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ABSTRACT

Our aim in this paper is to analyse the phenotypic effectslyev
ability) of diverse coding conversion operators in an instaof the
states based evolutionary algorithm (SEA). Since the sspra-
tion of solutions or the selection of the best encoding dutime
optimization process has been proved to be very importarthéo
efficiency of evolutionary algorithms (EAs), we will dis@ua strat-
egy of coupling more than one representation and differemtgs
dures of conversion from one coding to another during thecbea
Elsewhere, some EAs try to use multiple representations-GBM
SEA, etc.) in intention to benefit from the characteristiteach of
them. In spite of those results, this paper shows that thegehaf
the representation is also a crucial approach to take imeidera-
tion while attempting to increase the performances of sut$ As
a demonstrative example, we use a two states SEA (2-SEAhwhic
has two identical search spaces but different coding csiueiop-
erators. The results show that the way of changing from odexgo
to another and not only the choice of the best representatiothe
representation itself is very advantageous and must be tiake
account in order to well-desing and improve EAs execution.

Categories and Subject Descriptors

G.1.6 Mathematics of Computing]: Numerical Analysis Opti-
mization [Stochastic Programming]; 1.2.8¢mputing Method-
ologieg: Artificial Intelligence Problem Solving, Control Methed
and Search [Heuristic Methods]

General Terms
Algorithms, Performance, Experimentation

Keywords
States based Evolutionary Algorithm, Representationji@pg@ou-
pling, Coding Conversion.

1. INTRODUCTION

The choice of the representation of solutions is a very foretatal
step and a highly decisive point to take into consideratioEAs

functioning. A problem could be difficult for one represeida
and easy for another one [1, 2]. It is a challenging task toalisr
which coding scheme is a suitable one for a specific probldorde
testing that coding scheme using an evolutionary algoritBm).
One representation could have a very good behaviour at gfie-be
ing of the run and a bad one at the end of the run [3, 4, 2]. Beside
the search bias during genetic search depends on the protiiem
structure of the encoded search space and the genetic agenat
selection, crossover, and mutation. For every problemetieia
large number of possible encodings. It is often possibleiow
the principle of minimal alphabets when choosing an enapitin
an EA, but simultaneously following the principle of meagfl
building blocks can be much harder. This is because ourtiatui
about the structure of the problem space may not translaterwe
the binary-encoded spaces that EAs expand and spread on [5, 6
7, 8, 9]. There are two possible ways of tackling the probldm o
coding design for meaningful building blocks: 1) Searclotiyh
possible encodings for a good one while searching for a isolut
and try to apply the chosen encoding. 2) Incorporate more dine
coding scheme simultaneously and change the representdso-
lutions from one coding to another during the optimizatioogess
which can help in well exploring the search space and in asirg
the count of building blocks considered meaningful in thieison
string. The first choice uses reordering operators, likerision,
that try to look for and then apply the best encoding whiledea
ing for the solution. The rest of this paper motivates, depeland
illustrates the second approach in use with the states lmsda-
tionary algorithm (SEA).

The SEA is a new parallel version of EAs implemented as a group
of independent optimization algorithms where each alboriis
considered as a state of a SEA. A statéf a SEA is denoted EA
and can be any of the optimization algorithms that have been p
posed in the literature such as EAs, genetic algorithms [Gdes
netic programming (GP), evolution strategies (ES), etc. eXe-
cution of a SEA withn states is equivalent to the executionrof
parallel EAs where each EAhas its own parameter settings (cf.
Figure 1). After each main generation, a SEA containsda ge
phase which consists in regrouping all states together imalev
population. During this phase, each state undergoes aiontat
any other state with a given state mutation jatéutState which
can help to maintain diversity over the state space. Dutiegiu-
tation phase, the states of existing solutions are corteniéh-
out changing their corresponding fitness values. Afterthe ge
phasegselection for replacement andelitist selection phases
take place in order to guarantee the survival of the bestiidali
als. Theelitist selection stage is done in the whole population
according to the fitness values of each state. Finalblyl& phase



is necessary to disconnect all members of the whole populatid
reorder them in such a way that each homogeneous group tecons
tutes a separate state. Theit andmerge cycle continues after
each generation until the SEA obtains the ultimate soluioan-

til a definite number of iterations is “absorbed” [10]. Theima
principle of the SEA is to choose the good state accordingnd¢o t
fithess values of the actual solutions and not directly atingrto
their states using a classical selection operator. Evéyttize SEA
favours the coding whose the solutions have a best averagssit
and the choice of the coding depends on the evolvabilityatfehd-
ing just after the modification of representation. In anotieems,

it depends on the evolvability of the coding conversion apar
which can be resumed as its capacity to promote and support th
crossover and mutation operators to build new promisingtsmis
from the old ones. Consequently, the conception of coding co
version operators that can lead to a scaled average fitnésaran
assorted evolvability would be a good approach to attackdisd
solve the EAs problem caused by the representation issues.

