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A POSTERIORI ERROR ESTIMATION BASED ON POTENTIAL

AND FLUX RECONSTRUCTION FOR THE HEAT EQUATION∗

ALEXANDRE ERN† AND MARTIN VOHRALÍK‡

Abstract. We derive a posteriori error estimates for the discretization of the heat equation
in a unified and fully discrete setting comprising the discontinuous Galerkin, finite volume, mixed
finite element, and conforming and nonconforming finite element methods in space and the backward
Euler scheme in time. Our estimates are based on a H1-conforming reconstruction of the potential,
continuous and piecewise affine in time, and a locally conservative H(div)-conforming reconstruction
of the flux, piecewise constant in time. They yield a guaranteed and fully computable upper bound
on the error measured in the energy norm augmented by a dual norm of the time derivative. Local-
in-time lower bounds are also derived; for nonconforming methods on time-varying meshes, the lower
bounds require a mild parabolic-type constraint on the meshsize.

Key words. heat equation, unified framework, a posteriori estimate, discontinuous Galerkin,
finite volumes, mixed finite elements, conforming finite elements, nonconforming finite elements

AMS subject classifications. 65N15, 65N30, 76S05

1. Introduction. We consider the heat equation

∂tu− ∆u = f a.e. in Q := Ω × (0, T ), (1.1a)

u = 0 a.e. on ∂Ω × (0, T ), (1.1b)

u(·, 0) = u0 a.e. in Ω, (1.1c)

where Ω ⊂ R
d, d ≥ 2, is a polyhedral domain, T the finite simulation time, f the

source term, and u0 the initial datum. We assume that f ∈ L2(Q) and u0 ∈ L2(Ω).
In the sequel, u is called the potential and −∇u the flux.

The purpose of this work is to derive guaranteed (that is, without undetermined
constants) and fully computable a posteriori error estimates for the discretization
of (1.1a)–(1.1c) by locally conservative methods in space. We consider full discretiza-
tions obtained using a backward Euler scheme in time and allow for time-varying
meshes. The main focus is on nonconforming methods in space, such as discontinuous
Galerkin, cell-centered and face-centered finite volumes, and mixed finite elements.
Our framework also covers conforming, locally conservative methods such as vertex-
centered finite volumes, and under mild modifications, conforming and nonconforming
finite elements.

Following the approach proposed by Verfürth for conforming finite elements [29],
the error is measured in a (broken) energy norm augmented by a dual norm of the
time derivative. This yields error upper bounds that are global in space and in time,
and error lower bounds that are local in time and global in space. The estimators
themselves are local in space and in time and can be used in a space–time adaptive
time-marching algorithm.
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The present estimates are based on defining aH1-conforming reconstruction of the
potential, continuous and piecewise affine in time, and a locally conservative H(div)-
conforming reconstruction of the flux, piecewise constant in time. A salient feature
of this approach is that it allows for a unified setting: the a posteriori error analysis
is performed under two simple conditions on the potential and flux reconstructions
without any specific reference to the underlying discretization scheme in space. Given
a certain scheme, it suffices to verify these two conditions to apply the present anal-
ysis. One condition exploits the local conservativity of the scheme through the flux
reconstruction, while the other links locally the mean values of the potential recon-
struction to those of the discrete solution. The potential reconstruction is not needed
for conforming methods (e.g., vertex-centered finite volumes), while the flux recon-
struction is not needed for flux-conforming methods (e.g., cell-centered finite volumes
and mixed finite elements).

The present parabolic potential and flux reconstructions are inspired from those
derived in the context of a posteriori error estimates for elliptic problems in [12, 13,
30, 31, 32, 33]. The idea to derive parabolic a posteriori error estimates from elliptic
estimates on each time level is rather natural. In fact, the residual-based a posteriori
error estimates for conforming finite elements derived in [29, 7] take this form. We
also mention [21, 20, 11] for the so-called elliptic reconstruction technique allowing
for optimal error estimates in higher order norms for conforming finite elements. An
important conceptual difference is that we reconstruct the (vector-valued) flux and
that this quantity is discrete, is constructed locally by postprocessing, and is directly
used to evaluate the estimator. In [6, 5, 27], various estimators for elliptic problems
are extended to the heat equation in a conforming setting to bound the error mea-
sured in the L2-norm in the space–time cylinder plus a time-weighted energy-norm;
only error upper bounds are considered. Some other results on a posteriori error
estimates for parabolic problems in a conforming setting can also be found in [24]
using the so-called functional approach where a flux reconstruction is also considered,
but without enforcing any local condition; furthermore, only error upper bounds are
derived. Finally, we observe that contrary to conforming finite elements, a posteri-
ori energy-norm error estimates for the heat equation discretized by nonconforming
methods are less explored; we mention, in particular, [10] for mixed finite elements,
[23] for nonconforming finite elements, [17] for discontinuous Galerkin methods, and
[3] for finite volume schemes.

This paper is organized as follows. Section 2 presents the continuous and dis-
crete settings. Section 3 collects the main results, namely the error upper and lower
bounds. A space–time adaptive time-marching algorithm is also briefly outlined. Sec-
tion 4 shows how to apply the present framework to various discretization schemes
in space, namely discontinuous Galerkin, mixed finite elements, and various finite
volume schemes. Sections 5 and 6 are devoted to the proofs of the error upper and
lower bounds, respectively. Finally, Appendix A extends the theory to conforming
and nonconforming finite elements.

2. The setting. This section briefly describes the continuous and discrete set-
tings.

2.1. The continuous setting. Since f ∈ L2(Q) and u0 ∈ L2(Ω), the exact
solution is such that u ∈ X := L2(0, T ;H1

0 (Ω)) with ∂tu ∈ X ′ = L2(0, T,H−1(Ω)).
For a.e. t ∈ (0, T ) and for all v ∈ H1

0 (Ω), there holds

〈∂tu, v〉(t) + (∇u,∇v)(t) = (f, v)(t), (2.1)
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Fig. 2.1. Time-dependent meshes and discrete solutions

where 〈·, ·〉 denotes the duality pairing between H1
0 (Ω) and H−1(Ω) and (·, ·) the

L2(Ω)-inner product with associated norm denoted by ‖·‖. In the sequel, the space
H1

0 (Ω) is equipped with the H1-seminorm, and for a region R ⊂ Ω, ‖·‖R denotes the
L2(R)-norm with appropriate Lebesgue measure.

For y ∈ X, we introduce the space–time energy norm

‖y‖2
X :=

∫ T

0

‖∇y‖2(t) dt. (2.2)

Furthermore, for y ∈ Y := {y ∈ X; ∂ty ∈ X ′}, we also introduce the space–time norm

‖y‖Y := ‖y‖X + ‖∂ty‖X′ , ‖∂ty‖X′ :=

{∫ T

0

‖∂ty‖
2
H−1(t) dt

}1/2

.

Observe that ‖∂ty‖X′ = supϕ∈X;‖ϕ‖X=1

∫ T

0
〈∂ty, ϕ〉(t) dt.

2.2. The discrete setting. This section collects some useful notation concern-
ing the discrete setting.

2.2.1. Time steps and time-varying meshes. We consider a strictly increas-
ing sequence of discrete times {tn}0≤n≤N such that t0 = 0 and tN = T , together with
a set of meshes {T n}0≤n≤N . The discrete times and the meshes are constructed by a
space–time adaptive time-marching algorithm, e.g., that outlined in §3.3 below.

For all 1 ≤ n ≤ N , we define In := [tn−1, tn] and τn := tn − tn−1. For all 0 ≤
n ≤ N , we assume that T n covers exactly the polyhedral domain Ω. For all T ∈ T n,
hT denotes the diameter of T , and we let hn := maxT∈T n hT denote the maximum
meshsize of T n. For simplicity, we also assume that the meshes are simplicial and
matching. Extensions to general polygonal and nonmatching meshes are possible,
but technical; see, e.g., [14] for an example of flux reconstruction on such meshes.
Furthermore, the initial mesh T 0 is used to approximate the initial condition, while
for all 1 ≤ n ≤ N , T n corresponds to the mesh used to march in time from tn−1 to
tn, see Figure 2.1. The meshes can be refined or coarsened as time evolves; precise
assumptions on the meshes are stated in §3 below. Typically, T n is obtained from
T n−1 by refining some elements and coarsening some other ones. For all 1 ≤ n ≤ N ,
we denote by T n−1,n a common refinement of T n−1 and T n.
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Let W be a vector space of functions defined on Ω. Then, P 1
τ (W ) denotes the

vector space of functions defined on Q such that v(·, t) takes values in W and is
continuous and piecewise affine in time. Functions in P 1

τ (W ) are uniquely defined
by the (N + 1) functions {vn := v(·, tn)}0≤n≤N in W . Similarly, P 0

τ (W ) denotes
the vector space of functions defined on Q such that v(·, t) takes values in W and is
piecewise constant in time; for 1 ≤ n ≤ N , we then set vn := v(·, t)|In

. Functions in
P 0

τ (W ) are uniquely defined by the N functions {vn}1≤n≤N in W . Furthermore, we
observe that if v ∈ P 1

τ (W ), then ∂tv ∈ P 0
τ (W ) is such that for all 1 ≤ n ≤ N ,

∂tv
n := ∂tv|In

=
1

τn
(vn − vn−1).

