
HAL Id: hal-00383720
https://hal.science/hal-00383720

Submitted on 13 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-stabilization in self-organized multihop wireless
networks

Nathalie Mitton, Eric Fleury, Isabelle Guérin-Lassous, Sebastien Tixeuil

To cite this version:
Nathalie Mitton, Eric Fleury, Isabelle Guérin-Lassous, Sebastien Tixeuil. Self-stabilization in self-
organized multihop wireless networks. Workshop on Wireless ad hoc Networking (WWAN’05)„ Jun
2005, Columbus, United States. pp.909-915. �hal-00383720�

https://hal.science/hal-00383720
https://hal.archives-ouvertes.fr

Self-stabilization in self-organized Multihop Wireless Networks∗

N. Mitton – E. Fleury – I. Guérin Lassous
INRIA Ares Team - CITI, INSA de Lyon

69621 Villeurbanne, France
FirstName.Name@insa-lyon.fr

S. Tixeuil
LRI - CNRS UMR 8623 & INRIA Grand Large

91405 Orsay, France
Sebastien.Tixeuil@lri.fr

Abstract

In large scale multihop wireless networks, flat archi-
tectures are not scalable. In order to overcome this ma-
jor drawback, clusterization is introduced to support self-
organization and to enable hierarchical routing. When
dealing with multihop wireless networks, the robustness isa
main issue due to the dynamicity of such networks. Several
algorithms have been designed for the clustering process.
As far as we know, very few studies check the robustness
feature of their clustering protocols.

In this paper, we show that a clustering algorithm, that
seems to present good properties of robustness, is self-
stabilizing. We propose several enhancements to reduce
the stabilization time and to improve stability. The use of
a Directed Acyclic Graph ensures that the self-stabilizing
properties always hold regardless of the underlying topol-
ogy. These extra criterion are tested by simulations.

keywords: multihop wireless networks, clusterization,
self-stabilization, scalability, density.

1 Introduction

Ad hoc networks or wireless sensor networks (wireless
multihop networks) are composed of devices that commu-
nicate via wireless interfaces. They require no fixed in-
frastructure and no human intervention. Both are strongly
based on self-organization and self-stabilization. Even if
every mobile can move everywhere, and thus can disappear
or appear in the network at any time, the network man-
ages the changes in topology and provides the connectiv-
ity between any pair of terminals. If the current wireless
cards allow the communication between mobiles that are in
communication range, a routing protocol is required to pro-
vide the full connectivity of the network. As there are no

∗This work is supported by the FNS of the French Ministry of Research
through the FRAGILE project [7] of the ACI sécurité et informatique.

dedicated devices in the network, all mobiles are potential
routers. Such networks have become very popular due to
their ease of use. Their applications range from the network
extension when cabling is not possible or too expensive to
spontaneous networks in case of natural disasters where the
infrastructure has been totally destroyed by going through
the monitoring and the collect of data with wireless sensor
networks.

Due to the dynamics of such networks (devices mobility
and/or instability of the wireless medium), routing proto-
cols for fixed networks are not adapted. Ad hoc routing
protocols proposed in the MANET working group at IETF1

are all flat routing protocols. It means that there is no hi-
erarchy and all terminals have the same role. If flat pro-
tocols are quite effective on small and medium networks,
they are not suitable on large scale networks due to band-
width and processing overhead. Hierarchical routing seems
to be more adapted to such large networks. It often relies
on a specific partition of the network, calledclustering: the
devices are gathered into clusters according to some criteria
and specific routing protocols are used within and between
the clusters. In addition to its scalability, such an organi-
zation presents numerous advantages such as synchronizing
mobiles in a cluster or attributing new services zones. Many
algorithms have been designed for the clustering step. As
mentioned in [14], ”one measure of robustness of the topol-
ogy is given by the maximum number of nodes that need to
change their topology information as a result of a movement
of a node”. As far as we know, very few studies check the
robustness feature of their clustering protocols. Moreover,
when it is the case, the evaluation is driven by simulations
and never by a theoretical approach.