On the other side, redundant representations are incggadiaing
applied in evolutionary computation and seem to affecttpedy
the performance of genetic and evolutionary algorithms [tey
use a higher number of alleles for encoding phenotypic méor
tion in the genotype than is essentially to construct thenptype.
This is the reason why we preface the use of block composites i
the binary encoding which proves to have the features angkepro
ties of maintaining scaled genotypes and phenotypes (aftid®e
2). In this paper, we expose an already-evoked structurénaiyo
representation tagged as binary block coding (BBC) anddedn
on the concept of bitstrings decomposed into a definite nurmbe
blocks each having a fixed length [7]. The previous work indig}
cussed how the synonymy of a representation influences tietige
search. Then, it developed a population sizing model fobsyn
mously redundant representations based on the assumptioa t
representation affects the initial supply. Our presentystwill fo-
cus on the framework of coupling more than one represemtatio
one algorithm. Eventually, this paper will be centralized the
concept of proposing diverse ways of coding conversion amithe
matter of how and when to apply these conversion operatoishwh
allow to change the representation of solutions in the patjpn
from one coding to another. In this intention, two differargys of
changing the representation are evolved in this paper. Tteofie
tends to increase the number of zer6s™in the binary solution by
the fact that each bit will be encoded as a sub-solution ceegbo
by a block of binary bits having the maximum number 0. The
second way tends to increase the number of ohesifi the binary
solution by the fact that each bit in the solution will be eded as
a sub-solution composed by a block of binary bits having th&-m
imum number of 1s”. Thus, the conversion operators are different
but the representations used to encode individuals in thelption
are identical by the fact that they have the same search siface
same neighborhood structure and the same fitness valuezdior i
viduals having equivalent solutions.

The experiments are performed in intention to prove tham éhe
representations used to encode the solutions are identieahan-
ner of modifying the representation from one coding to aapth
the algorithm is of importance and is useful in the same way of
selecting the best representation. This paper containsnfiain
sections. In Section 2, BBC is described in details. Theestt
of experiments is exposed in Section 3. Section 4 presentrgle
comments and concluding remarks. Finally, Section 5 surizesr
some further works.

2. BBC AND CONVERSION

Initialisation

-
O

conversion n

Figure 1: Scheme of a n-SEA.

The binary block coding and various coding conversion djpesa
are evolved in this paper for the purpose of bringing sommfof
order into the disturbed situation caused by the influenceufe-
sentation on the performance of EAs. The required spediicat
are outlined in the following subsections.

2.1 Binary Block Coding

We present the binary block coding scheme, an existing Yiregr-
resentation which is based on the binary block constitufign
BBC is the set of all possible solutiof®, 1}"* wheren is the
blocks number and is the block size. Suppose that we have a bit-
stringw which is encoded with BBCw will be composed of a set
of binary blocksw; wherej € [0,n — 1] and eachw; is of length

k (cf. Figure 2). The decoding ab to the standard binary returns
a bitstringz of lengthn. This procedure can be defined by the bi-
nary voting mapping. Each block in will be replaced by one bit
in . The value of each bit in: is determinded by the “voting to
the majority of the values” in the corresponding block. Geiig,

a specific binary encoded optimization task requires a pingp-
resentation that correlates to its fitness function stmectun this
intention and since a bit value can be set equalotoot “1”, we
state two variants of changing the binary representatiomfone
coding to another. The first is assigned to maximize the numbe
of “0s” in the bitstring by transforming each bit in the string to a
block of binary substring containing the largest possitimber of
“0s" (cf. Figure 2). The second variant is assigned to maximize
the number of 1s” in the bitstring by transforming each bit in the
string to a block of binary substring containing the largasssible
number of “1s” (cf. Figure 2). BBC is considered to introduce a
form of redundancy to the chromosome codification and iffitse
infinite group of binary coding schemes by just varying theckl
size, and the standard binary coding is the basic elemeriti®f t
group with a block size equal th

2.2 BBC Encoding Operators

Suppose that we have a bitstrirgof lengthn whose we want to
encode in BBC with a block size equal kogenerating as well a
new bitstringw. As it has been mentioned above, two encoding
operators are available to change the representation frandard



binary coding to BBC. The firsgnco, maximizes the number of
“0s” and the secondenc:, maximizes the number ofl's” in the
bitstring. Sov i € {0, 1}, enc; operator can be defined as follows:

enc; : {0,1}" — {0,1}"*

enci(x) = w = wowi...W,_1

whereV j € [0,n — 1],

ik
Wj = k—l-ktl
iz 42

where: is the bitwise complement of
Two demonstrative examples are given in Figure 2.