2.2.2. The discrete solution. For all 0 ≤ n ≤ N , the approximate solution at
time tn, say un

hτ , is such that un
hτ ∈ V n

h where V n
h := Vh(T n) is a discrete space built on

the mesh T n. The spaces V n
h consist of piecewise polynomial functions whose degree is

uniformly bounded in n. In the sequel, Πn
0 denotes the L2-orthogonal projection onto

piecewise constant functions on T n, while ΠV n
h

denotes the L2-orthogonal projection
onto V n

h .

We introduce the space–time function uhτ : Q → R which is continuous and
piecewise affine in time and such that for all 1 ≤ n ≤ N and t ∈ In,

uhτ (·, t) := (1 − ̺)un−1
hτ + ̺un

hτ , ̺ =
1

τn
(t− tn−1).

More generally, for any function v : Q → R that is continuous in time, we set vn :=
v(·, tn) : Ω → R for all 0 ≤ n ≤ N .

2.2.3. Broken gradients and broken X-norm. Since we allow for noncon-
forming methods in space, it is convenient to introduce for all 0 ≤ n ≤ N the broken
gradient operator ∇n such that for a function v that is smooth within each mesh
element in T n, ∇nv ∈ [L2(Ω)]d is defined as (∇nv)|T := ∇(v|T ) for all T ∈ T n. The
broken gradient operator ∇n−1,n on the mesh T n−1,n is defined similarly. Because of
possible nonconformities in space approximation, the discrete solution uhτ may not
be in the energy space X. Thus, we extend the definition (2.2) of the X-norm by
setting for all y ∈ X,

‖y − uhτ‖
2
X :=

N∑

n=1

∫

In

‖∇n−1,n(y − uhτ )‖2(t) dt

=

N∑

n=1

∫

In

∑

T∈T n−1,n

‖∇(y − uhτ )‖2
T (t) dt.

Since ‖∂t(y − uhτ )‖X′ is always well-defined, the quantity ‖y − uhτ‖Y is now well-
defined for all y ∈ Y . In the sequel, y is either the exact solution or the potential
reconstruction.

2.2.4. Mesh faces. For all 0 ≤ n ≤ N , the mesh faces in T n are collected into
the set Fn. More specifically, F ∈ Fn if F has positive (d− 1)-dimensional measure
and if either there are distinct mesh elements T± ∈ T n (arbitrary but fixed once and
for all) such that F = ∂T− ∩ ∂T+ (F is then called an interior face and we write
F ∈ F i,n) or if there is a mesh element T ∈ T n such that F = ∂T ∩ ∂Ω (F is then
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called a boundary face and we write F ∈ Fb,n). For T ∈ T n, it is convenient to
introduce the sets

Fn
T := {F ∈ Fn; F ⊂ ∂T}, Fn

T := {F ∈ Fn; F ∩ ∂T 6= ∅},

that is, Fn
T collects the faces of T whereas Fn

T collects the faces having a non-empty

intersection with ∂T . We will also use the set F i,n
T := Fn

T ∩ F i,n which collects the
interior faces of T .

For F ∈ F i,n and a smooth-enough function v that is possibly two-valued on F ,
we define its average and jump at F as

{{v}} :=
1

2
(v− + v+), [[v]] := v− − v+,

where v± = v|T± , and we define nF as the unit normal to F pointing from T− towards
T+. For F ∈ Fb,n, the above definitions are extended by setting {{v}} = [[v]] = v|F ,
while nF coincides with the unit outward normal to Ω. For a subset F ⊂ Fn, we
define the jump seminorms

|[[v]]|± 1
2
,F :=

{
∑

F∈F

h±1
F ‖[[v]]‖2

F

}1/2

,

where hF denotes the diameter of F . Finally, for F ∈ F i,n, we define the jump in the
normal derivative of v as n·[[∇nv]] := nF ·(∇v|T− −∇v|T+).

3. Main results. This section collects the main results of this paper concerning
the error upper and lower bounds. We also outline a space–time adaptive time-
marching algorithm to be used in conjunction with the present estimates.

3.1. Error upper bound. The approximation error u − uhτ will be measured
in the Y -norm, while the error upper bound will be formulated in terms of a potential
reconstruction s and a flux reconstruction θ.

3.1.1. Assumptions on the potential and flux reconstructions. We as-
sume that

s ∈ P 1
τ (H1

0 (Ω)), θ ∈ P 0
τ (H(div,Ω)). (3.1)

The potential reconstruction is determined by the (N+1) functions sn ∈ H1
0 (Ω) asso-

ciated with the discrete times {tn}0≤n≤N , while the flux reconstruction is determined
by the N functions θ

n ∈ H(div,Ω) associated with the time intervals {In}1≤n≤N .
The potential and flux reconstructions must satisfy two important assumptions.

Firstly, the mean values on mesh elements of the potential reconstruction s are related
to those of the discrete solution uhτ . Specifically, we assume that for all 0 ≤ n ≤ N ,

(sn, 1)T ′ = (un
hτ , 1)T ′ , ∀T ′ ∈ T n,n+1, (3.2)

with the convention that T N,N+1 := T N . An important consequence of (3.2) is the
following

Lemma 3.1 (Mean values of time derivatives). For all 1 ≤ n ≤ N , there holds

(∂ts
n, 1)T = (∂tu

n
hτ , 1)T , ∀T ∈ T n. (3.3)
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Proof. Observe first that by definition, for all 1 ≤ n ≤ N ,

∂t(s− uhτ )n =
1

τn
[(sn − un

hτ ) − (sn−1 − un−1
hτ )].

Furthermore, by construction, sn and un
hτ have the same mean values on all the

elements of T n and of T n+1. Similarly, sn−1 and un−1
hτ have the same mean values on

all the elements of T n−1 and of T n. Hence, (sn − sn−1) and (un
hτ − un−1

hτ ) have the
same mean values on all the elements of T n, yielding (3.3).

Secondly, the flux reconstruction θ must satisfy the following local conservation
property: For all 1 ≤ n ≤ N ,

(f̃n − ∂tu
n
hτ −∇·θn, 1)T = 0, ∀T ∈ T n. (3.4)

Here, we have set f̃n := 1
τn

∫
In
f(·, t) dt (it is also possible to take f̃n := fn if f ∈

C0(0, T ;L2(Ω))). We define accordingly f̃ ∈ P 0
τ (L2(Ω)) such that f̃ |In

:= f̃n for
all 1 ≤ n ≤ N . The actual design of the flux reconstruction θ exploits the local
conservation properties of the numerical scheme in space; examples are given in §4
below.

3.1.2. The error estimators. For all 1 ≤ n ≤ N and T ∈ T n, we define the
residual estimator and the diffusive flux estimator respectively as

ηn
R,T := CPhT ‖f̃

n − ∂ts
n −∇·θn‖T , (3.5)

ηn
DF,T (t) := ‖∇s(t) + θ

n‖T , t ∈ In, (3.6)

where CP := 1
π . Observe that only the quantity ηn

DF,T is time-dependent. Further-
more, still for all 1 ≤ n ≤ N , we define the following nonconformity estimators: For
all T ∈ T n,

ηn
NC1,T (t) := ‖∇n−1,n(s− uhτ )(t)‖T , t ∈ In, (3.7)

ηn
NC2,T := CPhT ‖∂t(s− uhτ )n‖T . (3.8)

Observe that only the quantity ηn
NC1,T is time-dependent. We also observe that the

four above estimators are local in space and in time. Finally, we define the initial
condition estimator as

ηIC := 21/2‖s0 − u0‖. (3.9)

3.1.3. Guaranteed and fully computable upper bound. We are now in a
position to state our main result concerning the error upper bound.

