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Abstract

This paper presents a general mass lumping technique for explicit dynamics simu-
lations using the eXtended Finite Element Method with arbitrary enrichment func-
tions. The proposed mass lumping technique is a generalization of previously pub-
lished results for cracks and holes. Time step estimates are studied for crack singular
enrichment functions and for hole enrichment. In both cases, we show that the crit-
ical time step does not tend to zero and is of the same order as that of the same
unenriched element. The performance of the method is demonstrated on several
numerical examples that compare well with classical finite elements and previously
published X-FEM results.
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1 Introduction

The accurate prediction of the behavior of complex structures in fast tran-
sient applications is a difficult challenge from numerical and industrial points
of view. Real-life applications such as crash, impact and explosions require very
small time increments in order to resolve accurately the physical phenomenon
involved. The computational cost of such numerical simulations with large
meshes of complex non-linear structures can become problematic even though
computer performance is growing rapidly. To overcome this, explicit time inte-
grators (such as the central difference scheme, see, e.g., [29]) are very popular
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in the solid mechanics community. They require small time steps for stability
reasons, but these values are usually of the same order of the physical phe-
nomenon that are modelled. Moreover, they do not require any iterations in
non-linear cases and if used with appropriate mass lumping scheme, their com-
putational cost can be reduced significantly as the diagonal matrix inversion
is straightforward.

The modelling of discontinuities such as cracks and complex shapes in the
finite element method requires conforming meshes that usually have a large
dispersion in the mesh density. Because of the stability condition that limits
the time step, these small elements impose a very small time step for the whole
mesh. For the central difference scheme, superconvergence is observed when
the time step equals the stability limit (see, e.g., [16]). This behavior leads
us to compute such simulations with a time step as close to the critical time
step as possible. However, a large dispersion in the mesh density forces us
to “compute” most finite elements with a time step quite smaller than their
stability limit. This is penalizing in term of computational cost, as it requires
to compute more time steps, as well as for the quality of the solution.

Based on the Partition of Unity of Babuška and Melenk [1], the eXtended
Finite Element Method was introduced by Belytschko and Black [4] and Moës
et al. [26]. It was first applied to two-dimensional crack growth simulation by
Belytschko and co-workers [4, 26], then to three-dimensional crack propagation
in Sukumar et al. [38], Moës et al. [27] and Gravouil et al. [14]. It was further
extended to many applications such as holes and inclusions in Sukumar et
al. [37], Daux et al. [7] and more recently by Rozycki et al. [35]. The use
of the X-FEM in dynamic situations was mostly focused on dynamic crack
growth modelling. Belytschko et al. [3] were the first to point the problem of
possibly null critical time step with X-FEM and therefore used the implicit-
explicit element by element scheme of Hughes and Liu [17]. Réthoré et al. [33,
34] and Prabel et al. [30] circumvent this problem by using an implicit time
integrator with a specific enrichment strategy to ensure energy conservation.
De Borst et al. [8] and Remmers et al. [32] also experienced the critical time
step problem with discontinuous enrichment. They proposed to prevent the
crack from getting too close to the nodes and to choose very small time steps.

The only successful attempts in finding appropriate mass lumping schemes for
enrichment that produce non-zero critical time steps are the ones of Menouil-
lard et al. [24, 25] for dynamic crack growth and Rozycki et al. [35] for free
boundaries and holes with constant strain elements. However, these two meth-
ods have certain drawbacks. The lumping scheme and critical time step es-
timates of Rozycki et al. is only valid for constant strain elements, that is
triangular and tetrahedral finite elements. The various lumping techniques
proposed by Menouillard et al. are designed for discontinuous enrichment
only. The absence of a cohesive law on the crack faces or of singular en-
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Fig. 1. Non-planar 3D crack: level set representation, elements cut by the crack,
“numerical” and “physical” crack front with a pure discontinuous enrichment ap-
proach.
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richment prevents us to position accurately the crack front inside an element.
The “numerical front” is always located on an element boundary, whereas the
“physical front” can be located inside an element but is not modelled in the
finite element approximation. In two-dimensional simulations, if the mesh is
sufficiently fine, this has no visible effect on the crack path prediction as shown
in Menouillard et al. citetomtom06,tomtom2. However, for three-dimensional
simulations with non planar cracks, the faceted description of the front with a
purely discontinuous X-FEM approach can become problematic as presented
in Figure 1. This aspect is what motivates the present study. We want to model
accurately three-dimensionnal fast dynamic phenomenons in complex struc-
tures, mainly crack propagation. We believe that from both computational
and physical aspects, explicit time integrators are well suited for this purpose.
Although all the examples that will be presented throughout the paper are
two-dimensional ones, we want to develop a method that will be as efficient
in three-dimensional cases. For the case of three-dimensional dynamic crack
growth we believe that the use of singular enrichment is essential.

We propose in this paper a general mass lumping formula for arbitrary enrich-
ment functions. It is based on an exact representation of the kinetic energy of
rigid body modes and enrichment modes. We focus on the application of this
expression to dynamics crack growth modelling with singular enrichment and
of free boundaries and holes with quadrilateral meshes.

The paper is constructed as follows. In Section 2, the governing equations of
explicit dynamics are recalled, a brief overview of the X-FEM is given with
a particular emphasis on dynamic crack modelling. In Section 3, the general
mass lumping formula is given and applied to cracks and holes modelling for
which critical time steps estimates are presented and general rules are given.
In Section 4, several numerical examples are presented where we compare the
method to standard finite elements and other X-FEM approaches for dynamics
crack growth simulations.

2 Governing equations

2.1 Continuous formulation

The strong form of the initial boundary value problem of structural dynamics
for a body Ω can be stated as follows (see, e.g., Hughes [16]):

Given f : Ω×]0;T [→ R
3, g : Γg×]0;T [→ R

3, and h : Γh×]0;T [→ R
3, find
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u : Ω → R
3 such that:

ρ
∂2u

∂t2
= divσ + f on Ω×]0;T [, (1)

u = g on Γg×]0;T [, (2)

σ · n = h on Γh×]0;T [, (3)

u(x, 0) = u0(x) x ∈ Ω, (4)

∂u

∂t
(x, 0) = u̇0(x) x ∈ Ω, (5)

where n is the exterior unit normal on Γ, the boundary of Ω, g is the prescribed
displacement on Γg and h is the prescribed traction on Γh, which form together
the boundary Γ = Γh ∪ Γg of Ω, and f is the body force. u0 and u̇0 are the
initial displacement and velocity conditions. The stress tensor σ is defined in
terms of the strain tensor ε by the generalized Hooke’s law:

ε = ∇su =
1

2
(∇u + ∇uT ), (6)

σ = c : ε. (7)

Eq. (1) is the equation of motion, Eqs. (2) and (3) are the Dirichlet and
Neumann boundary conditions and Eqs. (4) and (5) are the initial conditions.