2.3 BBC Decoding Operator

Suppose that we have a bitstrimg composed ofn blocks each
having a size equal th. If we want to decode in standard binary,

a new bitstringz will be generated using the decoding operator
dec. The decoding procedure from BBC to standard binary coding
is based on a predefined function calted j used to evaluate each
w; in w wherej € [0,n — 1]. maj routine is specified by the
“voting to the majority of the values” in the bitstring andcin be
outlined as follows:

maj: {0,1}" — {0,1}

maj(u) = {0 if |ulo > |ul1

if x; =1

if Tj =1

1 otherwise

W

where|u|, respectivelyju|, represents the number df$” respec-
tively of “1s” in u. Then,dec operator can be defined as follows:

dec : {0,1}"* — {0,1}"

dec(w) = & = Tox1...Tp_1

whereV j € [0, n — 1],

x; = maj(w;)

Two demonstrative examples are given in Figure 2.

2.4 BBC Conversion Operators

There exist several ways to change the representation vidoe
als in the population from BBC to BBC. We state below a brisf li
of two BBC conversion operators. They are transmutatiolitias
that change the state, here the representation, of a soluithout
changing the fithess value of that solution. So, we Hayec S,
Vo€, f(z) = f(conv;(z)) whereS is the state space& is
the search spacé, the fitness function, aneébnv; the conversion
operator to statg. In our caseconwv, corresponds to the operator
that maximizes the number 068" and conv; corresponds to the
operator that maximizes the number df" in the bitstring. Sup-
pose that we have a bitstring encoded with BBC and composed
of n blocks each having a size equalktolf we want to change the
representation o to BBC in a form of redundancy that increases
the number of £s” in the bitstring with the same block size where
€ {0, 1}, a new bitstrings’ will be generated following two main
steps. The first belongs to the decodinguoin standard binary
producing as well a new bitstring of lengthn. The second step
belongs to the encoding af in BBC by applyingenc; operator
poducing as well a new bitstring’ of lengthnk. Thereforev i €
{0, 1}, conv; operator can be defined as follows:

conv; - {0,1}™ = {0, 1}"*

conv; (w) = w' = enc;(dec(w))

Two demonstrative examples are given in Figure 2.

2.4.1 Role and Importance

Some classes of optimization problems can take advantage fr
the coexistence and the application of the two BBC convarsip
erators,convg andconw;, in one algorithm. A dual coding strat-
egy based on these two variants and developed genuinelyifAan
serves to make the representation of solutions more adaatid
well-matched to a problem’s fitness function. Likewisesthp-
proach can make EAs advantageously explore undiscoveeas ar
of the search space. If we introduce the notion of state teefiaetl
according to the representation in a SEA, then that SEA cdhée
appropriate algorithm that integrates an adaptive apprdéacthe
representation in which the genotype encoding is alteredhify-
cally by the fact that a state mutation will be equivalent twding
conversion. Therefore, the modification of the represémtaif ar-
bitrary solutions to a form of BBC usingonuvg or conv; tries to
make an equilibrum in the number of bits with™and “1” while a
classic binary representation sometimes makes bias tewlaedits
with “0” or “1”. For example, if the ultimate solution of an opti-
mization problem contains a number &f” more than the number
of “1s” in the string then the BBC coding alternation “tour” per-
formed in a SEA while applyingonuv, and therconv, to random
solutions during the search may be helpful in increasingntima-
ber of bits with ‘0” and then can lead, iteration after iteration, to
discover and locate the global optimum. The role of BBC conve
sion operators can be seen as intermediators between titasia
binary coding and the problem structure, and those mediatmwe
to well explore new regions in the search space. The impoetah
those operators lies on the concept that specifies them astaidj
which attempt to correct the erroneous bits in the stringdpfac-
ing each probable false bit value by the true one, the matéw
can be seen and interpreted indirectly as the constructotiseo
meaningful building blocks. Since in a binary codin@; is the
bitwise complement of 1 and inversely 1” is the bitwise com-
plement of 0", so convg can be translated as the complementary
conversion operator afonv; and reciprocallyonv; can be trans-
lated as the complementary conversion operataafvy. In this
aim, we must notice that the value of BBC resides in ugingu
and conv, operators simultaneously in one method that let them
interact and interchange data bits to finally assisst intcrgand
not in destroying the substantive building blocks.