In this article, we apply self-stabilization principles over
a clustering protocol proposed in [11] and which presents
good properties of robustness. With a theoretical approach,
which can be applied to several clustering schemes, we
show that, under some assumptions, the algorithm is self-
stabilizing. We also improve the robustness by adding

1http://www.ietf.org/html.charters/manet-charter.html

extra-advanced features and we show that the resulting al-
gorithm is still self-stabilizing. These properties are further
validated by simulations. A brief state-of-the-art on clus-
tering algorithms in multihop wireless networks is given in
Section 2. The description of the chosen clustering algo-
rithm is done in Section 3. In Section 4, we provide a for-
mal analysis, showing that this algorithm is self-stabilizing.
We also discuss some improvements for robustness in this
section. The properties of the proposed algorithm and the
different improvements are evaluated by simulations in Sec-
tion 5.

2 State-of-the-art

Flat routing protocols (like the classical reactive or
proactive protocols) are not really suitable for large wireless
multihop networks. Indeed, such routing protocols become
ineffective on a large scale because of bandwidth (flooding
of control messages) and processing (routing table compu-
tation) overhead. One solution to solve this scalability prob-
lem is to introduce a hierarchical routing by gathering geo-
graphically close nodes into clusters [9]. Many techniques
for clusters formation and cluster-heads selection have been
proposed. All solutions aim to identify subsets of nodes
within the network and to bind each of them to an unique
leader. Some solutions try to gather nodes into homoge-
neous clusters by using either an identity criteria (e.g., the
lowest identity [2]) or a fixed connectivity criteria (for in-
stance maximum degree [5, 13],k-hops clusters [6]) or a
value computed from different metrics (as connectivity and
identity criteria in max-mind-cluster [1], [4]). To main-
tain the clusters structure, most of the solutions try to keep
a fixed cluster diameter [1], a fixed cluster radius [10] or a
constant number of nodes in the clusters [15].

These solutions are not adapted to large multihop wire-
less networks. First, a small modification in the network
topology (due to the mobility of one node for instance) of-
ten implies new computations to build the new clusters and
to elect the cluster-heads. Moreover, building and main-
taining clusters with a constant feature (like the diameter
or the number of nodes) may generate a significant number
of useless clusters. For instance, why separating a set of
nodes that can communicate just because it can not fit into
one cluster since the constant feature is not respected? In
[11], a density criteria is proposed. This metric allows to
limit the exchanged traffic generated while clusters are re-
built and the nodes’ tables updated. Therefore it presents
good properties of robustness. In this paper, we show that
this algorithm is self-stabilizing and its robustness can be
enhanced with some extra rules.

3 Density driven clustering algorithm

The model.The system is composed of a setV of nodes
and each node has an unique identifier. Each nodep can
communicate with a subsetNp ⊆ V of nodes determined by
the range of the radio signal;Np is called the neighborhood
of nodep. Note thatp does not belong toNp (p /∈ Np).
We assume that communication capability is bidirectional:
q ∈ Np iff p ∈ Nq. DefineN1

p = Np and for i > 1,
N i

p = N i−1
p ∪ { r | (∃q ∈ N i−1

p , r ∈ Nq) } (let’s callN i
p

thei-neighborhood ofp). We assume that the distribution of
nodes is sparse: there is some known constantδ such that
for any nodep, |Np| ≤ δ. Note that a control on density
can be done by adjusting their communication range and/or
powering off nodes in areas that are too dense.