Theorem 3.2 (Error upper bound). Assume (3.1), (3.2), and (3.4). Let ηn
R,T ,

ηn
DF,T , ηn

NC1,T , ηn
NC2,T , and ηIC be defined by (3.5)–(3.9). Then,

‖u− uhτ‖Y ≤ 3

{
N∑

n=1

∫

In

∑

T∈T n

(ηn
R,T + ηn

DF,T (t))2 dt

}1/2

+ ηIC + 3‖f − f̃‖X′

+

{
N∑

n=1

∫

In

∑

T∈T n

(ηn
NC1,T )2(t) dt

}1/2

+

{
N∑

n=1

τn
∑

T∈T n

(ηn
NC2,T )2

}1/2

.
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Remark 3.3 (Conforming methods). For conforming methods, un
hτ ∈ H1

0 (Ω),
and we put sn := un

hτ . Hence, the nonconformity estimators ηn
NC1,T and ηn

NC2,T

vanish.
Remark 3.4 (Flux-conforming methods). The cell-centered finite volume method

of §4.2 below, as well as the lowest-order mixed finite element method of §4.3 below,
are flux-conforming methods that directly produce un

hτ such that −∇nun
hτ =: θ

n ∈
H(div,Ω) for all 1 ≤ n ≤ N . Consequently, we can drop in such a case the flux
reconstruction θ

n and only work with un
hτ .

Remark 3.5 (Time oscillation of the source term). The quantity ‖f − f̃‖X′ can
be viewed as an error estimator related to the time-oscillation of the source term.

It is convenient to state a slightly less sharp error estimate by separating the
residual and diffusive flux contributions. To shorten the notation, we also introduce
the local-in-time and global-in-space version of the four above estimators. We define
for all 1 ≤ n ≤ N ,

(ηn
R)2 := 2τn

∑

T∈T n

(ηn
R,T )2 = 2τn

∑

T∈T n

C2
Ph

2
T ‖f̃

n − ∂ts
n −∇·θn‖2

T , (3.10)

(ηn
DF)2 := 2

∫

In

∑

T∈T n

(ηn
DF,T (t))2 dt = 2

∫

In

∑

T∈T n

‖∇s(t) + θ
n‖2

T dt. (3.11)

Moreover, let

(ηn
NC,1)

2 :=

∫

In

∑

T∈T n

(ηn
NC1,T (t))2 dt =

∫

In

∑

T∈T n

‖∇n−1,n(s− uhτ )(t)‖2
T dt, (3.12)

(ηn
NC,2)

2 := τn
∑

T∈T n

(ηn
NC2,T )2 = τn

∑

T∈T n

C2
Ph

2
T ‖∂t(s− uhτ )n‖2

T . (3.13)

A straightforward consequence of Theorem 3.2 is the following
Corollary 3.6 (Simplified upper bound). Under the assumptions of Theo-

rem 3.2, there holds

‖u− uhτ‖Y ≤ 3

{
N∑

n=1

(ηn
R)2 + (ηn

DF)2

}1/2

+

{
N∑

n=1

(ηn
NC,1)

2

}1/2

+

{
N∑

n=1

(ηn
NC,2)

2

}1/2

+ ηIC + 3‖f − f̃‖X′ .

Remark 3.7 (Spatial and temporal estimators). The diffusive flux estimator ηn
DF

can be further separated into a time and a space contribution. Namely, the triangle
inequality yields (ηn

DF)2 ≤ (ηn
DF,1)

2 + (ηn
DF,2)

2, where

(ηn
DF,1)

2 := 4

∫

In

∑

T∈T n

‖∇s(t) −∇sn‖2
T dt =

4

3
τn

∑

T∈T n

‖∇(sn − sn−1)‖2
T ,

(ηn
DF,2)

2 := 4τn
∑

T∈T n

‖∇sn + θ
n‖2

T ,

where we have used the fact that s is piecewise affine in time to simplify the expression
for ηn

DF,1. Then, in an adaptive time-marching algorithm, ηn
DF,1 can be used as a time

error estimator, while ηn
DF,2, together with ηn

R, ηn
NC,1, and ηn

NC,2 can be used as space
error estimators. Furthermore, since s−uhτ is piecewise affine in time, the evaluation
of ηn

NC,1 can be simplified into a sum involving the quantities ‖∇m(sm − um
hτ )‖ for

m ∈ {n− 1, n}; see Lemma 6.1 below.
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3.2. Error lower bound. The goal of this section is to derive local-in-time
upper bounds on the error estimators appearing in Corollary 3.6 in terms of the error
u − uhτ , the data, and possibly some jump seminorms of the discrete solution uhτ .
These bounds are derived for a specific choice of the potential reconstruction s based
on a modified Oswald interpolate and a specific approximation property for the flux
reconstruction θ.

3.2.1. Assumptions on the space–time meshes. We assume that
(M1) Shape regularity: the meshes {T n}0≤n≤N are shape regular uniformly in n.
(M2) Transition condition: for all 1 ≤ n ≤ N , the commonly refined meshes T n−1,n

are also shape regular uniformly in n and such that

Ξ := sup
1≤n≤N

sup
T∈T n−1∪T n

sup
T ′∈T n−1,n;T ′⊂T

hT

hT ′

< +∞. (3.14)

(M3) For all 1 ≤ n ≤ N , (hn)2 ≤ Υτn.
In practice, all the meshes {T n}0≤n≤N are refinements of a base simplicial mesh

T ∗ and their shape regularity parameter is bounded by that of T ∗. Moreover, for two
(open) elements T ∈ T n and T ′ ∈ T m, either T ∩ T ′ = ∅, or T ⊂ T ′, or T ′ ⊂ T . For
instance, the newest vertex bisection procedure [25, 22, 26] maintains these properties.

Remark 3.8 (Transition condition). The transition condition (3.14) on the
meshes is classical in the context of a posteriori error analysis with time-varying
meshes and means that meshes cannot be refined or coarsened too quickly; more specif-
ically, T ∈ T n−1 in the second supremum restricts the refinement, while T ∈ T n

restricts the coarsening.
Henceforth, C denotes a generic constant whose value can change at each occur-

rence, and which can depend on the regularity of the meshes, the transition constant
Ξ in (3.14), the constant Υ in (M3), and the maximum polynomial degree used to
build the approximation spaces V n

h , but is independent of the size of the meshes and
of the time steps. The inequality A ≤ CB is often abbreviated as A . B.

3.2.2. Design of the potential reconstruction. Let 0 ≤ n ≤ N . The Os-
wald interpolation operator In

Os on the mesh T n is classically constructed as the
H1-conforming Lagrange interpolate by prescribing at interpolation nodes averaged
values of the piecewise discontinuous function to interpolate; see [18] for the h-analysis
and [9] for the hp-analysis. Observing that for all 0 ≤ n ≤ N , In

Os(u
n
hτ ) ∈ H1

0 (Ω), we
set

sn := In
Os(u

n
hτ ) +

∑

T ′∈T n,n+1

αn
T ′bT ′ , (3.15)

where for all T ′ ∈ T n,n+1, bT ′ denotes the standard (time-independent) bubble func-
tion supported on T ′, defined as the product of the barycentric coordinates of T ′,
and scaled so that its maximal value is 1. Moreover, for all 0 ≤ n ≤ N and for all
T ′ ∈ T n,n+1, we set

αn
T ′ :=

1

(bT ′ , 1)T ′

(un
hτ − In

Os(u
n
hτ ), 1)T ′ . (3.16)

This important choice guarantees that (3.2) holds.

