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Abstract

We are interested in a model for diphasic fluids in thin flows taking into account
both the hydrodynamical and the chemical effects at the interface between the
two fluids. A limit problem in thin curved channels is introduced heuristically.
It is a system coupling the Reynolds equation and the Cahn-Hilliard equation.
We study the mathematical properties of this system, and prove an existence
result under some smallness condition on the data.

Keywords: Cahn-Hilliard equation; Reynolds equation; Thin flow.

1. Introduction

In many applications, the geometry of the flow is anisotropic (i.e. one di-
mension is small with respect to the others), e.g. in lubrication problems. In
the Newtonian case, the flow of a fluid between two close surfaces in relative
motion is described by an asymptotic approximation of the Navier-Stokes equa-
tions, the Reynolds equation. This equation makes it possible to uncouple the
pressure and the velocity. Indeed, in thin films, the pressure is considered to be
independent of the direction in which the domain is thin. Thus an equation on
the pressure only is obtained, and the velocity can be deduced from the pressure.
This approach was introduced by Reynolds, and has been rigorously justified
in [3] for the Stokes equation, and generalized afterwards in many works: for
the steady-case Navier-Stokes equations [I], for the unsteady case [4], for com-
pressible fluids with the perfect gases law [22]... It is of interest to investigate
how this approach can be used for the case of a two fluid flow.
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A first diphasic model consists in introducing a variable viscosity 7, which
is either equal to the viscosity 1; of one fluid or the viscosity 72 of the other
fluid (that is to say that the fluids are considered to be non-miscible). The
behavior of 7 is described by a transport equation. In that case, when assuming
the interface between the two fluids to be the graph of a function, the asymp-
totic equations corresponding to the thin film approximation can be interpreted
as a generalized Buckley-Leverett equation, which governs the behavior of the
saturation (i.e. the proportion of one fluid in the mixture) inside the gap, cou-
pled with a generalized Reynolds equation, which governs the behavior of the
pressure. These equations are investigated in [24] without shear effects, and
in [7], [14] with shear effects. One of the main disadvantages of the method is
that the fluid interface is supposed to be the graph of a function, which hin-
ders for example the formation of bubbles. In addition, this kind of model only
takes into account hydrodynamical effects between the two phases, and surface
tension effects are neglected.

The second class of models describing diphasic flows, which has been used
up to now only for the Navier-Stokes equations, is the class of the so-called
diffuse interface models. They take into account chemical properties at the
interface between the two fluids, enabling an exchange between the two phases.
In this paper, we use a Cahn-Hilliard equation, which involves an interaction
potential, enhanced with a transport term. Thus this model describes both the
chemical and the hydrodynamical properties of the flow. An order parameter ¢
is introduced, for example the volumic fraction of one phase in the mixture.
The surface tension can be taken into account via an additional term depending
on ¢ in the Navier-Stokes equations. This kind of model has been studied for
the complete Navier-Stokes equations in [§], and for viscoelastic fluids in [I2].

In this paper, we consider an asymptotic system (i.e. a thin film approxima-
tion) for a diphasic fluid modelled by the Cahn-Hilliard equation. In a similar
way as for the Newtonian case, the Navier-Stokes equations are approximated by
a modified Reynolds equation, in which the viscosity is not constant anymore.
We study the Reynolds/Cahn-Hilliard system, and prove the existence and the
regularity of a weak solution under a smallness assumption on the initial data
and the geometry.

Let us describe briefly the main steps of the mathematical analysis. First, we
study the Reynolds equation and investigate the regularity of the pressure and
the velocity as functions of the order parameter. Next, we prove the existence
of a solution to the system Reynolds/Cahn-Hilliard, by using a Galerkin pro-
cess, which consists in introducing finite dimension approximations of . After
obtaining a priori estimates for these approximations, we conclude that they
converge to a solution of the system Reynolds/Cahn-Hilliard.

This paper is organized as follows. In Section [2] we introduce the two-
dimensional model for a diphasic fluid in a thin film, which consists of a gen-
eralized Reynolds equation and of a diffuse-interface model (the Cahn-Hilliard
equation). In Section we state the main theorem, and give the main steps and
difficulties of the proof. In Section [4] we deal with the Reynolds equation, and
obtain some existence and regularity result on the velocity field and the pres-



sure. In Section [5] we first introduce some specific results on trace estimates
and Poincaré inequalities. They are used in the rest of the section for obtaining
a priori estimates for the Cahn-Hilliard equation. At last, convergence results
are deduced from these estimates, and allow to conclude the proof of the main
theorem. Section [6] presents some preliminary numerical results obtained with
this model in order to highlight the features of the model.

2. Modelling a diphasic fluid in a thin film

In this section, we will first present how a fluid is described in a thin do-
main by the Reynolds equation. Next, we introduce the hydrodynamical Cahn-
Hilliard model for any fluid. Lastly, we combine both aspects and state the
model of a diphasic fluid in a thin domain.

We introduce the physical domain

Q={(z,2)eR* 0<z<L, 0<z<h(z)}. (1)

The thin film approximation for an incompressible fluid leads to the following
equations (see [3]), describing the behavior of the pressure p and the velocity
field w = (u,v), n being the viscosity of the fluid.

0z (n 0zu) = 0Ozp, 0zp =0, Ozu + 0sv = 0.

In these equations, the thin film assumption leads to the decoupling of the
pressure and the velocity, as well as the simplification of the equations.

We will see that it is possible to prove an existence theorem assuming a
small size condition on the physical domain Q (see Theorem . In order to
understand the dependance of the solution with respect to the domain 2, we
rescale the spatial variable (Z, z) using a dilatation coefficient A\. More precisely,
we suppose that the domain is small and can be written as

Q=1{(z,2) e R%,0 < AT < AL,0 < \Z < \h(x)},
and we rewrite the system using the following change of variable and domain
AN —a, Moz, Q-Q={(z2)eR}0<z<L,0<z<h(z)} (2

We assume that there exists three constants (hy,, har, b)) € R3 such that the
function h € C%(R) (see Fig. [1]) satisfies

Ve e[0,L], 0<hy <h(z)<hy and |b'(x)] < h)y, (3)
and h/(L) = 0 as well as
3¢ > 0 such that Vz € [0,&], R'(z) =h"(z) =0,

Observe that the regularity of h ensures that the domain 2 defined by
satisfies the segment property and cone property (see [2], § 4.2 and 4.3]).
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Figure 1: Domain €2 and boundary conditions on the velocity

The Reynolds equation now writes
aZ (77 azu) = )\axp7 azp = O, axu + azU = O (4)

We choose boundary conditions on u suitable for lubrication applications: Dirich-
let boundary conditions are imposed on the velocity on {z = 0} and {z = h(z)}
in order to model shear effects. The boundary conditions are written:

Vee[0,L] wu(z,0)=s and wu(z,h(x))=v(z,0)=uv(z,h(z))=0. (5)

Without loss of generality, the constant shear velocity s is supposed to be posi-

tive. For the lateral part of the boundary, it has been showed in [3] that only the
1(0)
input flow Q = f u(0, €) d€ needs to be prescribed. Observe that according

0
to the divergence-free condition and the boundary conditions on w, this flow is
constant on any “vertical” section of the domain:

h(z) h(z) h(x)
O (J u(m,{)df) = h'(z)u(x, h(z)) +J Opu(x, &)dé = —J Oev(z,&)dE
0 — e Do 0

= —v(x, h(z)) + v(z,0) =0,
thus
h(z)
Q- )\J- w(w, &)de,  Vae (0,L). (6)

0

Remark 2.1. We use the Reynolds equation to describe the behavior of the
fluid. This equation is an approzimation of the (Navier)-Stokes system for thin
domains (in which the height is much smaller than the length). The anisotropy
of the physical domain is therefore taken into account in this step. Further, the
equation is written down in in a rescaled form in the domain Q (with length
and height of the same order of magnitude). No assumption on the shape is
needed for the domain Q. As we already stated, the parameter A will allow us
to control the smallness of the physical domain.

2.1. Modelling one fluid in a thin domain

The usual procedure [3] is to integrate twice the first equation of (4)) with respect
to z, make use of the boundary conditions and of the fact that d,p = 0. This



allows us to express u as a function of p:

u(z, z) = Z(Z_Q;L(x)))\ 0zp(x) + s (1 — h(Zx)) : (7)

Then, putting this expression in the divergence-free equation leads to the Reynolds

equation:
h3 h

A first boundary condition on p is deduced from the ones on w. In fact, the
choice of the input flow @ corresponds to a Neumann condition for p at = = 0.
This condition can be determined as a function of ) by

h(O)® | Ash(0)
121 2

h(0)
Q=1 L (0, €)dE = —X22,p(0)

127(Ash(0)/2 = Q)
Eh(0)? = 0:p(0).

Moreover, the solution p of with the Neumann boundary condition
0:p(0) = w is defined up to a constant. We can thus choose p(L) = 0 to
gain a well-defined pressure p. It is to be noticed that once p is computed from
(8), then allows us to compute u, while the other component v of the velocity
field is obtained by:

Let us denote w :=

v(z,z) = — JOZ Opu(z, &) dE.

