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Abstract— Optimized Link State Routing protocol
(OLSR) is a promising routing protocol for multi-hop
wireless ad-hoc networks, recently standardized by the
IETF as a RFC. OLSR uses intensively the concept
of Multi-Point Relays (MPR) to minimize the overhead
of routing messages and limit the harmful effects of
broadcasting in such networks. In this article, we are
interested in the performance evaluations of the Multi-
Point Relay selection. We analyze the mean number of
selected MPR in the network and their spatial distribution
with a theoretical approach and simulations. Then, we
discuss the implications of these results on the efficiency
of a broadcasting in OLSR and on the reliability of OLSR
when links between nodes may fail.
Keywords:ad hoc, multi-hop, wireless, OLSR, MPR,
performances, Palm.

I. INTRODUCTION

Due to the emergence of wireless local area
network technologies such as 802.11 [3], hiper-
lan [4] or bluetooth [5], the use of mobile wireless
networks is growing fast. With these technologies,
new challenges arise such as connecting wireless
nodes without any infrastructure. In order to connect
nodes which are not in each other’s radio range,
packets need to be relayed by intermediate nodes.
Such networks thus require forwarding capabilities
on each node and a routing protocol to find the
available path to any destination. Routing in such a
wireless environment is very different from classical
routing in wired networks. Indeed, nodes are mobile
by essence and may vanish or appear due to the
wireless nature of the physical layer. The topology
is thus in constant evolution. However, routing ad-
vertisements are expensive in resources since a node
spends energy while transmitting as well as receiv-
ing and each message sent by a node is received
systematically by all its neighbors. Therefore, the

number of broadcast advertisements must be lim-
ited, but also the number of nodes which propagate
them through the network, in order to maximize the
network lifetime. Consequently, an accurate routing
protocol needs to be distributed, must guarantee
a low level of traffic control overhead but should
be able to quickly take into account link failures
due for instance to node movements. The Internet
Engineering Task Force (IETF) addresses the design
of such protocols in its MANET1 (Mobile Ad-hoc
Networks) working group.

One of the recent proactive standardized pro-
tocols is OLSR (Optimized Link State Routing
Algorithm) presented in [1], [2]. Proactive, or table-
driven, routing protocols deeply rely on network
broadcasting features and proactive routing proto-
cols aim to reduce the impact of message flooding
in order to limit their control overhead and reach
scalability. In OLSR, only a subset of preselected
nodes called MPR (Multi-Point Relays) are used
to perform topological advertisements. At the same
time, control messages (containinge.g. routing in-
formation) are broadcast and forwarded only by
MPR. Thus, the number of emitter nodes is reduced,
overhead and useless receptions of messages on
nodes are thus minimized and the well known storm
problem [6] due to broadcasting is avoided.

In this article, we are interested in the perfor-
mances of the MPR selection. We analyze the mean
number of selected MPR in the network and their
spatial distribution using a theoretical approach and
by simulations. We then show that the algorithm
used for selecting the MPR is efficient for certain
quantities as the mean number of redundant packets

1http://www.ietf.org/html.charters/manet-charter.html



received by a node during a broadcasting task and
that the different proposed variants of the algorithm
always lead to very close performances (as at least
75% of the selected MPR are the same nodes
whatever the selection algorithm). We also discuss
the implication of the different analytical results on
the reliability of the protocol.

The remaining of the paper is as follows. In
Section II, we briefly detail the OLSR protocol and
the MPR selection algorithm. In Section III, we
give results about probabilities and mean quantities
relative to the MPR selection algorithm. We then
discuss about the implication of these results on
the performances of OLSR in Section V. Numerical
results and simulations are presented in Section IV.
We lastly conclude and discuss of future works in
Section VI.

II. OLSR

OLSR is a proactive routing protocol for Mobile
Ad-hoc Networks (MANET), i.e., it permanently
maintains and updates a network topology view on
each node in order to provide a route as soon as
needed. It uses the concept of Multi-Point Relays
to minimize the overhead of control traffic and to
provide shortest path routes (in number of hops) for
all destinations in the network. Each node chooses
a subset of nodes in its neighborhood as its MPR.
A MPR set is thus relative to each node. Each
node also keeps the list of its neighbors which have
selected itself as a MPR. This list is called the MPR-
selector list. It is obtained from HELLO packets
which are periodically sent between neighbors. In
order to build the database to route the packets, all
the MPR broadcast their MPR-selectors in the net-
work. The shortest path to all possible destinations
is then computed from these lists, a path between
two nodes being a sequence of MPR.

