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Université de Caen

14032 Caen, France

Abstract

We present, in this paper, a four nodes quadrangular shell element (FDEM4) based on a Finite Difference Element Method that we

introduce. Its stability and robustness with respect to shear locking and membrane locking problems is discussed. Numerical tests

including inhibited and non-inhibited cases of thin linear shells are presented and compared with widely used DKT and MITC4

elements.
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1. Introduction

The Finite Element Method based on polynomial interpo-

lation is widely and successfully used in engineering applica-

tions. Among major problems encountered in Finite Element

Methods is the numerical locking. Classical examples are in-

compressible continuum, shear locking in beam and plates el-

ement and shear and membrane locking in thin shells compu-

tation [3, 11, 15, 23, 27, 28]. These locking phenomenon has

in common the inability of the (polynomial) shape functions to

perform some constraints of the problem (such as incompress-

ibility condition displacements or bendings in case of shell).

In the case of thin shell computations, various finite element

methods claims successful (locking-free) with regard to those

locking problems [2, 7, 4, 3, 12, 21], such as Partial Reduced

Selective Integration method, Mixed Interpolation method, Dis-

crete Strain Gap method and more recently Smoothed finite el-

ement method, [21]. Up to our knowledge, no mathematical

proofs are available yet.

In [13], the shape functions has been identified as closely re-

lated to numerical locking for conformal finite elements. This

is why, we wanted to study the possibility to implement a finite

element procedure without such shape functions as an alterna-

tive.

In this paper, based on this idea, we define a Finite Dif-

ference Element Method concept and we develop a four nodes

quadrangular Finite Difference Element procedure (FDEM4)

for shell problems.

The paper is organized as follows, we first present the Finite

Difference Element Method concept and we illustrate with a

simple scalar problem corresponding to the static Heat or mem-

brane problem.

The Nagdhi’s model of thin elastic shells [6] is exposed in

section 3. The FDEM4 shell element is based on this model, it

is presented in section 4. The section 5 is devoted to numerical

results. We test the robustness with respect to both shear lock-

ing and membrane locking, with regular and distorted meshes.

FDEM4’s performance is compared with MITC4 and triangular

DKT. Accordingly with the asymptotic analysis of thin elastic

shells, [26, 10, 11], inhibited and non-inhibited cases of shells

are treated .

We then conclude and discuss the perspectives of the Fi-

nite Difference Element method for thin shell computations and

more.

Notations and conventions

In this paper, we employ the Einstein convention of sum-

mation on repeated upper or lower indices. The Greek (resp.

Latin) indices range over {1, 2} (resp. {1, 2, 3}). The partial

derivatives with respect to variables xα are denoted in lower

indices preceded by a comma. The ∇ symbol represents the

gradient of one function. We use overarrow to indicate space

vectors. The variables x1, x2 (resp. x1, x2, x3) live in bounded

domain Ω ⊂ ❘2 (resp. ❘3). The Hilbert functional space V

will denote a Sobolev space and therefore injects continuously

into H = ▲2(Ω). The Harpoon symbol −⇀ will indicate a con-

vergence in the weak sense. The O and o symbols represent

negligible quantities in the sense that

lim
h→0

O(h) = 0 and lim
h→0

o(h)

h
= 0.

2. The Finite difference Element Method

How to avoid shape functions and in the same time apply

a Galerkin method ? To this paradoxical question, one answer

we found is the finite difference element method : we replace

the differential operators by finite difference approximations in

some Galerkin projection procedure. More precisely, we re-

place the differential expressions of undefined shape functions,

involved in the variational form problem by some finite differ-

ence approximations at the nodes of integration schemes. Al-

though such idea is not new, the method we propose is very

similar to the finite difference energy method [3, 9, 22], we give

Preprint submitted to Computer & Structures May 12, 2009



here a different point of view in the sense we still interpret the

finite difference element method as a Galerkin method.

A scalar problem example

For sake of simplicity, we shall present the finite difference

element method on a scalar problem (corresponding mathemat-

ically to a heat problem or a membrane) over Ω ⊂ ❘2:























Find u ∈ V such that
∫

Ω

∇u.∇u∗ =

∫

Ω

f u∗ ∀u∗ ∈ V,
(1)

where V is the Sobolev space V = H1
0
(Ω). The variational (1)

is the standard Poisson problem with Dirichlet boundary condi-

tions.

Shape functions

Actually, we still need shape functions, at least from a the-

oretical point of view. The only difference with standard finite

element method is that, using finite difference approximations,

the explicit form or expression of shape functions need not to

be explicit.