2.2. Modelling a mizture

Since we want to study the mixture of two fluids, we introduce an order
parameter ¢ describing the volumic fraction of one fluid in the flow. All physical
parameters can be written as functions of ¢, in particular the viscosity n. We
assume that the function 7 satisfies n € C1(R) such that

3o ars ) € R Vo e R, 0 <y <) < and 17/ (9) <y (9)
A possible explicit form of the viscosity is given in the following Remark:

Remark 2.2. For ¢ € [—1,1], we can use a specific realistic law as a function
of the viscosities of the two fluids m1 and 1y (see [10] or [23]):
1 1+ 1-—
_lte 1-¢
n(w)  2m 2

for pe[-1,1], (10)

so that ¢ = 1 and ¢ = —1 correspond respectively to the fluids of viscosity m
and ng only. However, we will not always be able to prove mathematically that ¢
remains in the interval [—1,1] (see [§]).



The effects of a possible variation of the density in the mixture will not be taken
into account in this paper. Therefore, the density of the mixture is assumed to
be constant (i.e. the two densities of the two incompressible phases p; and py are
supposed to be equal). Let us notice that due to the loss of the local conservation
equation for the density, the non-homogeneous case p; # po induces further
difficulties (see [9]).

We choose the Cahn-Hilliard equation in order to describe the evolution of ¢.
This equation consists of both a transport term, taking the mechanical effects
into account, and a diffusive term modelling the chemical effects. The Cahn-
Hilliard equation is written in the rescaled domain :

1 .
a2 /
K= *FASD + F'(p). (12)

Recall that the constant X is a rescaling constant allowing us to follow the depen-
dance on the domain size. The variable p is the chemical potential, B(yp) is called
mobility, Pe is the Péclet number, « is a non-dimensional parameter measuring
the thickness of the diffuse interface, and the function F' is called Cahn-Hilliard
potential. Physical considerations show that F' must have a double-well struc-
ture, each of the wells representing one of the two fluids. A rational choice for F
is given by a logarithmic form (for more details, we refer to [16] or [20])

F(§) =1-8+c((1+&log(l+¢) + (1—¢)log(1 —¢)),
for some constant 0 < ¢ < 1, or its polynomial approximation
F(§) = (1-d¢)?,

where ¢’ is another constant. These physically realistic potentials share several
mathematical properties. In the following, we prove mathematical results for
potentials F' having these properties:

e The function F is supposed to be regular (e.g. of class C?(R)).

e Since F is a physical potential, it is bounded from below. Moreover, only
the derivative of F' occurs in the equations, therefore the addition of a
constant does not change the equations. It is thus realistic to make the
following assumption:

36, >0; ¥¢éeR  F(¢) > F. (13)

e The convexity of the potential corresponds to the stability of the mixture.
Usual potentials contain some stable and unstable regions (see for example
Figure [2)). In order to include such cases, we impose:

IF5>0; VEeR  F'(6) > —Fs. (14)



e Moreover, the following hypothesis on the growth of the potential is im-

posed:
JFy, Fo>0 Jr>1; VéeR
(15)
IO < Filg]" + F, and  |F'(§)] < Filg["™ + Fa.
This hypothesis is satisfied for any polynomial function.
e At last, we state a generalization of the convexity:
VyeR 3F3(y) >0, Fu(y) =0;
(16)
VEeR (£—7)F'(§) = F5(v)F(§) — Fa(v).
F(p)
¥
Figure 2: Possible shape of the potential F'(¢)
ot ¢
These assumptions are satisfied by a function of the form F(p) = = — —— + Fj

4 2
(as in Figure , which can be used as a model case.

As far as the mobility B is concerned, it is supposed to be regular B € C?(R),
positive, and bounded from above and from below:

(B, By)eR?; VéEeR  0< B, <B(€) < By (17)

Let us mention that other types of functions B can be considered, in particular
the degenerate case B(¢) = (1 —£2)9, with o > 0, which has been studied in [8]
and in [I7], but introduces further mathematical difficulties.

Equations — must be equipped with boundary conditions on ¢ and pu.
We are interested here in injection phenomena, which arise for example in lu-
brication or polymer injection problems. To this end, it is important to control
the composition of the input. Thus we use Dirichlet boundary conditions on
some part of the boundary, namely where the fluid is supplied. For the other
part of the boundary, classical Neumann boundary conditions for both ¢ and u
are considered. Let us observe that in previous works ([§] and [12]) Neumann
boundary conditions were imposed on the whole boundary.
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Figure 3: Domain 2 and notations for the boundary

Let us define (see Figure [3))

I ={(0,2) eR? 0<z<h(0)}, I, ={(L,2)eR?® 0<z<h(L)},
sz{(x,O)ERZ, 0<z< L}, th{(x,z)e]Rz, z = h(z)},
Ty ={(z,2) €, x>0}

Thus, the boundary conditions are written, denoting n the exterior normal to
the domain, as follows:

0y on
- - a 2 = Aol - 1
Q0|FL ¥, IU'|FL 0 an onlr, 0, onlr, 0, ( 8)

for some given boundary value ¢; defined on I'y, satisfying the following hypoth-
esis:

Hypothesis 2.3. We assume that o, € H"/?(T'}) satisfies

1(0) = ¢}(h(0)) =0, |etlrz(ry <& (19)

for some small € > 0 depending on all the data. We will explain further how &
is determined (see Proposition ,

Finally, let us define the initial condition: ¢|;—g = @o € H>(Q2), where ¢ is
supposed to be satisfying the same boundary conditions as . Compatibility
conditions also imply that pg defined by pg = —f\‘—;Agpo + F'(pp) satisfies the
same boundary conditions as pu.

2.3. Modelling a mixture in thin films

A diphasic flow in a thin domain is described by a modified Reynolds system
of the form 7 where the viscosity 7 is not constant anymore but depends on
the order parameter . Because of the non-constant viscosity, the coefficients



in the Reynolds equation (which depend on 1) depend on ¢. Let us introduce
the following expressions that will be useful in the following:

a(x,z>:fL b(x,z>:r& C(W)_rws

o n(e(x,8))’ o n(e(x,8))’ o n(e(x,8))’
(20)
and N
a(r) = a(x, h(x)),  b(x) = bz, h(x)), &)= c(x,h(z)),
for all (x, z) € Q. We also define:
~ N b(x)? N b(x)
d(z) = ¢(x) () and ¢(x) @) (21)

Following the same procedure as in Section [2.1] we integrate twice the first
equation of with non-constant viscosity and using the boundary conditions,
we obtain for all (z,z2) € Q:

_ ’5(.’[) a(CE, Z)
u(z,2) = (b(ac,z) a(m)a(x,z)> A Ogp () + <1 ) S, (22)
ow2) =~ [ ot (23)
0
We use the fact that w is divergence-free and the boundary conditions in order
to write
h(z) h(z)
J Opu(x,2)dz = 0, f u(z,z)dz | =0. (24)
0 0
After integrating (22)), we obtain
A0 (d@)orp (@) = 50, (@), (25)

where the coefficients d and ¢ are given by . Therefore the whole system
(Reynolds/ Cahn-Hilliard) is written:

( N0y (ddyp) = 50,8 (26a)
ag a
u= (b - a) A0zp + 5 (1 - 5) (26b)
U(‘,Z) = - 6mu(,§)d§ (260)
0
A0 +ulpp+v0p — )\7136 div(B(p)Vu) =0 (26d)
052 ’
p= =158+ F(p). (26¢)

The coefficients a, b, @, Z, c?, € are explicit functions of ¢ (given by 7).
The functions B, F' are also known functions of ¢. The quantities Pe, « are



physical constants. The boundary conditions on ¢ and p are given in .
Let us notice that equations (26b])-(26¢c) imply that the following boundary
conditions are satisfied for u:

u(z,0) = s, u(z, h(z)) = v(x,0) = v(z, h(z)) = 0, (27)
h(0)

M w0 -0 (28)
0

As far as the pressure p is concerned, we impose an homogeneous Dirichlet
boundary condition at x = L and a Neumann boundary condition at z = 0,
which is given as a function of () and s. These boundary conditions are written:

Q)
Q- s [ h(o) - ij a(0,€) de
a(0) Jo
w = dzp(0) = p(L) = 0.

h(0) 7 h(0) ’
z2 (f b(o,odé—g((g)) L a(o,odg)

0

3. Statement of the main result

3.1. Main theorem

Notations 3.1. Let us define some notations and function spaces.

(i) For the usual Sobolev spaces, we denote by | - |, the LP-norm in Q, and
by | - |s the H®-norm in Q. We also introduce || - |2 which contains the
second-order derivatives:

115 = 10= - [5 + 107 - I3 + |02 - [5 + 102 - 3.

(i) Let us define the following function spaces:

X(Q) ={feH(Q)nL*(Q), 0.feH ()}
(@)

1 O H!
Py ={¢eD(), dlr, =0}

We introduce the weak form of .