2.4.2 Evolvability

The evolvability of a coding conversion operator is definedte
phenotypic effects that can be produced after the chandeoép-
resentation of solutions using that operator. In anothenseit is
the ability of that operator to affect and serve the genetiera-
tors, crossover and mutation, to develop new promisingtsois
from the old ones during the reproduction phase. Partibyltre
evolvability of a coding conversion operator deeply dejgena the
problem structure and the shape of the optimum. Supposevihat
have to optimize a problem where the global optimum contains
number of ones1” greater than that of zero)". Then, conv,
operator will be more favored regarding its concern in maxzing
the number of onesl1” in the bitstring. Consequently, the chance
to produce new promising solutions after the applicationmfv,
will be greater than that after the applicationaafivg, and hence
the evolvability ofconv, will be greater than that afonvy. Two
experimental tests were performed in sections 3.4.1 andstutly
and compare the evolvability @bnvo andconwv, operators.
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Figure 2: For two given bitstrings w and w’ with a blocks num-
ber equal to 5 and a block size equal ta3 for both of them, we
show the decoding in standard binary and then the applicatia
of enco respectively ofenc, operators.

Table 1: Test Functions

Reference Name Definition
P1 ONEMAX fi(s) =|sh
1 if|sh =1
P2 NEEDLE =
fa(s) {1 otherwise
P3 ONOFF fa(s) = HDO(s)
P4 ALTERNATION  fi(s) = ND(s)

3. EXPERIMENTS

We have prepared a set of experiments to test and analyze som

of the main features of BBC conversion operators in use with a
SEA, and to show the importance of changing the representafi
solutions during the search process.

3.1 Test Functions

To test the performance of optimization algorithms, staddest
problems should be used. We mainly consider a set of fourpina
encoded optimization functions.

The first one is P1 and is the classical ONEMAX problem. It be-
longs to the unitation class of fithess functions. Unitafianctions
are fitness functions where the fitness is a function of theicoti
“1s” in a solutionz € {1,0}', wherel is the length of the solu-
tion. All fitness values are non-negative:: {0,1}' — RT. The
first two fitness functions given in Table 1 and pictured inuUfey

3 are two examples of unitation functions. They are respelgti
called ONEMAX and NEEDLE, and have been theoretically stud-
ied for fixed parameter simple GAs by Rowe [11], Wright [12Han
Richter et al. [13]. The ONEMAX fitness function has beenexll
the “fruit fly” of GA research [14]. It is a maximization prodain
that countes the number of §” in the string. P1 is a neutral linear
function with one global optimum, an all §” string.

As well, we have expanded our observations to test the séaond
tion P2. It is the NEEDLE problem which also belongs to the uni
tation class of fithess functions. P2 has one global optimam,
all “1s” string, and is reasoned to be a difficult optimization task
for the classic GA to work out. NEEDLE is a maximization linea
problem and can serve to study the properties of the SEA anwl sh
the importance of changing the representation.

On the other side, we have applied our tests on the ONOFFgrobl

.

ok MW A OO N ®O S
.

ok MW A OO N ®O S

ONEMAX NEEDLE

Fitness
Fitness

0 1 2 3 4 5 6 7 8 9 10
Unitation

ONEMAX

0 1 2 3 4 5 6 7 8 9 10
Unitation

NEEDLE

Figure 3: Graphical representations of unitation functions.

{1, 0} to the global optimum, whetis the length ofc. ONOFF is
atypical minimization problem. All fithess values are na@gative:
u: {0,1}' — R™, and the fitness value of the global optimum cor-
responds to a value offor any length of the solution. Each bit of
value1 in the binary string of the global optimum represents the
ON label and each bit of valugé represents the OFF label. An il-
lustrative example of the ONOFF function is pictured in Feyd
for a length of the binary solution equal 40 This function should
advantageously confirm our assertions about changing thre-re
sentation because we consider that the genuine solutidre é6tm
1010...10 will be a really challenging task for BBC conversion op-
erators. Consequentlypnv, andconv; operators should have the
equal opportunities to be applied during the optimizatiasktre-
garding the global optimum that contains an equal and carisec
number of ‘0s” and “1s”.

