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Abstract

This paper presents a general explicit time integration scheme for dynamics simu-
lations using the eXtended Finite Element Method with standard critical time step.
We use the generalized mass lumping technique proposed in part I of this paper.
This technique allows us to consider arbitrary enrichment functions in the X-FEM
for explicit dynamics simulations. In this second part, the proposed approach allows
the use of standard finite elements critical time step estimates. For that purpose,
we developp a classical element-by-element strategy that couples the standard cen-
tral difference scheme with the unconditionally stable explicit scheme proposed by
Chang (International Journal for Numerical Methods in Engineering, 77(8):1100-
1120, 2008). This scheme coupled with X-FEM allows us to recover FE critical time
steps independently of the enrichment functions considered. Furthermore, a study
of the stability property of this new explicit scheme is proposed in the X-FEM
framework, both with fixed enrichments and evolving enrichments with time. Some
examples illustrate the good properties of the new explicit numerical time scheme
and some applications to dynamics crack growth are given.

Key words: X-FEM; explicit dynamics; mass lumping; CFL condition.

1 Introduction

In a general point of view, explicit finite element codes are still widely used for
fast transient dynamic phenomena such as crash or impact simulations. In this

1 Corresponding author: thomas.elguedj@insa-lyon.fr

Preprint submitted to Comput. Methods Appl. Mech. Engrg 17 February 2009



respect, explicit numerical time schemes such as the well-known central differ-
ence scheme have been widely used as they do not require numerical iterations
at each time step, and also for their good properties in term of accuracy and
robustness with possible nonlinearities. The main drawback of such approaches
concerns their conditional stability, and in particular the Courant-Friedrich-
Lewy (CFL) condition (see Courant et al. [14]), which involves rather small
time steps in practice. However, for transient dynamic simulations (possibly
non-linear), the value of the critical time step is of the order of the physical
phenomena that are involved. In other words, the CFL condition is not so
restrictive in practice as it corresponds to the pertinent time scale of the tran-
sient phenomenon. For transient dynamic simulations, it is also often needed
to introduce in the numerical model specific interfaces, or singularities which
can evolve with time (dynamic crack growth simulations, contact/impact sur-
faces, etc...).
In this respect, it was tried very early to couple the eXtended Finite Element
Method with explicit schemes. Indeed, the ability of the X-FEM to introduce
possible time evolving interface or discontinuities independently of the mesh
can be very attractive for explicit transient dynamic simulations. Based on the
Partition of Unity (see Babuška and Melenk [1]), the X-FEM was first applied
to dynamic crack growth simulations by Belytschko and co-authors [3, 42]. In
this first approach, the time scheme combines an element by element partition
with an implicit time scheme for the enriched elements and an explicit time
scheme for the other elements. In a next step, a general strategy for time evolv-
ing enrichments with a study of the stability properties of the Newmark time
scheme family in the X-FEM framework was proposed by Réthoré et al. [34]
and a general numerical time scheme family dedicated to time discontinuities
has also been studied in Réthoré et al. [33]. In Réthoré et al. [34], implicit
Newmark schemes have been considered, and it was shown that introducing
new enrichments and preserving the old ones ensures the energy balance and
stability properties of the considered time schemes in the X-FEM framework.
In fact, the application of X-FEM with explicit numerical time scheme on the
enriched element is rather recent. The main difficulty concerns the enrichment
dependency of the critical time step both with the consistent mass matrix or
standard mass lumping techniques. In other words, the critical time step of
the explicit X-FEM model decreases to zero as a discontinuity or an interface
tends to a node. This was first observed by Belytschko et al. [4] and overcome
by using an implicit integrator for enriched elements and an explicit integra-
tor for standard elements. Some applications of X-FEM to implicit transient
dynamic crack growth simulations both for linear and nonlinear behaviour
can be found in Réthoré et al. [22, 33, 34] and Prabel et al. [31] with the en-
richment update strategy developed by Réthoré et al. [34] in order to ensure
energy balance and stable numerical time schemes. In fact, many authors have
pointed out the critical time step problem with explicit X-FEM simulations
(see, e.g., [3, 32]). Recently, appropriate mass lumping techniques were pro-
posed in order to avoid the enrichment dependency of the critical time step.
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Menouillard et al. [29, 30] developed a specific mass lumping technique for
the generalized Heaviside function with application to dynamic crack growth
simulations. Rozycki et al. [35] proposed a specific mass lumping technique for
free boundaries and holes with constraint strain element.
In part I of this contribution, we proposed a general mass lumping technique
for arbitrary enrichment functions [18]. In this respect, it becomes possible
to introduce asymptotic crack front enrichments in order to avoid the mesh
dependency of the crack front for tri-dimensional dynamic crack growth sim-
ulations. The main results of part I can be summarized as follows:

(1) a general X-FEM mass lumping strategy is proposed for arbitrary enrich-
ments. It agrees with or improves the previously published mass lumping
techniques in an unified manner.