Problem 3.2. Let o, € H/*(I}), and po € H*(Q) satisfying (18), and T > 0.
Find (p,u,v,p, u) such that

- the following regularity s satisfied:

pe L®(0,T; H*(0, L)), ue L*(0,T;X(5)), ve L*(0,T; L*(Q)),
p e LP(0,T; H'()) n Li, (0, T5 H*(92)) 0 C°((0,T); H'(R)),

loc

pe L3 (0,T;®}).

loc

10



- the velocity field w, = (u,v) is given as a function of ¢ by (26al), (26b]),
(26c) equipped with the boundary conditions , and (29).

- for any v € ®f,

1
M awv+ | spB@VaTes [ uver—o. @)

with
>

2
p=—gle + F(e). (31)
- the ingtial condition pli—o = o is satisfied as well as the boundary condi-
tions for .
The following sections are dedicated to the proof of the main theorem:

Theorem 3.3. Let T > 0, o; satisfying Hypothesis [2.3)), po € H3(Q) satisfying
, F and n satisfying the assumptions stated in Section |2.2. If \ is small
enough then there exists a solution (p,u,v, @, u) to Problem|3.2

8.2. Sketch of the proof

We present here the sketch of the proof of the main theorem. All the details
and computations are given in Sections {4 and The proof is divided into
two main parts, since the Reynolds equation and the Cahn-Hilliard are treated
separately.

Step 1. As far as the Reynolds equation is concerned, we prove the following
proposition:

Proposition 3.4. Assume that the viscosity n satisfies @ For any p € HY(Q),
the Reynolds equation (26a)) equipped with the boundary conditions admits
a unique solution which satisfies

d.p€ H'(0,L).
The wvelocity field u = (u,v) given as a function of p by — satisfies
ue H'(Q) n L®(Q) and ve L*(Q), with d,ve L*(Q).
Moreover, we have the following estimates
lulp <€ and |v]z < Clgls, (32)
where the constant C' does not depend on the scaling defined by .

Let us sketch the main steps of the proof of Proposition

11



e The Reynolds equation can be solved explicitly, so that p is given as a
function of the coefficients d and € (given as functions of ¢ by ):
recalling definition of w, we can integrate the Reynolds equation
once and obtain N N

AdOzp =se+ Ad(0)w — se(0), (33)

~

where the coefficients d(0) and €(0) only depend on ¢; and are thus known.
If d does not vanish, we compute formally 0,p, and then p using the
boundary condition p(L) = 0. In order to obtain estimates on the pressure,
we have to prove that the coeflicients d and € are regular enough (see

Lemma 7 and that cT(ap) is greater than a strictly positive constant (i.e.
the operator d,(d d,-) must be coercive, see Lemma [4.2]).

e As far as the velocity is concerned, u is given by

u:)\f(%p—&-g,

b
where the coefficients are given by f = (b — ;a) and g = (1 — g) S
a a

(and a, b, @, b are defined in ) It is enough to prove the regularity
of f and ¢ in order to deduce the needed estimate on u from the estimate

on 0,p (see Lemma [4.3).

e The velocity v is given by

v(z, z) = —J; dzu(z, §) d€,

and the regularity of v follows from the regularity of u (see Lemma .

Step 2. As far as the Cahn-Hilliard equation is concerned, we proceed as in the
earlier works on Cahn-Hilliard equation (e.g. [8]), and we apply the Galerkin
method in order to prove the existence of a solution to the system —. This
process consists in building approximate solutions (¢, ) in finite dimension
(see Section , for which the existence follows from the Cauchy-Lipschitz the-
orem. For these approximate solutions (¢, i, ), we prove the following propo-

sition (see Section [5.5)):
Proposition 3.5. For all0 <t < T, let

Y0 = 53Vl + | Flealt).
a2
2() = 333 19en(OF + V(0 + 1800 + | Plon(t).

Then the following estimate is satisfied:
Y(t) +Cr12(t) < f(Y()Z(t) + Co,
where C1, Cy are positive constants, and f : R — R is a continuous function

satisfying f(0) = 0.

12



Let us emphasize the main features of the proof:

e Although estimates on the Cahn-Hilliard equation are similar to the ones
in [§] or [13], they involve supplementary terms due to the different bound-
ary conditions: because of the non-homogeneous Dirichlet condition on ¢,
on the left-hand side of the domain (fluid injection), the conservation of
the quantity of each fluid is not satisfied anymore (in the sense that the

mean value m(p,) = ﬁj ©p, 1S not constant with respect to time). For
Q

example, since m(¢,,) is not constant, we cannot apply classical inequali-
ties on ¢, —m(p, ), such as the Poincaré inequality, and we have to work
with the boundary value of ¢,, on the left-hand side of the domain (see

Sections and .

e In order to control the boundary and source terms with the ones on the
left-hand side of the estimate, we have to work in adequate function spaces
and choose in a suitable way the coefficients in front of each term. This
is obtained only by imposing a smallness assumption on A which depends
on all other data of the problem.

From Proposition we deduce the convergence of the linear terms. However,
it is not enough to conclude the convergence of the nonlinear terms and the
initial condition. To this end, we need more regularity on ,, and will prove the
following proposition:

Proposition 3.6. There exists C > 0 such that for any T > 0:

don

<CT .
7 CT+C

lenlzz01m30)) < CT + C,
L2(0,T;H-1())

This proposition allows us to deduce the convergence of all terms in adequate
function spaces, using classical compacity results from [25].

4. About the Reynolds equation

The letter C' will then denote any constant depending on physical parameters
(s, Q, nvay M, Pe, o, Fy, Fo, Fs, Fy, B,,, L, h(x),...), but independent of the
unknowns (u, p, ¢, u) and of A.

4.1. Regularity of the coefficients

Lemma 4.1. Assume that the viscosity n satisfies (9). If ¢ € H' (), the
coefficients defined in , have the following reqularity:

a, b, ¢ € X(Q),

~

@ b ¢ d ee HY(0,L).

13



Proof. Assume ¢ € H'(Q). The terms a, b, c are of the form J & n(p(x, €)) dE,

0
for i = 0,1,2 (see definition of a, b, ¢). We will present the details of the
proof for the case i = 1. The same computations can be used to obtain the
regularity results for i = 0, i = 2. Let

e
oz 2) = L (e o)

Let us prove that b € X(Q) for any p € H ().

= First we prove that b e L?(Q) : for any (z, 2) € 2, we have

: € 2 1 (* 2
L,Mx,g))df> <(7?mf0£d€) <Ot

After integrating with respect to z and x, we get

L prh(z)
J J b(x,2)%dzdx < C.
o Jo

= Next, we show that be H'(Q) and 0,b e H():

bz, 2)? = (

— On one hand,
bt s) = - [ S o) s

with 0, € L*(Q). Let (z, z) € . Using hypothesis (9), we compute

o ([Ferewe), o)

;7 2 pz z h(z)
v 2 2 3 2
<DL | e | jorple P <02 | a0

m JO

After integrating with respect to z and then with respect to x, we
get

h(z) ) h(z) )
j |0ub(z, y)Pdy < C f (e, ) 2de,
0 0

L prh(z)
b= || e ) Pdyde < Cloagly < .
0 Jo
It follows that d,b € L*(Q).

— On the other hand, 0,b(z,2) = z/n(p(x,2)) € HY(Q), since ¢ €
H'(Q) and using ().
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> Next we show that b e L*(Q): since 0,b e L?(f2), we can write

bz, 2) = b(,0) + L " deb(a, €) de.

By definition of b, we know that b(z,0) = 0, Vz € [0, L]. Therefore, the
usual trace theorem for the Sobolev space H'(Q) implies that

z h(z)

bz, ) < 2 f (2cb(x, €))2de < hs f (0eb (i, £))2€ = hat 0D 0o,

0 O
< CHasz%{U?(O,h(w)) < Cllo:blf,

thus
b7, < C[l0:b]} < 0.

It remains to prove the regularity of a, 5, c, (z €.

= For the coefficients of the form a(z) = a(z, h(z)), b(z) = b(z, h(x)), &(x) =
c(z,h(x)), H'-regularity can be obtained using the same procedure as in
the first part of the proof.

& For d and ¢, the key point of the proof is to observe that H(0, L) (which
is embedded in L*(0, L)) is an algebra:

(f,9) e H'(0,L)*> = fge H*(0,L).

~ b2 b
Recalling the definitions d = (Ef &) and € = = and using the fact

that @, 5, ¢ belong to H*(0, L), we need to show that 1/d remains bounded.
Since 7 < 1, we have

h(z)
a(z) = J ¥d§ > Pon ie.

0o @) <G (34)

ISHN

From the regularity of @, 5, ¢, from the algebra structure and from ,
we deduce that N
de H'(0,L), &e H'(0,L).