The density metric criteria. The notion ofdensity,
firstly introduced in [11], characterizes therelative impor-
tance of a node in the network and in its1-neighborhood.
The underlying idea is that if some nodes move inNp,
changes will affect the microscopic view of nodep (for in-
stance its degree|Np| will change) but its macroscopic view
will not drastically change since globally the network does
not change and itsNp globally remains the same. The den-
sity will smooth changes down inNp by considering the
ratio between the number of links and the number of nodes
in the1-neighborhood. The definition is the following:

Definition 1 Thedensityof a nodep ∈ V is

dp =
| {e = (v, w) ∈ E s.t.w ∈ {p} ∪ Np and v ∈ Np} |

|Np|

Cluster-heads selection and clusters formation.Due
to space limitations, we describe the heuristic process in-
formally. The algorithm and its analysis are more detailed
in [11]. Each node watches its neighborhood. If this one
changes at each step, the node is considered as too mobile
to be integrated into a cluster and does not participate to
the clustering algorithm (or it may cause instability into the
cluster formation). Otherwise, it locally computes its den-
sity value and regularly broadcasts it to all its1-neighbors.
Each node is thus able to compare its density value to its1-
neighbors’ and decide by itself whether it joins one of them
(the one with the highest density value) or it wins in its1-
neighborhood and elects itself as a cluster-head. If there are
some joint winners, the smallest identity is used to decide
between them. In this way, two neighbors can not be both
cluster-heads. If nodep has joined nodew, we will say that
w is nodep’s parent. A node’s parent can also have joined
another node and so on. The cluster-head will be the node
which has elected itself as its own cluster-head. A cluster
can then extend itself until it reaches a cluster frontier. As

each node joins a node within its1-neighborhood, the clus-
ter can also be seen as a directed tree where the cluster-head
is the root (that we will denote asclusteringtree in the fol-
lowing).

Features. This metric has been studied in [11] with
both simulations and a stochastic analysis. It outlined that
the number of cluster-heads computed with this metric is
bounded and decreases when the nodes intensity (number
of nodes per surface unit) increases. This is an advantage
because if many nodes are in the communication range of
each other, there is no need to separate them into different
clusters as they can hear each other. Moreover, this heuris-
tic has revealed to be more stable towards nodes mobility
than other metrics, like the degree and the max-min metrics
[11].

4 Self-stabilization

In this section we study the self-stabilizing properties of
the density-driven clustering algorithm presented in [11].
We follow the same assumptions and principles as the ones
given in [8]. Due to space limitations, we briefly describe
these points. We consider that the algorithm stabilizes when
each node knows to which cluster it belongs,i.e. when it
knows its cluster-head’s identity. The stabilization timeis
thus related to the depth of the clustering trees.

Hypothesis. We assume that the implementation of
CSMA/CA satisfies the following point: there exists a con-
stantτ > 0 such that the probability of a frame transmission
without collision is at leastτ (this corresponds to typical as-
sumptions for multi-access channels [3]; the independence
of τ for different frame transmissions indicates that we as-
sume a memoryless probability distribution in a Markov
model).

Notation. We describe algorithms using the notation
of guarded assignment statements:G → S represents a
guarded assignment, whereG is a predicate of the local
variables of a node, andS is an assignment to local variables
of the node. If predicateG (called theguard) holds, then
assignmentS is executed, otherwiseS is skipped. Some
guards can be event predicates that hold upon the event of
receiving a message. We assume that all such guarded as-
signments execute atomically when a message is received.
At any system state, where a given guardG holds, we say
thatG is enabledat that state.

Execution Semantics. The life of computing at every
node consists of the infinite repetition of evaluating its
guarded actions. We assume that every action is executed
within a constant time finding a guard and executing its
corresponding assignment or skipping it when the guard is

false. Generally, we suppose that when a node executes
its program, all statements withtrue guards are executed
within a constant time (done, for example, in round-robin
order).

Shared Variable Propagation.Some variables of nodes
are designated assharedvariables. Following the scheme
presented in [8], nodes periodically transmit the values of
their shared variables, based on a timed discipline. Beyond
periodic retransmission, an assignment to a shared variable
causes peremptory transmission: if a statementG → S as-
signs a shared variable, then we suppose that there is a trans-
formation of the statement into a computation that slows ex-
ecution down so that it does not exceed some desired rate,
and also provides randomization to avoid collision in mes-
sages that carry the shared variable values. One technique
for implementing suchG → S is presented in [8]. In the
remaining of the section, we assume that nodes use this
scheme to learnNp andN2

p . This is because the topology
of the networks under considering is dynamic.

