mécanique, Grenoble)
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