4.2. Coercivity of the operator

Lemma 4.2. Assume that the viscosity n satisfies @D Let d be defined by .
It satisfies the following estimate:

Vze (0,L), d(z)=6:=—"—>0. (35)
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Proof. By definition (21)), J(x) can be written in the form:

M) 2
Yep  (h@ 2 f @

~ b z mz, z
d(:r)zE(x)fﬂzf G ° .
o n(x,2) b q

J dz
0 77('7;) Z)

In order to prove the assertion, it suffices to prove that there exists § > 0 such

a () ([ 50) - ([ 20) =(( 1)

Let us denote by P the following polynomial

P " i Y 2d
HJ <¢n<w<x,z>>+m<s@<x,z>>> :

h(z) z v? 22U p
:L Wz 2) | nlelmz) | nlelma)

From @D, we get

1 h(x) 1
Pv)> — j (22 +2zv + u2)dz = ——(h(z)® + 3h(x)*v + 3h(z)v?).
N Jo 31

A simple study of the right-hand side polynomial proves that

2 o Nx)?
VveR, Ve e (0,L), h(x)*+ 3h(z)v+3v° > 1
thus )3 ()3
Py s MBS py - BB
1277M 1277M

therefore the discriminant of the polynomial

P(v) — ey _ e Jh o QZ/Jh SO S
120 o1 on Jom 12nm

is negative:

h@) odz 2_ h(z) dz h(@) 224, B h(x)3
40 n(w(fmz))> 4<J 77(@(%@))[00 n(w(x,z») 12nM1<0

that is to say
2
h _2 h h 3
J Zdx f ldz — J Zdz > i
o N 0N ] 120m

The two previous lemmas (regularity of the coefficients) and (coercivity
of the operator) with formula imply that d,p € H(0, L), thus p e H?(0, L).

h 3
1 ~ h
J —dz |, ie. d>=-—-"->0.
o1 120

O
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4.3. Estimates of |ulo and |v]a

Lemma 4.3. Assume that the viscosity n satisfies (9). Assume ¢ € H'(Q).
The horizontal velocity u given by (26b)) satisfies

lulo < C.

Proof. The regularity of u follows from the regularity of p, equation (26b]) and
the regularity of the coefficients (Lemma [4.1)):

~

u=(b— %b)/\ Oup + s(1— %) e X(Q).

Moreover, we know that w is a combination of coefficients of the form J &/n(p)dE.
0
Indeed

b
luloo < | [b]os + M Mozplo +s | 1+ .Mqi , (36)
n a(z) min a(x)
z€(0,L) z€(0,L)
and 0,p is given by (33)), thus:
1 o ~ ~
Mosplo < ———— (sfelo + NAO [l + s2O)) . (37)
min d(x)
z€(0,L)

Let us obtain estimates for these coefficients.

> Using the boundedness hypothesis on 7, and applying the Cauchy-Schwarz
inequality and the fact that Va € (0,L), h(z) < has, we can write for all
(z,2) €

S har .
a(z,z) = | ————= < — <C, thus |a|w,|dle <C. 38
(@2) L n(e(x,€) ~ Nm |afos, @] (38)

= Similar computations for b, ¢ and E, ¢ give

1o [bloo < €, [elon, 8o < C. (39)

> Recalling definition of €, and using , it follows from :

b
e = —02__ < (40)
min a(x)
z€(0,L)
= We compute also from ([29)
Aw| < C. (41)
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Thus, using all these estimates in , we get
Aozple < C, (42)

and combined with and obvious estimates for a, @, b, Z, we obtain the
needed estimate:
lulo < C.

O

Lemma 4.4. Assume that the viscosity n satisfies (@ Assume ¢ € HY(Q).
Then the vertical velocity v given by (26c) satisfies

[vl2 < Cligll-
Proof. The regularity of v follows from the regularity of u, equation (26¢c|) and
the regularity of the coefficients (Lemma :

o 2) = | daule )i,
0
From the Cauchy-Schwarz inequality, we deduce that
‘Ub < hMlawu|2 (43)

b
Let us introduce the coefficients f = b—aT and g = 1—27 so that u = Afd,p+sg.
a

a
Therefore
|02ul2 < AN|0xfl2|0eploo + Al o] 2pl2 + 502glo, (44)
and 02p is given by taking the derivative of with respect to x:
N2ple < ———— (10,212 + Maudlzlduple ) (45)
min d(z
z€(0,L)

Let us obtain estimates for each coefficient separately:

> We have N N
|f‘oo < |b‘oo + C|a‘oo|b|00~ (46)

> It remains to obtain estimates of the deri\éati/\Ees) of the coefficients with
U2

n(p)?

respect to z. We can compute d,a = 0z, and the Cauchy-

Schwarz inequality yields

2 2
" y y
ol < B [ ([(ewptwenras) <c [ [Tk <ot an
m Ja \Jo QJo
and similar estimates for all the other coefficients:
|0zal2, |0zdl2 < Clel1,

10:b]2,122d]2 < Clle1, (48)
|0xcla; [02Cla < Clp]s-

18



> Let us write

From (34), we know that @ > n—m This estimate combined with and
M
(48) suffices to prove that
a
— < s
o (3)], < Clel (49)
and N
b
o ()| <clel. (50)
2
> Since
Opd = dye — BB2 — 0, (f) . Owe =0, (f) :
a a a
N N (51)
b b
0uf = dsb— dsa= — ad <~> L = (3),
a a a
it follows, using , , in , that
‘aﬂﬂQ < Clels, |0z€]2 < Ce]1, (52)
10z fl2 < Clefr, 1029l < Cllels-

Putting , (52), in and , we deduce an estimate for each of the
(44):

three terms in

> The first term is estimated by:
A0z f12]02pleo < Cle]r-

> For the second term, we have:

VI (510,212 + Moudaloupl) < Clels.

> The third term |, g|2 is exactly estimate (52)).
Therefore, using and these three estimates for |0, u|2, we obtain:
‘Dlg < C|6mu|2,

which proves the lemma. O

Remark 4.5. Observe that it is not straightforward to prove that v e L*(Q) if ¢
only lies in H*(Q). We get easily |v]on < C|0yu|o, however the H'-regularity
of  is not sufficient to conclude.

Remark 4.6. Since ([26a))-(26b))-(26¢|) are steady-state equations, the constants

in the previous estimates are also independent of time, so that the L*(Q)-
and L?(Q)-estimates ofLemma and|4.4) can also be written in L™ (0, T; L (2))
and L*(0,T; L*(Q)) for any T > 0.
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5. About the Cahn-Hilliard equation

5.1. Useful results and inequalities

5.1.1. Boundary conditions and lift operator
We need a lift operator for the boundary value ¢; of the order parameter ¢.

Lemma 5.1. Let ¢, € H/>(T}) satisfy Hypothesis , There exists @; €
H"2(Q) such that the following conditions are satisfied

()bl‘l—‘l =¥l v(127l|1_‘0 "I'L=O7

2
« ~ / A~
FA(PZ‘H =F (901)’ VASDI|FO -n = 0.

Proof. For any (x, z) € Q, let us define @;(z, 2) = x(z)¢ (7}{2;) + F, where F
is the solution of the following problem:
2 h(0)z h h(0)z .
AF = %w(x)F’ (@l ( h((Oz)) )) - hEg;X(fI;)@;’ ( h(([g) ) m Q7
Flr, =0,
V]:|I‘0 n = 0,

and the functions y and 1 are smooth functions satisfying the following condi-
tions:

x(0)=1, x'(0)=0, x"(0)=0,
P(0) =1,
Vee[s L] x(z) =x'(z) = x"(x) = x"(z) =0,
Vo elg, L] ¢(x) =4 (x)=0.

By regularity of the Laplacian [19], it follows immediately that F e H/2(Q),
thus ¢, € H™/2(Q).

Since h'(z) = 0 for z € [0, £], the two last conditions imply that xh' is identically
zero, and so are the other functions x'h’, x”h’, X" I/, k', 'k’ and yh".

N ke

¥ 3

& L

X

Figure 4: Possible shapes of function x and 1

Let us check that this function ¢; satisfies the claimed conditions:

e On I'y, F is zero, and since x(0) = 1, ¢; has the right value.
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e On I'g, we know that VF|p, - n = 0, and we have to treat separately the
three different boundaries for the other term:

— On Ty, 0y, 0) = X(2) 7z 1(0) = 0 by (T9).

= On Ty, W(x)0u@r(z, h(z)) — 69¢M$JK$D = W(x)X (2)pu(h(0)) —
X (@) RO 1 (1 (0)) —x () 14 4 (h(0)) = 0 by (T8) and using that h'y’
is identically zero.

— On T, all the terms of d,¢;(L, y) contain either x(L) or x’(L), which

are both equal to zero.

Let us compute the Laplacian of ¢;. In order to improve the readibility, we

h(0)y.
denote Y = G -

A =@ (V) - 2@ @A) + @ 1)
()R (x) — 20 (2)?h(z) h(0)

h(@)?
A2 h(0)

+ S0P (aY)) = kB Y ).