(2) the new X-FEM critical time step is at least half of the standard FE
critical time step without enrichments (depending on the enrichments
and the finite elements considered, see part I [18]).

In this second part, we propose a new explicit X-FEM strategy in which we
recover the standard FE critical time step calculated without enrichments.
In other words, we are able to perform explicit X-FEM computations with
arbitrary enrichments with the classical CFL condition independently of the
position of the interfaces or discontinuities within the elements.

This paper is constructed as follows. In section 2, the explicit unconditionally
stable algorithm proposed by Chang [11] is presented. Furthermore, the energy
method is used to study its stability properties (see, e.g., [12, 21, 24]). In a
second step, an explicit-explicit element partitioning is proposed following the
previous works of Hughes and Liu [25] and Belytschko et al. [5, 37] in order to
couple Chang’s scheme and the central difference scheme. Then, a study of the
stability property of the stable explicit-explicit scheme is proposed. Finally,
its application to X-FEM with the previous mass lumping technique is devel-
oped with the following strategy: Chang’s scheme is used for the enriched and
blending elements, and the central difference scheme for the other elements.
Some examples of dynamic crack simulations including comparisons with ex-
periments are proposed in order to illustrate the good properties of the new
explicit X-FEM time scheme, both in term of critical time step, accuracy and
robustness.
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2 An element by element stable-explicit / explicit time scheme
dedicated to X-FEM

2.1 Enrichment independency of the critical time step and adapted mass
lumping technique

The interest of linking the X-FEM with explicit time integrators was clear
from the beginning. Indeed, many transient dynamics simulations involve in-
terfaces and discontinuities which can evolve with time. In this respect, it
seems very attractive to be able not to mesh the discontinuities on a given
discretization, and also to update the geometry and the mechanical properties
of the interface along time with an explicit numerical time scheme. However,
it was highlighted at the outset by many authors that the conditions of sta-
bility would be degraded if discontinuities are close to a node or an element
boundary (see, e.g., [32]). Therefore, the global conditional stability of explicit
time integrators is mainly influenced by the enriched elements in the X-FEM
framework. In order to limit such a dependency, it was first proposed by var-
ious authors to built specific mass lumping techniques in order to recover a
non-zero value for the critical time step when a discontinuity or an interface
reaches an element boundary (see, for example, [30, 35]).

Fig. 1. Enrichment dependency of the critical time step.

It can be shown numerically that the standard mass lumping technique cou-
pled with X-FEM involves a decreasing critical time step when d tends to zero
[28]. In this respect, the first step consists in building a general mass lumping
technique dedicated to X-FEM which allows a non-zero value for the critical
time step when an enriched interface reaches a node. In other words, it would
allow us to recover an enrichment independency for the critical time step. We
propose here the following notations for the X-FEM space discretization with
arbitrary enrichments:
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ui(x) =
∑

A∈N

uA
i N

A(x) +
∑

B∈Nenr

nenr
∑

α=1

bBαiN
B(x)ψα(x), (1)

where N is the set of all the nodes in the mesh considered, NA(x) is the
standard finite element shape function associated with node A, uA

i is the ith

component of the associated degree of freedom, Nenr is the set of enriched
nodes and bBαi is the ith component of the enriched degree of freedom associated
to node B and to the αth enriched function. As a consequence, the kinetic
energy of the global system at a given time step is defined as follows:

T h =
1

2
U̇T

x−femMLU̇x−fem, (2)

with
ML =

∑

e

(me
L enr +me

L std) , (3)

where ML is the sum of the lumped mass matrices of each finite element, and
U̇ the discretized velocity field with X-FEM enrichments. In this respect, it
involves a mass matrix larger than the corresponding mass matrix without
enrichment. From this definition, it has been shown in part I [18] that the
following mass lumping formula:

[me
L enr]ij = δijmL with mL =

1
∑nnode

i=1 ψ2(xi)

∫

Ωe

ρψ2dΩe, (4)

allows for arbitrary enrichment functions with non zeroed value of the critical
time step. This critical time step is smaller in practice than the standard
critical time step obtained without enrichment:

0 < ∆tx−fem
c ≤ ∆tfem

c , (5)

with a minimal ratio between ∆tx−fem
c and ∆tfem

c of the order of 1/2. In the
aim to recover the following property:

∆tx−fem
c ≡ ∆tfem

c , (6)

we propose here an explicit / explicit coupling technique which uses the explicit
unconditionally stable time scheme presented in the next section.