Since only MPR are authorized to send their
MPR-selectors, the control traffic is drastically re-
duced compared to the classical link-state algo-
rithms. When receiving a broadcast messageM
from a nodeu, a nodev forwards it if and only if
it is the first timev receivesM and if nodeu is in
nodev’s MPR-selectors list. This technique allows
to reduce the number of transmitters of broadcast
messages. We detail the algorithm which allows a
node to select its MPR within its neighborhood. It

consists of choosing nodes in such a way that the
whole2-neighborhood is covered. In this way, MPR
are selected in order to reach the2-neighborhood in
two hops, thek-neighborhood of the source node is
reached withink hops. Paths are thus the shortest
expected paths in number of hops.

A. MPR selection

As the optimal MPR selection is NP-
complet [10], we give here the Simple Greedy
MPR Heuristic which is the one currently used in
the OLSR implementation.

For a nodeu, let N(u) be the neighborhood
of u. N(u) is the set of nodes which are in
u’s range and share a bidirectional link withu.
(If v ∈ N(u) then u ∈ N(v).) We denote by
N2(u) the 2-neighborhood ofu, i.e, the set of
nodes which are neighbors of at least one node of
N(u) but which do not belong toN(u). (N2(u) =
{v s.t. ∃w ∈ N(u) | v ∈ N(w)\ {u} ∪ N(u)}). A
message sent by nodeu and relayed by a node
v ∈ N(u) reaches a nodew ∈ N2(u) ∩ N(v) in
two hops.

For a nodev ∈ N(u), let d+
u (v) be the number of

nodes ofN2(u) which are inN(v):

d+
u (v) = |N2(u) ∩ N(v)|

This quantity represents the number of nodes of
N2(u) that nodeu can reach in two hops via node
v.

For a nodev ∈ N2(u), let d−
u (v) be the number

of nodes ofN(u) which are inN(v):

d−
u (v) = |N(u) ∩ N(v)|

This quantity represents the number of nodes in
N(u) which allow to connect nodesu andv in two
hops.

Node u selects inN(u), a set of nodes which
coversN2(u) integrally. We define asMPR(u) this
set of MPR selected byu. In other words,MPR(u)
is such that:

u ∪ N2(u) ⊂
⋃

v∈MPR(u)

N(v)



This algorithm is run on every node and selects
the MPR in two steps. It supposes that each node
knows its 1-neighbors and its2-neighbors. In the
remaining of the paper, we denote byMPR1 the
nodes selected during the first step.

The algorithm is the following:

Algorithm 1 Simple Greedy MPR Heuristic

For all node u ∈ V

N
′(u) = N(u) andN

′

2(u) = N2(u).
⊲ First step
For all node v ∈ N(u)

if (∃w ∈ N(v) ∩ N2(u) | d−
u

(w) = 1)
then

Selectv asMPR(u).
⊲ Select asMPR(u), the nodes ofN(u) cov-
ering ”isolated” nodes,i.e. for which there is a
neighbor inN2(u) which hasv as single parent
in N(u).
Removev from N

′(u) and removeN(v) ∩
N2(u) from N

′

2(u).
end

⊲ Second step
while (N ′

2(u) 6= ∅)
For all node v ∈ N

′(u)
if (d+

u (v) = maxw∈N ′(u)d
+
u (w))

then
Selectv asMPR(u).
⊲ Select asMPR(u) the nodev which
cover the maximal number of nodes in
N2(u).
Remove v from N

′(u) and remove
N(v) ∩ N2(u) from N

′

2(u).
end

The first step selects as MPR the nodes which
cover ”isolated nodes ofN2(u)”. We denote a node
v ∈ N2(u) by ”isolated node inN2(u)” if there is
only one nodew in N(u) ∩ N(v) which allows to
connectv andu in two hops (v is such thatd−(v) =
1).

To better understand this algorithm, let’s run it on
the green nodeu on Figure 1. The isolated points
of node u appear in red andMPR1 in blue. For
instance, nodet is an isolated node via nodeh as
only nodeh in N(u) allows to connectt andu in
two hops. Nodeh is thus elected during the first
step: nodeh is a MPR1.