Let Vh be a subspace of V , generated by a set of shape func-

tions φi piecewise defined on Ωh, continuous in Ω, where h de-

notes the mean size of the elements Ωi. We can impose some

natural conditions :











φi(N j) = δi, j,

φi = 0, on Ωk if Ni < Ωk.
(2)

We have then the decomposition :

uh = uiφi,

where the coefficients ui will represent the value of u at nodes

Ni. We don’t impose a priori that the shape functions to realize

a partition of unity, but an approximate partition of unity.

Classically, as h → 0, the subspaces Vh define a set of dis-

crete conformal approximations of V : for any u ∈ V ,it is easy

to construct a sequence un ∈ Vh such that un converge almost

everywhere towards u inΩ. Let’s consider now uh, the Galerkin

projection of the solution u of (1) in Vh :























Find uh ∈ Vh such that
∫

Ω

∇uh.∇u∗ =

∫

Ω

f u∗ ∀u∗ ∈ Vh

(3)

It classically reduces to a linear system with the ’stiffness’ ma-

trix K :

Kû = L,

where

û = [u1, . . . un]⊤,

L = [l1, . . . ln]⊤,

and with

Ki j =

∫

Ω

∇φi.∇φ j (4)

l j =

∫

Ω

fφ j. (5)

In classical finite element method, the computation of (4)

need the explicit expression of the shape functions on the nodes

of integration scheme. Here, the Finite Difference Element

Method consists in simply integrate over nodes where we re-

place differential expressions by some consistent finite differ-

ence approximations :

Finite difference approximations over a 4 nodes quadrangle

If we consider a quadrangle defined by N1, N2, N3, N4, of

coordinates (xi, yi), and with N0 as the intersection of the two

diagonals, see the Figure 1.

1

N0

N
4

N

N

N

2

3

Figure 1: A four nodes quadrangle

By definition, we have, for j = 1,2,3,4 :

u(N j) = u(N0) + (∇u(N0),
−−−−→
N0N j) + O(

−−−−→
N0N j).

This gives :

u(N3) − u(N1) = (∇u(N0),
−−−−→
N1N3) + O(

−−−−→
N0N3) − O(

−−−−→
N0N1),

u(N4) − u(N2) = (∇u(N0),
−−−−→
N2N4) + O(

−−−−→
N0N4) − O(

−−−−→
N0N2).

(6)

We can then solve the linear system (6) to obtain the consistent

finite difference central approximation :

∇u(N0) = B





























u1

u2

u3

u4





























+max
j

(O(
−−−−→
N0N j)), (7)

with

B =
1

∆

[

y2 − y4 y3 − y1 y4 − y2 y1 − y3

x4 − x2 x1 − x3 x2 − x4 x3 − x1

]

and

∆ = (x3 − x1)(y4 − y2) − (x4 − x2)(y3 − y1).

Similarly, it is also possible to write the finite difference on

each nodes Nk instead of NO, for instance :

u(N2) = u(N1) + (∇u(N1),
−−−−→
N1N2) + O(

−−−−→
N1N2),

u(N4) = u(N1) + (∇u(N1),
−−−−→
N1N4) + O(

−−−−→
N1N4).
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Then

∇u(N1) = B∗





























u1

u2

u3

u4





























+max
i, j

(O(
−−−→
NiN j)) (8)

with

B∗ =
1

∆∗

[

y2 − y4 y4 − y1 0 y1 − y2

x4 − x2 x1 − x4 0 x2 − x1

]

and

∆∗ = (x2 − x1)(y4 − y1) − (x4 − x1)(y2 − y1).

With those two finite difference approximation schemes, we can

propose 2 different integration scheme to compute the ’stiff-

ness’ matrix K: one node integration with (7) and four nodes

integration with (8). In this paper, we shall exclusively focus

on the central finite difference approximation (7).

With the central finite difference approximation (7), on each

quadrangular element Ek, the elementary ’stiffness’ matrix writes

simply :

Kel = B′ ∗ B|Ek |.

where |Ek | is the measure of the element.

Galerkin or not ?

Our interpretation of the Finite Difference Element Method,

is that the rough integration scheme (only one node) is never-

theless exact for some class of shape functions. A description

of such class is still under investigation, but we can reasonably

conjecture such class is not void in the space of admissible so-

lutions. From this point of view, the Finite Difference Element

Method is a conformal finite element method.

Numerical results on the scalar model problem (1)

We apply the finite difference method to the model problem

(3) with Ω = [− 1
2
, 1

2
]2. Due to the symmetries of the problem

we compute on a quarter of the domain only, that is [0, 1
2
]2.

With a set of regular and distorted k × k meshes where the pa-

rameter k denotes the number of subdivision of the domain, see

Figure 2.