3.2.3. Approximation property of the flux reconstruction. We assume
that for all 1 ≤ n ≤ N and for all T ∈ T n,

‖∇un
hτ + θ

n‖T . |n·[[∇nun
hτ ]]|+ 1

2
,F i,n

T

+ |[[un
hτ ]]|− 1

2
,Fn

T
. (3.17)
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3.2.4. Optimally efficient lower bound. For all 1 ≤ n ≤ N , we introduce
the following jump semi-norm (local-in-time and global-in-space)

J n(uhτ )2 := 1
2τ

n

(
∑

T∈T n−1

|[[un−1
hτ ]]|2

− 1
2
,Fn−1

T

+
∑

T∈T n

|[[un
hτ ]]|2− 1

2
,Fn

T

)
. (3.18)

We also localize in time the X- and Y -norms as follows:

‖y‖2
X(In) :=

∫

In

‖∇n−1,ny‖2(t) dt, ‖y‖Y (In) := ‖y‖X(In) + ‖∂ty‖X′(In),

with ‖z‖2
X′(In) :=

∫
In

‖z‖2
H−1(t) dt. Finally, we define for all 1 ≤ n ≤ N the space–

time data oscillation term

(En
f )2 := ‖f − f̃‖2

X′(In) + τn
∑

T∈T n

h2
T ‖f̃

n − ΠV n
h
f̃n‖2

T . (3.19)

Theorem 3.9 (Error lower bound). Assume that the meshes satisfy (M1)–(M3),
that the potential reconstruction s is defined by (3.15)–(3.16), and that the flux recon-
struction θ satisfies (3.17). Let 1 ≤ n ≤ N . Let En

f be defined by (3.19) and let the
jump seminorm J n(uhτ ) be defined by (3.18). Finally, let ηn

R, ηn
DF, ηn

NC,1, and ηn
NC,2

be defined by (3.10)–(3.13). Then,

ηn
R + ηn

DF + ηn
NC,1 + ηn

NC,2 . ‖u− uhτ‖Y (In) + J n(uhτ ) + En
f . (3.20)

Remark 3.10 (Bound on the jumps). Further handling of the jump seminorm
J n(uhτ ) depends on the numerical scheme. For conforming methods, this jump actu-
ally vanishes. Furthermore, the jump seminorm is bounded by the energy error if the
jumps have zero mean on each face of the meshes [1, Theorem 10]; this is the case
for mixed finite elements, face-centered finite volumes, and nonconforming finite ele-
ments. Finally, for discontinuous Galerkin methods and cell-centered finite volumes,
one way to proceed is to add the jump seminorm to the error measure in order to have
the same error measure in the upper and lower bounds. Alternatively, one may expect
to bound the jump seminorm by the energy error, as done in [2] in the elliptic case.

Remark 3.11 (Condition (M3)). Condition (M3) is only needed for noncon-
forming methods. For such methods on fixed meshes, the condition can still be avoided

provided an additional jump seminorm
{
τn
∑

T∈T n |[[∂tu
n
hτ ]]|2

+ 1
2
,Fn

T

}1/2

is added to the

right-hand side of (3.20).

3.3. A space–time adaptive time-marching algorithm. To briefly outline
a space–time adaptive time-marching procedure to be used in conjunction with the
above analysis, let Sol(IC, TS, Mesh) denote the discrete solution produced by the
numerical scheme starting from an initial condition IC over a single time step TS and
using a mesh Mesh. The initial condition need not be defined on the mesh Mesh; the
way this is handled depends on the numerical scheme.

1. Initialization
(a) choose an initial mesh T 0 with corresponding space V 0

h := V (T 0) and an
initial approximation u0

hτ ∈ V 0
h such that the initial condition estimator

ηIC is below a prescribed tolerance;
(b) select an initial time step τ0;

9



2. Loop in time: While
∑

i τ
i < T ,

(a) set T n∗ := T n−1 with corresponding space V n∗
h and set τn∗ := τn−1;

(b) solve un∗
hτ := Sol(un−1

hτ , τn∗, T n∗);
(c) estimate error using the upper bound of Theorem 3.2 at the current

discrete time, possibly modify T n∗ and τn∗ and return to step (2b);
(d) when the error estimate is below a prescribed tolerance, save approxi-

mate solution, mesh, and time step as un
hτ , T n, and τn.

Remark 3.12 (Time-marching evaluation of s). When evaluating the error at
the current discrete time tn, the mesh T n+1 is not known yet. However, it suffices
to adjust the mean values of sn only at the elements of the current mesh T n (putting
temporarily T n+1 := T n). Then, at the next time step tn+1, if the mesh is refined, ad-
ditional bubble functions need to be added to sn, as prescribed by (3.15)–(3.16), before
evaluating the error at tn+1. It is also possible to prescribe (3.2) for all T ′ ∈ T n−1,n;
then the time-marching evaluation of s is straightforward, but the error estimates have
to be slightly modified.

4. Applications. We apply in this section the preceding results to different
space discretization schemes. For the upper bound of Theorem 3.2, this is done by
specifying the reconstructed flux θ and checking that the conservation property (3.4)
holds true. For the lower bound of Theorem 3.9, we need to check the approximation
property (3.17). The reconstructed potential s in nonconforming methods is always
given by (3.15)–(3.16). In conforming methods, where un

hτ ∈ H1
0 (Ω) for all 0 ≤ n ≤ N ,

we put sn := un
hτ , so that (3.2) immediately holds true.

The reconstructed flux θ
n on all time levels 1 ≤ n ≤ N will belong to the Raviart–

Thomas–Nédélec (RTN) spaces of vector functions on the mesh T n,

RTNl(T
n) :=

{
vh ∈ H(div,Ω) ;vh|T ∈ RTNl(T ) ∀T ∈ T n

}
,

where RTNl(T ) := P
d
l (T ) + xPl(T ), l ≥ 0. In particular, vh ∈ RTNl(T

n) is such
that ∇·vh ∈ Pl(T ) for all T ∈ T n, vh·nF ∈ Pl(F ) for all F ∈ Fn

T and all T ∈ T n,
and such that its normal trace is continuous, cf. [8]. In certain cases, a submesh of
T n will be used instead. We use the notation Pk(T ) for the vector space spanned by
polynomials of total degree ≤ k on T and Pk(T n) for the vector space spanned by
discontinuous piecewise polynomials of total degree ≤ k on T n.

4.1. Discontinuous Galerkin. The discontinuous Galerkin method for the dis-
cretization of (1.1a)–(1.1c) on the time interval In, 1 ≤ n ≤ N , and the corresponding
mesh T n reads: Find un

hτ ∈ V n
h := Pk(T n), k ≥ 1, such that

(∂tu
n
hτ , vh) −

∑

F∈Fn

{(nF ·{{∇
nun

hτ}}, [[vh]])F + θ(nF ·{{∇
nvh}}, [[u

n
hτ ]])F }

+ (∇nun
hτ ,∇

nvh) +
∑

F∈Fn

(αFh
−1
F [[un

hτ ]], [[vh]])F = (f̃n, vh) ∀vh ∈ V n
h .

(4.1)

Here θ ∈ {−1, 0, 1} and αF are positive parameters. Following [12, 19], we use the
following definition of θ

n ∈ RTNl(T
n), l ∈ {k − 1, k}: For all T ∈ T n, all F ∈ Fn

T ,
and all qh ∈ Pl(F ),

(θn·nF , qh)F =
(
−nF ·{{∇

nun
hτ}} + αFh

−1
F [[un

hτ ]], qh
)
F
, (4.2)

and for all rh ∈ P
d
l−1(T ),

(θn, rh)T = −(∇nun
hτ , rh)T + θ

∑

F∈Fn
T

ωF (nF ·rh, [[u
n
hτ ]])F , (4.3)
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where ωF := 1
2 for F ∈ F i,n and ωF := 1 for F ∈ Fb,n. Taking vh ∈ P0(T

n) in (4.1),
yields (3.4) as in [12, Theorem 3.1]. Finally, the approximation property (3.17) can
be proven from (4.2)–(4.3) as in [13].

Remark 4.1 (Residual estimator). A consequence of (4.1) and (4.2)–(4.3) is
that, for l = k, there holds

∂tu
n
hτ + ∇·θn = ΠV n

h
f̃n. (4.4)

Thus, the residual estimator ηn
R is in this case the sum of a superconvergent estimator

plus the nonconformity estimator associated with ∂t(s− uhτ ).

4.2. Cell-centered finite volumes. A general cell-centered finite volume met-
hod for the discretization of (1.1a)–(1.1c) on the time interval In, 1 ≤ n ≤ N , and
the corresponding mesh T n reads: Find ūn

hτ ∈ V̄ n
h := P0(T

n) such that

1

τn
(ūn

hτ − un−1
hτ , 1)T +

∑

F∈Fn
T

Sn
T,F = (f̃n, 1)T ∀T ∈ T n. (4.5)

Here Sn
T,F are the diffusive fluxes through the faces F of an element T . For our

a posteriori error estimates we do not need the specific form of Sn
T,F , as long as

the conservation property Sn
T−,F = −Sn

T+,F holds for all F = ∂T− ∩ ∂T+ ∈ F i,n.