So, during the first step, nodeu will select the
red nodes asMPR1 and nodesk, j, t, s, r, q, o, m, l
in N2(u) will be covered by theseMPR1.

Then, nodeu goes to step two. It only considers
nodes of N2(u) which are not already covered
(nodesp and n) and nodes inN1 not selected as
MPR1 (nodesb, f , e and d). That means that it
only keeps the view of the topology illustrated by
Figure 1(b). It will first select the one which has the
highest degree on Graph 1(b). Nodee covers nodes
n andp whereas nodesf andd cover only one node
in N2(u) (resp. nodesp andn).

From here, all nodes ofN2(u) are covered by
the selected MPR, the algorithm stops. We have:
MPR(u) = {c, e, i, h, g}.

From here, it is easy to see that nodes ofN(u)
which cover ”isolated nodes” must be included into
the set of MPR if we want to cover the whole2-
neighborhood whatever the selection process. Thus,
we can not skip or ”compress” the first step of the
algorithm in the MPR selection. Moreover, this step
must be run first in order to minimize the number
of MPR.

Therefore, only the second step of the algorithm
can be improved in order to find the minimum
number of MPR.

B. Related works

Most of the literature about the performances of
OLSR deals with the efficiency of the OLSR routing
protocol itself or the different flooding techniques
using MPR ([7], [8], [9], [10]). As the goal is to
minimize the number of transmitters when propa-
gating some information (e.g. routing information)
in the network in order to maximize its lifetime,
the number of selected MPR per node has to be as
low as possible. Therefore, alternative algorithms
to the classical MPR algorithm described above
as [13], [12] are given in order to reduce the
number of collisions, minimize the overlap between
MPR or maximize the global bandwidth. But, all
results for the proposed algorithms are quite similar,
particularly for the mean number of MPR per node.
Therefore, in order to understand this phenomenon,
we wished to analyze this selection more in de-
tails as only few papers have studied the different
algorithm performances of the MPR selection. An
analysis of the MPR selection on the line is given
in [13]. Other analytical results in random graphs
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(b) Topology considered by nodeu at the second
step

Fig. 1. Illustration of the MPR selection algorithm.

and random unit graphs are also given in [8]. For
instance, a rough upper bound on the size of a
node’s MPR set is given in a random unit graph.
Other interesting results are presented in [12].

III. A NALYSIS

We are interested in the properties of the MPR set
of a typical node. Therefore, we do not consider the
whole network but only a ”typical point” located at
the origin of the plane and its1 and2-neighborhood.
Our model is similar to the classical unit random
graph used to model ad-hoc networks. This family
of models is not completely realistic since it omits
interference between the nodes. More realistic mod-
els have been proposed, for instance in [14] where
the authors present an accurate model for a CDMA
network. However, we have chosen a more general
model since we do not make any assumptions about
the wireless technology used by the nodes.

Let B(x, R) denote a ball of radiusR centered
in x. Let be a Poisson point process onB(0, 2R)
of intensityλ > 0. We add a point0 at the origin
for which we study the MPR selection algorithm
(Palm distribution). The intensityλ of such a
process represents the mean number of points of
the process by surface unit. We assume that there
is a bidirectional link between two nodes if and
only if d(u, v) ≤ R whered(u, v) is the Euclidean
distance betweenu andv andR ∈ IR+∗ a constant.

The neighborhood of the point0 is thus constituted
of the points of the Poisson point process which
are inB(0, R). We use the notation already defined
in Section II: N (resp.N2) is the 1-neighborhood
(resp. the2-neighborhood) of the point0.

A. General results

Let’s noteA(r) the area of the intersection of two
balls of radiusR where the distance between the
centers of the balls isr, illustrated on Figure 2(a):

A(r) = 2R2 arccos
( r

2R

)

− r

√

R2 − r2

4

andA1(u, r, R) the area of the union of two discs
of radiusR andu where the centers of the two balls
are distant fromr, illustrated on Figure 2(b):

A1(u, r, R) = rR

√

1 −
(

R2 − u2 + r2

2Rr

)2

−R2 arccos
u2 − R2 − r2

2Rr
− u2 arccos

R2 − u2 − r2

2ur

The next proposition gives several general results
as the mean values of the quantitiesd+

0 and d−
0 as

well as the mean size of the1 and2-neighborhood
of a node when considering a Poisson point process
distribution.
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Fig. 2. Illustration of areasA(r) andA1(u, r, R).