Yx'(z)ar(Y) + 1Y)

e We can compute the Laplacian on I';: A¢(0,y) = ;\é—zF’(cpl(y)), since
x'(0) = x”(0) =0, A'(0) = 0 and ¥(0) =

e For I'y, we treat again each boundary separately:

— On Ty, we have to compute d,A¢@; at (x,0). Using that y = 0 and
©;(0) = 0, we obtain that d,A¢;(x,0) = 0.

— On Ty, we compute A/ ()0, A@; — 0, Ay at (x, h(z)). The terms in A/
are multiplied by either x, x’, x”, X", ¥, or ¢/, and are therefore
identically zero. For the other terms, we use the same arguments
and that ¢j(h(0)) = 0 to conclude that the normal derivative of Ag;
is zero on IY.

— On I, we observe that x(L) = x'(L) = x"(L) = x"(L) = ¢(L) =
Y'(L) =0, thus d,A¢;(L,y) = 0.

5.1.2. Useful inequalities
Sobolev embeddings. Let us recall the Poincaré inequality and usual Sobolev
embeddings.

Proposition 5.2 (Poincaré inequality). Let < R? defined by . For any
f € HYQ) such that flr, = 0 on one of the three parts Ty, Ty, T, of the
boundary,

[fl2 < CIV 2. (53)
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Proposition 5.3 (Sobolev embeddings). Let Q = R? defined by . Then for
any 2 < q < 4+, we have H} () — LI(Q). More precisely, for any f € H' ()
with flr, = 0 on one of the three parts T'y, Ty, T, of the boundary, we have

[flg < Cl s (54)
Equivalence of norms. (see [15] for a proof)

Proposition 5.4. Let f € H*(Q) such that f
Iy, Ty of the boundary. We have

Ifl2 < CIAf]2. (55)

r, = 0 on one of the three parts I';,

Trace estimates. (see [2] for a proof)

Proposition 5.5. For any f € H*(Q)) such that f|r, = 0 on one of the three
parts T'y, Ty, T of the boundary, we have

|flzy) < CIVfla.
Corollary 5.6. For ¢ € H*(Q) satisfying the boundary conditions (18), we can
apply this proposition to Oy, since Oyp|r, =0, and deduce that
1020l L2(r,) < C|Vazpla,
and if we combine this relation with Proposition[5.4, we obtain
102012 (r)) < ClAg]s. (56)

5.2. Galerkin approrimations
Let us build Galerkin approximations of ¢ and u. Since H'(Q) is a se-
parable Hilbert space, there exists an Hilbertian basis (1;);>1 of H'(Q). The
functions 1; can be chosen to be eigenfunctions of the Laplacian —A with the
boundary conditions
s

an |F0 = Oa ¢i|l—‘l = 07

and we denote by A; the corresponding eigenvalues. As far as the regularity of
the functions ; is concerned, we have v; € H?(Q) (this result can be deduced
from [I5]). We define ¥,, = Span(¢1, -+ , %y, ), and Py, the orthogonal projector
on ¥, in L?(2). As a projector, Py, satisfies:

(]P‘Ilnfa g) = (fa ]P)‘ling)a v(fv g) € L2(9)2’ (57)

where (-, -) denotes the scalar product in L?(Q).
Recalling that ¢; € H/2(Q) is a lifting of the boundary condition ¢; defined in
Lemma [5.1] we consider the following approximation of ¢:

on(t) = D Bit)i + &1,
i=1

where f3; are unknown functions to be determined. In this setting, ¢, (0) — ¢,
is the orthogonal projection of ¢y — ¢; on ¥,,. Let us introduce the following
auxiliary function a, which will be useful in order to define p,,:
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Proposition 5.7. There exists a € H'(Q) such that

a|Fz = Fl(wl)a Va- n|1‘0 =0.

Proof. Let us define a by a(z,z) = F’ (cpl (%83;)) We check that a satisfies

the claimed conditions.
e On Ty, a(0,2) = F'(vi(2)).
o On Ty, d.a(w,0) = =155} (0) F"(1(0)) = 0 by (T9).

e On Ty, the normal derivative is written h'(z)0da(x, h(x)) — 0, a(x, h(x)).
The two terms are again equal to zero thanks to .

e On Iy, 0za(L,z2) = —h/(}f()zl)(f)zgog (};L((OJ?)Z) £ ((pl (};L((OI))Z)), which is also

zero since h/(L) = 0.
O

Taking (30)-(31) into account, let us define (¢y, p1n) as the solution of the
following weak problem:

Problem 5.8. Find ¢, = Y, Bi(t)¥; + @1 and p, such that
i=1

1
)\J Oront) + J ——B(pn) Vi, Vo + J Uy, Vo =0, VpeUl,, (58)
Q Q )\Pe Q

a2

Hn N2 App +a+ Py, (F/(Qon) - a)a (59)
with the initial condition ¢,|i—o = wo and the boundary conditions
finlr, =0, @ulr, = @1, Vin -nlr, = Ve, - nlr, =0, (60)

and where u,, 1s defined for each ¢, by the formulas — and .

This problem can indeed be obtained from because the boundary term
vanishes, as proved in the following proposition.

Proposition 5.9. Let (on, pn) solution of Problem . Then the boundary
term coming from the integration by parts cancels:

JF B(¢n)Vin -mip = 0.
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Proof. > On Ty, we can compute Vp,, - n|r,, using that the functions v; are
eigenfunctions of —A:

2
(6]
Vi, 'n|Fo = 7PVA907L : n|F0 + Va- n|Fo + YPWn (F,(San) - CL) 'n‘r‘o

=0 by Def. =0, since Py, (F'(pn)—a)e¥,

= _7v (Z Bz z"bz) . n|F0 + VASbl . an(} .
—_—

=0 by Lem. @

Since ¢; € U, for any i < n, we have Vi;-n|r, = 0, we deduce Vi, -n|r, =
0.

> On I';, the boundary term is also equal to zero, since ¢ € ¥,,, and thus
vanishes on I'.
Observe that the weak formulation (58)-(59) is well-defined since ¢; € H} ()
implies that u, € H'(2). Indeed, the functions v; are eigenfunctions of —A,
thus the regularity follows from definition . O

Remark 5.10. Observe that the chosen approrimation of 1 satisfies the
same boundary conditions as u, because of the definition of ¢; in Lemma [5.1].
Moreover, if it converges, it is towards p = —‘j\‘—zAcp—kF/(go), since Py, converges
towards the identity. Indeed, F'(p) — a satisfies the right boundary conditions
in ®} (by construction of a, see Proposition :

> F'(on) —a =0 onTy,

> V(F'(pn) —a) -n =0 onTy.
Lemma 5.11. Forn € N, there exist t,, > 0 and (3;)1<i<n € C1(0,t,) such that
pn(t) = ‘il Bi(t); + ¢y is a solution of Problem .

Proof. Replacing ¢, by its expression as a function of 3;, the system (58)-(59)
becomes:

i) | vooe | 5508 (2 Bilt wmal) Vi Vi

n

+ ()| v o« -V =0, Vip e U,
1_215(>JQ {Elﬂi(t)wﬁ@z} ww w

2 N n
fn = *% Z Bi(t)N\iy; + a + Py, F’ <Z Bi(t) i + o1 — a) .
im1 i=1

This formulation is an ordinary differential equation on (8;)1<i<n. The func-
tions B and F’ are of class C' on R. Moreover, the function u as a function of ¢,

given by (26D])-(26)-(26a)) is also C* on R (with respect to time): indeed, u,
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is given as a combination of coefficients of the form J &/m(on(x,€))dE, and the
0

function 1 is C! by assumption @ The second component of the velocity v is
given as a function of u, and is also C' on R, . Therefore, the Cauchy-Lipschitz
theorem ensures the existence of a unique solution (8;)1<i<n On a time inter-

val [0, ¢,). O

Last, let us introduce another auxiliary function b, which is another lifting
of the boundary condition ¢; and will be used to apply Poincaré inequality:

Proposition 5.12. There exists b e H?(Q) such that for some small e > 0 that
will be determined later,

b‘rz =1, Vb - n|F0 =0, |amb‘2 < E.

Proof. Let us define b by b(x, z) = ¢ (%8;) Let us check that b satisfies the

claimed conditions. The first ones are the sames as in Proposition and are
satisfied in the same way:

On Iy, (0, 2) = pi(2).
On Ty, 3:b(x,0) = 151(0) = 0 by (T9).

On T, the normal derivative is written h'(x)d,b(z, h(z)) — 0,b(x, h(z)).
The two terms are again equal to zero thanks to .

On T, 0;b(L,2) = —hl(hL()Lh)(QO)z@; (%{2;), which is also zero since h/(L) =
0.

Last, we observe that

R (z)2h(0)%22 h(0)z
ol = [ i ()

Q h(z) h(x)
and thus by and , this term can be arbitrarily small. Therefore, in
order to ensure the smallness of |0,b|2, we have to choose € sufficiently small.
Therefore, this determines the smallness assumption on € in in Hypothe-

sis 2.3 O

2
dadz < Clej[72(0.1);

5.3. Equation on ¢

Let us now focus on obtaining estimates of ¢,, @, in appropriate function
spaces. In the sequel, we drop the subscripts ,, for the sake of readability, and
we write o, p instead of ,,, fi,.

