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Self-organization in large scale ad hoc networks

Nathalie Mitton
CITI/ARES - INRIA
Villeurbanne F-69621

nathalie.mitton @insa-lyon.fr

Abstract—Flat ad hoc architectures are not scalable.
In order to overcome this major drawback, hierarchical
routing is introduced since it is found to be more effective.
The main challenge in hierarchical routing is to group
nodes into clusters. Each cluster is represented by one
cluster head. Conventional methods use either the connec-
tivity (degree) or the node Id to perform the cluster head
election. Such parameters are not really robust in terms
of side effects. In this paper we introduce a novel measure
that both forms clusters and performs the cluster head
election. Analytical models and simulation results show
that this new measure for cluster head election induces less
cluster head changes as compared to classical methods.
Keywords:ad hoc, sensors, wireless, self-organization,
stochastic geometry, Palm distribution, scalability

I. INTRODUCTION

Wireless ad-hoc networks consist of a set of mobile
wireless nodes without the support of a pre-existing
fixed infrastructure. Ad hoc networks have applications
in battlefields coordination or on-site disaster relief man-
agement. Each host/node acts as a router and is able
to arbitrary move. This feature is a challenging issue
for protocol design since the protocol must adapt to
frequent changes of network topologies. More recently,
researchers apply ad hoc paradigms in sensor networks
which induce to be able to set up a very large number
of nodes.

In order to be able to use ad hoc networks on very
large scale, flat routing protocols (reactive or proactive)
are not really suitable. Indeed, such routing protocols
become ineffective for large scale wireless networks,
because of bandwidth (flooding of control messages)
and processing overhead (routing table computation).
One well known solution to this scalability problem
is to introduce a hierarchical routing by grouping ge-
ographically close nodes into clusters and by using an
“hybrid” routing scheme: classically proactive approach
inside each cluster and reactive approach between clus-
ters ( [12], [14]). Such an organization also presents
numerous advantages as to synchronize stations in a
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group or to attribute new service zones more easily.

In this paper we propose a new metric suitable for
organizing an ad hoc network into clusters and we
propose a new distributed cluster head election heuristic.
Our new metric does not rely on “static” parameters and
thus our novel heuristic extends the notion of cluster
formation. The proposed heuristic allows load balancing
to insure a fair distribution of load among cluster heads.
Moreover, we implement a mechanism for the cluster
head election that tries to favor their re-election in future
rounds, thereby reducing transition overheads when old
cluster heads give way to new ones. We expect a network
organization to be robust towards node mobility. If we
want to keep overhead as low as possible, our organiza-
tion must change as less as possible when nodes move
and topology evolves. Moreover, we would like to be
able to apply some localization process and inter-groups
routing above our organization.

The remainder of this paper is organized as follows.
Section II defines the system model and introduces
some notations. Section IIl reviews several techniques
proposed for cluster head selection. Sections IV and
V will present our main contribution and will detailed
the distributed selection algorithm and give a formal
analysis. Simulation experiments presented in Section VI
demonstrate that the proposed heuristic is better than
earlier heuristics. Finally, we conclude in Section VII
by discussing possible future areas of investigation.

II. SYSTEM MODEL

In an ad hoc network all nodes are alike and may
be mobile. There is no base station to coordinate the
activities of subsets of nodes. Therefore, all the nodes
have to collectively make decisions and the use of dis-
tributed algorithms appears to be mandatory. Moreover,
all communication are performed over wireless links. As
usual, we model an ad hoc network by a graph G =
(V, E) where V is the set of mobile nodes (|V| = n) and
e = (u,v) € E represents a wireless link between a pair



of nodes u and v only if they are within communication
range of each other.

For the sake of simplicity, let first introduce some
notations. Let call d(u, v) the euclidean distance between
nodes v and v. We note C(u) the cluster owning the
node u and H(u) the cluster head of this cluster. From
graph theory textbook [8] we will also note I'y(u) the
k-neighborhood of a node u, i.e., T'x(u) = {v € V|0 <
d(u,v) <k} and will note oy (u) = |T'x(u)|.

We will note e(u/C) = max,ec(y)(d(u, v)) the eccen-
tricity of a node w inside its cluster. Thus the diameter
of a cluster will be D(C(u)) = max,ecc(y)(e(v/C)).