Regular mesh Distorted mesh (a) Distorted mesh (b)

Figure 2: Regular and distorted 4x4 meshes

We consider the finite difference element procedure with

one degree of freedom (DOF) per node, for which we solely

use the (7) central finite difference approximation coupled with

one node integration scheme; we call this element FDEM4.

In Figure 3, we display the relative error of the solution at

the center of Ω, where it takes its maximal value, compared

to the exact solution (obtained through Fourier series) and the

computed solution by a standard four node quadrangle polyno-

mial element, QUA4.

We can see that FDEM4 element seems to converge with

an apparent nearly quadratic rate, even though it is clearly out-

performed by QUA4. The convergence rate for FDEM4 does

not show much sensitivity to mesh distorsion, whereas it dete-

riorates for QUA4 in the case of distorted meshes (b). This is

not surprising since the finite difference scheme (7) is indepen-

dent of the shape of the quadrangular and the P2 polynomial

interpolation of QUA4 is incomplete. Those numerical results

already indicates the behavior of FDEM4 element : it will have

average to poor performance on very coarse meshes, but the

convergence rate should be nearly quadratic. More interesting

FDEM4 should not be too sensitive on mesh distorsion.
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Figure 3: Relative error
uexact−u

uexact
at (0, 0) for regular and distorted meshes. h is

the mean size of the quadrangular elements.
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3. Thin elastic shells : the Naghdi’s model

We refer to [6, 11] for a full description and presentation

of the theory on thin shells in the Naghdi’s model. We only

recall the mechanical problem in static linear elasticity for a

homogeneous and isotropic shell with Young’s modulus E and

coefficient of Poisson ν.

Let’s define first a shell with its geometry, see Figure 4. Let

S be the middle surface defined with the map (Ω,−→r ) : Ω ∈ ❘2

and
−→r = x(x1, x2)−→e 1 + y(x1, x2)−→e 2 + z(x1, x2)−→e 3. (9)

The surface map defines the tangent vectors

−→a α = −→r ,α,

and the unit normal vector

−→a 3 =

−→a 1 ∧ −→a 2

‖−→a 1 ∧ −→a 2‖
.

the three vectors −→a i constitute the covariant basis of S . We keep

in mind that the covariant basis in not a priori orthonormal nor

orthogonal, we thus define the dual basis −→a i
in order to make

scalar products.

Let ε be the constant thickness the shell, then any of its point

can be given by the position vector, ∀(x1, x2) ∈ Ω, x3 ∈ [− ε
2
, ε

2
],

−→p (x1, x2, x3) = −→r (x1, x2) + x3
−→a 3.

Ω

a

a

a3

2

1

Figure 4: A Shell, the covariant basis of its midsurfcace

The Naghdi’s model involves the displacement −→u and the

rotation
−→
θ to define the deformation of the shell under external

loadings. Although the theory involves covariant components,

we shall represent the displacement with its Cartesian compo-

nent :
−→u = ui

−→ei .

The rotation is tangent to S and thus can conveniently be repre-

sented by its covariant components:

−→
θ = θα

−→a α.

Under external loadings, represented by a linear form Lε, we

define the mechanical problem of thin elastic shells in its vari-

ational form as follow, where V denotes a Sobolev space of

kinematically admissible displacements and rotations :















Find U = (−→u ,−→θ ) ∈ V such that

aε(U,U
∗) = Lε(U∗) ∀U∗ ∈ V.

(10)

The bilinear form of deformation energy, aε, writes for any U =

(−→u ,−→θ ) and U∗ = (−→u ∗,−→θ
∗
) :

aε(U,U
∗) = ε3ab(U,U∗) + εas(U,U∗) + εam(U,U∗) (11)

where we decomposed the energy form respectively in bending,

shear and membrane parts :

ab(U,U∗) =

∫

Ω

1

12
Aαβλµραβρλµ (12)

as(U,U∗) =

∫

Ω

CαβΛαΛβ (13)

am(U,U∗) =

∫

Ω

Aαβλµγαβγλµ (14)

where γαβ and ραβ represent respectively the variation tensors

of the first and second fundamental form of the surface S , mea-

suring the variation of length and variation of curvature, the Λα
measure the shear :

γαβ =
1

2

(−→u ,α.−→a β + −→u ,β.−→a α
)

(15)

ραβ =
1

2

(−→
θ ,α.
−→a β +

−→
θ ,β.
−→a α − −→a 3,α.

−→u ,β − −→a 3,β.
−→u ,α
)

(16)

Λα = θα +
−→u ,α.−→a 3. (17)

Since the shell is homogeneous and isotropic, the constitutive

law is given by :

Aαβλµ =
E

2(1 + ν)

[

aαλaβµ + aαµaβλ +
2ν

1 − ν
aαβaλµ

]

(18)

Cαβ =
E

4(1 + ν)
aαβ. (19)

with the contravariant components of the first fundamental form

aαβ = −→a α.−→a β.