Proposition 1: Let u be a point uniformly dis-
tributed inB(0, R). u is thus such thatu ∈ N .

The mean number of nodeu’s neighbors lying in
B(0, 2R)/B(0, R) is given by:

E
[

d+
0 (u)

]

=
λ

πR2

∫ 2π

0

∫ R

0

(πR2 − A(r))rdrdθ

= λR2 3
√

3

4

The idea is to count the number of the process
points lying in the intersection ofB(u, R) and
B(0, 2R)/B(0, R).

Let v be a point uniformly distributed in
B(0, 2R)\B(0, R). The mean number of nodev’s
neighbors lying inB(0, R) is given by:

E
[

d−
0 (v)

]

= λ
2

3R2

∫ 2R

R

A(r)rdr = λR2

√
3

4

The idea is here to count the number of process
points in the intersection ofB(v, R) and B(0, R).
Node v may lie in B(0, 2R)\B(0, R) without be-
longing to N2 if N(v) ∩ N = ∅. So, to obtain the
quantity above for nodes inN2 we have to condition
it by the probability thatv ∈ N2. We obtain:

E
[

d−
0 (v)|v ∈ N2

]

=
E

[

d−
0 (v)

]

P(d−
0 (v) > 0)

with

P
(

d−
0 (v) > 0

)

= 1 − 2

3R2

∫ 2R

R

exp{−λA(r)}rdr

This last equation gives the probability that a node
in B(0, 2R)/B(0, R) has at least one neighbor in
B(0, R) which makes it a2-neighbor of node0.

The mean number of nodes inN is given by:

E [|N |] = λπR2

The mean number of nodes inN2 is given by:

E [|N2|] = 3λπR2
P

(

d−
0 (v) > 0

)

= 3λπR2 ×
(

1 − 2

3R2

∫ 2R

R

exp{−λA(r)}rdr

)

All these quantities can be computed in the
same way. We use the following properties of a
Poisson point process: conditioned by the number
of points in B(0, R) (resp. inB(0, 2R)\B(0, R)),
the points are independently and uniformly distrib-
uted in B(0, R) (resp. in B(0, 2R)\B(0, R)) and
are independent of the points ofB(0, 2R)\B(0, R)
(resp. B(0, R)). For instance, we are able to find
the distribution ofd+

0 (u) the number of points of
N2 covered by a pointu of B(0, R): it is a discrete
Poisson law of parameterλν(B(u, R)\B(0, R)) (ν
is the Lebesgues measure inIR2) with u uniformly
distributed inB(0, R).

B. Analysis of the first step of the MPR selection

In this section, we compute several quantities
relative to the first step of the algorithm. We use



MPR1 to denote the set of points ofN which
are selected as MPR during the first step of the
algorithm. In the next proposition, we give the
mean number of pointsv ∈ N2 such thatd−

0 (v) = 1.
These points are the isolated points. The points of
N , neighbors of these isolated points, necessarily
belong to MPR1 as they are the only way to
reach them from node0 in a minimum number
of hops. However, this quantity does not give the
size ofMPR1, since several isolated points can be
reached by the sameMPR1 point. For instance, on
Figure 1(a), we have fourMPR1 nodes but seven
”isolated points”. TheMPR1 i covers two isolated
points: nodesj and k. By definition, the ”isolated
points” of nodeu are the nodesv ∈ N2(u) such
that d−

0 (v) = 1.

Proposition 2: Let v be a point uniformly dis-
tributed in B(0, 2R)\B(0, R) and D the set of
pointsv such thatd−

0 (v) = 1.

P
(

d−
0 (v) = 1

)

=
2

3R2

∫ 2R

R

λA(r)exp{−λA(r)}rdr

As in Proposition 1, we only consider nodesv
such thatv ∈ N2:

P
(

d−
0 (v) = 1|v ∈ N2

)

=
P

(

d−
0 (v) = 1

)

P
(

d−
0 (v) > 0

)

The mean number of ”isolated points” is then
deduced and given by:

E [|D|] = 2πλ2

∫ 2R

R

A(r)exp{−λA(r)}rdr

In the next proposition we give a lower bound and
an upper bound of the mean size of theMPR1.