2.2 Presentation of an unconditionally stable explicit time scheme with an
energetic stability study

From the pioneered works in applying explicit time numerical schemes to tran-
sient dynamic finite element simulations (see, e.g., [2, 6, 27]), many authors
have tried to improve explicit time schemes properties with respect to balance
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equations (momentum, moment of momentum, energy, ...), order of accuracy,
period distorsion and amplitude error. Generalizations of explicit strategies
were also proposed, such as subcycling algorithms (see for example Smolinski
et al. [37, 38] and Daniel [15]), mixed multi-time algorithms (see Belytschko
et al. [5, 7, 8] and Sotelino [39]), or dual mixed multi-time algorithms (see
Gravouil and Combescure [12, 21]), both for linear and nonlinear applica-
tions. However, trully unconditionally stable explicit time schemes have only
been proposed recently by Chang [9, 10] and Tamma et al. [36, 40]. Such ex-
plicit time integrators have very attractive properties as they allow time steps
greater than the standard critical time step. However, in practice, due to the
high frequency phenomena which always occur in transient dynamic problems,
one order of magnitude greater than the standard critical time is sufficient to
obtain an accurate modelling. Some extensions of these explicit time schemes
are also applied to elastic-plastic behaviour, or general non-linear behaviour
considered in structural dynamics by Zhou et al. [41] and Chang [11].

In this respect, we present here the unconditionally stable explicit time scheme
proposed by Chang which can be summarized as follows for linear elastic
behaviour without physical damping:

MÜn+1 +KUn+1 = Fn+1, (7a)

Un+1 =Un + β−1
1 ∆tU̇n + β−1

2 ∆t2Ün, (7b)

U̇n+1 = U̇n +
1

2
∆t(Ün + Ün+1), (7c)

with

β1 = (I+
1

4
∆t2M−1K), (8a)

β−1
2 =

1

2
β−1

1 , (8b)

where U , U̇ , Ü correspond respectively to the discretized displacement, veloc-
ity and acceleration fields at time tn or tn+1, M and K the consistent mass
and stiffness matrices.

This numerical time scheme can be considered as an explicit one by the fact
that the displacement field can be calculated with Eq. (7b) before the use of
the equilibrium Eq. (7a). In a second step, the acceleration field is calculated
with Eq. (7a), and finally the velocity field with Eq. (7c). It can be noticed
that the displacement field calculation implies the use of two constant oper-
ators β1 and β2. This involves to define a preliminary linear system for the
displacement field calculation. This is the main difference with standard ex-
plicit time schemes which do not need the use of linear system solving (except
with the use of Lagrange multipliers). Chang’s unconditionally stable explicit
time scheme has already been studied in detail in several papers by Chang
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[9–11], both in term of unconditional stability (amplification matrix), second
order accuracy, absence of numerical dissipation, and overshooting effect in
displacement and in velocity (see, e.g., [20, 23]). We propose here to recall
its stability properties by the use of an energy approach. We introduce the
following notations:

[X] = Xn+1 −Xn and < X >=
1

2
(Xn+1 +Xn). (9)

As it is commonly done (see Hughes [24]) we assume absence of external loads
for this stability study. From the difference of equilibrium equations at time
tn and tn+1, multiplied by the quantity [U̇ ], we obtain:

[U̇ ]TM [Ü ] + [U̇ ]TK[U ] = 0. (10)

From Eqs. (7a) to (7c), we deduce the following relations:

β1[U ] = ∆t
(

U̇n +
1

2
∆t Ün

)

and [U̇ ] = ∆t < Ü >, (11)

which can be combined as follows:

β1[U ] = ∆t
(

< U̇ > −1

4
∆t [Ü ]

)

. (12)

From the definition of β1 given in Eq. (8a), we can write:

[U ] = ∆t
(

< U̇ > −1

4
∆t [Ü ]

)

− 1

4
∆t2M−1K[U ]. (13)

The difference of equilibrium equations at time tn+1 and time tn leads to:

K[U ] = −M [Ü ]. (14)

Combining Eqs. (12) and (14) we obtain:

[U ] = ∆t < U̇ > . (15)

In a last step, the combination of Eqs. (10), (11) and (15), leads to:

< Ü >T M [Ü ]+ < U̇ >T K[U̇ ] = 0. (16)

Following the methodology of Hughes [24], it corresponds here to a sum of
quadratic terms without numerical dissipation term. Furthermore, Eq. (16) is
identical to the one obtained for the unconditionally stable constant average
acceleration method (Newmark time scheme with β = 0.25 and γ = 0.5). This
confirms with an energetic approach that Chang’s explicit time scheme is also
unconditionally stable.
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As a conclusion, it can be retained that the general properties of Chang’s
unconditionally stable explicit time scheme are exactly the same as those for
the constant average acceleration method, in an explicit framework.