IIT. RELATED WORK

Researchers have proposed several techniques for clus-
ter formation and cluster head selection. All solutions
aim to identify a subset of nodes within the network
and bind it a leader. Each clusterhead is responsible for
managing communication between nodes into clusters as
well as routing information to other clusterheads in other
clusters. Typically, backbones are constructed to connect
neighborhoods in the network.

Past solutions try to gather nodes into homogeneous
clusters by using either an identity criteria (e.g., the low-
est Id [9], [3]) or a fixed connectivity criteria (maximum
degree [4], max-min D-cluster [1], 1-hop clusters [2],
[51, [11], k-hop clusters [6]).

Such solutions based on a fixed cluster diameter [7],
[4], [1], fixed cluster radius [13] or a constant number
of nodes [15] are not adapted to large ad hoc networks
since they may generate a large number of clusterheads.
Therefore, it is suitable to control the clusterhead density
in the network. Note that some previous clustering
solutions also rely on synchronous clocks for exchange
of data between nodes. It is the case for example in the
Linked Cluster Algorithm [2], but such an heuristic is
developed for relatively small number of nodes (less than
100). Solutions based on the degree or the lowest Ids can
result in a high turnover of clusterheads when topology
changes [10], [7]. Solutions were also envisaged to base
the election on a pure mobility criteria [4] but if mobility
should be taken into account, electing only non mobile
nodes may result in isolated cluster heads, which may
be useless.

In all previous works, the design of clusters selection
appears to be similar with few variants. Each node lo-
cally computes its own value of a given criteria (degree,
mobility...) and locally broadcasts this value in order to
compete with its neighbors. All nodes are thus able to
decide by their own if they win the tournament and can

be declared cluster head. In case of multiple winners, a
second criteria (e.g., Id) is used.

IV. MAIN OBJECTIVES

The main goal is to design a heuristic that would select
some nodes as clusterheads and computes clusters in a
large ad hoc network. As we mentioned in the previous
section, the definition of a cluster should not be defined
a priori by some fixed criteria but must reflect the density
of the network. In order to be scalable, the heuristic
should be completely distributed and asynchronously
avoid any clock synchronization. The number of mes-
sages exchanges should be minimized. In fact, we use
only local broadcast messages like HELLO PACKET in
order to discover the 2-neighborhood of a node. Finally,
in order to ensure stability, it would be better not to re-
elect cluster head whenever it is possible and nodes that
are ’too” mobile to initiate any communication will not
participate in the ballot phase.

The criteria metric should gather and aggregate nodes
into clusters not on an absolute criteria (like degree or
diameter) and thus should be adaptive in order to reflect
the features of the network. To elect a cluster head,
we need to promote node stability by limiting traffic
overhead when building and maintaining the network
organization. Secondly, the criteria should be robust, i.e.
not be disturbed by a slightly topology change. Finally,
the criteria should be computed locally by using only
local traffic (intra-cluster routing) since it is cheaper that
inter-cluster traffic. The main goal is to recompute the
clusters topology as less as possible in spite of great
nodes mobility.

Based on these general requirements we propose a
novel heuristic based on a metric criteria which gathers
the density of the neighborhood of a node. This density
criteria reveals to be stable when the topology slightly
evolves. As the network topology slightly changes the
node’s degree is much more likely to change than its
density, which smoothes the relative topology changes
down inside its own neighborhood.

V. OUR CONTRIBUTIONS

A. The density metric criteria

In this section, we introduce our criteria called density.
The notion of density should characterize the “relative”
importance of a node in the ad hoc network and in its
k-neighborhood. As mentioned earlier, the node degree
is not adequate. The density notion should absorb small
topology changes. The underlying idea is that if some



nodes move in I'; (u) (i.e., a small evolution in the topol-
ogy), changes will affect the microscopic view of node u
(its degree d1(u) will change) but its macroscopic view
will in fact not change since globally the network does
not drastically change and its I';(u) globally remains
the same. The density is directly related to both the
number of nodes and links in a k-neighborhood. Indeed,
the density will smooth local changes down in 'y (u) by
considering the ratio between the number of links and
the number of nodes in 'y (u).

Definition 1 (density): The k-density of a node u €
Vs

_ le = (v,w) € Eve {u,Tk(u)} weTTg(u)
or.(u)

pr(w)
(D

The 1-density (also noted p(u)) is thus the ratio
between the number of edges between u and its 1-
neighbors (by definition the degree of ), the number
of edges between u’s 1-neighbors and the number of
nodes inside u’s 1-neighborhood .