Lemma 5.13. For ¢ and u solutions of —, the following applies:
d 042 2 Bm
A <2A2|V¢2 +L (w)) + 3 pe Vil

(61)
< c((mio +[v3) 18wl + |v|%|b|5>.

25



Proof. Let us take » = p € ¥,, in the weak formulation . Using Definition
for u, we get

[

A¢+G+Pp@W@—ﬂh+x%;LBWMVM”:—LU-VWL

=;A =:B =:D
(62)

Let us obtain estimates for each term A, B, D:

> The A-term is composed of two parts:

2
A= —%f atSOASD-i-J at@a"_J at@P‘lin(Fl(@)_a))'
Q Q Nl

=:A =:A>

* For Aj, we use integration by parts:

Ay

o2
-—— 8<pAg0+J8<pa
)\QLt Q

a? d a?
——V@Q——JaapVgo-n—&-J&goa.
errAd by . 0 !

The boundary condition V; - n|r, = 0, and the fact that ¢; is
independent of ¢ allow us to treat the boundary term:

2

A Jp ——~ ——

=0onI; =0o0onTy

thus
o2

L7 oN2ar

4190+ J'@wa (63)

For the second term, observe that from the time-independency of ¢,
and v; € ¥, it yields

Py, 09 =Py, (Z Bé(t)wz) = Z Bi(t)i = Or . (64)
i=1 i=1

Now, we use property and :
Ay = (O, Py, (F'(p)—a)) = (P, 00, F'(p)—a) = (0r ¢, F' () —a).

Thus, A can be expressed as a time derivative plus a second term
which will cancel with the last term in :

A, —f 0t oF' (i ‘[ Orpa = dtJ F(p f dipa. (65)
Q
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= The B-term is trivially estimated using that B(p) = By, (see (17)):

B,

2
e VA2 (66)

1
B=——| B()|Vu|* =
N Pe L (@) Vpl
> For the D-term, we split it into two terms:

D =J- uazapu—i-_[ VOy Pl -
Q Q

=D =D>

*» We use Poincaré inequality and Young’s inequality
Dy = | wdupn < ulelosellila < Clulcloselal Vil
Q
1
< IVl + Clullougl.
Now, observe that 0, is zero on I',., and thus the Poincaré inequality

yields
020013 < L|02¢|3 < C|Agl3.

Combining these two estimates, we obtain
1
D1 < 5|Vl + Clul | Agl3. (67)

* For Ds, we apply Holder’s inequality with two exponents ¢ and ¢’
strictly greater than 2 such that %+ % = % and the Sobolev inequality

for |p|q with the Poincaré inequality :
Dy = L voyop < [vl2|0yplqlply < Clol2|dyelglul < Clol2|oyelq Vil
Now, we use for |0y¢|q, and Young’s inequality
1
Dy < Clol2|dyel1 [Vl < §|Vﬂ|§ + Cluf3oyelf.
It remains to apply with a function equals to zero on I';. This
is done using b defined in Definition Since [|0y(p — b)[1 <
C|A(p — b)|2, we have
1
Dy < 5|Viuls + Clol5 (1Al + [[b]l3). (68)

Putting , , , @, into , and rearranging terms, we get
d [ o? B
A X e+ | F (o = 1)1Vl
- <2A2| o+ (@)) + (1) Ivul3
< 0<(|u§o +[of3) |agl + |v|§|b|§>.

This proves inequality . O

(69)
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5.4. FEquation on
Lemma 5.14. For ¢ and pu solutions of —, the following inequality
applies:
a? 2 ¢ 2, 1 2 2r 2
2 IVela + E5(0) | Fle) < 51A¢l + 5 Vula + CIVely" + CVel; +Ti. (70)
Q
where T} is independent of @, p and of time t, and is given by:

. . 1
Ti = C (14 bl + 1o + ) + llalorl + € (55 +1) Il

Proof. If we multiply by ¢, we get

2
!
(1, 9) = (=35 8¢ +a.9) + (Pu, (F(p) —a),¢). (71)
—— ~
=:A _B =:D
As before, let us treat each term separately.
> For B, we use integration by parts, and obtain:
a? a?
B:V|Vg0|§—ﬁfchgo'n+Jagp. (72)
r Q
—_—— ——
=:Bl (*)

Observe that since Vo - n|r, = 0, the boundary term By is zero on I'\I';.
Using and Young’s inequality, it follows:

f 01 Oz
Iy

C C
< ﬁ|sﬂl|L2(rl)|A@\2 < p(|A<P|§ +[B]D),

a2 Oé2
|B1| = 2 < §|<P1|L2(n)|5xs0|m(n)

where we used b as a lift of ¢;.

> For the D-term, let us use the projector property and the fact that
p—pre ¥, (ie. Py, (p—@1) = ¢~ and thus Py, o = o—(Id—Py, )f1):

D = (Py, (F'(¢) —a),¢) = (F'(¢) — a,Py, )
= (F'(¢), ) —(a,9) —(F'(¢), Id = Py, )&1) +(a, (Id — Py, )@1) -
—_— ~- ~-

=:D; —(%) =:Dy =:D3

The term —(*) cancels with the one in . Hypothesis with v = 0
yields

Dy - f F(o) g >f Fy(0)F () — F4(0)[] > j Fy(0)F(g) — C. (74)
Q Q Q
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As far as Dy is concerned, we use the fact that Id — Py, is a projector,
thus its operator norm (in L?(9)) is equal to 1. We also use the property
for |F'(¢)| and for |5, to obtain (if r > 1):

| Da| = |(F"(¢), (Id = Py, )@1)| < [@1]2F ()2
< Claila(Filely, + F2|Q) < Clénla(llely +1)

<
< Cliula (|9l + bl + 1) (75)
< (1@} + [Vl + b +1),

where in the third line, we used the lifting b of the boundary condition ¢,
defined in Definition to apply Poincaré inequality. Observe that we
proved the following estimate on F” (), which will be used in the following;:

F' (@) < IVl + bl +1). (76)

Last, we use again the fact that the operator norm of Id — Py is equal
to 1, and write
D3 < |al2|@i]2- (77)

> For the A-term, Young’s inequality combined with the Poincaré inequality
for ¢ (using b as a lifting of ¢;) and for p yields:

Azﬁﬂ@<h@@h<€WMﬂ®VMrHMﬁ

(78)
1
< CIVu(IVels + [bl1) < 5V + C (IVel + [B]7)

Putting — in , and rearranging terms, it follows:
12 2 Fa(0 F < g A 2 1 2 C 2r C 2
vz Vel + F5(0) . () < 1Al + 5 IValz + CIVely" + OVl
+.0 (Il * 108 + ) +lalalrs +C (14 55 ) 13 + €,

which is the inequality we claimed. O

Lemma 5.15. For ¢ and pu solutions of —, the following estimate ap-
plies for any 0,k > 0:

o? 2 _ 1 2, 1 2 C 2r
(37 =304l < 5|Vulz + S5IVel; + —[Vels" + 5, (79)
A 2 2 K
where S) is independent of ¢, p and of time t, and is given by:
C 1
Sp=—(|lb —lal3.
= (b1 + 1) + ~Jal3
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Proof. Multiplying by —Ay and integrating by parts, we get

062
w13 = =(1, Ap) +J Py, (F'(p) —a) Ap + (a, Ap) . (80)
)\ %/_J Q ;v_/

=:A 7\-ﬁB =:D

> We treat the D-term with Young’s inequality with some constant x > 0:
1
D = (a, Ap) < —lal3 + £|A¢[3. (81)

= For the B-term, we use the projector property and Young’s inequality
to obtain the following estimate:

B = (Py, (F'(¢) —a),Ap) < F'(¢)[2|Apl2 + al2|Ap]|2
< TJal3 + slAgl + slAglE + T (o)
Then we can use to deduce that
B<omAGh+ a3+ (Ve 4 bl +1). (82)
> As far as the A-term is concerned, it is computed by integration by parts:

A:—(M,Ago):f Vquo—f uw Ve-n.
Q r ~—~— ~——
| —

=0on I'; =0 on I'y
=:A4

Thanks to Young’s inequality, we have
1 1
A= —(Vis,Vg) < 5Vu + 5908 (53)