2.3 Development of a stable-explicit / explicit strategy

In order to couple the central difference method and Chang’s explicit time
scheme, we propose to follow the element by element strategy developed by
Hughes and Liu [25]. We briefly recall here the original method applied to
implicit-explicit predictor-corrector strategy for Newmark time schemes:

MÜn+1 +KŨn+1 = Fn+1, (17a)

Ũn+1 = Un + ∆tU̇n + ∆t2(
1

2
− β)Ün, (17b)

˜̇Un+1 = U̇n + ∆t(1 − γ)Ün, (17c)

Un+1 = Ũn+1 + ∆t2βÜn+1, (17d)

U̇n+1 = ˜̇Un+1 + ∆tγÜn+1. (17e)

In a second step, it consists in a partition of implicit elements and explicit
elements:

MÜn+1 +KEŨn+1 +KIUn+1 = Fn+1, (18a)

Ũn+1 = Un + ∆tU̇n + ∆t2(
1

2
− β)Ün, (18b)

˜̇Un+1 = U̇n + ∆t(1 − γ)Ün, (18c)

Un+1 = Ũn+1 + ∆t2βÜn+1, (18d)

U̇n+1 = ˜̇Un+1 + ∆tγÜn+1, (18e)

where

M = M I +ME and K = KI +KE and F = F I + FE. (19)

In Eq. (19), M I is a consistant mass matrix linked to the implicit part, and
ME is a lumped mass matrix linked to the explicit part. In the same way,
we propose to develop a stable explicit - explicit time scheme according to
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Eqs. (18a) to (18e):

MÜn+1 +KUn+1 = Fn+1, (20a)

UE
n+1 = UE

n + ∆tU̇E
n +

∆t2

2
ÜE

n , (20b)

UES
n+1 = UES

n + β−1
1 ∆tU̇ES

n + β−1
1

∆t2

2
ÜES

n , (20c)

U̇n+1 = U̇n +
∆t

2
(Ün + Ün+1). (20d)

with the following definitions:

M = MSE +ME and K = KSE +KE and F = F SE + FE, (21)

β1 = (I +
1

4
∆t2(MSE)−1KSE), (22)

where upperscripts SE and E correspond respectively to Chang’s stable ex-
plicit time scheme and the central difference time scheme. Following the strat-
egy of Hughes [24], one can also study the global stability properties of the
proposed stable-explicit/explicit method by the use of an energetic approach.

Remark 1 It should be noted here, as presented previously, that the numeri-
cal cost of Chang’s scheme is bigger than the one of the central difference time
scheme. It involves the assembly and inverse computation of the β1 operator
at the beginning of the time loop. Once β−1

1 is formed, a matrix vector com-
putation is needed at each time step to form the new displacement vector as
can be seen in Eq. (7b). The main purpose of creating an element by element
scheme is to limit the size of the SE group so that this additional cost is kept
as low as possible.

In order to obtain the stability conditions for the stable-explicit/explicit algo-
rithm, one first recalls the energy method applied to the Newmark algorithm
alone without mechanical damping (see, e.g., Hughes [24]):

ÜT
n+1AÜn+1 + U̇T

n+1KU̇n+1 = ÜT
n AÜn + U̇T

n KU̇n − (2γ − 1)[Ün]TA[Ün], (23)

where
A = M + ∆t2(β − γ/2)K. (24)

To establish the stability conditions, we only need to determine when A is
positive-definite (see, e.g., [21]). For the Newmark time scheme, the standard
stability properties are obtained:







1/2 ≤ γ ≤ 2β unconditional stability

1/2 ≤ γ and 2β ≤ γ conditional stability
(25)

Furthermore, the energy method has already been applied to implicit-explicit
algorithms with an element-by-element strategy in order to study its global
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stability properties by Hughes and Liu [25]. In the same way, we obtain the
following expression for the stable explicit - explicit partition:

ÜT
n+1(A

SE + AE)Ün+1 + U̇T
n+1KU̇n+1 = ÜT

n (ASE + AE)Ün + U̇T
n KU̇n

− (2γ − 1)[Ün]T (ASE + AE)[Ün] (26)

where

ASE = MSE + ∆t2(β − γ/2)KSE, (27)

AE = ME + ∆t2(β − γ/2)KE. (28)

Again, the proof is identical to that of the first theorem with AES + AE in
place of A with β = 0 and γ = 1/2 (see, e.g., [25]). In other words, the global
stability is preserved according to the stability properties of each partition. In
this respect, we have shown in the previous section that the stability property
of the stable explicit partition is identical to the constant average accelera-
tion method. Furthermore, if the same global time step is considered for each
partition, no numerical dissipation is introduced at the interface between the
partitions.

As a conclusion, we propose here to combine in an element by element parti-
tioning an unconditionally stable explicit time scheme with the central differ-
ence method. In the next section, we use this strategy in an explicit X-FEM
framework with the proposed specific lumped mass matrix for the stable ex-
plicit partition and a standard lumped mass matrix for the central difference
partition.