ikewise, the experiments are extended to include the ALNER

ION problem P4. This function counts the number of dicamtin
ities between consecutive bits in the bitstring [15]. Itamsidered
as a hard maximization problem for a simple GA to solve. It de-
pends on the total number of sequeng@sor 01 in a string and
not on the positions of the alternations. So, it is definedtan t
binomial distribution of the space induced by alternatiohs a
consequence, ALTERNATION function has the following prepe
ties: 1) All the points with the same number of alternatioagdithe
same fitness value. 2) Symmetry with respect to bit valud,itha
f(z) = f(z), wherez € {1,0}' is a bitstring of length, andz is
its bitwise complement. 3) According to the above propehtg,fit-
ness Hamming distance correlation coefficient is equal to. zen
illustrative example of the ALTERNATION function is picted in
Figure 4 for a length of the binary solution equalitoT his problem
provides an interesting tool to analyze and report the dgiwers of
enco andenc; operators by the fact that it features two global opti-
mum regarding its symmetry characteristic. The firstis efsthape
1010...10 and the second one is of the sh&3é1...01. Contrarily
to the first three problems, P4 is a non-linear problem whéoera
of epistasis is contained in the structure of the soluticthtae bits
are tightly linked each to other. The chances to applyv, and
convy operators must be equivalent for the EA to succeed.
The definitions of all these problems are summarized in Table
wherel is the length of the solutios, |s|; is the number of Is” in
s, HDO(s) is the Hamming distance afto the global optimum,
and N D(s) is the count of dicontinuities between consecutive bits
in s. In order to compute the fitness valyé of a given solution
w which is encoded by BBC wherg : {0,1}™* — R, first we
decodew in standard binary generating as well a new bitstring
And then, the fitness valug of = is taken equal to the correspond-

P3. We define the ONOFF problem as a fitness function where theing function value which is calculated according to the fiow

global optimum is a finite binary sequence of the fotfi10...10
and the fitness is the regular Hamming distance of a solutien

expression given in Table 1 whefe: {0,1}" — R™. And so, we
obtain the following equalityf’ = f o dec.
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Figure 4: Examples of the graphical representation of the
ONOFF and ALTERNATION functions. For a binary solution

of length equal to4, we compute the fithess values correspond-
ing respectively to the16 (2?) possible solutions. The x-axis
represents the real-value of each standard binary solutionThe
y-axis represents the fitness of solutions.

3.2 SEA Parameters

Since a SEA itself has several options in terms of its impleme
tation, it is necessary to denote the parameter choicesingds
paper. First, the number of states was s&, teach state being rep-
resented by a simple GASGA). The representations of solutions
applied in all states are identical and we used BBC for emgpdi
the solutions. This choice was explicit in intention to gr&e a
dual coding strategy which may help in locating the ultimsde
lution while changing the representation of different ramdsolu-
tions from one coding to another using BBC conversion opesat
Thus, we have two states symbolized by t8@As which are sim-
ilar in everything and each component. And so, an instantkeof

SEA is implemented and is denoted 2-SEA where the representa

tion is directly linked to the algorithm and not to the indival in
the population. EacBGA is executed for one simple iteration be-
fore themerge phase takes place in the algorithm life-cycle. Next,
the follow-up parameter isM utState for state mutation rate. In
our case and since the representation is directly linketeatgo-
rithm, a state mutation means that the representation ofichahls

in that algorithm is changed to another representatiorerMards,
we will refer to pMutState by conversion ratep M utState pa-
rameter could be easily modified to provide conversion oitety
solutions from one coding scheme to another without affigctihe
results dramatically during the search process. The valubi®
parameter is fixed using the experiments described lateres S
tion 3.4.1. As well, 2-SEA has another particular parametefor

the block size. The value used for that parameter was chasen a

a result of prior experimentation reported subsequentigeation
3.4.1. The best parameter settings between those testad &dr-
jective functions are given in Table 3.

3.3 General Parameter Values

In order to create a fair tableau for comparisorsGfA with 2-SEA,
the parameters shared between these two algorithms wetré¢hieep
same. Since 2-SEA is composed of two parafiélAs, the clas-

Table 2: General Parameter Values

Parameters Attributes

Pseudorandom generator | Uniform Generator

Selection mechanism Tournament Selection

Crossover mechanism 1-Point Crossover

Mutation mechanism Bit-Flip Mutation

Replacement model 1 Generational Replacement

Replacement model 2 Elitism Replacement

Maximum Number of Iterations

Ending criteria

Table 3: Best Parameter Settings

Parameters P1 P2 P3 P4
mazGen 3000 3000 3000 30000
popSize 100 100 100 10
vecSize 1900 1900 300 300
tSize 2 2 2 2
pCross 0.6 0.6 0.6 0.6
pMut 1.0 1.0 1.0 1.0
pMutPerBit 0.9 0.9 0.05 0.05
pMutState 1.0 1.0 0.85 0.7
k 19 19 3 3

size was set equal tt0 and for the last problem this parameter
value was set equal tt) which reflects the fact that the ALTER-
NATION function requires more exploitation than explocatidue
to the deceptive attractor which is at mid-distance fromglodal
optimum. This choice is well verified and is totally compégitwith
the choice of a lowp M ut Per Bit value for the ALTERNATION
function which enables the algorithm to discover recuigiand
regularly good directions in the search interval.