We define the trial and weighting spaces as follows:

St = {u(·, t) | u(x, t) = g(x, t), x ∈ Γg, u(·, t) ∈ H1(Ω)}, (8)

V = {u(·, t) | u(x, t) = 0, x ∈ Γg, u(·, t) ∈ H1(Ω)}. (9)

The weak form corresponding to Eqs. (1) to (5) can now be stated as:
Given f , g, h, u0 and u̇0, find u(t) ∈ St, t ∈ [0;T ], such that for all w ∈ V:

(w, ρü) + a(w,u) = (w, f) + (w,h)Γh
, (10)

(w, ρu(0)) = (w, ρu0), (11)

(w, ρu̇(0)) = (w, ρu̇0), (12)

where standard notation for the L2 inner product has been used:

(w, ρü) =
∫

Ω

w · ρüdΩ, (13)

a(w,u) =
∫

Ω

εij(w)cijklεkl(u)dΩ, (14)

(w,h)Γh
=
∫

Γh

w · hdΓ. (15)
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2.2 Discrete formulation

The semi-discrete Galerkin formulation of elastodynamics is:
Given f , g, h, u0 and u̇0, find uh = vh + gh, uh(t) ∈ Sh

t such that for all
wh ∈ Vh:

(wh, ρv̈h) + a(wh,vh) = (wh, f) + (wh,h)Γh
− (wh, ρg̈h) − a(wh,gh), (16)

(wh, ρvh(0)) = (wh, ρu0) − (wh, ρgh(0)), (17)

(wh, ρv̇h(0)) = (wh, ρu̇0) − (wh, ρv̇h(0)). (18)

Using Eqs. (16) to (18) and the usual finite element interpolation for uh and
wh, we obtain the classical matrix problem:

MÜ +KU = F t ∈]0;T [, (19)

U(0) = U0, (20)

U̇(0) = U̇0, (21)

where M and K are the usual mass and stiffness matrices, F is the vector
of applied forces and Ü , U̇ , U are the acceleration, velocity and displacement
vectors.

2.2.1 Time discretization: explicit dynamics central difference scheme

The previous equations constitute a coupled system of second order ordinary
differential equations that needs to be integrated in time. This is done using
Newmark’s scheme:

Un+1 = Un + ∆tU̇n + ∆t2(
1

2
− β)Ün + ∆t2βÜn+1, (22)

U̇n+1 = U̇n + ∆t(1 − γ)Ün + ∆tγÜn+1, (23)

where γ and β are the two parameters of the scheme. The stability and the
order of accuracy of the scheme depend on the respective values of these two
parameters.

The stability of the scheme can be studied using the energy method (see
Hughes [16], chapter 9). It can be recast in the following form:







1

2
≤ γ ≤ β unconditionally stable,

1

2
≤ γ and 2β ≤ γ stable if ∆t ≤ 1

ωmax

√
γ/2−β

,
(24)

where ωmax is the largest eigenpulsation of the system. The scheme is second-
order accurate if γ = 1

2
.
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From now on we will use the explicit central difference scheme, which corre-
sponds to Newmark’s scheme with γ = 1

2
and β = 0. This scheme is explicit,

second-order accurate and conditionally stable. The equations discretized in
space and time are:

Un+1 = Un + ∆tU̇n +
∆t2

2
Ün, (25)

MÜn+1 = Fn+1 − F int
n+1, (26)

U̇n+1 = U̇n +
∆t

2
(Ün + Ün+1). (27)

For a linear elastic material, we have F int
n+1 = KUn+1, for a non-linear ma-

terial, the internal forces are integrated from the stresses. The scheme being
conditionally stable, the time step must be chosen in accordance with the
Courant-Freidrich-Lewy condition:

∆t ≤ ∆tc =
2

ωmax

. (28)

It can be seen from Eq. (25) that the update of the displacement only requires
variables known from the previous time step. Consequently, solving the balance
of momentum given by Eq. (26) does not require any iterations once the
internal forces are assembled when considering a non-linear material. Finally
if the mass matrix is lumped, that is replaced by a diagonal form, solving
Eq. (26) is straightforward.

2.2.2 The eXtended Finite Element Method

The X-FEM was first introduced in Belytschko and Black [4] and Moës et
al. [26]. Based on a local partition of unity (see Babuška and Melenk [1]), it
consists in a finite element method where enrichment functions are added to
the standard approximation. If we consider a set of nenr scalar enrichment
functions ψα(x), the displacement field can be written:

ui(x) =
∑

A∈N

uA
i N

A(x) +
∑

B∈Nenr

nenr
∑

α=1

bBαiN
B(x)ψα(x), (29)

where N is the set of all the nodes in the mesh considered, NA(x) is the
standard finite element shape function associated with node A, uA

i is the ith

component of the associated degree of freedom, Nenr is the set of enriched
nodes and bBαi is the ith component of the enriched degree of freedom associated
to node B and to the αth enriched function.

The X-FEM has already been used in various applications where appropriate
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enrichment functions were derived, based on asymptotic behaviour or smooth-
ness considerations. The most frequent use of the method is to model discon-
tinuities such as cracks, where two types of enrichments are utilized. The
elements that are completely cut by a crack are enriched using a discontinu-
ous function, such as the generalized Heaviside function or the Heaviside step
function:

Hgen(x) =







+1 if x ≥ 0,

−1 if x < 0.
and Hstep(x) =







+1 if x ≥ 0,

0 if x < 0.
(30)

The elements that contain a crack tip are enriched using functions that can
represent the asymptotic displacement field. For linear elastic materials, these
functions are derived from the Westergaard solutions (see, e.g., [4, 11]):

ψα(x) =
√
r

[

sin
θ

2
, cos

θ

2
, sin

θ

2
sin θ, cos

θ

2
sin θ

]

, (31)

where r and θ are polar coordinates centered at the crack tip.

For elastic-plastic materials with power-law hardening, enrichment functions
derived from a Fourier analysis of the Hutchinson-Rice-Rosengren fields were
proposed in Rao and Rahman [31] and Elguedj et al. [10]:

ψα(x) = r
1

n+1

[

sin
θ

2
, cos

θ

2
, sin

θ

2
sin θ, cos

θ

2
sin θ, sin

θ

2
sin 3θ, cos

θ

2
sin 3θ

]

,

(32)
where n is the hardening exponent.