2.4 An explicit X-FEM method with a standard critical time step

The main goal of this paper is to propose an explicit X-FEM method with:

(1) a specific mass lumping technique for arbitrary enrichments
(2) an explicit method with standard critical time step

In this section, we propose to reach the second goal by the use of an uncondi-
tionally stable explicit time scheme for the enriched elements and the blending
elements, with the central difference method for the other ones. In this respect,
we can apply the element by element partitioning proposed in section 2.3. This
choice for the partitioning is what ensures us to have a numerical cost due to
the use of Chang’s scheme as low as possible. We only put in the SE group
the elements for which the critical time step is too small, that is the enriched
ones. In most cases, as will be seen on the examples this ensures us that the
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size of the SE problem is of one dimension lower, that is in 2D, it has the size
of a 1D problem.

Fig. 2. Stable-Explicit / Explicit element partitionning. Note that the elements
completely contained inside a hole are deleted.

In Figure 2, we illustrate the application of such a partitioning with different
kinds of fixed enrichments (crack, hole, free boundary, ...). The global stability
of explicit element by element partitioning dedicated to X-FEM can be proved
in the same way as section 2-2. Indeed, the same energetic expression can
be obtained with standard and enriched degrees of freedom. However, the
main interest of X-FEM resides in its ability to model evolving interfaces with
time. In this respect, it has been shown that introducing new enrichments
and preserving the old ones ensure the energy balance and the global stability
of the considered time scheme (see, e.g., [13, 33, 34] and part I, paragraph
2.2.3.1 ). This strategy can also be extended to the proposed stable explicit-
explicit partitioning.

For the case of evolving enrichment, a prime example being crack growth sim-
ulation, the partitioning evolves with the discontinuity. As the discontinuity
moves from one element to another, new enriched elements are added in the SE
group as presented in Figure 3. This has various implications on the matrices
of the system. First, mass and stiffness matrices of the SE group are getting
bigger because of the new enrichements that are created and because of new
elements that are added in the group. Second, as some elements are changing
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Fig. 3. Stable-Explicit / Explicit element partitioning update for a propagating
crack.

from the E group to the SE group, the mass and stiffness matrices of the E
group are getting smaller. Finally, the β1 operator of the stable scheme is also
getting bigger and must be recomputed. The numerical cost of this operation
is what motivates the use of an element-by-element scheme with the proposed
partitioning. The size of the SE group is maintained as small as possible and
its growth is maintained as low as possible.

3 Numerical Examples

All the examples presented in the following are treated under plane strain
conditions. Furthermore, we apply here the general X-FEM stable explicit-
explicit strategy to dynamic fracture mechanics. In such a case, we consider
the following discontinuous and asymptotic enrichments:

H(x) =







+1 if x ≥ 0,

−1 if x < 0.
(29)

and

[Bα] =
√
r sin

θ

2
, (30)

in order to capture respectively the discontinuity along the crack faces, and
the asymptotic behavior close to the crack tip. As shown by different authors,
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a sufficient accuracy is obtained with static linear elastic crack tip enrich-
ments given in Eq. (30) for dynamic crack growth simulations in mixed modes
(see, e.g., [22, 34]) and it was observed in Part 1 that using only the first
asymptotic enrichment function provides very accurate results thus reducing
the cost of the method.

3.1 Stationary and moving semi-infinite mode I crack

= 1.009 × 10
−3s

σ0 = 500MPa

t ≤ 3τc =
3H
cd

a0 = 5m

L = 10m

2
H

=
4
m

σ0

E = 210GPa

ν = 0.3

ρ = 8000kg.m−3

Fig. 4. Mode I semi-infinite crack problem: finite geometry and material parameters.

We consider as a first example the case of a semi-infinite mode I crack in an
infinite medium submitted to a tensile stress wave. The analytical solution for
the mode I dynamic stress intensity factor was obtained by Freund [19]. We
consider the finite geometry given in Figure 4, therefore we can only compare
the results with the analytical solution until the tensile stress wave is reflected
on the bottom side and reaches again the crack tip. The time needed by
the stress wave to reach the crack tip for the first time is τc = H

cd

, where cd
is the dilatational wave speed. The total simulation is therefore limited to
t ≤ 3τc = 1.009 × 10−3s with the material parameters given in Figure 4.

As the wave reaches the crack tip, the mode I dynamic stress intensity factor
for a stationary crack is given by:

Kdyn
I (0, t) =

2σ0

1 − µ

√

cdt(1 − 2µ)

π
, (31)

where µ is the second Lamé constant. For a moving crack tip, the mode I
dynamic stress intensity factor is given by:

Kdyn
I (ȧ, t) = k(ȧ)Kdyn

I (0, t), (32)

where k is a universal function of the crack tip speed ȧ. k can be approximated
by the following expression:

k(ȧ) =
1 − ȧ/cr
1 − ȧ/2cr

, (33)
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with element-by-element explicit scheme (∆t = ∆tc).
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Fig. 6. Normalized mode I stress intensity factor vs. normalized time for a stationary
semi-infinite crack: analytical solution, 60 × 120 elements mesh with central differ-
ence explicit scheme and time step rule of Part 1 (∆t = ∆tc/2), 60 × 120 elements
mesh with element-by-element explicit scheme (∆t = ∆tc).