In the following, we will see that the most robust
metric among these different ones is in fact the 1-
density, which is also the cheapest in terms of messages
exchanges. Indeed, note that to compute pg(u), the
node u must know I'y,q(u) since it must be able to
compute the number of edges that exist between all its
k-neighbors.

B. Cluster head selection and cluster formation

1) Basic idea: Each node computes its k-density
value and locally broadcasts it to all its k-neighbors.
Each node is thus able to decide by itself whether it
wins in its 1-neighborhood (as usual, the smallest Id
will be used to decide between joint winners). Once
a cluster head is elected, the cluster head Id and its
density is locally broadcasted by all nodes that have
joined this cluster. The cluster can then extend itself until
it reaches a cluster frontier of another cluster head. The
only constraint that we introduce here to define a cluster
is that two neighbors can not be both cluster head. This
ensures that a clusterhead is not too off-center in its own
cluster, that a cluster has at least a diameter of two and
that two cluster heads are distant of at least three hops.

2) Heuristic: The heuristic process is quite simple.
On a regular basis (frequency of HErLLo packets for
instance), each node computes its k-density based on its
view of its k£ + 1-neighborhood. To simplify the notation
we describe the 1-density heuristic with algorithm 1. The
k-density is similar since the only modification to be

made is to gather the (k + 1)-neighborhood which is
given by sending HEL .o within k-hops.
Algorithm 1 Cluster head selection
For all node v € V

> Checking the neighborhood
Gather T's(u)
if mobility(u, I’y (u)) > threshold then
> Checking the I-neighborhood consistency. If this one
changes too much, node u will not participate to the ballot
phase since it is “relatively” too mobile.
break
end
Compute p(u)
Locally broadcast p(u)
> This local broadcast can be done by piggybacking p(u) in
HELLO packets.
> Node u is aware of all of its 1-neighbors’ density value and
knows whether they are eligible.
if (p(u) = max,cr, () (p(v))) then
H(u) =u
> w is promoted cluster head.
> Note that if several nodes are joint winners, the winner
will be the previous cluster head whether it exists, otherwise,
the less mobile node, otherwise, the smallest Id.
Yv € Ty (u),v € C(u)
> All neighbors of u will join the cluster created by u as
well as all nodes which had joined u’s neighbors.
else
> Juw € T1 (u)]p(w) = maxyer, ) (p(v)
H(u) = H(w)
> Either H(w) = w and u is directly linked to its cluster
head, either w has joined another node x and H(u) =
H(w) = H().
> If there exist k (k > 1) nodes w; such that p(w;) =
maxyer, (v)(p(v)) and such that w; ¢ T'1(w;)(i # j) then
w will join the node w; which Id is the lowest and all C(w;)
(for i=1 to k) will merge consequently.
end
Locally broadcast C(u)
> Each node will know whether its 1-neighbors belong to the
same cluster as it and whether two of its 1-neighbors belong to
the same cluster. This will be useful for the routing process.

C. Maintenance

Given that every node is mobile and subject to move at
any time, our cluster organization must adapt to topology
changes. For this, our nodes have to periodically check
their environment and so check their mobility. If they
become too mobile, they will not join any cluster, if at
the opposite, they were too mobile and now are able to
communicate, they will join the cluster of their neighbor
which has the highest density. Each node periodically
checks its density and its neighbors’ one. They continue



on joining their neighbor which has the highest density.
If this last changes, the reconstruction will be automatic
without generating much additional traffic overhead.

D. Analysis of the average density

In this section we compute several important charac-
teristic factors of our cluster heuristic. We first compute
the mean density of nodes and then we compute an upper
bound on the expected number of clusterheads.

In this subsection we analyze the average k-density
pr(u) of a node uw. We consider a multiple-hop ad
hoc network where nodes are distributed according to
a Poisson point process of constant spatial intensity
A. Each node has a transmission range equal to R
depending on its transmitting power P,,.

In this section, we compute the mean density under
Palm probability. We thus compute the density of a node
located at the origin point (under Palm probability, there
exists almost certainly a point in 0). Since a Poisson
process is a stationary process, this node density is valid
for every point. Let p(0) be the density value of node 0.
® is used to design the point process. [£° and [P° design
respectively the expectation and the probability under
Palm distribution.