Finally, we use (81)-(83) in to obtain
2

o 9 1 o 1 2, C o C 2r Lo
(55— 30)IA0E < SIVal + SVl + ZIVel + = (BIF +1) + laf3

This concludes the proof. O

5.5. Convergence results
5.5.1. A priori estimates

Let us sum , and c3 X , where c3 is a positive constant that will
be determined in the sequel. We obtain

d ([ o? 9 Bn 3 c3 9 o? s 9
A@ (Wv@b + JQ F(@)) +(/\7Pe 5 5) Vulz + (p -C- §)|V80\2
a? C
(a5 =30 = 53) 8¢l + Fa0) | F(o)
csC -
< C((lulZ, + Bl + [wBlIblI3) + (€ + == ) IVel3 + cast + Ti.
(84)
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To control the right hand side member of we recall that we proved in
that

lule <C, vz < Clg].
We apply the Poincaré inequality choosing b as a lift for ¢ to gain
ulZ <G, [ul3 < CIVel3 + CJb|1. (85)
Estimate becomes
d [ o? B 3 c3 a? c3
A (et [ 1) (-2 3w (5 - S
i (oal7eB+ [ FO)+ (5 - 5 - 2)Ivu+ (5 - 0 - 2)1vel

+ (es(Sy —30) — 3 - O + FO) [ i)

C Ces
< CIVeBlAapE + O (1+ 2)IVely +C + 55 + =2
(86)
In order to ensure
Bm o § . C3 Bm
APe 2 27 2\Pe’
042 _ _ 673 < a2
A2 9 7 9\’
a? C c3a
c:),(>\2 3H)_ﬁ_c/2)\2’

we will choose c3, A such that

3 Cg< Bm

572 S ope
2
C3 (%
7<7
C+5 <o
03a2
222

We choose c3 with cza? large enough such that the third condition can be

rewritten as )
c3Qy 1
3 C < -C ) —=.
KC3 + ( 5 ) 2

3”c3+ﬁ+0<

>0

Newt, choosing A > 0 small enough ensures the required inequalities.
Estimate becomes

2X
CC?,

d [ o? B o2 a2
dt <2)\2|v¢|2 + JQ (90)) + 2>\Pe|vU|2 + 2)\2|V<p|2 + 5 |Ap|5 + F5(0) o (¢)
c C
< CIVelBl Al + C(1+ ) IVeld +C + 55+
(87)
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Let us define for all ¢t > 0,

a2

V) = 353IVe0 + | Flett),

2(0) = 53 Ve(t)E + Va0 + 180003 + | Flel0),

so that 0 < Y(t) < Z(t), since F > 0 (by assumption (13)).

Lemma 5.16. There exists strictly positive constants C1, Cy and f : R — R
an increasing continuous function satisfying f(0) = 0 satisfying
o O > 0;
e there exists M > 0 such that
* f(M) < 01/27'
* Oy < M01/2
such that the a priori estimate can be rewritten in the following form:

V() + C12(t) < fV(1)Z(t) + Ca. (88)

Proof. In order to rewrite as the inequality , we have to set apart the
linear terms (with respect to Z) and the nonlinear terms (which will appear in

f)2).
Defining
1 B, c3 o
Cl = Amln{m’ ,W,Fg(o)} >0
and

Cg:=§(1+$+%)>(),

we rewrite as
yl(t) + Clz(t) < f(y(t))Z(t) + Cs.

We can also give explicitely the form of f, which is given, up to a multiplicative

constant, by
22 es\ 222\ .,

For r > 1, it is always possible to find M > 0 such that f(M) < Cy/2.

It remains to impose that the right-hand side is controlled by C, i.e. that
Cy < MCy/2. This is achieved by imposing some smallness conditions on A.
Indeed, if A ~ 0 then we have Cy ~ S5 and Cy ~ §(1+ ). Tt is then

possible to find M > 0 satisfying the desired property, since the two constants
are of the same order in A. This concludes the proof. O

From now on, let us come back to the notations with the subscripts ,, intro-
duced in Section denoting the Galerkin approximations. The proof of the
main theorem consists in showing that ¢, = +o0 for any n > 1, and that ¢,
converges in appropriate function spaces.
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Lemma 5.17. For any n € N, under a smallness assumption on A and Hypoth-
esis[2-3, there exists C' > 0 such that for any T > 0,

lenl Lo @+ i)y <O, enlrzomraz) < CT,  |pallL2orey) < CT. (89)

Proof. Let n € N, T > 0. The assumptions are enough to apply Lemma [5.16|
with Proposition (given in Appendix) which implies that V,, € L*(0,T) with
a bound independent of T, and Z,, € L'(0,7) with a bound depending on 7.
From this, we deduce several results on ¢, f,:

e The quantity Vi, is bounded in L*(0,00; L%(£2)), uniformly with respect
to n.

e The quantities Vu,, Vi, and Agp, are bounded in L% _(0,0;L*(Q)),
uniformly with respect to n.

e Furthermore, applying the Poincaré inequality to ¢, allows us to control
the whole H!(Q)-norm by the L?-norm of the gradient.

e As far as the H2-norm of ¢,, is concerned, we know by Proposition
that it is equivalent to the L2-norm of the Laplacian, and thus control-
ling |Ag,|2 is enough to control the whole H?(£2)-norm.

e For u,, the Poincaré inequality also allows us to control the H'-norm
by the L?-norm of the gradient.

From these arguments, we conclude that there exists C' > 0 such that for any
T > 0, estimate is satisfied. O

Let us observe that the first estimate of is enough to show that the time
interval (0,¢,) on which the functions ¢, exist is (0, +00).

Estimates are not enough to conclude for the convergence of the nonlinear
terms and of the initial condition ¢, (0). Therefore, some more regularity on ¢,
and 0; @, will be proved in the next subsection. We also note that the value of
the scaling \ is now fixed: the constants C' which appear from now can depend
on A\.

5.5.2. H3-estimate for ¢
Lemma 5.18. For any n € N, under a smallness assumption on A, there exists
C > 0 such that for any T > 0

lonllz20,m;m3 () < CT + C. (90)

Proof. We compute the gradient of :

2
%VA% —Va = VPy (F'(¢n) — a) —Viin. (91)

=:A
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= Let us prove that |A|3 < |[VF'(¢,)|3. The difficulty here is to switch the
two operators V- and Py, -. We have by integration by parts

453 = L VPy, (F'(¢n) — a) - VPy, (F'(n) — a)
- L APy, (F'(¢n) — 0Py, (F' () — a)

+ fqu/n (F’(gpn) —a) - - @n) - a),
T

where the boundary term on I cancels since Py, (F'(¢n)—a) € ¥,,. Let us
0 n

denote ®! 3 F'(p,) —a = >, vith;. We have Py, (F'(¢n) —a) = Y vith;.
i=1 i=1

Thus, we can compute

Al = —J vt Y i,
Q=1 i=1

and since the 1; are orthogonal, we have
= D O, yithi) = = Y (Ayithi, vithi) = D (Vithi, Vi)
i=1 i=1 i=1
Pn) —a))
@n) - a)'% < |VF/(<pn)|§ + ‘Va|§7

A3

= Py, V(F'(¢n) — a), Py, V(F'(
=Py, V(F'(¢n) — )3 < [V(F(

since the operator norm of Py, is equal to 1.
= It follows from hypothesis on F' that:

[VF'(¢n)l3 < L(Fﬂ@nl“l + F2)?*[Vonl* < C(IVenl3 + )7 Veonl3).

Since r > 1, the Holder inequality implies

1/q 1/q'
|VF’<%>§<O<|M|§+(Lsoi““—”w) (LW%PQ) )

2(r—1
= C(IVenl} + lenlair 1), VL),

1 1 1
with — + — =1, for any ¢ > 1. Let ¢ = 1 Then 2(r — 1)g = 2, thus
qa g r—

HY(Q) — L20=14(Q) and 2¢’ > 2, thus H'(Q) — L27(Q). We finally
obtain

Al; < C(IVenls + lenli ™ enld) + o [VAGIVE (n)[5 + [Val3, (92)
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> At last, taking the L?-norm of 7 it follows from that

2
e —
F\VA%IE < O(Vuals +1Veul3 + leoali ™ enl3) + [Val3,

This estimate combined with and the regularity of ¢; (Lemma |5.1)
allows us to conclude that estimate is satisfied.

O

5.5.3. Time derivative estimate for ¢

Lemma 5.19. For any n € N, under a smallness assumption on A, there exists
C > 0 such that for any T > 0,

'd% <CT +C. (93)

dt

L2(0,T;H-1(Q))

Proof. We introduce the dual operator ]P’En of Py, . Equation can be rewrit-
ten in the following form:

1

(A0, somIP’wnx)Jr(uLpn-VwmPqu,ﬂx)—m(diV(B(tpn)Vun),P\vnx) =0, Vxe®,
which becomes
dpn 1.
AR = Py, (up, Gutpn + v, Oaipn — 5752 AiV(B(9n) Vi) ).

Let us treat each term separately:

= By Proposition [3.:4] we have
ug, € L*(0,T; H'(Q)),  wv,, € L*(0,T; L*()).

Moreover, previous estimate implies that ¢,, belongs to L?(0, T'; H3(12)).
By a classical result on the multiplicative algebra structure of the Sobolev
spaces proved e.g. in [21], we deduce that

Up, Qopn € L2(0, T HY(Y), g, 0200 € L*(0,T; L)),
with the following estimate:

Hugon aI(PnHLZ(O,T;Hl) + H'an az‘PnHLQ(O,T;LZ)

< C (lug, Iz o,;mm) + [vg, L2(0,1L2) + l@nlL20,:m5)) -

> Furthermore, since B < B,,:
I div(B(en)Vin) -1 < Bl Vina.