where cr is the Rayleigh wave speed. Finally, one can write:

Kdyn
I (ȧ, t) =

2σ0

1 − µ

√

cdt(1 − 2µ)

π

1 − ȧ/cr
1 − ȧ/2cr

. (34)

We first use a mesh of 40×80 quadrilateral elements with standard explicit cen-
tral difference scheme with a critical time step of ∆tx−fem

c = ∆tfem
c /2 = 7.5µs
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(that is a simulation of 134 time steps) and the proposed stable-explicit /
explicit scheme with a critical time step of ∆tx−fem

c = ∆tfem
c = 15µs (that

is a simulation of 67 time steps). We compare the normalized mode I dy-
namic stress intensity factor Kdyn

I /σ0

√
H as a function of the normalized time

t/τc obtained with and without the proposed dynamic scheme and with the
analytical solution.

The result can be seen in Figure 5. We can observe that all the results are close
to the analytical solution. The solution with a standard explicit central differ-
ence time integrator presents some oscillations whereas the solution with the
proposed time integration scheme presents attenuating oscillations. Around a
time of t ≃ 2τc the result presents almost no oscillations and is identical to
the analytical solution. This demonstrates that for a mode I stationary crack
the proposed time integration scheme eliminates some of the oscillations that
are obtained when the critical time step for the whole mesh is limited by the
one of the enriched elements.

The same calculation was also performed with a mesh of 60×120 quadrilateral
elements with a standard explicit central difference scheme with a critical time
step of ∆tx−fem

c = 5µs ≃ ∆tfem
c /2 (that is a simulation of 200 time steps)

and the proposed Stable-Explicit/Explicit scheme with a critical time step
of ∆tx−fem

c = ∆tfem
c = 10.99µs (that is a simulation of 91 time steps). In

Figure 6, we can observe that both cases fit quite well the analytical solution
but that again the element-by-element scheme presents fewer oscillations and
that these oscillations are not seen for a time t > 2τc.

As in various references [3, 4, 17, 29, 33, 34], we now consider the case of
stationary then moving crack. The crack remains stationary for 0 ≤ t < 1.5τc
then propagates in mode I at a constant velocity ȧ = 1500m.s−1 for t ≥ 1.5τc.

We consider the same two cases as in the previous example. In Figure 7, we
compare the results obtained with a mesh composed of 40 × 80 quadrilateral
elements with standard explicit central difference scheme with a critical time
step of ∆tx−fem

c = ∆tfem
c /2 = 7.5µs (that is a simulation of 134 time steps)

and the proposed Stable-Explicit/Explicit scheme with a critical time step
of ∆tx−fem

c = ∆tfem
c = 15µs (that is a simulation of 67 time steps). The

results compare relatively well with the analytical solution although they both
presents oscillations when the crack is moving as it is the case with other X-
FEM explicit dynamics techniques presented in Belytschko et al. [4], Zi et
al. [42] and Menouillard et al. [29]. It is interesting to note here, that we
did not apply any numerical filter to the results obtained with the proposed
method contrary to the ones presented in the References cited above. We can
observe that the results obtained with the proposed method presents fewer
oscillations with a lower amplitude compared to the results obtained with
a standard central difference scheme and the time step rule of Part 1. This
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Fig. 7. Normalized mode I stress intensity factor vs. normalized time for a stationary
then moving semi-infinite crack: analytical solution, 40 × 80 elements mesh with
central difference explicit scheme and time step rule of Part 1 (∆t = ∆tc/2), 40×80
elements mesh with element-by-element explicit scheme (∆t = ∆tc).
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Fig. 8. Normalized mode I stress intensity factor vs. normalized time for a stationary
then moving semi-infinite crack: analytical solution, 60 × 120 elements mesh with
central difference explicit scheme and time step rule of Part 1 (∆t = ∆tc/2), 60×120
elements mesh with element-by-element explicit scheme (∆t = ∆tc).

indicates that the accuracy is increased by using the proposed method.

In Figure 8, we compare the results obtained with a mesh composed of 60×120
quadrilateral elements with a standard explicit central difference scheme with a
critical time step of ∆tx−fem

c = 5µs ≃ ∆tfem
c /2 (that is a simulation of 200 time

steps) and the proposed Stable-Explicit/Explicit scheme with a critical time
step of ∆tx−fem

c = ∆tfem
c = 10.99µs (that is a simulation of 91 time steps).
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As observed previously, both results compare well to the analytical solution
and the proposed method has fewer oscillations with a lower amplitude. It can
be noted that for both methods, the oscillations are lower compared to the
results obtained with the coarser mesh.

3.2 Kalthoff’s experiment

Fig. 9. Experimental setup and geometry for Kalthoff’s experiment.