A simple example is the so-called “two-point” scheme, see [16], which requires the
“orthogonality condition” of the mesh. Finally, un−1

hτ , n ≥ 2, is constructed from ūn−1
hτ

and the fluxes Sn−1
T,F as specified below. The function un−1

hτ is needed only when the

two meshes T n−1 and T n are different; we can replace it by ūn−1
hτ otherwise. We use

un−1
hτ instead of ūn−1

hτ for two reasons. Firstly, under the form (4.5), the scheme enters
exactly the present framework; a minor modification would be necessary otherwise.
Secondly, since un−1

hτ is a kind of regularization of the piecewise constant function
ūn−1

hτ , we find that it is better suited for being evaluated on the different mesh T n.
Following [32], we define θ

n ∈ RTN0(T
n) by (θn·n, 1)F := Sn

T,F for all T ∈ T n

and all F ∈ Fn
T , 1 ≤ n ≤ N . Next, we define un

hτ ∈ V n
h := P1,2(T

n), where P1,2(T
n)

is the space P1(T
n) enriched elementwise by the parabolas

∑d
i=1 x

2
i , such that for all

T ∈ T n,

−∇un
hτ = θ

n, (un
hτ , 1)T = (ūn

hτ , 1)T . (4.6)

Then, (4.5) immediately yields (3.4) using the Green theorem. By construction,
∇un

hτ + θ
n = 0, whence (3.17) is trivial.

4.3. Mixed finite elements. The mixed finite element method for the dis-
cretization of (1.1a)–(1.1c) on the time interval In, 1 ≤ n ≤ N , and the corresponding
mesh T n reads: Find σ

n
hτ ∈ Wn

h and ūn
hτ ∈ V̄ n

h such that

(σn
hτ ,wh) − (ūn

hτ ,∇·wh) = 0 ∀wh ∈ Wn
h , (4.7a)

(∇·σn
hτ , vh) +

1

τn
(ūn

hτ − un−1
hτ , vh) = (f̃n, vh) ∀vh ∈ V̄ n

h . (4.7b)

The couple Wn
h × V̄ n

h can be any of the usual mixed finite element spaces, cf. [8]. In
particular, in the RTN method, Wn

h = RTNl(T
n) and V̄ n

h = Pl(T
n), l ≥ 0. As for

the cell-centered finite volume method, ūn
hτ is postprocessed. Following [4, 33], we

define un
hτ ∈ V n

h such that

ΠWn
h
(−∇nun

hτ ) = σ
n
hτ , ΠV̄ n

h
(un

hτ ) = ūn
hτ , (4.8)
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T n

Dn

D

Sn
D

Fig. 4.1. Simplicial mesh T n and the associated vertex-centered dual mesh Dn (left) and the
fine simplicial mesh Sn

D
of D ∈ Dn (right)

where ΠWn
h

and ΠV̄ n
h

are respectively the L2-orthogonal projections onto Wn
h and

V̄ n
h . Equation (4.8) thus represents a higher-order polynomial equivalent of (4.6).

The spaces V n
h are typically Pl+1(T

n) enriched by bubbles in the RTN case and are
specified in [4]. As in the previous section, un−1

hτ in (4.7b) can be replaced by ūn−1
hτ

whenever the two meshes T n−1 and T n coincide.

In order to use our a posteriori error estimates, we put θ
n := σ

n
hτ . Taking

vh ∈ P0(T
n) in (4.7b) and considering (4.8) yields (3.4). One does no longer have

∇nun
hτ + θ

n = 0 except for the lowest-order case, see [33], but owing to (4.8), this
quantity is expected to be negligible and act as a numerical quadrature.

Remark 4.2 (Residual estimator). Similarly to the relation (4.4) for discontin-

uous Galerkin methods, there holds for mixed finite elements ∂tū
n
hτ +∇·θn = ΠV̄ n

h
f̃n

when T n−1 = T n.

4.4. Vertex-centered finite volumes. The vertex-centered finite volume met-
hod for the discretization of (1.1a)–(1.1c) on the time interval In, 1 ≤ n ≤ N , and
the corresponding mesh T n reads: Find un

hτ ∈ V n
h := P1(T

n) ∩H1
0 (Ω) such that

(∂tu
n
hτ , 1)D − (∇un

hτ ·nD, 1)∂D = (f̃n, 1)D ∀D ∈ Di,n. (4.9)

Here Dn is the dual mesh around vertices created using face and element barycenters
as indicated in the left part of Figure 4.1; Di,n corresponds to the interior vertices, Db,n

to the boundary ones, and nD denotes the outward unit normal to D. We define θ
n ∈

RTN0(S
n), where Sn is the fine simplicial submesh of both T n and Dn as indicated

in the right part of Figure 4.1. We set θ
n·nF |F := −∇un

hτ ·nF |F on all faces F of Sn

included in ∂D for some D ∈ Di,n. Note that (3.4) on all D ∈ Di,n is then a direct
consequence of (4.9). There are two possibilities to define θ

n·nF |F on the remaining
faces of Sn (that is, those faces located inside some D ∈ Dn and those located on the
boundary ∂Ω). Firstly, one can directly prescribe θ

n·nF |F := −{{∇un
hτ ·nF }} on all

the remaining faces F of Sn; the present a posteriori error estimates can then be used
on the dual meshes Dn, but not on the original simplicial ones T n. Alternatively,
following [31], one can solve local mixed finite element problems on the simplicial
submesh Sn

D of D. On D ∈ Di,n, a Neumann boundary condition given by −∇un
hτ ·nD

is prescribed on ∂D. On D ∈ Db,n, zero Dirichlet boundary conditions on ∂D ∩ ∂Ω
are supplemented. The right hand-side is given by f̃n − ∂tu

n
hτ . This leads to a local

linear system solution on all D ∈ Dn. The key advantage is that solving these local
linear systems to reconstruct the flux more accurately ensures that (3.4) is satisfied

12



T n

Dn

Fig. 4.2. Simplicial mesh T n and the associated face-centered dual mesh Dn

on all T ∈ T n; see [31] for the details and further alternatives. Finally, (3.17) can be
shown using the techniques of [31].

4.5. Face-centered finite volumes. The face-centered finite volume method
for the discretization of (1.1a)–(1.1c) on the time interval In, 1 ≤ n ≤ N , and the
corresponding mesh T n reads: Find un

hτ ∈ V n
h such that

(∂tu
n
hτ , 1)D − (∇nun

hτ ·nD, 1)∂D = (f̃n, 1)D ∀D ∈ Di,n. (4.10)

Here V n
h is the Crouzeix–Raviart space of piecewise linear polynomials such that the

face jumps are orthogonal to constants, and Dn is the dual mesh around faces created
using vertices and element barycenters as indicated in Figure 4.2; Di,n corresponds to
the interior faces and Db,n to the boundary ones. We define Sn

D for all D ∈ Di,n as
the union of the two simplices sharing the associated face; Sn

D := {D} for D ∈ Db,n.
We again look for θ

n ∈ RTN0(S
n). We set θ

n·nF |F := −∇nun
hτ ·nF |F on all faces F

of the dual mesh Dn. As in the previous section, we then have several ways to define
the remaining fluxes, and we easily get (3.4) using the Green theorem from (4.10).
Finally, (3.17) can be shown using the techniques of [31].

5. Proof of the error upper bound. The goal of this section is to prove
Theorem 3.2. The proof is decomposed into several steps.

5.1. Abstract ‖·‖Y -norm error estimate. We begin with an abstract ‖·‖Y -
norm error estimate that can be formulated in a rather general setting for the potential
and flux reconstructions. In particular, assumptions (3.1), (3.2), and (3.4) are not yet
required.

Let s ∈ X ∩H1(0, T ;L2(Ω)), so that ∂ts ∈ L2(0, T ;L2(Ω)) and hence s ∈ Y . Let
θ ∈ L2(0, T ;H(div,Ω)). We define the residual R(s,θ) ∈ X ′ such that for all ϕ ∈ X,

〈R(s,θ), ϕ〉X′,X :=

∫ T

0

{(f − ∂ts−∇·θ, ϕ)(t) − (∇s+ θ,∇ϕ)(t)}dt. (5.1)

At this stage, the contribution of θ can be eliminated since (∇·θ, ϕ) + (θ,∇ϕ) = 0
owing to the Green theorem; however, the two contributions composing R(s,θ) will
be treated separately.