Asymptotic behavior and Numerical difficulties

The natural trend for a very thin elastic shell is to perform

bendings as we can see from (10) that shear and membrane de-

formation energies are penalized then the thickness ε is very

small, see also [26, 11, 25]. But, unlike the bendings in beams

problems, bending deformation on a surface is not always ad-

missible: it depends on the boundary conditions and the geom-

etry [17]. Thin shells are thus classified as [with bendings] in-

hibited or not-inhibited, following the terminology introduced

by Sanchez-Palencia[26].

This classification is also referred as membrane dominated

and bending dominated [23, 16]. These two very distinct asymp-

totic behaviors lead to strong difficulties in the numerical ap-

proximation of very thin elastic shells by finite element proce-

dures : boundary layers, propagation and reflexion of singular-

ities, sensitivity within the inhibited case and numerical (mem-

brane) locking in the non-inhibited or bending dominated case,

see [23, 24, 15, 11, 19, 25].

Classically, we have the following asymptotic behavior valid

for thin shells linear models such as Koiter’s or Naghdi’s [25,

16, 11]:
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Theorem 3.1. If the (scaled) load Lε(−→v ) depends on ε as Lε(−→v ) =

ε3L(−→v ), then the solutions −→u ε of (10) converge (weakly in
−→
V )

towards the solution −→u 0
of the asymptotic (limit) bending prob-

lem



























find −→u 0 ∈ −→G such that
∫

S

Aαβλµ

12
ραβ(
−→u 0

)ρλµ(
−→v ),= L(−→v ∗), ∀−→v ∗ ∈ −→G ,

(20)

where
−→
G is the set of kinematically admissible infinitesimal bend-

ings (also called inextensional displacement) :

−→
G =
{−→u ∈ V such that γαβ(

−→u ) = 0
}

.

and where we replaced θα in ραβ with −−→u ,α.−→a 3.

We emphasize on the fact that infinitesimal bendings are

solution of a partial differential equation, the nature of which

depends on the nature of the surface, in particular if a surface is

defined by a position vector

r(x1, x2) = x1
−→e 1 + x3

−→e 2 + ϕ(x1, x2)−→e 3,

then the vertical component u3 of any infinitesimal bendings on

the surface satisfies the second order PDE :

ϕ,22u3,11 + 2ϕ,12u3,12 + ϕ,11u3,22 = 0, (21)

the characteristics of which corresponds to the asymptotic lines

of the surface [17]. Namely, the nature of the equation (21) is

respectively hyperbolic, parabolic, elliptic when the surface is

hyperbolic, developpable, elliptic.

This essential property underlines the fundamental impor-

tance of the asymptotic lines and therefore the topology of a

meshing when dealing with the membrane locking, see [1, 26,

11].

In the inhibited shell cases, that is, when the space of in-

finitesimal bendings
−→
G reduces to {0} or rigid displacements,

which is the most common situation in practice, the theorem 3.1

simply indicates that the solutions −→u ε converge to 0, as εց 0.

To fully analyze the membrane dominated asymptotic be-

havior, we need to change the scale of the loading from ε3L to

εαL with 1 < α < 3, see [11, 19] depending on the case. We

shall not recall here all the subtleties of membrane dominated

case, we simply recall that singularities and boundary layers

appear, which make accurate computations difficult :

Theorem 3.2. With the loading scaled as Lε = εL, if the shell

is inhibited, then as ε decreases towards 0, the solution −→u ε of

problem (1) converge weakly to
−→
u the solution of the membrane

limit problem :























find
−→
u ∈ V

m
such that

∫

S

Aαβλµγαβ(
−→
u )γλµ(

−→v ∗),= L(−→v ∗), ∀−→v ∗ ∈ V
m
,

(22)

for any L ∈ V
m′

,

where V
m

is the completion of V for the norm associated with

am. In some cases V
m

may be so big that it is not contained in

the space of distributions. The shell is then said ill-inhibited,

see [25]. The corollary is that the dual space V
m′

can be very

small : a uniform loading may even not be admissible in most

cases with a free edges. This explains the singularities and

boundary layer appearing in the inhibited or membrane dom-

inated shells or even the instabilities such as the chancelling

shells [20]. The asymptotic behavior of inhibited (membrane

dominated) shells thus may vary depending on the loading [25,

11].