4.1 Constant Height DAG Construction

In the chosen clustering algorithm, as in every cluster-
ing algorithm using the node identity as last decision, the
worst case is encountered(i) when every node has the same
deciding value,i.e. in our case the density value, andii
when nodes’ identifiers are unique in the network and badly
distributed. In such a case, the algorithm builds only one
cluster which may have a diameter as big as the diameter
of the network. This may cause scalability problems be-
cause the stabilization time is likely to depend on this di-
ameter. Moreover, it is obvious that building such a cluster
is useless as we could have used the network without clus-
ters instead. To overcome this drawback, it can be useful to
give nodes smaller names (also named colors), from a con-
stant space of names, in a way which ensures that names
are locally unique. A DAG (Directed Acyclic Graph) can
be constructed by using these identifiers and by orienting
edges between neighbors from the higher identifier to the
lower one.

Our constant height DAG construction is based on the
randomized technique described in [8], but uses a much
smaller name-spaceγ (|γ| is equal toδ6 in [8], while δ2

or evenδ is sufficient in our case). LetIdp be a shared vari-
able that belongs to the domainγ; variableIdp is thename
of nodep. Another variable is used to collect the names of
neighboring nodes:Cidsp = {✉ Idq | q ∈ Np}, where

✉ Idq refers to the cache copy of the shared variableIdq

at nodep. Let random(S) choose with uniform probability
some element of setS. Nodep uses the following function
to computeIdp:

newId(Idp) =

{

✉ Idp if ✉ Idp 6∈ Cidsp

random(γ \ Cidsp) otherwise

The algorithm for constant height DAG construction is
the following:

N1: true → Idp := newId(Idp)

Theorem 1 AlgorithmN1 self-stabilizes with probability1
in an expected constant time to a DAG which height is at
most|γ| + 1.

The proof of this theorem is similar to the one in [8].
There are two competing motivations for tuning the para-
meterγ. On one hand, a large value of|γ| decreases the
expected convergence time ofN1. On the other hand, a
small value of|γ| decreases the DAG’s height, and thus the
expected convergence time of subsequent algorithms.

4.2 Density-driven Clusters Construction

Each nodep maintains two shared variables, denoted by
dp andH(p). dp denotes the density value of nodep given
in Definition 1.H(p) denotes the cluster-head chosen byp.
We define≺ as a binary total order such thatp ≺ q if and
only if dp < dq or (dp = dq) ∧ (Idq < Idp). Let max≺
denote the maximum function associated to this total order.
When a nodep computes the result of≺ or max≺, it uses
the cached values of its neighborhood (assuming✉Idp =
Idp and✉dp = dp).

We now define theclusterHead choice function:

clusterHead =

{

Idp if ∀q ∈ Np, q ≺ p,
H(max≺{q ∈ Np}) otherwise.

The cluster-head algorithm runs as follows:

R1: true → dp := density

R2: true → H(p) := clusterHead

Lemma 1 Each nodep has a correct density valuedp

within an expected constant time.

Proof: After an expected constant time, each nodep has
a correct view of its neighborhood at distance two. Then,
after R1 is executed, the densitydp of p is correct. 2

Lemma 2 Each nodep has a correct cluster-head value
H(p) within an expected constant time.

Proof: Assume that all nodes have correct density values
(this is true after an expected constant time by Lemma 1).
After the shared variabledp has been communicated with-
out collision to all nodes inNp (this occurs in an expected

constant time), each node has a correct cache value of
all density values in its neighborhood. We now consider
the DAG induced by the≺ relation (thereafter denoted by
DAG≺). In an expected constant time, the roots of DAG≺

have a correct cluster-head value (that is their own identi-
fier). Now assume that all nodes up to distancen from the
roots of the DAG≺ have a correct cluster-head value. When
R2 is executed on nodes at distancen + 1 from the roots
of DAG≺, those nodes get a correct cluster-head value (be-
cause the cluster-head is deterministically determined(i) by
the density and local topology – which are fixed – and(ii)
by the cluster-head values of nodes at distance up ton from
the roots of the DAG≺). By induction, the time needed for
stabilization is proportional to the height of the DAG≺.