Lemma 5.1 (Abstract ‖·‖Y -norm error estimate). Let s ∈ X ∩H1(0, T ;L2(Ω)).
Let θ ∈ L2(0, T ;H(div,Ω)). Then,

‖u− uhτ‖Y ≤ ‖s− uhτ‖Y + 3‖R(s,θ)‖X′ + 21/2‖s0 − u0‖. (5.2)
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Proof. We first bound ‖u − s‖Y . Since v := u − s is in Y , there holds (see, e.g.,
[15, Theorem 5.9.3])

1
2‖u− s‖2(T ) = 1

2‖u
0 − s0‖2 +

∫ T

0

〈∂t(u− s), u− s〉(t) dt.

As a result,

‖u− s‖2
X ≤ 1

2‖u− s‖2(T ) + ‖u− s‖2
X

= 1
2‖u

0 − s0‖2 +

∫ T

0

{〈∂t(u− s), u− s〉 + (∇(u− s),∇(u− s))}(t) dt

= 1
2‖u

0 − s0‖2 +

∫ T

0

{(f − ∂ts, u− s) − (∇s,∇(u− s))}(t) dt,

where we have used (2.1). Adding and subtracting (θ,∇(u− s)) in the integrand for
a.e. t ∈ (0, T ), using the Green theorem and the definition (5.1) of R(s,θ) yields

‖u− s‖2
X ≤ ‖R(s,θ)‖X′‖u− s‖X + 1

2‖s
0 − u0‖2.

Since x2 ≤ ax+ b2 implies x ≤ a+ b, it is inferred that

‖u− s‖X ≤ ‖R(s,θ)‖X′ + 2−1/2‖s0 − u0‖.

Let now ϕ ∈ X with ‖ϕ‖X = 1 and observe that

〈∂t(u− s), ϕ〉X′,X =

∫ T

0

{(f − ∂ts−∇·θ, ϕ) − (∇s+ θ,∇ϕ) − (∇(u− s),∇ϕ)}(t) dt,

whence

‖∂t(u− s)‖X′ ≤ ‖R(s,θ)‖X′ + ‖u− s‖X ,

so that ‖u − s‖Y ≤ 3‖R(s,θ)‖X′ + 21/2‖s0 − u0‖. The triangle inequality concludes
the proof.

5.2. Computable upper bound on ‖R(s,θ)‖X′ . The dual norm ‖R(s,θ)‖X′

in the abstract error estimate (5.2) is not easily computable. We are now going to
infer a computable upper bound for this quantity by making use of assumptions (3.1),
(3.2), and (3.4).

Lemma 5.2 (Computable upper bound on ‖R(s,θ)‖X′). Assume (3.1), (3.2),
and (3.4). Let ηn

R,T and ηn
DF,T be defined by (3.5)–(3.6). Then,

‖R(s,θ)‖X′ ≤

{
N∑

n=1

∫

In

∑

T∈T n

(ηn
R,T + ηn

DF,T (t))2 dt

}1/2

+ ‖f − f̃‖X′ .

Proof. Let ϕ ∈ X with ‖ϕ‖X = 1. Then,

〈R(s,θ), ϕ〉X′,X =

∫ T

0

{(f − f̃ , ϕ) + (f̃ − ∂ts−∇·θ, ϕ) − (∇s+ θ,∇ϕ)}(t) dt

:= T1 + T2 + T3.
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Clearly, |T1| ≤ ‖f − f̃‖X′‖ϕ‖X = ‖f − f̃‖X′ . Moreover, owing to (3.1), there holds
s ∈ P 1

τ (H1
0 (Ω)) and θ ∈ P 0

τ (H(div,Ω)), so that

T2 =

N∑

n=1

∫

In

(f̃n − ∂ts
n −∇·θn, ϕ(t)) dt.

For all 1 ≤ n ≤ N , owing to (3.3) and (3.4),

(f̃n − ∂ts
n −∇·θn, 1)T = 0, ∀T ∈ T n.

Hence, for a.e. t ∈ In,

(f̃n − ∂ts
n −∇·θn, ϕ(t)) = (f̃n − ∂ts

n −∇·θn, ϕ(t) − Πn
0ϕ(t))

≤
∑

T∈T n

CPhT ‖f̃
n − ∂ts

n −∇·θn‖T ‖∇ϕ‖T (t),

where we have used the Poincaré inequality on each T ∈ T n stating that ‖ϕ−Πn
0ϕ‖T ≤

CPhT ‖∇ϕ‖T . Moreover,

T3 ≤
N∑

n=1

∫

In

∑

T∈T n

‖∇s(t) + θ
n‖T ‖∇ϕ‖T (t) dt.

Collecting the above estimates yields using Cauchy–Schwarz inequalities

|T2 + T3| ≤

{
N∑

n=1

∫

In

∑

T∈T n

(ηn
R,T + ηn

DF,T (t))2 dt

}1/2

.

The conclusion is now straightforward.

5.3. Computable upper bound on ‖s− uhτ‖Y . The next step is to derive a
computable upper bound on ‖s−uhτ‖Y since this quantity also involves a dual norm.

Lemma 5.3 (Computable upper bound on ‖s−uhτ‖Y ). Assume (3.2). Let ηn
NC1,T

and ηn
NC2,T be defined by (3.7)–(3.8). Then,

‖s− uhτ‖Y ≤

{
N∑

n=1

∫

In

∑

T∈T n

(ηn
NC1,T )2(t) dt

}1/2

+

{
N∑

n=1

τn
∑

T∈T n

(ηn
NC2,T )2

}1/2

.

Proof. It is clear that

‖s− uhτ‖X =

{
N∑

n=1

∫

In

∑

T∈T n

(ηn
NC1,T )2(t) dt

}1/2

.

Let now ϕ ∈ X with ‖ϕ‖X = 1. Observe that since both s and uhτ are piecewise
affine and continuous in time,

〈∂t(s− uhτ ), ϕ〉X′,X =

N∑

n=1

∫

In

(∂t(s− uhτ )n, ϕ(t)) dt.
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For all 1 ≤ n ≤ N , it is inferred from (3.3) that the quantity ∂t(s − uhτ )n has zero
mean on each element T ∈ T n. Hence, using the Poincaré inequality yields

〈∂t(s− uhτ ), ϕ〉X′,X =
N∑

n=1

∫

In

(∂t(s− uhτ )n, ϕ(t) − Πn
0ϕ(t)) dt

≤
N∑

n=1

∫

In

∑

T∈T n

ηn
NC2,T ‖∇ϕ‖T (t) dt,

whence the desired estimate is inferred using the Cauchy–Schwarz inequality.

5.4. Proof of Theorem 3.2. We observe that using the definition (3.9) for ηIC,
Lemma 5.1 yields ‖u − uhτ‖Y ≤ ‖s − uhτ‖Y + 3‖R(s,θ)‖X′ + ηIC, and we use the
bounds on ‖R(s,θ)‖X′ and ‖s− uhτ‖Y derived, respectively, in Lemmas 5.2 and 5.3
to conclude.

6. Proof of the error lower bound. The goal of this section is to prove
Theorem 3.9. The proof is decomposed into several steps. Since the error lower
bound is local in time, we keep the integer 1 ≤ n ≤ N fixed in this section.

6.1. Equivalent expression for ηn
NC,1. It is convenient to simplify the expres-

sion for ηn
NC,1.

Lemma 6.1 (Equivalent expression for ηn
NC,1). Letting v := s− uhτ , there holds

τn 1
6 (‖∇n−1vn−1‖2 + ‖∇nvn‖2) ≤ (ηn

NC,1)
2 ≤ τn 1

2 (‖∇n−1vn−1‖2 + ‖∇nvn‖2).

Proof. Let T ∈ T n−1,n. Since v is piecewise affine in time and smooth in T , it is
inferred that

∫

In

‖∇v‖2
T (t) dt = τn

∫ 1

0

‖∇vn−1 + τ∇(vn − vn−1)‖2
T dτ

= τn 1
3 (‖∇vn−1‖2

T + ‖∇vn‖2
T + (∇vn−1,∇vn)T ).

Hence,

τn 1
6 (‖∇vn−1‖2

T + ‖∇vn‖2
T ) ≤

∫

In

‖∇v‖2
T (t) dt ≤ τn 1

2 (‖∇vn−1‖2
T + ‖∇vn‖2

T ).