4. The FDEM4 shell element

The FDEM4 shell element is based on the Naghdi’s Shell

Model presented in section 3. The element is simply defined

as replacing all first order differentials involved in the varia-

tional problem of Naghdi’s shell (10) by the central finite dif-

ference scheme (7). The integration is then obtained through

a single node integration at the intersection of the diagonals of

each quadrangular element. It is indeed a very simple element,

very cheap from a computational point of view, since the ele-

mentary stiffness matrix is only evaluated once per element. We

believe no shell element can be more simple.

Each node have 5 degrees of freedom (DOF) : the 3 Carte-

sian components of the displacement and 2 covariant compo-

nents of the rotation. We remark from (16), it is not necessary

to compute the derivatives of the covariant component of the

rotation, we simply need to compute the derivatives of the rota-

tion by their expressions in the Cartesian basis.

Intregration node

Nodes of DOF

Figure 5: The FDEM4 shell element

The use of such ’reduced’ integration scheme, as in the

scalar example of section 2, implies we don’t expect high per-

formance of the FDEM4 element with coarse meshes but the

FDEM4 should be robust with respect to distorted meshes since

the finite difference scheme since it is not dependent on any

fixed direction. It is remarkable that we make the computation

directly on each element without dealing with a reference ele-

ment.

In an algebraic way, such ’reduced’ integration scheme re-

duces the number of constraints coming from shear and bend-

ings condition, that is, two conditions from the shear constraints

and another three from the bending condition when in bending

dominated situations. Thus a simple count of the number of
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available DOF, allow us to hope the FDEM4 to be locking free,

or at least be less sensitive to the locking effect.

To this (necessary) algebraic count, we prefer another inter-

pretation : we believe there is a class of shape functions such

that the finite difference element schemes coincide exactly with

the integral involved in (3). We can hope then this class of

functions is large enough to ’contain’ infinitesimal bendings.

Of course, such a reduced constraints could lead to spurious

modes in membrane dominated cases, but our idea is that since

the chosen finite difference scheme is consistent, the stability

should necessarily follow.

The convergence of the method is not yet mathematically

established and is still under investigation. We can just trivially

show that stability and consistency are necessary and sufficient

condition for convergence.

Reciprocally, we think that a non-conformal finite element

method using reduced integration scheme should be equivalent

in some sense to a finite difference element procedure when it

is convergent and stable.

In this paper, we chose to use exact geometry for the def-

inition of the surface, that is, we use the exact expressions of

the covariant basis and theirs derivatives. The development of

FDEM shell procedure using only the coordinates of the nodes

of the surface is still in progress, we may simply follow the path

designed for MITC shell elements.

5. Numerical results

In this section, we follow [10, 23, 13, 14] to test the perfor-

mance of the quadrangular finite difference element, FDEM4,

on several cases of inhibited and non-inhibited shells and com-

pare with widely used shell elements, namely the 3-nodes trian-

gular plane facet DKT shell element within the CasT3M soft-

ware and the 4-nodes quadrangular MITC4 element within the

software Scilab and the package OpenFEM, [5, 3].

We used the same meshes for FDEM4 and MITC4, but for

the triangular DKT element, we divided each quadrangle in the

meshes in 4 triangular parts, thus our computations with DKT

involve significantly more nodes and DOF than their quadran-

gular counterparts.

5.1. A plate as a plane shell

We start the numerical tests with the case of a plate, for

which the Nagdhi’s model reduces to Reissner-Mindlin plate

model. The test is interesting from the numerical locking point

of view because it first evaluate the robustness with respect to

shear locking.

We consider the classical example of a circular plate clamped

all along its boundary.It is submitted to an uniform vertical

loading. To test the shear locking we have taken a very small

thickness, ε = 10−4. Taking advantage of the axial symme-

tries of the problem, the computational domain is reduced to a

quarter of the domain, see figure 6.

In Figure 7, we plot the relative error on the central de-

flection, compared to exact analytical solution of the problem

within Kirchhoff-Love plate model. We display the errors for

various regular k × k mesh, k being the number of element sub-

division of one side of the quarter of the domain. The size of

the mesh being h = 1
k
.

The FDEM4 plate element seems convergent with quadratic

rate but is outperformed by both DKT and MITC elements.

This is similar to the scalar model case. (1). Nevertheless, the

shear locking is not present in FDEM4 for this test.