Another common use of the X-FEM is for free boundaries and holes as pre-
sented in Sukumar et al. [37], Daux et al. [7] and Rozycki et al. [35]. In this
case, the displacement approximation for enriched elements contains only an
enriched contribution, that is, Eq. (29) is replaced by:

ui(x) =
∑

A∈Nenr

uA
i N

A(x)ψ(x), (33)

where the following enrichment function V (x) is used:

V (x) =







+1 if x belongs to the matter,

0 otherwise.
(34)

An equivalent alternative in this case, which is preferred in numerical imple-
mentation, is to use a standard finite element interpolation and to perform
the numerical integration only inside the matter.
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2.2.3 Dynamic crack growth simulation with X-FEM

Fig. 2. Space-time representation of the crack, enriched elements and enriched nodes.
“Old” enrichments (tn) are retained and new ones (tn+1) are created with respect
to the new crack segment.

2.2.3.1 Numerical stability In the case of dynamic situations with mov-
ing discontinuities, such as dynamic crack growth, the question of numerical
stability is important as enrichment functions evolve with time and so are
the associated degrees of freedom. In our approach, we follow the same strat-
egy as in Réthoré et al. [34] and Prabel et al. [30], that is we enrich all the
mechanical fields (displacement, velocity, acceleration). The discrete problem
can therefore be written as a classical finite element dynamic problem given
in Eqs. (25) to (27).

Réthoré et al. [34] proved that to achieve energy conservation and numerical
stability when the crack is growing, the following strategy should be adopted.
Once the criteria for crack growth is met, all the “old” enrichments are retained
and new ones, associated to the crack extension, are introduced. This idea is
presented in Figure 2 with a space-time representation of the enrichments:
when the crack grows from one element to an adjacent one, new singular
enrichments are introduced on the nodes of the element containing the new
tip. Discontinuous enrichments are added to nodes whose support becomes
completely cut by the crack and do not have discontinuous enrichments yet.
Considering a first order tensor V , we define the following notation, V m

n which
denotes the value of V at time tn expressed on the discretization (i.e. on the
shape function basis) of time tm. Energy conservation and numerical stability
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are achieved by using the balance recovery method (see Réthoré et al. [34]).
By doing so, the kinetic and potential energies are conserved when the crack
grows:

Un+1 T
n An+1

n+1U
n+1
n = Un T

n An
nU

n
n , (35)

where A is either the mass matrix or the stiffness matrix. To obtain such a
result, the values of the old enrichments are kept and the new ones initialized
to zero. This corresponds to the following:

[

Un+1
n

]

=





















Un
n

0
...

0





















and
[

U̇n+1
n

]

=





















U̇n
n

0
...

0





















and
[

Ün+1
n

]

=





















Ün
n

0
...

0





















(36)

2.2.3.2 Fracture parameters and criteria It is relatively well admitted
in the literature that brittle fracture is governed by the global macroscopic
concept of Stress Intensity Factors introduced by Irwin [18], extended to elas-
todynamics within the framework of Bui [5] and Freund [12]. The dynamic
Stress Intensity Factors in mode I and II, Kdyn

I and Kdyn
II , are given by:

Kdyn
I = lim

r→0

√
2πrσ22(θ = 0) and Kdyn

II = lim
r→0

√
2πrσ12(θ = 0). (37)

We use the interaction integral approach (see, e.g., [13, 28]) to compute the
dynamic stress intensity factors as proposed by Krysl and Belytschko [21] and
Réthoré et al. [34]. Once the dynamic stress intensity factors are computed,
crack growth direction and velocity are determined using criteria and tech-
niques that are relatively well established (see, for example, Maigre and Rittel
[23]). Details on fracture parameters determination and criteria are given in
Appendix A.

3 Mass lumping and critical time steps for arbitrary enrichment

functions

3.1 General expression based on kinetic energy conservation

In order to obtain a general expression of the lumped mass for arbitrary en-
richment functions, we follow the same idea as proposed in Menouillard et
al. [24]. Let us consider a piecewise linear finite element in any dimension that
is enriched with the arbitrary function ψ at every node. The displacement
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at every point inside this element is given by Eq. (29). We seek an expres-
sion of the element lumped mass matrix that preserves the kinetic energy of
the rigid body modes and the enrichment mode. For the standard degrees
of freedom, we use classical mass lumping techniques such as the row-sum
technique (see, e.g., [16]). For the enriched degrees of freedom, we consider
the following. The enrichment function ψ is imposed as Dirichlet velocity con-
dition everywhere inside the element. The corresponding exact and discrete
kinetic energies are:

T =
1

2

∫

Ωe

ρψ2dΩe and T h =
1

2
U̇T

x−femMU̇x−fem. (38)

If we replace the consistent mass matrixM by a diagonal formML, the discrete
kinetic energy becomes:

T h =
1

2

nnode
∑

i=1

mLiψ
2(xi), (39)

where mLi are the diagonal coefficients of ML, xi is the position of the ith node
and nnode is the total number of nodes of the element considered.

Let us now suppose that the diagonal terms are identical (mLi = mL, ∀i),
that is all the enriched nodes have equal enriched masses. The conservation of
the kinetic energy gives the following equation:

∫

Ωe

ρψ2dΩe = mL

nnode
∑

i=1

ψ2(xi), (40)

from which we obtain the general expression of the diagonal enriched mass for
an arbitrary enrichment function ψ:

mL =
1

∑nnode
i=1 ψ2(xi)

∫

Ωe

ρψ2dΩe. (41)

Remark 1 If we consider the generalized Heaviside function for ψ as given
in Eq. (30), the expression for the lumped mass coefficient becomes:

mL =
1

∑nnode
i=1 12

∫

Ωe

ρ12dΩe

=
melt

nnode

1

mes(Ωel)

∫

Ωe

ψ2dΩe, (42)

which is the expression proposed by Menouillard et al. [24] for this particular
case.

This shows that the general formula obtained in Eq. (41) agrees with previ-
ously published results for discontinuous enrichment functions and allows us
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to construct lumped mass matrix for any enrichment function. In the follow-
ing, we concentrate our efforts on asymptotic crack enrichment functions and
free boundaries enrichments.

In the following two paragraphs, we examine the proposed mass lumping tech-
nique on numerical examples. We compute numerically mass and stiffness ma-
trices for one element with various enrichment functions. Then, we determine
the maximum numerical eigenvalue for each case and therefore obtain critical
time steps.

3.2 Linear elastic fracture mechanics

We first focus on the case of fracture mechanics, where the enrichment func-
tions are given by Eq. (31). As presented in the introduction, these functions
have two important roles: introduce more physics in the solution and localize
the crack tip inside the element. In particular, the localization of the crack
inside the element is done by the first enrichment function

√
r sin θ

2
, as it is the

only one which has a strong discontinuity inside the element (see Figure 3).