Proposition 3: Let u be a point uniformly dis-
tributed inB(0, R).

P (u ∈ MPR1) ≥
2

R2
P

(

d+
0 (u) > 0

)

×
∫ R

0

∫ R+r

R

f(x, r, R)

× exp {−λ
(

2πR2−A1(R, x, R)
)

}rdxdr

with f(x, r, R) being the probabilistic distribution
function:

f(x, r, R) = − λ
1−exp {−λ(A1(R,r,R)−πR2)}

×
[

∂
∂x

A1(x, r, R) − 2πx
]

×
exp {−λ (A1(x, r, R) − πx2)}

The next formula gives the mean number ofMPR1.
It is the direct consequence of the formula above:

E [|MPR1|] ≥ 2λπP
(

d+
0 (u) > 0

)

×
∫ R

0

∫ R+r

R
f(x, r, R) ×

exp {−λ (2πR2−A1(R, x, R))}rdxdr

Moreover, since there is at least one isolated point
by point of MPR1, the mean number of isolated
points offers an upper bound:

E [|MPR1|] ≤ E [|D|]

Proof: We just give here a sketch of the proof.
We obtain a bound on the probability that a point
in N belongs toMPR1. A sufficient condition that
u ∈ MPR1 is that the farthest point ofN(u) from
0, denotedw, is such thatd−

0 (w) = 1. Given the
distance ofu from 0 (expressed byr in the formula),
we calculate the probabilistic distribution function
of the distance ofw and deduce the density function
of the distance betweenw and0 (denotedf(x, r, R)
in the formula). Given the distance betweenw and
u, we are able to compute the probability that
d−

0 (w) = 1.
This bound is very accurate since, in most cases,

the isolated points are the farthest points from node
0.

We are also interested in the spatial distribution of
theMPR1 points. Foru, a neighbor of0 at distance
r (u ∈ N such thatd(0, u) = r) r ≤ R, we give a
lower bound and an upper bound on the probability
thatu belongs toMPR1. For it, we consider a point
u at distancer (r ≤ R) from the origin. We fix the
two points0 and u and we distribute the Poisson
point process inB(0, 2R) independently of these
two points. From it, we analyze the probability that
this nodeu be aMPR1 in function of r.



Proposition 4: Let u be a point at distancer (r ≤
R) from the origin. We fix the two points0 and
u and we distribute the Poisson point process in
B(0, 2R) independently of these two points.

P (u ∈ MPR1) ≥
(

1 − exp {−λ(πR2 − A(r))}
)

×
∫ R+r

R

f(v, r, R) exp {−λ(2πR2 − A1(R, v, R))}dv

P (u ∈ MPR1) ≤ 1−
(

1 − exp {−λ
A(R + r)

2
}
)2

Proof: The lower bound is obtained by the
same way as the bound in Proposition 3 but given
the distance between the origin and its neighboru.
We point out that according to then-fold Palm dis-
tribution for Poisson point process, the considered
process corresponds to the conditional distribution
of the process given the locations of the two fixed
points (c.f. [15], page124, for more details). The
upper bound is obtained as follows. If there is a
point in the two semi-intersections as illustrated in
Figure 6(a), almost all the neighbor nodes ofu
which belong toN2 are covered by these nodes and
therefore are not isolated. For the points which are
not covered by one of these points we may easily
show that the same bound holds. This gives a lower
bound on the probability thatu does not belong to
MPR1 from which we deduce the upper bound on
the probability thatu belongs toMPR1.

IV. NUMERICAL RESULTS AND SIMULATIONS

In simulations, the nodes of the network are
represented by a Poisson point process inB(0, 2)
(R = 1) of intensity λ > 0. We add a point at
0. We study for this point the number of MPR
selected at each step of the MPR selection and we
show that the analytical results are very close to
the simulations’ ones. In Figures 3(a), 3(b), 4(a)
and 4(b), we have represented samples of the model
for different values ofλπ. λπ represents the mean
number of neighbors of a node in the network for
such a Poisson process. The point at the origin for

which we compute the MPR is the black point in
the middle of the figures. The points in the central
circle represent the setN (the neighbors of0). The
larger points of this set represent theMPR1 points
(points selected as MPR during the first step of
the algorithm). The points outside the circle are the
points ofN2 (the2-neighborhood of0) and the blue
points are the points ofN2 which are covered by the
MPR1 points.