This example deals with the numerical simulation of Kalthoff’s experiment of
the failure mode transition under pure mode II loading [26]. The experimen-
tal configuration is presented in Figure 9: a plate with two symmetrical edge
cracks is impacted by a projectile at a given speed V0. By modifying the pro-
jectile’s velocity, Kalthoff observed a transition in the type of failure. At low
velocity, i.e. under low strain rate, brittle failure is observed with a simultane-
ous propagation of the two cracks with a global angle between 60◦ and 70◦. If
one increases the projectile’s speed, a transition between brittle fracture and
shear band propagation (with a propagation angle of approximatively −10◦)
occurs. We consider here only the brittle propagation with in impact veloc-
ity of 20m.s−1. As in Belytschko et al. [4], Zi et al. [42] and Menouillard et
al. [29], we model the experiment in plain strain and consider only the upper
half of the plate with the appropriate symmetry boundary conditions. The
material properties are those of a 18Ni1900 maraging type steel and are given
in Figure 9.

A mesh of 80 × 80 piecewise bilinear quadrilateral elements was used, with a
critical time step of ∆tx−fem

c = ∆tfem
c /2 = 0.11µs for the explicit central dif-

ference scheme, the simulation time was 100µs represented by 900 time steps.
When using the proposed Stable-Explicit/Explicit time scheme, a critical time
step of ∆tx−fem

c = ∆tfem
c = 0.22µs, the simulation time was 100µs represented

by 450 time steps.
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[29]): final crack path (left) and crack length versus time (right).

The left part of Figure 10 shows the crack path obtained with and without
the proposed explicit dynamic scheme and with an X-FEM implicit mean
acceleration time integrator with a full singular enrichment basis with the same
mesh (Menouillard et al. [29]). These results are very similar and the overall
angle is in good agreement with the experimental and previously published
numerical results. Looking at the details of the crack path, we observe the
same phenomena as in Menouillard et al. [29] and de Borst et al. [16]. The
crack starts to propagate with an angle of 65◦ at 26µs; then a small deviation
is observed around 50µs and the crack continues to propagate with an angle
of 65◦ from 65µs. This deviation is related to the successive reflections of the
compressive stress wave. The wave travels from the left edge to the right one
when the projectile hits the plate. Then the wave is reflected on the right
free surface as a tensile wave, reaches the crack tip around 26µs and the
propagation starts. This tensile wave travels from the crack tip to the left free
surface and is again reflected as a compressive wave. Then, this wave travels
in the right direction and reaches the moving crack tip around 50µs. This
compressive wave induces the crack deviation, but is subsequently reflected
against the right edge as a tensile wave which finally reaches the crack tip at
65µs, after which the crack continues to propagate with the initial angle.

We also plot on the right part of Figure 10 the crack length as a function
of time for the two methods. We can also observe that the three results are
almost identical, although the crack seams to propagate a little earlier and
with a slightly lower velocity with the explicit schemes than with the implicit
one.

This results show that the proposed explicit dynamic scheme allows us to
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obtain the same results obtained in Part 1 with a reduced computational cost
as the number of time step is divided by a factor of two.

3.3 Grégoire et al.’s experiment

Fig. 11. Experimental setup and geometry for Grégoire’s experiment.

The last example is based on the experiment of Grégoire et al. proposed in
[22]. The experimental setup can be observed in Figure 11. It consists of a Split
Hopkinson Pressure Bar test rig. The test specimen is made out of PMMA
and consists in a rectangular plate with a hole and a initial notch coming
out of the hole. The hole provides a direct conversion of compressive waves
coming from the impact of the input bar into tensile waves. In order to ensure
mixed-mode loading and crack orientation effects during the propagation, the
initial notch is moved upwards from the specimen axis of symmetry. Strain
gages are placed on the input and output bars. The measured signal can be
interpreted in term of strength or velocity. An optical measurement system
composed of four digital cameras is used to take pictures during the test and
obtain precise information on the crack position.

This experiment is composed of three phases: the crack initiates at around
200µs and propagates at a constant horizontal velocity of approximatively
ȧx ≃ 211m.s−1 which corresponds to a maximum of the curvilinear velocity
of the crack tip ȧ ≃ 260m.s−1; then the crack stops for about 50µs; finally
a second propagation stage at constant horizontal velocity ȧx ≃ 157m.s−1

(ȧ ≃ 160m.s−1) occurs until the final stop at about 500µs.

As in Grégoire et al. [22] the hole and the crack are modelled using enrichment.
The Stable-Explicit element group is therefore composed of the elements en-
riched to represent the crack and elements cut by the hole. We used a regular
mesh of 27 × 51 piecewise bilinear quadrilateral elements. The experimental
velocity is imposed as the loading on the contact face between the input bar
and the specimen. On the contact surface between the specimen and the out-
put bar, an impedance boundary condition is used to model the output bar
without spurious wave reflections. The impedance conditions consists in im-
posing a 1D relation between the horizontal component of the stress vector

19



and the horizontal velocity on the surface considered. This can be written as:

σ · n = −z(u̇ · n)n, (35)

where z is related to the material properties of the output bar by the following

z = ρbarcbar
L , (36)

ρbar and cbar
L being respectively the ouput bar density and unidimensional

traction-compression wave speed. The integration of this 1D condition results
in a additional force term in the equilibrium equation:

MÜn+1 = Fn+1 − F int
n+1 − ZU̇n+1, (37)

which can be simplified using the update equations of the time integration
scheme:

(M + ∆tZ)Ün+1 = Fn+1 − F int
n+1 − Z(U̇n + ∆tÜn). (38)

The matrix Z that comes from the integration of Eq. (35) is diagonal, which
allows us to easily solve Eq. (38), the global matrix being still diagonal.