Figure 6: A quadrangular mesh of the quarter of the circular plate with refine-

ment parameter k = 6.
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Figure 7: The relative error of central displacement
uexact−u

uexact
compared to the

exact solution

5.2. An inhibited cylindrical shell, the Scoderlis-Lo roof

We start the numerical test on shells with a classic: the

Scordelis-Lo roof. It is a cylindrical shell supported by rigid

diaphragms at his end edges, the two other boundaries along

the generatrices are free. The shell is submitted to a uniform

vertical loading. Due to the plane symmetries of the problem,

the computed domain is reduced to one forth of the cylinder, see

Figure 8.The original benchmark proposed takes a fixed relative

thickness ε = 3
300
= 10−2, the Young’s modulus E = 3.106, the

Poisson coefficient ν = 0 and the vertical load L = 0.625, the

coherent units being inches and pounds.
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Figure 9: Vertical deflection on midside of Scordelis-Lo roof for regular k × k

meshes, normalized by a reference solution.
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u =u =0x y

free edgeD

C

B

A

Figure 8: Scordelis-Lo roof

We plot the value of the vertical component at midside B

normalized by a reference value and for k × k regular meshes,

see Figure 9. The reference values are the exact analytical so-

lution based on Flugge’s shell theory, see [8] and are given in

Table 1. We note that the FDEM4 seems to converge but is

overestimating the deflection, unlike to DKT and MITC4. We

shall see from the results with adapted mesh, that this depends

on the mesh. We also remark the slight irregularities of MITC4

convergence in this test.

We push forward this example by decreasing the relative

thicknesses from ε = 10−2 to 10−5. We refer to [6, 11] for a

complete asymptotic analysis of the test, but we emphasize on

the fact it is a case of inhibited shell, more precisely ill-inhibited

shell. The vertical loading does not belong to the space V
m′

and

thus is not admissible : boundary layers appear along the free

edges if the thickness is chosen very small. The width of this

boundary layer was shown, in [18], to be proportional to ε
1
4 .

We then take account of this information, choosing 3
2
ε

1
4 as the

width of the boundary layer to define adapted meshes equally

refined inside and outside the boundary layer, see Figure 10.

This can be seen as a test on whether the FDEM4 is suitable for

adapted meshes with stretched elements. We scaled the loading

ε 10−2 10−3 10−4 10−5

ũ3 3.6285 3.9528 4.0882 4.0805

Table 1: Reference value of vertical deflection on midside of Scordelis-Lo roof

for relative thickness from 10−2 to 10−5, based on Flugge’s shell theory.

by a ε
2

9
factor. In Figure 10 we plot the deflection on midside

of the free edge normalized by a reference value, see Table 1.

The FDEM4 performs here very well with a satisfactory con-

vergence rate, and clearly better than both DKT and MITC4

when the relative thickness ε = 10−4 or ε = 10−5.

Relative thickness = 0.0001 Relative thickness = 0.00001

Figure 10: Adapted (k + k) × k meshes with k = 4.

5.3. A partially clamped non inhibited cylindrical shell

We continue with a cylindrical shell, but we choose the

boundary conditions in order the infinitesimal bendings to be

admissible. We roughly take a simplified Scordelis-Lo cylinder

partially clamped along a generatrix (straight edge) while the

other edges arefree. We impose a localized loading on a corner,

see Figure 12. This test is not classical, we preferred it over

the full cylinder with free ends and submitted to periodic pres-

sure, see for instance [10]. The main reason is the more com-

plex shape of the solution in our test; it makes the test tougher

than the full cylinder one.There is no analytic solution to this

problem but it is possible, in this case to solve the associated

asymptotic bending problem (20), see [14]. The asymptotic so-

lution can then be used as a reference solution as we decrease

the thickness.

Let us consider the geometry :

x = x1, y = x2, z = ϕ(x), ∀(x1, x2) ∈ Ω, (23)

with ϕ(x1) =

√

1 − x2
1

and Ω = [0,
√

2
2

] × [−0.5, 0.5]. The shell

is submitted to a vertical force
−→
Fε = ε3−→e 3 localized on the

point P = (
√

2
2
, 0.5,

√
2

2
); note the ε3 scaling corresponding to a

non-inhibited shell.

A

P

B

Clamped boundary

Vertical localized load

free edges

Figure 12: A Cylinder clamped along AB and submitted to a vertical load lo-

calized on P.
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Figure 11: Normalized deflection on midside on Scordelis-Lo roof with adapted

(k + k) × k meshes.

The equation (21) characterizing the vertical component of

an infinitesimal bending reduces to

ϕ22u3,11 = 0.

The vertical component of an infinitesimal bending on the cylin-

der are then the polynomials in x2 with arbitrary functions g and

h of the variable x1 :

u3 = g(x1) + x2h(x1).

The shell being clamped along the straight line x1 = 0., all ver-

tical displacements u3 = g(x1)+x2h(x1) satisfying the boundary

conditions g(0) = g′(0) = h(0) = h′(0) = 0 define admissible

infinitesimal bendings. The shell is thus non-inhibited.