We compute:

plu) = E°[p(0)]

Lemma 1: The mean 1-density of any node w is
p(u) = E°[p(0)] where:

B2 [p(0)] = 1+ & (w— %)

2)
1- exp{—/\ﬂRz})

x | AR? —
T

We detail here the proof for the 1-density.

Proof: Let B, be the ball centered in v € IR?, with
radius R minus the point u, that is, B, = B(u, R)\u
where B(u, R) is the ball centered in u with radius R .
Let’s note (Y;);=1,..o(p,) ®’s nodes being in B'y. From
the density definition, we have:

1 ®(B'o)
B [p(0)] = 1+ 5E° | 3

=1

®(B'yNB'y,)
®(B'y)

Moreover, we suppose that p(0) = 1 if ®(B'y) =
0. We consider the expected value conditioned on the
number of nodes in B’y. Thus we have:

P®(B’'y)

D

=1

CI)(B,O N B,Yi

o 1+Oo o !
E [p(O)]:1+§I;E 5T )‘@(Bo)zk

x P° (®(B'y) = k)

— 14 lio Xk: Lo [<I>(B’0 N B’y,)‘cb(B’O) - k]
2ok Z
x P° (B(Bo) = k)
(3)
Moreover, we know that ®(B’y) = k, and

that nodes (Y;);=i,.. , are independent from one to
each other and uniformly distributed in B’y. Thus,
E° [(I)(B’ODB’;Q)‘@(B'O) =k] is the same for all
i, =1,.., k. Knowing that v(B'oN B'y;) and ®(B'y) =
k (v is the Lebesgue measure in IR?), the amount

of nodes in B’y N B'y, follows a binomial law with
I/(BlomB(yi)
()
o v(B'oNB'y,
points is (k — I)W.

Thus we have, for all ¢t = 1,.., k:

parameter (k -1, ) and the mean number of

R [cI)(B’O N B’yi)‘@(B’O) - k]
k-1
_ = Dpo [V(B/() N B’K)‘@(B’O) - k]
wR?
(k — 1) / /
= 7TR2 EO [V(B 0 N B Y,)]

This last equality comes from the fact that the area
v(B'y N B'y,) does not depend on the number of nodes
in By, since all Y; are independent.

Knowing that Y; is at a distant r from the origin point,
we can compute the area of the intersection v(B'y N

B'y,) = A(r) where

A(r) = 2R2arccosL — 74/ R?% — ﬁ
N or 'V 4

and thus, since Y; is uniformly distributed in B’g, we
have

E° [v(®(B'yNB'y))] = E°[A(r)]

2 RA(’I")
= /0 /0 —R? r dr df
()

Combined with equation 3, we obtain




+o00
1 E—1 3vV/3
=1+ = — 2V pe ') =
+3 W( 4)(q>(3)k)
k=1
1 V3
=14+ — _ Ve
+27r 4)

ZP”
3V3

—1+ % <7T - T) (AR — (1 — eap{AnR}))
“

This last equality comes from Slyvniack’s theorem
which says in this case that ®(B’y), under Palm probabil-
ity, follows a discrete Poisson distribution of parameter
ATR?. [ ]

E. Analysis of the number of cluster heads

We first need some technical lemmas.
Lemma 2: The average number of cluster heads that
belongs to a given Borel subset C' is given by:

[E [Number of heads in a Borel subset C]

X (ijk]‘fw( —k))

a cluster head. Indeed, it has the highest density value
among nodes in By. We have.

WOE
P (o(0) > pl1](55) > 0)

x P (@(By) > 0) + P* (@(By) = o)

max
k=1,..,9(

P <p(0) >

max
k=1,...5(Bo)

Thus, we compute:
=P (p(O) >

x P° <<I>(B(')) >0)

max

Y.)|®(B,) >0
mx p(vi)|e(5;) > )

p(Y1) Palm distribution knowing that ®(B;) >0
where Y] is one of B(')’s nodes, is the same that the
one of the density value of the node at the origin point,
knowing that ®(By) > 0.

However, we have:

po <

P° (pm) > max(p(0),

Yi))|@(B;) > 0
k:;{%}%BO)p( 1)) 2(By) )
The proof of this inequality is omitted here and will be
presented in futur paper.