We propose to study the critical time step obtained by the lumping technique
given in the previous paragraph as a function of the position of the crack tip
inside an element. As shown in Figure 4, we study the case of a “stationary”
crack (i.e. with only one tip inside the element) in a piecewise bilinear quadri-
lateral and a piecewise linear triangular element. We also study the case of a
“moving” crack, that is we consider two successive crack tips inside the ele-
ment with enriched functions associated to each tip. This case is a schematic
representation of what happens when the crack grows but stays inside the
same element. In this case, we use the enrichment strategy explained previ-
ously: each node contains several sets of asymptotic enrichment. Each set is
associated with the successive crack tip positions within the element (two in
the case considered).

In each case, we consider a parent quadrilateral or triangular element, the
critical time step results are presented for lumped and consistent mass and
are normalized by the critical time step obtained with a row-sum lumped mass
for the same element without enrichment.

In Figures 5 and 6, the crack is cutting a piecewise bilinear quadrilateral
element at (-1;0) on the center of the left edge of the element. In both figures,
we plot the results with a unit scale and a zoomed scale. As for the case of
the same element without enrichment, we can observe that the critical time
step is lower with the consistent mass than with the lumped mass. With the
consistent mass, the critical time step is maximum when the crack is almost
completely cutting the element into two equal parts, whereas with the lumped

12



Fig. 3.
√

r sin θ/2 (top left),
√

r cos θ/2 (top right),
√

r sin θ/2 sin θ (bottom left),√
r cos θ/2 sin θ (bottom right) enrichment functions on a parent element. The crack

tip is located at the center of the element, the angle between the crack lips and the
horizontal axis is π/8 .

(0, y0)

(−1, y0)

(+1, 0)(−1,−1)

(−1,+1) (+1,+1)

(+1,−1)

(−1,+1)

(−1,−1)

(+1,+1)

(+1,−1)

(xtip, ytip)

(x1, y1)

(x1, y1)

(x1, y1)

(b) (c)(a)

(0, 0)

(−1, y0)

(0,+1)

Fig. 4. Crack position in enriched parent elements used for critical time steps calcu-
lations. (a) Q4 element, (b) T3 element with stationary crack. (c) Q4 element with
moving crack.

mass it is maximum when the tip is located around the center of the element.

In Figures 7 and 8, the crack is cutting a piecewise bilinear quadrilateral

13



−1

0

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

y
tip

x
tip

∆ 
t cco

ns
/∆

 t cfe
m

−1

0

1

−1

−0.5

0

0.5

1
0.1

0.15

0.2

0.25

0.3

0.35

 

y
tip

x
tip

 

∆ 
t cco

ns
/∆

 t cfe
m

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

Fig. 5. Normalized critical time step (left, full [0; 1] scale, right, zoomed scale) for
the consistent mass matrix as a function of the crack tip position for a crack cutting
an enriched Q4 element at (−1; 0) (represented by the black dot).
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Fig. 6. Normalized critical time step (left, full [0; 1] scale, right, zoomed scale) for
the lumped mass matrix as a function of the crack tip position for a crack cutting
an enriched Q4 element at (−1; 0) (represented by the black dot).

element at (-1;0.75) around the top left corner of the element. In both figures,
we plot the results with a unit scale and an zoomed scale. As for the previous
case, the critical time step is lower with the consistent mass than with the
lumped mass. With the consistent mass, the critical time step is maximum
when the crack is almost cutting the element by a straight line in the direction
of the bottom right corner. With the lumped mass, the critical time step is
maximum when the crack tip is around the center of the element.
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Fig. 7. Normalized critical time step (left, full [0; 1] scale, right, zoomed scale) for
the consistent mass matrix as a function of the crack tip position for a crack cutting
an enriched Q4 element at (−1; 0.75) (represented by the black dot).
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Fig. 8. Normalized critical time step (left, full [0; 1] scale, right, zoomed scale) for
the lumped mass matrix as a function of the crack tip position for a crack cutting
an enriched Q4 element at (−1; 0.75) (represented by the black dot).

In Figure 9, the crack is cutting a piecewise linear triangular element at (0; 0.5)
in the middle of the vertical edge of the element. We plot the normalized
critical time step for the consistent mass on the left and for the lumped mass
on the right. The zero values plotted are located outside the element. Again,
the critical time step is lower with the consistent mass than with the lumped
mass. In both cases, the value is maximum when the tip is located around the
opposite node of the element.
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Fig. 9. Normalized critical time step for the consistent (left) and lumped (right)
mass matrix as a function of the crack tip position for a crack cutting an enriched
T3 element at (0; 0.5) (represented by the black dot).
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Fig. 10. Normalized critical time step for the consistent (left) and lumped (right)
mass matrix as a function of the crack tip position for a crack cutting an enriched
T3 element at (0; 0.1) (represented by the black dot).

In Figure 10, the crack is cutting a piecewise linear triangular element at
(0; 0.1) around the bottom left node of the element. We plot the normalized
critical time step for the consistent mass on the left and for the lumped mass
on the right. The zero values plotted are located outside the element. Again,
the critical time step is lower with the consistent mass than with the lumped
mass. In both cases, the value is maximum when the tip is located around the
center of the opposite edge of the element.
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In Figures 11 and 12, the crack is cutting a piecewise bilinear quadrilateral
element at (−1; 0.5) with initial crack tip located at (−0.5; 0.5). We plot the
critical time step as a function of the position of a moving tip location inside
the same element, the angle between the two crack segments is limited to
−90◦, that is the crack is not allowed to go backwards. With the consistent
mass, the critical time step is maximum when the crack is almost completely
cutting the element and the angle between the two crack segment is null. With
the lumped mass, the critical time step is maximum when the angle between
the two crack segments is around −70◦.

−1

0

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

y
tip

x
tip

∆ 
t cco

ns
/∆

 t cfe
m

−1
−0.5

0
0.5

1−1

0

1
0.12

0.13

0.14

0.15

0.16

0.17

0.18

 

x
tip

y
tip

 

∆ 
t cco

ns
/∆

 t cfe
m

0.14 0.145 0.15 0.155 0.16 0.165

Fig. 11. Normalized critical time step (left, full [0; 1] scale, right, zoomed scale) for
the consistent mass matrix as a function of the propagating crack tip position for
a crack cutting an enriched Q4 element at (−1; 0.5) with initial tip at (−0.5; 0.5)
(represented by the black dots).