3.4 Experimental Results

In the following two subsections, we introduce the experitaghat
have been performed for two different purposes. The firsteseto
analyze BBC conversion operators and to study the intenaetnd
the dependency of the parameters of both BBC and 2-SEA. And th
second purpose tries to test the importance of changingethre+
sentation and contributes in a comparison between therpeafece

of 2-SEA and the classic GA.

3.4.1 BBC Analysis

In this section, we present experiments designed to exasgne
eral aspects of BBC conversion operators. We would like tmkn
how much the change of the representation using, andconuv;
could “help” and “advance” 2-SEA during the search. Besides
would like to discover how the parameters of both BBC and 2SE
interact each with other.

First, it is so essential to mention tha¥/ ut State andp M ut Per Bit

sic GA and 2-SEA were run with the parameters recommended by parameters play an important role in 2-SEA operation, ari #f-

Goldberg (Goldberg 1989) (cf. Table 2). In general, the $etllo
used parameters and their respective attributes are shiovable 3
with: mazGen for maximum number of generations before STOP,
popSize for population sizepecSize = nk for genotype size,
tSize for tournament selection sizeCross for crossover rate,
pMut for mutation rate, angMut Per Bit for bit-flip mutation
rate. This tableau was employed for the four test problemg. W
have to mention that for the first three test problems the [aoiom

fected values are decisive in the final outcome. Precigdlfuit State
is responsible for the conversion of arbitrary individuialshe pop-

ulation from their initial representation to the other onka our

research, we are usingnuvo andconv: as two different conver-
sion operators for the same search space defined by BBC. Con-
sequently, each of these two operators has a different ahitity
after the change of the representation. Since the evoitabil a
coding conversion operator and withpid/ ut State is incidental to



the application of genetic operators and with it to the pholits of
flipping one bit in a bitstringp M ut Per Bit, we will begin by ex-
ploring the relationship betweem\/ utState and p M ut Per Bit
parameters and the proportion of solutions solved cosrdmtl 2-
SEA, success rate in percent. In the first experimgMutState
andp M ut Per Bit values changed withir0[0 : 1.0] interval with

a step of0.05. This experiment was realized on each test prob-

lem for 100 independent runs. Graphical representations of fitness

variations relatively tgp M ut State andp M ut Per Bit were given
in Figure 5. A simple reading of these figures shows that aelarg
conversion rate is needed for all test functions in orderf@GEA
to produce positive results which reflects the great impmezand
utility of the change of the representation during the seaBe-
sides, Figure 5 indicates that a high bit-flip mutation rated-
quired for P1 and P2 problems, and a small bit-flip mutatide ra

is required for P3 and P4 problems so that 2-SEA can render im-

portant end results. As an elementary synthesis on thesénelt

results, we can say that P3 and P4 problems require a low-leve

of mutation effects regarding the ordered structure ofrtgkibal
optimums which necessitate a modest contribution of thestien
operators, especially the bit-flip mutation, to be able @rn@nge
and fix up each bit in its correct position in the bitstring.

On the other side, BBC has another key paramdtéor the block
size. The second experiment is performed to determine the va
of that parameter for each test function. First, we have fiked
length of the standard binary genotype to a value ef 100 which
means that the number of blocks in the binary block genotyile w
be equal tol00 and the fitness value of the global optimum will
be equal tal00 for unitation functions0 for P3 problem, an®9

for P4 problem. Likewise, we have fixed the valuep&f ut State
andp M ut Per Bit parameters respectively o0 and0.9 for uni-
tation functions. P3 and P4 problems haveMutState value
equal to0.85 respectively0.7 and ap M ut Per Bit value equal to
0.05 for both of them. This test was realized on all objective func
tions for100 independent runs. Graphical records are displayed in
Figure 6 and show that a large block size is necessary forrihe u
tation functions in order for 2-SEA to produce significansjive
results in a minimum number of iterations. This fact can be ex
plained as a consequence of that, for classical linear enodl an
optimal evolvability of a coding conversion operator isated to a
maximal length of a bitstring and next to a maximal or largeckl
size. On the other side, P3 and P4 problems require a smak blo
size to make 2-SEA competent to submit large-scale solsitign
the concept of that a small\/ ut Per Bit value and with it a low-
order evolvability can avoid a disruptive effect on the ol and

as aresult it can help in adjusting the structural form ofvitthals
heuristically and progressively in a minor number of getiers.