Moreover, the event

5 Y1) > max(p(0), max Y,
— \A(C)F° (0 is head ) (5) {p(11) (p(0) kZQ,..@(BO)p( k) }
Lemma 3: The probability that the origin is a cluster ¢ i uded in the event
head under Palm probability is given by:
(o) > _max - p(¥i)))
P? (0 is cluster head) = P 0) > Y:) | thus
(0 is cluster head) (o) > _max o030)
where the sequence Y}, represents the points of ® in By, ,
the ball centered at the origin with a radius R. We fix po < P° | p(¥1) > k_megiB,)P(Yk)‘@(Bo) >0

maxg—,, ,p(Yr) =0if v < w.
We can now bound the quantity defined in Lemma 3.
Theorem 1: An upper bound on the number of cluster

head is given by:
P(Yk))

I oad (p(O) >
(1 + Z /\WRQ ) exp {—ArR?}
Proof:

Let B, be the ball centered in 0 with a radius of
R minus the singleton 0. In the case of the node at
the origin point is the only one in By, it is obviously

max
k_]-’ 7q>(BO)

(6)

x Y (@(Bg)) > 0)

+00
=S P (o) > max  p(Vi)|@(By) = n
— k=2,...5(B)
x P (®(B'g) = n)
+o00
= ZIPO p(Y1) > max P(Yk)‘q)(BO) =n
1 k=2,..,®(B,)

x P (®(By) =n)

+00 A 2\
< Z %% exp {—ArR*}



The last equality is obtained thanks to the fact that the
densities of the points standing in By are equi-distributed
since the locations of these points are uniformly and
independantly distributed in By. More precisely,

P () >

Moreover, the number of nodes under Palm distribution
in a JR? Borel set which does not contain the origin point,
follows a discrete Poisson law (Slivnyak’s theorem [16]

, 1
max #p(Yk)‘@(BO) = n> < ;1(7)

=1,..,n;k

page 121).

We finally have:
P° { p(0) > Y)

<p( ) > max k))

+o0 2\ N
1 (/\7TR )
2 2
<exp{-ATR*} + E P exp {—A\7R"}

n=1

F. Example

To illustrate this heuristic, let’s take the following
example (Fig. 1). Let’s suppose that the node F is too
mobile to be eligible.

In its 1-neighborhood topology, node A has
two I-neighbors (I'1(A) = {D,I}) and two
links ({(4,D),(A,I)}); Node B has 4 I1-

neighbors (I''(B) = {C,D,H,I}) and five links
((B,0C),(B,D),(B,H),(B,I),(H,I)}). Table I
shows the final results.

In the illustrative example, node C joins its 1-neighbor
which density is the highest: node B (H(C) = H(B)).
Yet, the node with the highest density in node B’s
neighborhood is H. Thus, H(B) = H(H) and so
H(C) = H(H). As node H has the highest density in
its own neighborhood, it becomes its own cluster head:
‘H(H) = H. To sum up, C joins B which joins H and
all three of them belong to the cluster which cluster head
is H: H(C) = H(C) = H(H) = H. Moreover, we have
p1(J) = p1(F). As it is the first construction, none of .J
and F' was cluster head before. If we suppose that J has
the smallest Id between both nodes H(F') = H(J) = J.
At last, we obtain two clusters organized around two
cluster heads: H and J. (See figure bellow on figure 1)

VI. SIMULATION AND RESULTS

We performed simulations in order to evaluate the
performance of the proposed heuristic and compare it
with the Highest-Connectivity (Degree) [4] and the Max-
Min d-clusters [1]. The geometric approach used in
the analysis allows to model the spatial organization

Fig. 1.

Clustering example.

of networks. As in Section V-D, nodes are randomly
deployed using a Poisson process in a 1 x 1 square
(1km?) with varying levels of intensities A (and thus
varying number of nodes) varying from 500km =2 to
1000km—2 which gives on average from 500 to 1000
nodes above our simulation square environment. Two
nodes are said to have a wireless link between them if
they are within communication range of each other. The
communication range R is set to 0.1km in all tests. Some
of the more noteworthy simulation statistics measured
are: number of cluster heads, cluster diameter, nodes
eccentricity in its cluster and cluster stability. These
statistics provid a basis for evaluating the performance
of the proposed heuristic. In each case, each statistic is
the average over 1000 simulations. Note that as opposed
to [1], for a given number of nodes, we fix a minimum
radius such that the network is connected.