The bending limit problem (20) reduces to a one dimen-

sional differential problem :

Proposition 5.1. The vertical component u0
3

of the asymptotic

bending problem (20) can be computed by solving a variational

problem of two functions of one variable :



































Find u0
3 = g(x1) + x2h(x1) ∈ V

∫

S

1

12

[

A1111ρ11ρ
∗
11 + 4A1212ρ12ρ

∗
12

]

= L(u∗3),

∀u∗3 = g∗(x1) + x2h∗(x1) ∈ V.

(24)

We don’t have the exact analytical solution of the reduced

asymptotic bending problem (24), but it can be solved using

standard one dimensional finite element procedure. To fix the

idea, the value of the vertical component on P for E = 1, ν =

1/3 and unitary vertical load is u0
3
= 2.1168107.

We note that in this case, the vertical displacement on P of

the limit bending solution equals to the limit flexion energy or

the asymptotic energy :

u0
3(P) = ab(−→u 0

,−→u 0
).

It is also remarkable that from minimizing energy results,

if uε is the solution of (10) with the scaled loading Lε then, we

have necessarily :

u0
3(P) ≤ uε3(P) ∀ε > 0.

The value of the vertical component at P is then a good criteria

to evaluate a finite element computation in this case. We study

the convergence for regular and distorted meshes, see Figure 13,

where the distorsion is defined as a geometric sequence of com-

mon ratio 1.1. We must keep in mind that with such distorted

meshes, the asymptotic lines are no more represented by some

sides of the elements. To test the locking we ran computations

for thicknesses from 10−2 to 10−4.

Figure 13: Regular and distorted k × k meshes, with k = 4 .

In the Figure 14, we plot the vertical displacement normal-

ized by the solution of the asymptotic (bending) limit problem

(24) using regular meshes for various values of mesh refine-

ment parameter k, the number of subdivision of [0,
√

2/2]. The

mean size of an element of the mesh is then h =
√

2
2k

. For the

thickness ε = 10−2 we see that DKT, MITC4 and FDEM4 are

coherent and converge to the same solution. As the thickness

decreases, we clearly see that DKT underestimates the real so-

lution whereas the MITC4 and FDEM4 are both coherent with

the asymptotic analysis and seem to converge. In this case,

the membrane locking is absent for both MITC4 and FDEM4

whereas present with DKT.

In the Figure 15, we plot the vertical displacement nor-

malized by a reference solution using quasi uniform distorted

meshes, see Figure 13 , for various values of mesh refinement

parameter k, the number of subdivision of [0,
√

2/2]. As a refer-

ence solution, we used the value obtained with MITC4 element

with a 28x28 regular mesh. We note in this case that the refer-

ence solution is not very different from the asymptotic solution.

The locking is still present for DKT, while not in a differ-

ent manner. On the contrary MITC4 shows signs of significant

deterioration of the approximation for very small thicknesses

(ε = 5.10−4), while FDEM4 seems completely unaffected.
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Figure 14: Non-inhibited partially clamped cylinder submitted to vertical local-

ized load, with regular meshes,
uε

3
(P)

u0
3
(P)

u for thicknesses from 10−2 to 10−4.
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Figure 15: Non-inhibited partially clamped cylinder submitted to vertical local-

ized load, with distorted meshes,
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5.4. A partially clamped non-inhibited hyperbolic paraboloid

We study here the case of a partially clamped hyperbolic

paraboloid defined for any (x1, x2) ∈ Ω =
[

−
√

2
2
,
√

2
2

]2

x = x1, y = x2, z =
1

2
(x2

1 − x2
2). (25)

Let us remark that the last surface is equivalently defined by

x = x1, y = x2, z = x1x2, ∀(x1, x2) ∈ Ωl (26)

whereΩl is the quadrangle defined by the four points A : (−1, 0),

B : (0,−1), C : (1, 0), D : (0, 1), see figure 16

−1 B

0

D
1

−1 1

C
A

A

B

C

D

Figure 16: A hyperbolic paraboloid, partially clamped, along AB, and submit-

ted to uniform vertical load.

Here again we compare FDEM4 with MITC4 and DKT

with respect to the solution of the bending limit problem/ In

the case of hyperbolic paraboloid defined by the map (26), the

equation (21) characterizing the vertical component of an in-

finitesimal bending reduces to

ϕ,12u3,12 = 0.

Then any arbitrary functions f and g of one variable define the

vertical components of any inextensional displacements (or in-

finitesimal bendings) on the paraboloid :

u3(x1, x2) = g(x1) + h(x2) ∀(x1, x2) ∈ Ωl

We recall that when the shell is clamped along the AB boundary,

it is not inhibited although bendings necessarily vanishes in the

subdomain {(x1, x2) ∈ Ω/ x1 ≤ 0 and x2 ≤ 0}. It suffices then

that g and h and their derivatives vanishes on [−1, 0] and be

arbitrary on ]0, 1].