We now prove that the height of the DAG≺ is bounded by
a constant value. Node identifiers are bounded by a constant
γ. The number of edges in the neighborhood at distance one
is bounded byδ2, the number of neighbors at distance one
is bounded byδ, so the number of possible values for the
density function is at mostδ3. Overall, the name-space of
values in the DAG≺ is γδ3, which is bounded by a constant.
As a result, the height of the DAG≺ is also bounded by a
constant.

The algorithm stabilizes in an expected time proportional
to the height of the DAG≺, and the height of the DAG≺ is
constant, so the expected time for stabilization is also con-
stant. 2

4.3 Improving Stability

We improve the stability of the algorithm by adding
some selection criterion. First, when two nodes compete for
being cluster-heads (they have the same density value), the
winner will be, first, the one which was cluster-head before
(if it exists), then the one with the lowest DAG Id (as de-
fined in Section 4). This scheme adds stability into clusters
organization by limiting clusters reconstruction. Cluster-
heads remain cluster-heads as long as possible. It is a
good property since the only cluster-heads’ role is to give
an identity to the clusters. This refinement preserves the
structure of our stabilization proof, since it is equivalent to
define the total order relation≺ as p ≺ q if and only if
(dp < dq) or (dp = dq) ∧ (H(q) = Idq) ∧ (H(p) 6= Idp) or
(dp = dq) ∧ (H(p) 6= Idp) ∧ (H(q) 6= Idq) ∧ (Idq < Idp).
In addition, the height of the new DAG≺ is similar to the
height of the previous one.

Second, if a nodep is a 1-neighbor of two different
cluster-headsu andv (which are not directly linked), it will
initiate a fusion betweenu andv’s clusters: ifp has chosenv
as cluster-head, that means thatu ≺ v and thatv will remain
a cluster-head unlikeu. This ensures that(i) a cluster-head

is not too off-centered in its own cluster,(ii) a cluster has at
least a diameter of two, and(iii) that two cluster-heads are
distant of at least three hops. Again, this refinement pre-
serves our stabilization proof, since it is sufficient to usethe
alternativeclusterHead function:

clusterHead =







Idp if (∀q ∈ Np, q ≺ p)∧
(∀q ∈ N2

p s.t.H(q) = Idq =⇒ q ≺ p)
H(max≺{q ∈ Np}) otherwise

The condition for being a cluster-head thus becomes “I am
locally maximal (in the sense of≺) and any cluster-head
in my 2-neighborhood is smaller than me (and they should
not remain cluster-heads)”. The remaining of the algorithm
(and thus proof) is the same.

5 Simulations

As mentioned in Section 4, we suppose that there ex-
ists a constantτ > 0 such that the probability of a frame
transmission without collision is at leastτ . Yet, we can
suppose that in a bounded time∆(τ), each node is able
to locally broadcast one frame and then receive all packets
sent by its1-neighbors. Such a∆(τ) time unit is called a
step, during which each node can receive each packet of all
its 1-neighbors. After one step, each node can discover its
1-neighbors. After two steps, each node can discover its
2-neighbors and then compute its density. After only three
steps, each node knows its parent. Then, the number of
steps required to discover its cluster-head identity directly
depends on the distance in number of hops from the node to
its cluster-head in the clustering tree and is bounded by the
depth of this tree.