All the results for the minimum and maximum values for the critical time
steps considering consistent and lumped mass matrices are given in Table 1.
The conclusion of this study is that with the proposed mass lumping formula
for the near tip function

√
r sin θ

2
, the critical time step for a stationary crack is

greater or equal than two-thirds of the critical time step of the same unenriched
element with lumped mass, ∆tx−fem

c stat ≥ 2

3
∆tfem

c . This is a generalization to near
tip singular enrichment of the formula proposed for discontinuous enrichment
in Menouillard et al. [24]. With a crack moving inside the same element, the
critical time step is greater or equal than one half of the critical time step of
the same unenriched element with lumped mass, ∆tx−fem

c mov ≥ 1

2
∆tfem

c . Conse-
quently, we propose to adopt for X-FEM explicit dynamics crack growth sim-
ulation with discontinuous and near tip asymptotic enrichments, the lumped
mass formula given in Eq. (41) and the following expression for the critical
time step:

∆tx−fem
c =

∆tfem
c

2
(43)
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Fig. 12. Normalized critical time step (left, full [0; 1] scale, right, zoomed scale)
for the lumped mass matrix as a function of the propagating crack tip posi-
tion for a crack cutting an enriched Q4 element at (−1; 0.5) with initial tip at
(−0.5; 0.5)(represented by the black dots).

Min value for Max value for

∆tx−fem
c /∆tfem

c ∆tx−fem
c /∆tfem

c

lumped consistent lumped consistent

Q4 cut at (−1; 0) 0.66 0.15 0.82 0.32

Q4 cut at (−1; 0.75) 0.66 0.12 0.82 0.28

T3 cut at (0; 0.5) 0.8 0.2 0.95 0.26

T3 cut at (0; 0.1) 0.86 0.15 0.98 0.25

Q4 moving crack 0.58 0.14 0.68 0.165

Table 1
Minimum and maximum values for the normalized critical time steps for asymptotic
crack enrichment.

Remark 2 Although we only present results for a few configurations, we have
tested various other ones and have always obtained similar results. The expres-
sion we propose for the definition of the X-FEM critical time step is indeed
empirical, based on these numerical calculations. However, we believe that with
reasonable care from a numerical and physical point of view in the simulation
(for example crack increments comparable to the mesh size, ....) it will be
verified as we will see in the examples.
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3.3 Free boundaries and holes

The case of holes and free boundaries has already been studied with explicit
time integration schemes for constant strain elements, that is piecewise linear
triangles and tetrahedrons, by Rozycki et al. [35]. The main difference in this
case is that the displacement field contains only an enriched contribution as
presented in Eq. (34). Thus, the previous analysis does not apply: the enriched
mode is included in the rigid body modes. We impose a unit function V̄ as a
Dirichlet velocity condition everywhere inside the element in the horizontal or
vertical direction. The corresponding exact and discrete kinetic energies are:

T =
1

2

∫

Ωe\Ωvoid

ρV̄ 2dΩe and T h =
1

2
U̇T

x−femMU̇x−fem, (44)

where Ωvoid is the part of Ωe that does not belong to the matter. If we replace
M by a diagonal form ML, the discrete kinetic energy becomes:

T h =
1

2

nnode
∑

i=1

mLiV̄
2(xi). (45)

Again, we suppose that the diagonal terms are identical (mLi = mL, ∀i), that
is all the nodes have equal masses. The conservation of the kinetic energy gives
the following equation:

∫

Ωe

ρV̄ 2dΩe = mL

nnode
∑

i=1

V̄ 2(xi), (46)

from which we obtain the general expression of the diagonal enriched mass for
this particular case:

mL = ǫ
melt

nnode
, (47)

where ǫ =

∫

Ωe\Ωvoid

dΩ
∫

Ωe
dΩ

is the material fraction of the element and melt is the

total mass of the element. It can be noted from Eq. (47) that the lumped mass
matrix for any piecewise linear finite element cut by a hole can be obtained
by multiplying the material fraction of the element by the lumped mass of the
same element without enrichment (calculated from a row-sum technique):

Mx−fem
L = ǫM fem

L . (48)

This expression for the lumped mass is a generalization of the one proposed by
Rozycki et al. [35] for piecewise linear triangles and tetrahedrons to piecewise
bilinear quadrilaterals and trilinear hexahedrons.

It is important to note here, as presented in Rozycki et al. [35], that the
stiffness matrix of a cut constant strain element can easily be obtained from
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the one of the same uncut element, as for the proposed lumped mass:

Kx−fem
T3 = ǫKfem

T3 and Kx−fem
T6 = ǫKfem

T6 . (49)

Thus the critical time step for these cut elements is identical to one of the
same uncut element.
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Fig. 13. Matter limit position in Q4 enriched parent elements used for critical time
steps calculations. (a) Element cut by one segment, opposite edges. (b) Element cut
by one segment, adjacent edges. (c) Element cut by two segments.
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Fig. 14. Normalized critical time step for the lumped (left) and consistent (right)
mass matrix as a function of the matter limit position: element cut by one segment,
opposite left and right edges.

For piecewise bilinear quadrilaterals and piecewise trilinear hexahedrons, Eq. (49)
is not verified. It is necessary to study the critical time step for these elements
in order to obtain a rule similar to the one proposed in the previous paragraph
for singular enrichment. We study the case of a piecewise bilinear quadrilat-
eral cut by one segment from opposite and adjacent edges, and the case of the
same element cut by two segment, as presented in Figure 13. The critical time
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step is obtained with the consistent mass matrix and the lumped mass matrix
and is normalized by the critical time step of the same uncut element.

In Figure 14, the element is cut from opposite edges. The initial and final
points position vary from the top right corner to the bottom right corner and
from the top left corner to the bottom left corner. The critical time step is
lower with the consistent mass than with the lumped mass. In both cases,
the critical time step is minimum when the element is almost completely
cut (aa ≃ +1, bb ≃ +1) and maximum when the element is almost uncut
(aa ≃ −1, bb ≃ −1).
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Fig. 15. Normalized critical time step for the lumped (left) and consistent (right)
mass matrix as a function of the matter limit position: element cut by one segment,
adjacent bottom and right edges.