The material properties ar given in Table 1. As in Grégoire et al. [22], we
use two different values for the dynamic fracture toughness: one for the initi-
ation and one for the propagation. This is due in part to the radius difference
between the initial notch and the propagating crack.

Young’s modulus E 2.4 GPa

Poisson ratio ν 0.42

Density ρ 1180 kg.m−3

Dilatational wave speed cL 1426 m.s−1

Shear wave speed cS 846 m.s−1

Rayleigh wave speed cR 800 m.s−1

Initiation fracture toughness Kini
Ic 1.47 MPa.

√
m

Propagation fracture toughness Kpropa
Ic 1.33 MPa.

√
m

Table 1
Grégoire’s experiment: material properties.

The results of the computation can be seen in Figure 12 to 15. In Figure 12, we
plot the crack tip horizontal position as a function of time for the simulation
and the experiment. We can see that the initiation, arrest and restart phases
are well captured as it is the case in Grégoire et al. [22] with an X-FEM
implicit mean acceleration calculation. In particular the arrest phase position
in space and time is well described compared to the results obtained in Prabel
et al. [31]. We can note however that the initiation occurs a little earlier than
in the experiment and that the crack velocity in both propagation phases is
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slightly lower than the experimental one. We can also note that there is no
spurious crack kinking in the last propagation phase compared to the results
of Prabel et al. [31].

In Figure 13, we compare the experimental and numerical crack paths. We
can observe the global path obtained in the calculation agrees well with the
experimental one. A zoom on the results around the initiation and arrest
phases confirms this agreement in these important zones of the crack path.

In Figure 14, we plot the input and output experimental and numerical ve-
locities as a function of time. We can see that the numerical output velocity
presents some oscillations but agrees quite well with the experimental one.
However, we can see that there is a shift in time of around 20µs on the output
velocity which corresponds to the difference in the initiation time between the
simulation and the experiment. This indicates that some improvements can
be done in the method to fit even better the experimental results.

Finally we plot on Figure 15 the vertical displacement field on the deformed
configuration (amplified 1.5 times) and the Von Mises stress field on the initial
configuration at various interesting times.
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numerical simulation with the proposed method: input and output velocities versus
time.

22



Fig. 15. Grégoire’s experiment: results at 235µs, 320µs and 500µs. Left: vertical
displacement on the deformed configuration (amplified 1.5 times), right: Von Mises
stress field on the initial configuration (the crack is represented by the black seg-
ments).

4 Conclusions

We have proposed in this paper a combination of a general mass lumping
technique for arbitrary enrichments with a stable explicit-explicit strategy
dedicated to X-FEM. In a general point of view, it allows to recover a stan-
dard critical time step in the X-FEM framework for fully explicit transient
dynamic simulations with possible moving interfaces. Indeed, no enrichment
dependency of the critical time step is observed, i.e. the position of the in-
terface with respect to the nodes and element boundaries does not decreases
the value of the critical time step. For that purpose, an unconditionally stable
explicit time scheme has been coupled with the central difference method in
an element-by-element partitioning. Furthermore, a study of the global sta-
bility properties has been proposed via the energy method. The interest of
the combination of the mass lumping formula presented in Part 1 and the
element-by-elements scheme is that a complex structure can be modelled by
a rectangular structured mesh, the inside and outside complex shapes being
modelled with hole enrichment. With such an approach, as presented in the
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numerical examples, the critical time step determination is very easy and the
number of time steps is minimal while accuracy is maximum.

The application of the proposed method to dynamic crack growth in mixed
mode reveals its ability to simulate moving interfaces in an fully explicit X-
FEM framework with a standard critical time step. In this particular case, It
can be noticed that asymptotic enrichments with moving crack has been used
here for the first time with an explicit X-FEM strategy. This is of great im-
portance for future application such as tridimensional dynamic crack growth
simulations. Indeed, in such a case, a very good accuracy is required along the
crack front, both in term of shape modeling, and also in term of discontinuous
and asymptotic behavior along the crack front. In a next step, extensions of
such an approach to non-linear behavior, both in the bulk or inside the in-
terface will be considered in an explicit X-FEM framework. This is of great
interest for transient highly nonlinear dynamics simulations with a large num-
ber of time step which also require to take into account moving interfaces.
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