Results in Table II compare both theoretical analysis
and simulated results of our heuristic for the average
degree and nodes density. They match pretty well.



Nodes A B C D E F G H I J
Neighbors 2 4 1 4 2 1 2 4 2
Links 2 5 1 5 3 1 3 5 3
1-density 1 1.25 1 1.25 1.5 1 1.5 1125 | 15
TABLE T
RESULTS OF OUR HEURISTIC ON THE ILLUSTRATIVE EXAMPLE.
500 nodes 600 nodes 700 nodes
Theory | Simulation | Theory | Simulation | Theory | Simulation
mean degree 14.7 14.3 17.8 17.3 21.0 20.2
mean 1-density 4.7 5.0 5.6 5.9 6.5 6.8
800 nodes 900 nodes 1000 nodes
Theory | Simulation | Theory | Simulation | Theory | Simulation
mean degree 24.1 23.1 27.3 25.9 30.0 29.0
mean 1-density 7.5 7.1 8.4 8.6 9.3 9.4
TABLE 1T
AVERAGE DEGREE AND DENSITY OF NODES.
500 nodes | 600 nodes | 700 nodes | 800 nodes | 900 nodes | 1000 nodes
Number of clusters 15 14.49 14.23 15.5 13.02 14
Number of nodes by cluster 31.2 41.4 49.2 51.5 69.1 72.7
D(C) 4.99 5.52 5.5 5.65 6.34 6.1
é(u/C) 2.1 23 2.3 2.4 2.4 2.6
TABLE III

CLUSTER CHARACTERISTICS FOR 1-DENSITY.

A. Clusters characteristics

Major characteristics of clusters and cluster heads are
presented in table III. Note that our heuristic based on
the 1-density is scalable: when the number of nodes
significantly increases (from 500 to 1000) and the node
eccentricity remains the same, the number of clusters
is stable. Figure 2 compares experimental results and
analytic upper bound of the number of clusters for an
observation area 1*1 and R = 0.1.

In Figure 3, we compare the amount of clusters
produced by our metric and by the Max-Min d-Clusters
heuristic for D = 3 (the one the closest of ours as we
have a mean cluster diameter around 6 hops) over a 1000
nodes topology for different values of R.

We then can see that the number of clusters formed by
both metrics is similar when the radius is pretty high but
that Max-Min d-Cluster computes more small clusters
when the network is sparse. Thus, our metric has a better
behavior towards sparse network (less connected) as it
forms less clusters and then generates less control traffic.
Moreover, at the opposite of Max-Min, our heuristic does
not allow clusters with only one node (the cluster head)

Influence de l'intensite du processus sur le nombre de clusters
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Curve 2

Fig. 2. Number of clusters in function of Poisson process intensity

and the cluster head is pretty centered in its cluster.
Figures 4 and 5 plot one example of cluster organi-
zation results obtained during a simulation, both from
the same nodes distribution. We can notice that clusters
are homogeneous and correspond to what we expected:



500 nodes 600 nodes 700 nodes
Density | Max Min | Density | Max Min | Density | Max Min
| S | 052 0.55 0.48 0.41 0.51 0.47
800 nodes 900 nodes 1000 nodes
Density | Max Min | Density | Max Min | Density | Max Min
€ (Clusterhead /C)
| 5 0.47 0.39 0.48 48 0.52 0.48
TABLE IV

CLUSTERS CHARACTERISTICS
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radius R by density metric (— x —) and Max Min 3-cluster metric

(=+-) Fig. 4. Example of clusters organization for 1000 nodes with a
radius R = 0.1km with the 1-density heuristic.

cluster heads are well distributed over the environment
in a homogeneous way. Clusters gather close nodes
with high connectivity in order to favor intra-cluster

traffic. We can observe that cluster heads are less well IS e o0 ° °
distributed with the Max-Min heuristic than with the S:%:’\‘?}o . N g ‘.:
density’s one. s f:. L % 0 .o.q o<

To illustrate the position of the cluster head in its ° ).‘" ™ ?\. :’
cluster, we calculate ratio between the cluster head g °® 0, ®
eccentricity in its own cluster and the diameter of the t.?:: :. ..’ a8 ‘.ol."b:?
cluster. Results are presented in Table IV. They show that g‘ SR ? .. .”‘3 ;’0"
in the clusters organization resulting from our heuristic, ) "‘&:‘“&‘? X .. y.o' ('
cluster head are closer to the middle of the cluster than %% ° ‘%é L ‘,‘:' %
with the Max-Min’s heuristic, which implies less control ° '0‘:. o, °
exchanges into a cluster. < .@”o: S’ o

. R N
B. Stability ° ‘ﬁf: e
.%’ ..:. J.