In Figure 15, the element is cut from adjacent bottom and right edges. The
initial and final points position vary from the top right corner to the bottom
right corner and from the bottom left corner to the bottom right corner. The
critical time step is again lower with the consistent mass than with the lumped
mass. In both cases, it is minimum when the element is almost cut into two
identical triangles (aa ≃ −1, bb ≃ +1) and it is maximum when the element is
almost uncut (aa ≃ +1, bb ≃ +1, aa ≃ −1, bb ≃ −1 and aa ≃ +1, bb ≃ −1).
In Figure 16, the element is cut from adjacent left and top edges. The initial
and final points position vary from the bottom left corner to the top left corner
and from the top right corner to the top left corner. The critical time step is
again lower with the consistent mass than with the lumped mass. In both cases,
it is minimum when the element is almost completely cut (aa ≃ +1, bb ≃ −1)
and it is maximum when the element is almost cut into two identical triangles
(aa ≃ −1, bb ≃ +1).
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Fig. 16. Normalized critical time step for the lumped (left) and consistent (right)
mass matrix as a function of the matter limit position: element cut by one segment,
adjacent left and top edges.
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Fig. 17. Normalized critical time step for the lumped (left) and consistent (right)
mass matrix as a function of the matter limit position: element cut by two segments.

In Figure 17, the element is cut by two segments, the intermediate point is the
center of the element. The initial and final points are on adjacent edges and
vary from the top right corner to the middle of the right edge and from the
bottom left corner to the middle of the bottom edge. The critical time step is
again lower with the consistent mass than with the lumped mass. Like in the
previous case, the critical time step is minimum when the element is almost
cut into two identical triangles (aa ≃ −1, bb ≃ +1) and is maximum when
the matter surface is maximum (aa = 0, bb = 0).
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This last example shows that the key point for the minimum value of the
critical time step is the volume fraction and not how the element is cut. For
example, the maximum value obtained in this case with a volume fraction
of 75% is the same as the one obtained in the first two cases with the same
volume fraction. All the results for the minimum and maximum values for the
critical time steps, as well as the corresponding volume fractions, considering
consistent and lumped mass matrices, are given in Table 2.

Min value for Max value for

∆tx−fem
c /∆tfem

c ∆tx−fem
c /∆tfem

c

(vol. fraction) (vol. fraction)

lumped consistent lumped consistent

opposite edges 0.85 (∼ 0%) 0.1 (∼ 0%) 1 (∼ 100%) 0.5 (∼ 100%)

adjacent edges 1 0.97 (∼ 50%) 0.35 (∼ 50%) 1 (∼ 100%) 0.55 (∼ 100%)

adjacent edges 2 0.7 (∼ 0%) 0.05 (∼ 0%) 0.9 (∼ 50%) 0.25 (∼ 50%)

2 segments 0.965 (∼ 50%) 0.3 (∼ 50%) 1 (∼ 75%) 0.4 (∼ 75%)

Table 2
Minimum and maximum values for the normalized critical time steps for hole en-
richment and corresponding volume fraction.

Thus, the conclusion of this study can be focused on the first three results.
With the proposed mass lumping expression for hole enrichment on piecewise
bilinear quadrilateral, the critical time step is greater or equal than two-thirds
of the critical time step of the same uncut element:

∆tx−fem
c hole ≥ 2

3
∆tfem

c . (50)

If the matter surface of the cut elements is at least half of the total surface of
the element, the minimum value can be raised to 88% of the critical time step
of the same uncut element.

4 Numerical Examples

All the examples presented in the following are treated under plain strain
conditions.
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Fig. 18. Clamped plate with two cross-shaped holes: geometry, boundary conditions
and structured conforming T3/Q4 FEM mesh.

4.1 Rectangular plate with two cross-shaped holes

The first example consists in a rectangular structure with two cross-shaped
holes clamped on one side and submitted to a sudden vertical stress on the
other side. The geometry can be observed in Figure 18. This example is quite
complex as the shape of the two holes are difficult to represent with a rela-
tively constant mesh density. A structured conforming Q4/T3 finite element
mesh with an almost constant mesh density can be observed in Figure 18. The
corresponding X-FEM mesh is a structured one composed of 49 × 49 quadri-
lateral elements. The specimen is made of steel with the following material
parameters: E = 2.1×1011Pa, ν = 0.3, ρ = 7800kg.m−3, the applied stress is
σ = 106Pa, the total time of the simulation is 3ms. The critical time step for
the finite element mesh is ∆tfem

c = 0.22µs, which corresponds to a simulation
of 13636 time steps. The critical time step of the X-FEM mesh without the
hole is ∆tx−fem

c no hole = 0.664µs. The mesh is cut by the hole in a way such that
a ratio of around 90% is acceptable, therefore the critical time step is taken
to be ∆tx−fem

c = 0.6µs, which corresponds to a simulation of 5000 time steps.
This corresponds to one third of the number of time steps needed for the finite
element calculation.

Remark 3 If the “worst case” ratio of 2/3 was chosen, the critical time step
for the X-FEM mesh would be ∆tx−fem

c = 0.442µs which corresponds to a
simulation of 6788 time steps. It is worth noting that even in this case, we
only need about half the number of time steps compared to the equivalent finite
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Fig. 19. Clamped plate with two cross-shaped holes: horizontal displacement at
point A
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Fig. 20. Clamped plate with two cross-shaped holes: horizontal velocity at point A

element mesh.

The results at point A are given in Figure 19 for the horizontal displacement
and in Figure 20 for the horizontal velocity. The results at point B are given
in Figure 21 for the vertical displacement and in Figure 22 for the vertical
velocity. In all the cases the two results compare quite well. This shows that
the proposed method allows us to obtain the same accuracy with X-FEM with
a number of time step between 33% and 50% of the one needed for a finite
element calculation.
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Fig. 21. Clamped plate with two cross-shaped holes: vertical displacement at point
B
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Fig. 22. Clamped plate with two cross-shaped holes: vertical velocity at point B

4.2 Stationary and moving semi-infinite cracks

4.2.1 Stationary mode I semi-infinite crack

We consider as a first example in fracture mechanics the case of a semi-infinite
mode I crack in an infinite medium submitted to a tensile stress wave. The
analytical solution for the mode I dynamic stress intensity factor was obtained
by Freund [12]. We consider the finite geometry given in Figure 23, therefore
we can only compare the results with the analytical solution until the tensile
stress wave is reflected on the bottom side and reaches again the crack tip.
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= 1.009 × 10−3s

σ0 = 500MPa

t ≤ 3τc = 3H
cd

a0 = 5m

L = 10m

2H
=

4m

σ0
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ν = 0.3

ρ = 8000kg.m−3

Fig. 23. Mode I semi-infinite crack problem: finite geometry and material parame-
ters.

The time needed by the stress wave to reach the crack tip for the first time
is τc = H

cd

, where cd is the dilatational wave speed. The total simulation is

therefore limited to t ≤ 3τc = 1.009 × 10−3s with the material parameters
given in Figure 23.
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Fig. 24. Normalized mode I stress intensity factor vs. normalized time for a sta-
tionary semi-infinite crack: analytical solution, 40× 80 elements mesh with reduced
enrichment basis, 40 × 80 elements mesh with complete enrichment basis.