3.4.2 Performance Comparison: 2-SEA sGA
Considering the stochastic nature of 2-SEA, we compute\be a
age performance dfo0 independent runs of 2-SEA on each objec-
tive function. The global optimum being equal 160 for P1 and
P2,0 for P3 and99 for P4, Table 4 shows the numerical results
whereas Figure 8 represents the graphical records of theriexp
ments. For the two algorithmsGA and 2-SEA, Table 4 displays
two main records for each test function. The firstis the ssgcate

(SRy%) measurement and is the percentage of the number of runs

in which the algorithm succeeded in finding the global optimu

The second record is the generation number to optimum (GNTO)

measurement and is the average of the number of iterati@dede
for the algorithm to attain the global optimum.

4. DISCUSSION AND CONCLUSION
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Figure 5: Study of the success rate fluctuations relativelyd
the variations of the conversion rate and the bit-flip mutation
rate. pMutState and pMut Per Bit values varied from 0.0 to
1.0 with a step of 0.05 for all test functions. As a result, the
obtained success rate values varied frorfi% to 100%.

Table 4: Experimental Results

Problem | Measurement Algorithm
SGA 2-SEA
P1 SR% 100 100
GNTO 128 10
P2 SR% 3 100
GNTO 30004+ 8
P3 SR% 100 100
GNTO 579 84
P4 SR% 4 32
GNTO 30000+ 30000+
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Figure 6: For the best values ofp M utState and pMut Per Bit,
we plot the number of iterations required to reach the global
optimum relatively to the block size for P1, P2 and P3 prob-
lems. As well, we plot the percent of correct solved solutian
relatively to the block size for P4 problem.



In this paper, we used a method based on the framework of ehang and hence the ultimate solution is an alk" string with a fitness

of the representation during the search. The basic intaatwd
to apply this action were the diverse BBC conversion opesato
These operators allow to alter the representation of smiatfrom
one coding to another during the search without modifyireirtre-
spective fitness values. For this purpose, we applied icknep-

value equal tal00. The traditional bit-flip mutation operator was
applied in all steps with a bit-flip mutation rate equabt@5. The
comparison of the obtained results is illustrated in Figre

A graphical interpretation of Figure 7 (left) indicatesthkize fitness
values of individuals which have been submitteddav, and then

resentations of BBC which have the same search space, thee samto the bit-flip mutation operator are higher than those oiviidials

neighborhood structure and the same fitness values foriéad¢ao-
lutions, but various conversion operators to change tha fafrthe
representation issued from BBC. We have to state that alique
works which used to search for the good coding during the- opti
mization process and then tried to apply that best coding wery
essential, helpful and efficient. Another effective stagatrand af-
firmation can be deduced from our work and test results. The da
of the experiments shown in Table 4 and Figure 8 clearly ptbee
importance and the utility of changing the representatiomany
random solutions in favour of 2-SEA that incorporates a eosion
strategy which leads to a dynamic and mutual representafiogy
also confirm that the change of the representation duringebech

is a very helpful and fundamental step to profoundly thinkttas
well to apply when one tries to improve EAs performances.
Besides, the experimental results displayed in Table 4 &nd&8
are uncomparable and show the advancement of 2-SEASGAT
They distinctly show how 2-SEA has found the global optimum i
an extreme minimal number of generations for the first thes t
functions whileSGA has reached the global optimum of the ONE-
MAX and ONOFF problems in a remarkable larger number of iter-
ations and failed to detect the global optimum of the NEEDDE a
ALTERNATION problems for the majority of runs (for a greatgpr
portion of initial populations). For the deceptive P4 pehl the
change of the representation with an appropriate convensite
has driven the search process in 2-SEA to build and fix eadh bit
its correct position relatively to its neighbours but goainbina-
tions of bits cannot be made fast enough because of the rizdter
the bits are tightly linked each to other. Consequently,chenge
of the representation during the optimization task has ipeeved

to be of great importance in EAs operation and positivelynst
that the obtained results for 2-SEA are significantly déferfrom
those ofSGA for all objective functions.