It follows the claimed estimate ((93)). O
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5.5.4. Final convergence results
It is now possible to prove the main theorem [3.3] re-stated here for the sake
of readibility:

Theorem. Let T > 0, o; satisfying Hypothesis [2.3)), o € H?(Q) satisfying
, F satisfy the assumptions stated in Section (2.2 Under a smallness as-
sumption on A, there exists a solution (p,w, @, ) of Problem .

Proof. From the previous Lemmas [5.17} [5.18|and [5.19] (i.e. estimates , ,

(193), we obtain the following convergence results (up to a subsequence):

On — @ in L°(RT; H'(Q)) #-weak,
On — @ in L (RT; H3(Q)) weak,

loc

o —pin L (RT;®p)  weak,

den  dp o o
- T @ in Li, (RT; H*(Q)) weak.

Moreover, Proposition combined with the previous global convergence result
on ¢ implies the following convergence results (up to a subsequence):

U, —u  in LP(RT;X(Q))  *-weak,

Up — v in L*(R"; L*(Q)) #-weak,

Dp — P in L*(R*; H*(0,L)) #weak.

Therefore, from the convergences of ¢,,, we deduce

on — @ in L} (RT; H?(Q)) strong.

loc

Furthermore, by a classical embedding result due to [25], we deduce from
and that for any 7' > 0

O — P in C°([0,T); L*(Q)) strong,
Op — @ in C°([0,T); H'(Q)) weak.
Therefore, we can conclude for the convergence of the nonlinear terms:

lOC(R+; HQ(Q))7 the
nonlinear terms B(p,,) and F’(¢,,) converge strongly in C°([0,T); L?(12)).

e Since ¢,, converges strongly in CY([0,7); L?(Q2)) n L?

o As far as the convection term u,, - Vi, is concerned, we know from Lem-
mas and |4.4| that u.,, is bounded in L®(R*; L?()). From the strong
convergence of Vi, in L _(RT;L?(£2)), we conclude the convergence of
Uy, - V.

Lastly, we deduce from the last convergence result that ¢, (0) converges weakly
to (0) in H(2), and thus ¢(0) = ¢o because Py, converges to the identity for
the strong topology of operators. For the boundary conditions on ¢, the previous
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convergence result in H3(£2) also allows us to conclude that both the Dirichlet
(on T';) and the Neumann condition (on I'g) pass to the limit for ¢,. Using
again the convergence of Py, and the fact that ¢; satisfies the homogeneous
Dirichlet and Neumann boundary conditions, we deduce that ¢ satisfies .
For u1, we know that s, converges weakly to u in ®}.

It remains to prove that the functions u,, ¢ and p satisfy , . Let
pe€D'(RT), and let N > 1. For any n > N, ¢, satisfies with ¢ = uy. We
multiply this equation by p(¢) and integrate by parts. From the convergence
results stated above, we can pass to the limit in this equation. The limit equation
obtained is fulfilled for any N > 1, and any p € D'(R"), thus we conclude from
the density of Span(t;);>1 in H' () that u,, ¢ and p satisfy (58), where u,, is
defined by the formulas - and .

Lastly, since Py, converges to the identity for the strong topology of op-
erators (see Remark [5.10)), the dominated convergence theorem allows us to
conclude that ¢ and p also satisfy . O

6. Numerical illustration

In this section, we present some preliminary numerical results solving sys-
tem 7 in order to show some features of the model. Let us emphasize that
in contrary to other bifluid models, this model does not assume that the in-
terface between the two fluids is a graph, and therefore allows more general
configurations, such as drops.

The equations are discretized in a standard way by finite differences. In
order to deal with the fact that the domain is not rectangular, we rescaled
the equations to work in the rescaled domain Qyescaled = {(z,¥),2 € (0,L),y €
(0,1)}. In order to preserve a maximal principle on ¢, we use the same flux
limiters for the Cahn-Hilliard equation as in [5]. The boundary conditions are
treated by introducing artificial variables in fictive cells on the boundary of the
domain.

6.1. Influence of the different viscosities

Viscosity is widely used for fluid characterization, and allows us to model
different types of behavior for the fluids, even for Newtonian ones (which is the
framework of this study). It is of interest to compare the results obtained in
both scenarios, when a drop of a less viscous fluid is immersed in a more viscous
one, or when a drop of a more viscous fluid is immersed in a less viscous one.
Indeed, the results can vary in a qualitative way.

In order to focus on the influence of the viscosity, we use a simple domain of
constant thickness i = 1, and we neglect the shear effects by choosing the shear
velocity s = 0. The test cases are carried out with the parameter a related
to the thickness of the interface chosen equal to = 0.015, with an input flow
@ = 0.5. The time step dt is adapted from the C.F.L. condition, with §t < 0.01.
Thus, we model a situation in which the flow “pushes” the drop in the other
fluid, from the left hand side to the right.
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e If we want to model for example a drop of oil in water, we choose 1n2/n; =
80. We obtain the results presented in Figure[5] We observe that a viscous
drop is not really deformed when immersed in a less viscous fluid.

Position de la frontiero au temps 0,000 Position dela frontiere au temps 1 0.605

1

1

08954 077 0,895 077

0782 0.55¢ 07824 LE

0.669- 033 0.869 033

05556 0111 0556 o1

0.444- -on 0.444- 011

03314 -0.33; 03314 033

0218 055t 02184 —0.55

0.105- 077 0,105 077

000B—r—T—T " T T T T T T T T T T 1 -0 0008 T——T— T T T T T T T T T T T 1 1 -.00
0008 0105 0218 0331 0444 0556 0669 0782 0895  1.008 0008 005 0218 0331 0444 0556 0669 0782 0895  1.008

Figure 5: A drop of oil (in yellow) in water (in dark blue)

e On the other hand, choosing 72/m = 1/80, we model a drop of water in
oil. The results are given in[6] On the contrary to the previous case, the
drop is strongly deformed.

Position de la frontiere au temps 10.000 Position de la frontiere au temps 10,344

1 1.00( 1 1.0

0895 077 05895 077
07824 055 0782 05
0669 033 0689 033
0556 0111 0556 o111
0444 o1 0444 o1
04314 RES 0331 033

0218 —0.55¢ 02184 ~0.55

0.1054 077 0.1054 0776

T 1,00 R —T
0895 1.008 0008 0.105

T - T T T T T
0218 0331 0444 0556

~0.008T—r— T T T T T T T T T T
0008 0.105 0669 0782 0218 0331 0444 0556 0669 0782 0895 1008

Figure 6: A drop of water (in dark blue) in oil (in yellow)

Of course, these numerical results could be enhanced with a model taking the
surface tension into account.

6.2. Drop transport applications

Another example which allows to validate the program corresponds to the
observation of recirculations inside a drop. Indeed, numerical and experimental
works [IT], [26] have showed that due to the blending dynamics, recirculations
are observed.

If we compute the relative velocity, we observe recirculations inside the drops,
as in Figure[7] To this end, we define a mean value of the velocity @, for example
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Champ des vitesses relatf Position de la frontiere au temps £ 0.000 pour a = 1 et b= 1

1 1.00(

0,894 077

07814

0.669-

05556

0.444-

03314

0219

0.106- 077

Figure 7: Recirculations in a drop and shape of the drop

the value on I'; (outside the drop), and we compute u — @, which is represented
in the figure.

It is of interest to note that this asymptotic model, which is in fact a very
simple one when comparing to the whole Navier-Stokes system coupled with the
Cahn-Hilliard equation, allows us nevertheless to observe very fine phenomena,
such as recirculations inside a drop.

7. Appendix

Proposition 7.1. Let T > 0. Let Y and Z be two functions in C1([0,T]), such
that there exists three real constants Cy, Co and a function f : R — R satisfying

y’+012<f(y)2+02, 0<Y<Z on [O,T] (94)

Assume that
e f is an increasing continuous function such that f(0) = 0,
o (1 > 0,
e there exists M > 0 such that

C MC
<71 and Cy < 21.

If Y(0) < M, then there exists a constant C' such that

f(M)

IVlze o,y < M.

Moreover, we have
IZ] 10,y < CT +C.

Proof. Suppose that there exists 0 < T* < T, such that Y(T*) = M and
Y'(T*) > 0. Then, evaluating at T%*, and using the hypothesis on Cs, we
get

(M — Z(T%)).

0<Y(T*) < Z(T*)(f(M)—Cy) + Cs < —%Z(T*) +Cs < %
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But since M = Y(T*) < Z(T*), we have M — Z(T*) < 0, which leads to a
contradiction.

The regularity of Z follows by integrating over (0,T), and using the regu-
larity of Y:

C C
?1\|Z(t) 10,y < V(T) + é“z(t)“Ll(O,T) < Y(0) + CoT < M + CoT,

which is written | Z(t)] 11, < CT + C. O
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