As the wave reaches the crack tip, the mode I dynamic stress intensity factor
for a stationary crack is given by:

Kdyn
I (0, t) =

2σ0

1 − µ

√

cdt(1 − 2µ)

π
, (51)

where µ is the second Lamé constant. For a moving crack tip, the mode I
dynamic stress intensity factor is given by:

Kdyn
I (ȧ, t) = k(ȧ)Kdyn

I (0, t), (52)
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Fig. 25. Normalized mode I stress intensity factor vs. normalized time for a sta-
tionary semi-infinite crack: analytical solution, 40× 80 elements mesh with reduced
enrichment basis, 60 × 120 elements mesh with reduced enrichment basis.

where k is a universal function of the crack tip speed ȧ. k can be approximated
by the following expression:

k(ȧ) =
1 − ȧ/cr
1 − ȧ/2cr

, (53)

where cr is the Rayleigh wave speed. Finally, one can write:

Kdyn
I (ȧ, t) =

2σ0

1 − µ

√

cdt(1 − 2µ)

π

1 − ȧ/cr
1 − ȧ/2cr

. (54)

We first use a mesh of 40× 80 quadrilateral elements with a critical time step
of ∆tx−fem

c = ∆tfem
c /2 = 7.5µs, that is a simulation of 134 time steps. We

compare the normalized mode I dynamic stress intensity factor Kdyn
I /σ0

√
H

as a function of the normalized time t/τc obtained with the proposed method
with the analytical solution.

The first result shown in Figure 24 compares the results obtained with only one
singular enrichment function ψ =

√
r sin θ

2
and the results obtained with the

complete singular enrichment basis ψ =
√
r
[

sin θ
2
, cos θ

2
, sin θ

2
sin θ, cos θ

2
sin θ

]

.
We can observe that the results are almost identical and compare well to
the analytical solution. The solution presents some oscillations that were also
obtained in Menouillard et al. [24] with a purely discontinuous X-FEM explicit
approach. This result demonstrates that only the first singular enrichment
function is sufficient in order to obtain a good accuracy for a mode I stationary
crack.
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The same calculation was also performed with one enrichment function with a
mesh of 60×120 quadrilateral elements with a critical time step of ∆tx−fem

c =
∆tfem

c /2 = 5µs, that is a simulation of 200 time steps. In Figure 25, we
compare the results obtained with this mesh and the previous coarser one.
Again, the results compare well with the analytical solution, the finer mesh
still produces oscillations but with a much lower amplitude. This result shows
the good convergence of the method with the mesh size in terms of the dynamic
mode I stress intensity factor.

4.2.2 Moving mode I semi-infinite crack

As in Duarte et al. [9], Belytschko et al. [3], Chen et al. [2], Réthoré et al. [33,
34] and Menouillard et al. [24], we now consider the case of stationary then
moving crack. The crack remains stationary for 0 ≤ t < 1.5τc then propagates
in mode I at a constant velocity ȧ = 1500m.s−1 for t ≥ 1.5τc.
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Fig. 26. Normalized mode I stress intensity factor vs. normalized time for a station-
ary then moving semi-infinite crack: analytical solution, 40×80 elements mesh with
reduced enrichment basis, 40 × 80 elements mesh with complete enrichment basis.

We consider the same two cases as in the previous example. In Figure 26, we
compare the results obtained with a mesh composed of 40 × 80 quadrilateral
elements with a critical time step of ∆tx−fem

c = ∆tfem
c /2 = 7.5µs with only

one singular enrichment function and with the complete singular enrichment
basis. The results compare relatively well with the analytical solution and do
not show any visible difference between the two enrichment basis used. The
numerical solution presents oscillations when the crack is moving as it is the
case with other X-FEM explicit dynamics techniques presented in Belytschko
et al. [3], Zi et al. [39] and Menouillard et al. [24]. It is interesting to note
here, that we did not apply any numerical filter to the results obtained with
the proposed method contrary to the ones presented in the References cited
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above. This indicates that the accuracy obtained with the proposed method
is slightly better for this example.

In Figure 27, we compare the results obtained with only one singular enrich-
ment function with the 40× 80 and 60× 120 elements meshes. The finer mesh
computed with a smaller time step allows us to obtain a more accurate local-
ization of the crack initiation in time. The results presents similar oscillations
but with a lower amplitude.

4.2.3 Stationary mixed mode semi-infinite crack

We now consider the case of a stationary mixed mode semi-infinite crack.
This example was also treated in Chen et al. [2] and Réthoré et al. [34] and
an analytical solution was obtained by Lee and Freund [22]. We use the finite
geometry given in Figure 28, therefore we can only compare the results with
the analytical solution until the compressive stress wave is reflected on the
right edge and reaches again the crack tip. The time needed by the stress wave
to reach the crack tip for the first time is τc = a0

cd

, where cd is the dilatational
wave speed. The total simulation is therefore limited to t ≤ 3τc = 542µs with
the material parameters given in Figure 28.

We compare the normalized dynamic stress intensity factor

K̄dyn(t) =
Kdyn(t)

−EV0

√
a0/(2(1 − ν2)cd

√
π)

(55)

as a function of the normalized time t/τc obtained with the proposed method
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E = 200GPa

V0

L = 4m

H = 6m

a0 = 1m

ρ = 7833kg.m−3

V0 = 16.5m.s−1

= 542µs

t ≤ 3τc = 3a0

cd

ν = 0.25

Fig. 28. Mode II semi-infinite crack problem: finite geometry and material parame-
ters.
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Fig. 29. Normalized stress intensity factors vs. normalized time for a stationary
semi-infinite mixed mode crack: analytical solution, 40 × 60 elements mesh with
complete enrichment basis, 40 × 60 elements mesh with reduced enrichment basis.

with the analytical solution.

We first use a mesh of 40 × 60 piecewise bilinear quadrilateral elements with
a critical time step of ∆tx−fem

c = ∆tfem
c /2 = 9µs. In Figure 29, we plot the

results obtained with one singular enrichment function and with the complete
singular enrichment basis. We can observe that those two results are almost
identical and compare quite well with the analytical one. This shows that only
one singular enrichment function is also sufficient to obtain a good accuracy
in mixed mode.
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In Figure 30, we plot the results obtained with only one singular enrichment
for a mesh of 80×120 elements. The calculation was performed with a critical
time step of ∆tx−fem

c = ∆tfem
c /2 = 4.5µs. We can observe that the results still

present a few oscillations but with a lower amplitude. These results show the
good convergence of the method with the mesh size in terms of the dynamic
stress intensity factors.