We note that in all four cases, almost the entire2-
neighborhood of0 is covered by theMPR1 set. The
addition of one MPR might suffice to cover the rest
of N2. We have shown in the previous section that
there is an appreciable number of isolated points
giving rise to a certain number ofMPR1 points.
TheseMPR1 points seem to be distributed very
close to the boundary ofB(0, R) and regularly
scattered on it (which confirms the results of the
Proposition 4). Therefore, they cover a very large
part of N2.

Figure 5(a) shows the mean number ofMPR
andMPR1 obtained by simulation. We observe that
approximately75% of the MPR are inMPR1 which
confirms that theMPR1 cover almost the whole
2-neighborood. In Figure 5(b), we have plotted the
mean number ofMPR1 obtained by simulation and
the analytic lower bound. As explained before, the
lower bound is very close to the mean size of the
setMPR1.

The lower and upper bounds on the probability
that a point belongs toMPR1 described in Propo-
sition 4 allow us to show that theMPR1 points
are very close to the boundary. In Figure 6(b), these
bounds are plotted when the distance between0 and
its neighbors varies from0.2 to 0.999 and withλ =
15. These curves incontestably show thatMPR1

points are distributed closely to the boundary of
B(0, 1). We point out that these results depend onλ:
asλ increases, the distance betweenMPR1 points
and0 increases too.

V. CONSEQUENCES

A. About the distribution of the MPR

When a message is broadcast, when nodeu emits,
the nodes inMPR(u) forward the message, so, the
common neighbors tou and itsMPR will receive



(a) λπ = 6 (b) λπ = 15

Fig. 3. MPR selection withλπ = 6 andλπ = 15.

(a) λπ = 30 (b) λπ = 45

Fig. 4. MPR selection withλπ = 30 andλπ = 45.

several copies of the same message and will spend
energy uselessly.

Yet, as shown in Section IV, most ofMPR1

(and thus most ofMPR(u)) are distributed very
closely to the boundaries of the radio range ofu.
That means that the number of common neighbors
of u and itsMPR(u) is minimized, as Figure 2(a)
shows. Indeed,r the greater, the blue area the
smaller, the number of common neighbors being
directly proportional to this area. So, as described
in [6], for messages broadcast over the network, part
of the redundancy perceived by nodes is linked to
the size of the intersection between the MPR radio

areas. Since the distance between a point and its
MPR is great, these intersections are minimal, thus
minimizing the redundancy.

The easiest way to broadcast a message over a
network is the blind flooding,i.e., each node re-
emits the message upon first reception of it. To
illustrate the number of receptions spared by the
MPR, we computed by simulation the mean number
of receptions per node of a message broadcasted
in the network by a randomly source. We used a
simulator we developed. The geometric approach
used in the analysis allows to model the spatial
organization of networks. The nodes are randomly
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Fig. 6. Semi-intersections used in the proof of Proposition4 and the bounds on the probability of belonging toMPR1 w.r.t. the distance
from 0.

deployed using a Poisson process in a(1 + 2R) ×
(1 + 2R) square with various levels of intensityλ
(and thus various numbers of nodes). Statistics are
measured on nodes situated on a centered square
of 1 × 1 in order to avoid the edge effects. The
communication rangeR is set to0.1 in all tests. Two
nodes(x, y) are connected if and only ifd(x, y) ≤
R whered is the Euclidean distance. Each statistic
is the average over 1000 simulations and we fix
a minimum radius and/or number of nodes such
that the network is connected. Figure 7 compares
the results obtained by both metrics for a process

intensity λ = 1000. For the blind flooding, the
number of receptions per node corresponds to the
mean number of neighbors (as every node forwards
the message once). With OLSR, thanks to the use of
the MPR, when a broadcasting task is performed in
the whole network, approximately40% of the nodes
participate to the diffusion. It is drastically less than
the blind flooding and it is a priori sufficiently high
to be robusti.e. with this rate of useless receptions
(redundancy), a low level of link failure should not
lead to the loss of packets during the broadcasting
operation.
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Fig. 7. Mean number of receptions per node of a message initiated at a random source and broadcast through the whole network for
λ = 1000.