We performed simulations in order to evaluate the per-
formance of the proposed heuristic and estimate the impor-
tance of the introduction of the DAG. Nodes are randomly
deployed using a Poisson process with different intensity
levelsλ (λ corresponds to the mean number of nodes per
surface unit) in a1 × 1 square with various transmission
rangesR varying from 0.05 to 0.1. Each given statistic
is the average over 1000 simulations. All these results are
fully described in [12].

To build the DAG, each node randomly chooses a DAG
Id between0 andδ2 whereδ is the maximum node’s de-
gree in the graph as defined in Section 3. For this, each
node randomly chooses a DAG Id and then compares it to
its neighbors’ones. If DAG Ids are the same, the node with
the smallest ”normal” Id chooses another DAG Id and so
on until every node has a different DAG Id than the ones
of its 1-neighbors. For simulations on a grid and on a ran-
dom geometry topology withλ equal to1000, the number

of steps required to build the DAG does not take a lot of
time since it only requires two steps on average, whatever
R is. Therefore, building the DAG is not costly.

We measure the following criterion: number of cluster-
heads per surface unit, clustering tree length (also in order
to evaluate time of stabilization as they are proportional)
and cluster-head eccentricity. Table 1 shows these criterion
for λ = 1000 and different values ofR. (Note that results
are given f orλ = 1000 but simulations have shown that the
algorithm behavior the same way for different values ofλ.)
We notee(H(u)/C) = maxv∈C(u)(d(H(u), v)) in number
of hops, theeccentricityof the cluster-head of nodeu inside
its cluster, whered(u, v) is the minimum number of hops to
reachv from u. Whatever the transmission radius is (and so
the node’s degree), we can note that the mean cluster-head
eccentricity and tree length do not vary too much. This con-
firms our assumption that the transmission of the cluster-
head identity can be expected within a constant and low
time. At last, let’s note that in the cases where nodes and
node’s Id are homogeneously and randomly distributed, the
use of the DAG does not bring much help. This is due to
the fact that in such a nodes distribution, a node uses very
rarely the Id to choose its parent because density values are
well-distributed and scarcely equal.

We now consider a scenario where nodes are distributed
over a grid with Ids increasing from left to right and from
the bottom to the top. All interior nodes will have the same
value density and the only criteria to select a cluster-headis
the Id. As the nodes’ Ids are not well distributed, all nodes
will finally join the same head. Table 2 shows the obtained
results in this case. One can note that the DAG construction
is very useful in such a case as it allows to drastically reduce
the number of steps needed before stabilization. Figure 1
shows an example of clusters organization obtained for a
radius equal toR = 0.05 (One color per cluster). Cluster-
heads appear in blue. On Figure 1(a) DAG is implemented
and several clusters are created. On Figure 1(b), the DAG is
not implemented and only one cluster is created.

We have also tested the extra criterion given in Sec-
tion 4.3 to improve the stability. Due to space limitation, we
will not present all the results. We performed simulations
where nodes move randomly at a randomly chosen speed
during 15 minutes. We computed the percentage of cluster-
heads which remained cluster-heads after each 2 seconds.
For a node mobility between0 to 1.6m/s (for pedestrians)
the percentage of cluster-heads reelection is about 82% with
our improvement rules and 78 % without. For a mobility
from 0 to 10m/s (for cars) this percentage is 31 % with the
new rules against 25 % without. Thus, our improvements
are useful in terms of cluster-head stability.

R = 0.05 R = 0.08 R = 0.1
With DAG No DAG With DAG No DAG With DAG No DAG

clusters 61.0 61.4 19.2 19.5 11.7 11.7
ẽ(H(u)/C(u)) 2.6 2.6 3.1 3.1 3.2 3.2
average tree length 2.7 2.7 3.3 3.3 3.5 3.5

Table 1. Clusters features on a random geometric graph for λ = 1000.

R = 0.05 R = 0.08 R = 0.1
With DAG No DAG With DAG No DAG With DAG No DAG

clusters 52.8 1.0 29.3 1.0 18.5 1.0
ẽ(H(u)/C(u)) 3.4 29.1 4.1 19.1 3.6 6.5
average tree length 3.7 83.4 4.7 100.5 4.5 32.1

Table 2. Clusters characteristics on a grid for λ = 1000.