To prove our results, first we must show value of applying the-c
ing conversion operators. Thus, to reveal some charatiosrigf
BBC and study the evolvability afonv, andconvi, we have made
a simple test on the ONEMAX problem denotEdness Clouds
Representationfl6]. We started our test with a fixed humber of
arbitrary solutions uniformly generated from a givesed num-
ber. In a first step, we applied a standard bit-flip mutatioeaoh

of those solutions and evaluated their respective fitngssgsAs

a next step, we applied two kinds of coding conversion toehos
initial solutions, the first is done usingnv, operator and the sec-
ond usingconvo operator. Then, we applied a standard bit-flip
mutation to each of those solutions and evaluated theiectse
fitnessesfu o convi andm o conwvp). In a following step, we ap-
plied two types of coding alternation “tour” to the same ramd
solutions taken before, where each “tour” is considereavassbn-
secutive coding conversions. The first “tour” is realizedading

to the respective application eénwv,, a bit-flip mutationconwv,, a
bit-flip mutation, and the evaluation of the correspondingefsses
(moconv; omoconug). Inversely, the second “tour” is realized ac-
cording to the respective application @fnvo, a bit-flip mutation,
conwvt, a bit-flip mutation, and the evaluation of the correspogdin
fithessesu o convy o m o convy). This elementary test was per-
formed on100 arbitrary solutions, each having a length 1800,

an extreme value of equal to19, a blocks number equal tt00,

which have been simply submitted to a bit-flip mutation arahth
those of individuals which have been submitteddav, and then
to the bit-flip mutation operator. Similarly, Figure 7 (rigtshows
that the fitness values of individuals which have been subthto
conwvy and then ta:onv; and then to the bit-flip mutation operator
are higher than those of individuals which have been simpbt s
mitted to a bit-flip mutation and than those of individualsigth
have been submitted t@nwv; and then taconvg and then to the
bit-flip mutation operator. Since for the ONEMAX problemgth
more the number oft's” in the string increases the more the cor-
responding fitness value increases, Figure 7 proves verythatl
conw; is the most appropriate conversion operator and is the one
that clearly contributed in producing superior results. &da con-
clude that the coding alternation “tour” and the conversibithe
representation from one coding to another have induced tibefi
evolvability that matches to the problem structure. Andttst re-
sults assume that the last applied BBC conversion opersitihrei
one that influences the more on the final outcome. Graphigal re
resentations of fitness variations relativelypt®/ ut State given in
Figure 5 showed that, for all test functions, a large corivaersate

is needed for 2-SEA to render high positive results, thetfaattjus-
tifies once a time the important and essential role of BBCrogpdi
alternation “tour” and its constructive influence on thefpenance

of 2-SEA by re-creating, remodeling and reforming the megfil
building blocks. Also, we can say that the evolvability ofaling
conversion operator is more beneficial over the EAs perfocaa
after the change of the representation. The use of more than o
coding in EAs is very important and the most fundamental raech
nism resides in the framework of changing the represemtditam
one coding to another which contributes in exploring uncteisd
and unspoiled sub-regions of the search space. Therefetter bt-
ness values can be discovered and EAs can progress towards mo
positive outcomes. The test results have distinctly vetifie util-

ity of BBC and the value of coupling various encodings in an al
ternation strategy where different conversion operatotsract to
increase the probabilities of obtaining advanced and gdoad-s
tures.

As afinal statement, we believe that our test results totalhgplied
with our assertions about the argument “Do not Choose Repres
tation just Change”, and showed that an algorithm whichripco
rates a method of coding mating by the application of the eonv
sion of the representation from one coding to another duttirey
search will easily converge and will be more successful atihing
more optimum solutions using less computational power.

5. FUTURE DIRECTIONS

In our study, we used tweGAs in 2-SEA. An advanced research
can lead to the exploitation of other kinds of EAs to be assipo
each state having in mind that both the notion of states anstttie
conversions are very essential in EAs functioning.

In this paper, BBC is considered. Though, other kinds of icgdi
schemes such as tree or linear representation, and any nwihbe
coding schemes can be applied to EAs in order to profit from the
convenient representation for a particular problem.

A future direction also suggests that other implementatioiithe
SEA can still be improved by decreasing user defined paramete
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Figure 8: Performance comparison of the percentage of cor-
rect solved solutions across the number of iterations requed
to reach the global optimum. These records were averaged ove
100 independent runs for each test function.

and making them automatically adjustable based on measures
tracted from the process.

In a further research, we must understand properly the Ipagjer-
ties of BBC and recognize well its fundamental evolvabiéityked
by the genetic operators so we can propose other types of BBC ¢
version operators to help making the representation manartyc
and more adaptive to the problem structure.
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