On such shell problem, the limit bending limit problem can

be reduced to a more simple formulation, see [13] :































































Find u3 = g(x1) + h(x2)/g, h ∈ V2

1

12

∫

Ωl

[

g′′

h′′

]⊤ [
A1111 A1122

A2211 A1222

] [

g∗′′

h∗′′

]

a
3
2

=

∫

Ωl

(g∗(x1) + h∗(x2))a
1
2 ,

∀g∗, h∗ ∈ V2

(27)

where

V = { f ∈ ❍2([0, 1])/ f (0) = f ′(0) = 0}.

In Figure 18 and Figure 19 we normalized the vertical dis-

placement on point D with respect to the solution of the bending

limit problem. We used regular and distorted meshes, see Fig-

ure 17, for various values of mesh refinement parameter k, the

size of the mesh being h =
√

2
k

.

As we can see no membrane locking arises on regular meshes

and the results are consistent with the asymptotic behavior, we

observe that the computed solutions converge to the asymptotic

bending limit solution as the thickness decreases towards zero.

The convergence rate seems good but FDEM4 is underperform-

ing compared to both DTK and MITC4.

Figure 17: regular and distorted k × k meshes, with k = 4.

The approximations turn bad for very small thickness with

distorted meshes, see Figure 19. We plot the computed vertical

component on node D normalized with respect to a reference

solution obtained with the MITC4 solution and a very thin reg-

ular mesh (28x28), see table 2, except for the smallest thickness

ε = 10−5 for which we normalized by the asymptotic solution.

It appears that the computations from both DKT and MITC4

presents severe signs of deterioration for thicknesses below 10−3.

FDEM4 also presents slight signs of computational deteriora-

tion but in a very different magnitude and overall correct except

for the smallest thickness for which the error in vertical deflec-

tion is nearly 20%. This is a tough test.

ε 10−2 10−3 10−4 Asymp. solution

ũ3 0.86 0.60580 0.52349 0.5006

Table 2: Reference value of vertical deflection at D compared to the asymptotic

solution.

6. Conclusion and perspective

We have proposed an original shell finite element, FDEM4,

based on finite difference approximation rather than polyno-

mial interpolation. The FDEM4 shell element derives directly

from the Naghdi’s shell model without any corrections. The el-

ement is simple and very cost effective due one node integration

scheme in the construction of the stiffness matrix.

The numerical tests on plates, inhibited and non-inhibited

shells, are very encouraging : the FDEM4 has constantly showed

convergence behavior in every cases we have tested, even though

it is underperforming in some cases compared to others FEM

procedures such as DKT or MITC4 when using coarse meshes.

From these tests, the FDEM4 seems almost free of shear or

membrane locking. Only some serious deteriorations occur in

the non-inhibited partially clamped paraboloid case when us-

ing distorted meshes which is not uncommone for ’locking free

10
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Figure 18: Non-inhibited partially clamped hyperbolic paraboloid. Normalized

vertical displacement on k × k regular meshes
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Figure 19: Non-inhibited partially clamped hyperbolic paraboloid. Normalized

vertical displacement on k × k distorted meshes
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but only for very small thickness (ε = 10−5). The overall be-

havior of FDEM4 on distorted meshes is not perfect, yet it is

very satisfactory, especially compared to MITC4 or DKT shell

elements on the tests we conducted.

The FDEM4 is far from being the perfect element, we detect

instabilities in the computations of some inhibited shell tests

(clamped hyperbolic paraboloid and clamped spherical cap with

uniform loading) which is not uncommon for ’locking free’

shell elements or low order shell elements. In Case of FDEM4

though, the instabilities appear but for very small relative thick-

nesses (< 10−4). The good robustness to distorsion and mem-

brane locking makes the FDEM4 an interesting and mostly re-

liable element. It marks the path for more performant element

for shells based on this concept.

Much work still need to be done on such element, in par-

ticular a theoretical study of convergence and on the interpreta-

tion of finite difference element method as part of the Galerkin

method’s family. We need also to develop facet based FDEM

element instead of an exact definition of the geometry.

Of course, one of the most important, of utmost engineering

interest, is the development of triangular shell elements is as

quadrangular discretisation cannot always be easily available.
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C. R. Acad. Sci. Paris série I, pages 411–417 et 531–537, 1989.

[27] E. Sanchez-Palencia. Asymptotic and spectral properties of a class of

singular-stiff problems. Journal des Mathématiques Pures et Appliquées,
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