6 Conclusion

In this paper, we have addressed several issues concern-
ing the self-stabilization on the clustering process in multi-
hop wireless network. We have proved that the clustering
algorithm based on the density criteria, defined in [11] is
self-stabilizing. We have proposed different enhancements
to reduce the stabilization time and to improve stability of
the cluster-heads. Note that our contribution regarding the
self-stabilization could be applied to several clusteringmet-
rics as for instance the node’s degree ([5, 13]).

In the future, several possible extensions of this work are
open to investigation. It could be interesting to derive sharp
bounds on the stabilization as a function of the mobility,
e.g., speed of the nodes, mobility model, frequency of links
failure, etc. Based on these bounds, we also plan to study hi-
erarchical self-stabilizing algorithms. Finally, we alsowant
to consider energy constraints in the stabilization algorithm
and we are investigating energy-efficient organization algo-
rithms.

References

[1] A. Amis, R. Prakash, T. Vuong, and D. Huynh. Max-min
d-cluster formation in wireless ad hoc networks. InIEEE
INFOCOM, march 2000.

[2] P. Basu, N. Khan, and T. Little. A mobility based metric for
clustering in mobile ad hoc networks. InDCS Workshop,
2001.

[3] D. Bertsekas and R. Gallager.Data Networks. Prentice-Hall,
1987.

[4] M. Chatterjee, S. K. Das, and D. Turgut. Wca: A weight
based distributed clustering algorithm for mobile ad hoc net-
works. Journal of Cluster Computing (Special Issue on Mo-
bile Ad hoc Networks), 5(2):193–204, April 2002.

[5] G. Chen and I. Stojmenovic. Clustering and routing in mo-
bile wireless networks. Technical Report TR-99-05, SITE,
June 1999.

[6] Y. Fernandess and D. Malkhi. K-clustering in wireless ad
hoc networks. In2nd ACM PMC workshop, 2002.

[7] FRAGILE. Failure Resilience and Application Guaran-
teed Integrity in Large-scale Enviroments.http://www.
lri.fr/∼fragile/.

[8] T. Herman and S. Tixeuil. A distributed tdma slot assign-
ment algorithm for wireless sensor networks. InProceed-
ings of the First Workshop on Algorithmic Aspects of Wire-
less Sensor Networks (AlgoSensors’2004), number 3121 in
Lecture Notes in Computer Science, pages 45–58, Turku,
Finland, July 2004. Springer-Verlag.

[9] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan.
A cluster based approach for routing in dynamic networks.
In ACM SIGCOMM, pages 49–65, April 1997.

[10] H.-C. Lin and Y.-H. Chu. A clustering technique for large
multihop mobile wireless networks. InIEEE VTC, may
2000.

[11] N. Mitton, A. Busson, and E. Fleury. Self-organizationin
large scale ad hoc networks. In3nd Med-Hoc-Net, june
2004.

[12] N. Mitton, E. Fleury, I. Guerin-Lassous, and S. Tixeuil. Self-
stabilization in self-organized multi-hops wireless networks.
Research Report RR-5426, INRIA, December 2004.

[13] N. Nikaein, H. Labiod, and C. Bonnet. DDR-distributed
dynamic routing algorithm for mobile ad hoc networks. In
1st ACM international symposium on mobile ad hoc routing
and computing, Boston, MA, USA, November, 20th 2000.
ACM.

[14] R. Rajaraman. Topology control and routing in ad hoc net-
works: a survey.ACM SIGACT News, 33(2):60–73, 2002.

[15] R. Ramanathan and M. Steenstrup. Hierarchically-
organized, multihop mobile wireless networks for quality-
of-service support. Mobile networks and applications,
3:101–119, June 1998.

(a) With DAG (b) No DAG

Figure 1. Clustering example in grid with R = 0.05.