In the aim to evaluate our metric over organization
,Stablhty’ we compare 1t Wltl,l th,e degree heuristic (like Fig. 5. Example of clusters organization for 1000 nodes with a
in [4]). We expect the organization to change as less as  [dius R = 0.1km with the Max Min 3-cluster.
possible, that means that the cluster heads remain cluster
heads as long as possible. Indeed a cluster is defined



by its cluster head, other nodes can migrate from one
cluster to another one, this will not break the cluster.
Then, the most noteworthy factor is number of changes
among cluster heads.

Therefore, we perform simulations in which nodes can
move in a random way at a random speed from 0 to
10m/s (for cars) and from 0 to 1.6m /s (for pedestrians).
We observe each 2 seconds during 15 minutes. Results
presented in Table V show that in average, our metric
reconstructs clusters less often than the degree heuristic,
it’s thus better since more robust towards node mobility.

C. Non uniform distribution and arrival

The last test that we perform is when nodes are
not uniformly distributed but rather concentrated around
fews points, for example cities. Figures 6 and 7 illustrate
such scenarii. As we can see our heuristic generates less
clusters and clusterheads are much more centered inside
their cluster. The Max Min heuristic generates sometime
several useless neighbor cluster heads. For 1000 nodes,
on average, our heuristics generates 8.7 clusters whereas
the Max-Min heuristics generates 15.25 clusters.

Moreover, we also performed arrival tests, that is, as
opposed to classical scenarii where nodes only move,
we start the scenario with an initial configuration (800
nodes) and nodes arrives randomly in the network by
groups of 50. As expected, Max-Min is less robust since
the cluster head election is based on a purely static data,
the ID of a node. Thus if one node vanishes or appears,
it is enough to trigger a re-election and a modification
in the cluster head which it is not the case in our
heuristic since the density measure is able to “absorb”
local modification.

Finally, Max-Min d-cluster algorithm is more costly
in term of messages since it is composed of 3 phases that
flood messages up to d hops in order to converge: one
to compute the max, one to compute the min, and one to
announce the winner. Our heuristic is purely local and
we can implement it by doing piggy packing in Hello
packets.

VII. CONCLUSION AND PERSPECTIVES

We have proposed a distributed algorithm for orga-
nizing ad hoc (or sensor) nodes into a flexible hierarchy
of clusters with a strong objective of not using fixed
and non adaptive criteria. Thanks to stochastic geometry
and Palm distribution theory, we have performed formal
analysis and we were able to compute the average
density of nodes but also we can bound the number
of cluster heads in a given area if nodes are randomly

Fig. 6. Non uniform distribution of nodes: Example of clusters
organization for 1000 nodes with a radius R = 0.1km with the 1-
density heuristic.

Fig. 7. Non uniform distribution of nodes: Example of clusters
organization for 1000 nodes with a radius R = 0.1km with the Max
Min 3-cluster.

distributed. We have shown by simulation and analytic
analysis that our metric based on the density gathers
the dynamics of node neighborhood and outperforms
classical static criteria used in past solutions (e.g., max
degree).

In future, we intend to test deeper our metric and
its behavior over different environments. Our first re-
sults tend to show that formed clusters are closed to
Voronoi tessellation and thus we can expect to derive
promising properties of such organization. Indeed, it
seems that a cluster head of a node is in fact the
closest clusterhead. We are currently investigating the
use of purely distributed hash function in order to solve
the node localization problem once the clusterization is



500 nodes 600 nodes 800 nodes 1000 nodes
Density | Degree | Density | Degree | Density | Degree | Density | Degree
speed from O to 1.6m/s 68.7 65 67.2 63.5 64.5 62.4 62.2 56.8
speed from O to 10m/s 30.1 27.5 27 25.3 26.2 23.1 24.8 20.35
TABLE V

% OF CLUSTERHEAD REELECTION FOR TWO DIFFERENT SPEEDS.

done. Once again, we should be able to apply stochastic
geometry in order to derive formal bound on the number
of hops (and not the euclidean distance) between nodes
and their clusterhead.
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