B. About theMPR1

As we saw in previous sections, the goal of
introducing the MPR is to minimize the number of
re-transmitters. Thus, the number of MPR elected
per node should be as low as possible. We presented
here the Greedy heuristic of selection of MPR. It is
the original one. As we mentioned in Section II-
B, some works have been lead in order to try to
enhance this algorithm and elect less MPR per node.
But, only the second step of the Greedy algorithm
may be improved as the first one is mandatory to
cover the whole2-neighborhood of a node and can
not be reduced. And, as we could see in Sections III
and IV, the first step leads to the election of more
than 75% of the MPR. This means that the im-
provements can only concern less than25% of the
MPR and thus can not be significant. This explains
the fact that all works searching to improve the
MPR selection lead to similar results and minor
improvements.

Unfortunately, this feature also underlines a ro-
bustness problem. Indeed, if75% of nodeu’s MPR
cover at least one isolated node inN2(u) and if
some MPR(u) fail, there is a great probability
that at least one nodev in N2(u) does not receive
messages fromu. Of course, this does not mean
that v will not receive the message at all as it
could receive it from another path but, this path

would be longer and the routing information won’t
be optimal anymore. Because of it, a nodev such
that v ∈ MPR(u) and v /∈ MPR(w) may first
receive a broadcast message byw so it would not
forward it even if it then receives it byu. This
can isolate some parts of the network during the
broadcasting task as illustrated by Figure 8. Clouds
represent parts of the network connected by nodes
b and c. When the nodea chooses its MPR, as the
node e is an isolated point, it has to elect nodec
as one of its MPR. It will not elect nodeb as the
node covered byb (noded) is already covered by
c. Let’s suppose that nodec fails and a diffusion
is performed by nodea before it re-computes its
MPR. The network is still connected nevertheless,
as nodeb is not a MPR of nodea, it will not
forward the message and thus a whole part of the
network is not informed by the broadcasting task
and not only the isolated point. We have seen in the
previous section, that the MPR selection involves
a high rate of reception redundancy (between40
and 50%). But, in situations where a maximum of
redundancy is required (as shown in Figure 8), the
algorithm offers a poor number of alternative paths
for the broadcasting, leading to a low reliability.

In order to measure this robustness problem, we
simulate a broadcasting task for comparing the blind
flooding and the MPR heuristic. We apply a failure
probability over links and measure the proportion
of nodes still receiving the broadcast message. As
in blind flooding, every node transmit upon first re-
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Fig. 8. Example.

ception of the message, nodes which do not receive
the message only if the network is disconnected.
Figure 9 shows the results for a process intensity
λ = 1000.

As in the blind flooding, every node retransmit the
message, if some nodes do not receive it, that means
that the network is disconnected. We can see that
this happens when85% or more of links are down.
However, every node does not receive the message
with the MPR heuristic when only45% of links are
down whereas the network is still connected.

This failure model may seem not very realist as
links can fail because of congestion and, as the
blind flooding induces more messages than the MPR
protocol, more links will fail. Nevertheless, we use
the results of the blind flooding in this situation to
give us an information on the network connectivity.
However, failures of a MPR may also be due to the
mobility of the nodes. Indeed, if a MPR moves, it
may leave the radio scope of the node for which it
is a MPR or does not cover the same set of nodes
in the2-neighborhood anymore. This is particularly
true with MPR1, isolated points are close to the
edge of the radio scope of theMPR1, therefore
small moves of theMPR1 quickly involve a discon-
nection with their isolated nodes. These moves are
not instantly taken into account by the protocol and
thus may introduce an unexpected behavior during
a broadcasting operation.

VI. CONCLUSION

In this article, we have computed several quan-
tities relative to the MPR selection algorithm in
OLSR. We have shown that approximately75% of
the MPR are chosen during the first step of the
algorithm. Since this step always is necessary for

the MPR set to cover the whole2-neighborhood,
variants of the algorithm used in OLSR, trying to
minimize the number of selected MPR, lead to
similar performances. We have also highlighted the
fact that these MPR are distributed close to the
radio range boundaries, limiting the overlap between
MPR. This feature also underlines a robustness
problem. This robustness problem is intented to be
analyzed with other robustness models. A deeper
study about the influences of isolated points on the
reliability of OLSR will be lead in future works.
These results have been presented for a particular
model using Poisson point process. Other models,
more realistic, which take into account the proper-
ties of the radio layer could be considered in future
works. Results obtained here could be compared to
simulations considering CDMA network or 802.11
network.
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