Summing over T ∈ T n−1,n yields the conclusion.

6.2. Bounds on ηn
R and ηn

DF. We introduce the following quantities

(En
R)2 := τn

∑

T∈T n

h2
T ‖ΠV n

h
f̃n − ∂tu

n
hτ + ∆un

hτ‖
2
T , (6.1)

(En
DF)2 := τn

∑

T∈T n

|n·[[∇nun
hτ ]]|2

+ 1
2
,F i,n

T

, (6.2)

and observe that En
R and En

DF take the form of usual residual-based a posteriori error
estimators for the heat equation. We also recall that the quantity En

f defined by (3.19).
Finally, we define the following jump seminorm

J n
∗ (uhτ )2 := τn

∑

T∈T n

|[[un
hτ ]]|2− 1

2
,Fn

T

. (6.3)
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Lemma 6.2 (Bounds on ηn
R and ηn

DF). Assume (M1) and the approximation
property (3.17) for the flux reconstruction θ. Then,

ηn
R . En

R + En
DF + En

f + ηn
NC,2 + J n

∗ (uhτ ), (6.4)

ηn
DF . ‖u− uhτ‖Y (In) + En

R + En
DF + En

f + ηn
NC,1 + ηn

NC,2 + J n
∗ (uhτ ). (6.5)

Proof. (i) Bound on ηn
R. Observe that

f̃n − ∂ts
n −∇·θn = (f̃n − ΠV n

h
f̃n) − (∂ts

n − ∂tu
n
hτ )

+ (ΠV n
h
f̃n − ∂tu

n
hτ + ∆un

hτ ) − (∆un
hτ + ∇·θn).

Hence, using the triangle inequality and the above definitions leads to

(ηn
R)2 . (En

R)2 + (En
f )2 + (ηn

NC,2)
2 + τn

∑

T∈T n

h2
T ‖∆u

n
hτ + ∇·θn‖2

T .

Using an inverse inequality to bound the last term above and using (3.17) yields

τn
∑

T∈T n

h2
T ‖∆u

n
hτ + ∇·θn‖2

T . τn
∑

T∈T n

‖∇un
hτ + θ

n‖2
T . (En

DF)2 + J n
∗ (uhτ )2,

whence (6.4) readily follows by taking square roots.
(ii) Bound on ηn

DF. Let t ∈ In. The triangle inequality yields

(ηn
DF)2 .

∫

In

‖∇s(t) −∇sn‖2 dt+ τn‖∇sn + θ
n‖2 =:

∫

In

An(t) dt+ τnBn.

Let v be the space–time function on In such that v(t) := s(t) − sn and observe that
v ∈ X(In). Elementary algebra yields

An(t) = (∇s(t) −∇sn,∇v(t)) = − {(f, v)(t) − (∂ts
n, v(t)) − (∇s(t),∇v(t))}

+ (f(t) − f̃n, v(t))

+ (f̃n − ∂ts
n −∇·θn, v(t))

− (∇sn + θ
n,∇v(t))

=: An
1 (t) +An

2 (t) +An
3 (t) +An

4 (t).

Owing to (2.1),
∫

In
An

1 (t) dt ≤ ‖u − s‖Y (In)‖v‖X(In). Furthermore,
∫

In
An

2 (t) dt ≤

‖f − f̃‖X′(In)‖v‖X(In). Using as before the Poincaré inequality for An
3 (t) leads to∫

In
An

3 (t) dt ≤ ηn
R‖v‖X(In). Concerning An

4 (t), the Cauchy–Schwarz inequality yields∫
In
An

4 (t) dt ≤ (τnBn)1/2‖v‖X(In). Collecting these bounds and since
∫

In
An(t) dt =

‖v‖2
X(In) leads to

∫

In

An(t) dt . ‖u− s‖2
Y (In) + ‖f − f̃‖2

X′(In) + (ηn
R)2 + τnBn.

Using the triangle inequality for the first term in the right-hand side and bounding
‖s− uhτ‖Y (In) as in Lemma 5.3 yields

‖u− s‖2
Y (In) . ‖u− uhτ‖

2
Y (In) + (ηn

NC,1)
2 + (ηn

NC,2)
2.
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As a result, using the bound (6.4) for ηn
R leads to

∫

In

An(t) dt . ‖u− uhτ‖
2
Y (In) + (En

R)2 + (En
DF)2 + (En

f )2 + (ηn
NC,1)

2 + (ηn
NC,2)

2

+ J n
∗ (uhτ )2 + τnBn.

Thus,

(ηn
DF)2 .‖u−uhτ‖

2
Y (In)+(En

R)2+(En
DF)2+(En

f )2+(ηn
NC,1)

2+(ηn
NC,2)

2+J n
∗ (uhτ )2+τnBn,

and it remains to bound the last term. To this purpose, we use the triangle inequality,
the lower bound in Lemma 6.1, and the approximation property (3.17) of the flux
reconstruction θ to infer

τnBn . τn{‖∇n(sn − un
hτ )‖2 + ‖∇nun

hτ + θ
n‖2}

. (ηn
NC,1)

2 + (En
DF)2 + J n

∗ (uhτ )2.

The conclusion is straightforward.

6.3. Bounds on ηn
NC,1 and ηn

NC,2. The next step is to bound ηn
NC,1 and ηn

NC,2.
Lemma 6.3 (Bound on ηn

NC,1). Assume (M1)–(M2) and that the potential recon-
struction s is defined by (3.15)–(3.16). Then,

ηn
NC,1 . J n(uhτ ).

Proof. Owing to the upper bound in Lemma 6.1, it suffices to prove that for
m ∈ {n− 1, n} and for all T ∈ T m,

‖∇(sm − um
hτ )‖T . |[[um

hτ ]]|− 1
2
,Fm

T
.

The proof is presented for m = n; it is similar for m = n− 1. Letting

ιnhτ := In
Os(u

n
hτ ), βn

hτ :=
∑

T ′∈T n,n+1

αn
T ′bT ′ ,

it is clear that (3.15) yields the decomposition sn − un
hτ = (ιnhτ − un

hτ ) + βn
hτ , and we

bound, on each T ∈ T n, the two terms in the right-hand side separately. Classical
approximation properties of the Oswald interpolation operator yield

‖∇(ιnhτ − un
hτ )‖T . |[[un

hτ ]]|− 1
2
,Fn

T
,

‖ιnhτ − un
hτ‖T . |[[un

hτ ]]|+ 1
2
,Fn

T
.

To estimate the bubble contribution, the transition condition (3.14) must be used. For
all T ′ ∈ T n,n+1 such that T ′ ⊂ T , using (3.16) and the Cauchy–Schwarz inequality,

‖∇βn
hτ‖T ′ = |αn

T ′ | ‖∇bT ′‖T ′ ≤

(
hT ′

‖∇bT ′‖T ′ |T ′|1/2

(bT ′ , 1)T ′

)
h−1

T ′ ‖ιnhτ − un
hτ‖T ′ .

Owing to the shape regularity of T n,n+1, the factor between parentheses is bounded
uniformly, so that

‖∇βn
hτ‖T ′ . h−1

T ′ ‖ιnhτ − un
hτ‖T ′ .
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We now use the transition condition (3.14), the shape regularity of the meshes, and
the approximation properties of the Oswald interpolation operator to infer

‖∇βn
hτ‖

2
T =

∑

T ′∈T n,n+1;T ′⊂T

‖∇βn
hτ‖

2
T ′ .

∑

T ′∈T n,n+1;T ′⊂T

h−2
T ′ ‖ιnhτ − un

hτ‖
2
T ′

≤ Ξ2h−2
T

∑

T ′∈T n,n+1;T ′⊂T

‖ιnhτ − un
hτ‖

2
T ′ = Ξ2h−2

T ‖ιnhτ − un
hτ‖

2
T . |[[un

hτ ]]|2− 1
2
,Fn

T

.

The proof is complete.
Lemma 6.4 (Bound on ηn

NC,2). Assume (M1)–(M3) and that the potential recon-
struction s is defined by (3.15)–(3.16). Then,

ηn
NC,2 . J n(uhτ ).

Proof. Let v := s − uhτ . Using the transition condition (3.14) and the triangle
inequality yields

∑

T∈T n

h2
T ‖∂tv

n‖2
T .

∑

T∈T n−1

h2
T (τn)−2‖vn−1‖2

T +
∑

T∈T n

h2
T (τn)−2‖vn‖2

T .

Consider the second term in the right-hand side. Proceeding as in the proof of
Lemma 6.3 leads to the bounds ‖vn‖T . |[[un

hτ ]]|+ 1
2
,Fn

T
, so that, owing to the shape

regularity of the meshes and the condition (M3),

∑

T∈T n

h2
T (τn)−2‖vn‖2

T .
∑

T∈T n

h4
T (τn)−2|[[un

hτ ]]|2− 1
2
,Fn

T

.
∑

T∈T n

|[[un
hτ ]]|2− 1

2
,Fn

T

.

The term at tn−1 is treated similarly using again the transition condition in combi-
nation with (M3).

6.4. Bounds on En
R and En

DF. The last step consists in bounding the usual
residual-based error estimators En

R and En
DF.

Lemma 6.5 (Bounds on En
R and En

DF). Under the assumptions of Lemmas 6.2
and 6.4, there holds

En
R + En

DF . ‖u− uhτ‖Y (In) + En
f + J n(uhτ ).

Proof. Using the technique of element and edge bubble functions introduced
by Verfürth [28] and proceeding as in [29], it can be shown (details are skipped for
brevity) that

(En
R)2 + (En

DF)2 ≤ C(‖u− uhτ‖
2
Y (In) + (En

f )2) + ǫ2
∫

In

‖∇n−1,n(uhτ (t) − un
hτ )‖2 dt,

where ǫ can be chosen as small as needed. The triangle inequality yields

‖∇n−1,n(uhτ (t) − un
hτ )‖ ≤ ‖∇n−1,n(s− uhτ )(t)‖ + ‖∇s(t) + θ

n‖ + ‖∇nun
hτ + θ

n‖.

Hence, taking square roots

En
R + En

DF ≤ C(‖u− uhτ‖Y (In) + En
f ) + ǫ(ηn

DF + ηn
NC,1 + En

DF + J n
∗ (uhτ )).
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Owing to Lemmas 6.2, 6.3, and 6.4,

ηn
DF + ηn

NC,1 . ‖u− uhτ‖Y (In) + En
R + En

DF + En
f + ηn

NC,1 + ηn
NC,2 + J n

∗ (uhτ )

. ‖u− uhτ‖Y (In) + En
R + En

DF + En
f + J n(uhτ ),

where we have used the fact that J n
∗ (uhτ ) . J n(uhτ ) since Fn

T ⊂ Fn
T . The conclusion

is now straightforward by choosing ǫ sufficiently small to eliminate the terms En
R and

En
DF from the right-hand side.

6.5. Proof of Theorem 3.9. The proof is a direct consequence of Lemmas 6.2,
6.3, 6.4, and 6.5.

Appendix A. Conforming and nonconforming finite elements.

This appendix extends the above theory to the conforming and nonconforming
finite element methods.

A.1. Conforming finite elements. The conforming finite element method for
the discretization of (1.1a)–(1.1c) on the time interval In, 1 ≤ n ≤ N , and the
corresponding mesh T n reads: Find un

hτ ∈ V n
h := P1(T

n) ∩H1
0 (Ω) such that

(∂tu
n
hτ , vh) + (∇un

hτ ,∇vh) = (f̃n, vh) ∀vh ∈ V n
h . (A.1)

The conforming finite element method given by (A.1) is very close to the vertex-
centered finite volume method of §4.4. In fact, as in [31], we find that (A.1) is
equivalent to look for un

hτ ∈ V n
h such that

(∂tu
n
hτ , 1)D − (∇un

hτ ·nD, 1)∂D − (f̃n, 1)D

= − (∂tu
n
hτ − Πn

0 (∂tu
n
hτ ), ψV )TV

+ (∂tu
n
hτ − Πn

0 (∂tu
n
hτ ), 1)D

+ (f̃n − Πn
0 (f̃n), ψV )TV

− (f̃n − Πn
0 (f̃n), 1)D ∀D ∈ Di,n.

(A.2)

Here, V is always the vertex associated with the dual volume D, ψV is the associated
basis “hat” function, and TV is the patch of elements of T n sharing V . Let θ

n ∈
RTN0(S

n) satisfy θ
n·nF |F := −∇un

hτ ·nF |F on all faces F of Sn included in ∂D for
some D ∈ Di,n. Then, contrarily to §4.4, (3.4) is not satisfied on D ∈ Di,n; indeed,
the right-hand side of (A.2), clearly equivalent to a numerical quadrature, has to be
taken into account. In the proof of Lemma 5.2, the bound on the term T2 has to be
enriched by

(∂tu
n
hτ − Πn

0 (∂tu
n
hτ ), ϕ̃− ϕ̄) − (f̃n − Πn

0 (f̃n), ϕ̃− ϕ̄),

where ϕ̃ is a piecewise linear, vertex-based interpolation of ϕ and ϕ̄ is a piecewise
constant one on the mesh T n. Consequently, two estimators have to be added in The-
orem 3.2 to ηn

R,T , namely CI,ThT ‖∂tu
n
hτ − Πn

0 (∂tu
n
hτ )‖T and CI,ThT ‖f̃

n − Πn
0 (f̃n)‖T ;

here CI,T is a constant arising from the interpolation of ϕ ∈ H1
0 (Ω) by ϕ̃ and

ϕ̄. To work on the mesh T n, the flux reconstruction is determined by solving lo-
cal linear systems, similarly to §4.4. The approximation property (3.17) can be
shown using the techniques of [31]. To prove a lower bound for the new estimators
CI,ThT ‖∂tu

n
hτ − Πn

0 (∂tu
n
hτ )‖T , condition (M3) together with the Poincaré inequality

is necessary to proceed as in Lemma 6.2, whereas the estimators corresponding to
CI,ThT ‖f̃

n − Πn
0 (f̃n)‖T represent a data oscillation term.
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A.2. Nonconforming finite elements. The nonconforming finite element met-
hod for the discretization of (1.1a)–(1.1c) on the time interval In, 1 ≤ n ≤ N , and
the corresponding mesh T n reads: Find un

hτ ∈ V n
h such that

(∂tu
n
hτ , vh) + (∇nun

hτ ,∇
nvh) = (f̃n, vh) ∀vh ∈ V n

h . (A.3)

Here V n
h is defined as in §4.5; the nonconforming finite element method given by (A.3)

is, in fact, very close to the face-centered finite volume method of §4.5. Our estimates
can be adapted to the present setting by proceeding exactly as in §A.1.
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[16] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, in Handbook of Numerical
Analysis, Vol. VII, North-Holland, Amsterdam, 2000, pp. 713–1020.

[17] E. H. Georgoulis and O. Lakkis, A posteriori error control for discontinuous Galerkin meth-
ods for parabolic problems, tech. report, ArXiv:0804.4262, 2008.

[18] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin
approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003),
pp. 2374–2399.

[19] K. Y. Kim, A posteriori error estimators for locally conservative methods of nonlinear elliptic
problems, Appl. Numer. Math., 57 (2007), pp. 1065–1080.

[20] O. Lakkis and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully
discrete linear parabolic problems, Math. Comp., 75 (2006), pp. 1627–1658 (electronic).

21



[21] C. Makridakis and R. H. Nochetto, Elliptic reconstruction and a posteriori error estimates
for parabolic problems, SIAM J. Numer. Anal., 41 (2003), pp. 1585–1594 (electronic).

[22] P. Morin, R. H. Nochetto, and K. G. Siebert, Convergence of adaptive finite element
methods, SIAM Rev., 44 (2002), pp. 631–658 (electronic) (2003). Revised reprint of “Data
oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38 (2000), no. 2,
466–488 (electronic); MR1770058 (2001g:65157)].

[23] S. Nicaise and N. Soualem, A posteriori error estimates for a nonconforming finite element
discretization of the heat equation, M2AN Math. Model. Numer. Anal., 39 (2005), pp. 319–
348.

[24] S. Repin, Estimates of deviations from exact solutions of initial-boundary value problem for
the heat equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat.
Appl., 13 (2002), pp. 121–133.

[25] A. Schmidt and K. G. Siebert, ALBERT—software for scientific computations and applica-
tions, Acta Math. Univ. Comenian. (N.S.), 70 (2000), pp. 105–122.

[26] R. Stevenson, The completion of locally refined simplicial partitions created by bisection,
Math. Comp., 77 (2008), pp. 227–241 (electronic).
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