4.3 Kalthoff’s experiment

Fig. 31. Experimental setup and geometry for Kalthoff’s experiment.

This example deals with the numerical simulation of Kalthoff’s experiment of
the failure mode transition under pure mode II loading [19]. The experimental
configuration is presented in Figure 31: a plate with two symmetrical edge
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cracks is impacted by a projectile at a given speed V0. By modifying the pro-
jectile’s velocity, Kalthoff observed a transition in the type of failure. At low
velocity, i.e. under low strain rate, brittle failure is observed with a simultane-
ous propagation of the two cracks with a global angle between 60◦ and 70◦. If
one increases the projectile’s speed, a transition between brittle fracture and
shear band propagation (with a propagation angle of approximatively −10◦)
occurs. We consider here only the brittle propagation with an impact velocity
of 20m.s−1. As in Belytschko et al. [3], Zi et al. [39] and Menouillard et al. [24],
we model the experiment in plane strain and consider only the upper half of
the plate with the appropriate symmetry boundary conditions. The material
properties are those of a 18Ni1900 maraging type steel and are given in Fig-
ure 31. A mesh of 80 × 80 piecewise bilinear quadrilateral elements was used,
with a critical time step of ∆tx−fem

c = ∆tfem
c /2 = 0.11µs. The simulation time

was 100µs represented by 900 time steps.
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Fig. 32. Kalthoff’s experiment, results for the proposed method and for an implicit
X-FEM calculation (from [24]): final crack path (left) and crack length versus time
(right).

The left part of Figure 32 shows the crack path obtained with the proposed
method and with an X-FEM implicit mean acceleration time integrator with
a full singular enrichment basis with the same mesh (from Menouillard et
al. [24]). These results are very similar and the overall angle is in good agree-
ment with the experimental and previously published numerical results. Look-
ing at the details of the crack path, we observe the same phenomena as in
Menouillard et al. [24] and de Borst et al. [8]. The crack starts to propagate
with an angle of 65◦ at 26µs; then a small deviation is observed around 50µs
and the crack continues to propagate with an angle of 65◦ from 65µs. This
deviation is related to the successive reflections of the compressive stress wave.
The wave travels from the left edge to the right one when the projectile hits the
plate. Then the wave is reflected on the right free surface as a tensile wave,
reaches the crack tip around 26µs and the propagation starts. This tensile
wave travels from the crack tip to the left free surface and is again reflected as
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Fig. 33. Kalthoff’s experiment: results at 40µs, 60µs and 80µs. Left: displacement
magnitude on the deformed configuration (amplified 2 times), right: Von Mises stress
field on the initial configuration.
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a compressive wave. Then, this wave travels in the right direction and reaches
the moving crack tip around 50µs. This compressive wave induces the crack
deviation, but is subsequently reflected against the right edge as a tensile wave
which finally reaches the crack tip at 65µs, after which the crack continues to
propagate with the initial angle.

We also plot on the right part of Figure 32 the crack length as a function of
time for the two methods. We can also observe that the two results are almost
identical, although the crack seams to propagate a little earlier and with a
slightly higher velocity with the explicit scheme than with the implicit one.
Finally we plot in Figure 33 the displacement magnitude on the deformed
configuration (amplified two times) and the Von Mises stress field on the
initial configuration at various times. We can observe on these plots the crack
deviation and wave reflections that were noted above.

4.4 Compact Compression Specimen

Fig. 34. Experimental setup and geometry for the Compact Compression Specimen
experiment.

The last example deals with the Compact Compression Specimen experiment
first introduced by Bui et al. [6] and further developed by Maigre and Rittel
[23]. The interest of the CCS experiment in our case is that there is always
a mixed-mode loading condition at the crack tip. The test rig is a Split Hop-
kinson Pressure Bar (Kolsky bar), the experimental setup is described in Fig-
ure 34. As in Seelig et al. [36] and Menouillard et al. [24], the input bar is
modelled by the experimental dynamic load. Since during the simulation time
of 150µs the stress wave does not reflect on the surface between the speci-
men and the output bar, a free surface boundary condition is used instead of
the output bar. The material properties are those of PMMA and are given in
Figure 34, the initial crack length is a0 = 18.3mm.

A rectangular mesh of 60 × 41 piecewise bilinear quadrilateral elements was
used. The void region in the center of the specimen was modelled as a hole.
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The critical time step due to the presence of the crack is lower than the one due
to the modelling of the hole. Thus, we used the rule developed in paragraph
3.2, the critical time step is ∆tx−fem

c = ∆tfem
c /2 = 0.15µs, and we used 1000

time steps for the simulation.

We plot in Figure 35 the numerical crack path and the crack length as a func-
tion of time obtained with the proposed method and with an X-FEM implicit
mean acceleration time integrator with the same mesh (from Menouillard et
al. [24]). The results are very similar and agree well with the experimental re-
sults. This last example is very interesting as it demonstrates the performance
of the method: a complex experiment was modelled by a simple rectangular
mesh and free surfaces and moving discontinuities were represented accurately
by the X-FEM.
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Fig. 35. Compact Compression Specimen, results for the proposed method and for
an implicit X-FEM calculation (from [24]): final crack path (left) and crack length
versus time (right).

5 Conclusions

We have presented in this paper a general expression for the lumped mass
in the eXtended Finite Element Method for any enrichment function. This
expression is based on the exact representation of the kinetic energy of the
rigid body modes and enrichment modes. We focused our study on cracks, free
boundaries and holes modelling with X-FEM. We showed that the proposed
lumping formula is a generalization of some lumping techniques that were
proposed for discontinuous enrichment for cracks (see [24, 25]) and for free
boundaries for constant strain elements (see [35]).

We focused our study on singular enrichment for cracks and free boundaries
with quadrilateral elements for which lumping techniques are proposed for the
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first time. A detailed analysis of critical time steps estimates was performed for
these two cases and simple rules were developed. Several numerical examples
were shown to validate the method. For free boundaries, these results compare
well with finite elements but have a much higher critical time step for a given
mesh density. For cracks modelling, we obtained almost identical results to
previously published ones considering an unconditionally stable implicit time
integrator. The next step, as pointed out in the introduction, is to extend
this approach to three-dimensional dynamic crack modelling for elastic and
elastic-plastic cases and to compare those results with experiments developed
in the laboratory.
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A Fracture parameters and criteria

A.1 Fracture parameters

The interaction integral, first proposed in the static case by Moran and Shih
[28] and Gosz et al. [13], and subsequently extended to the dynamic case
(see, e.g., Krysl and Belytschko [21] and Réthoré et al. [34]), is used for the
separation of the mixed-mode SIFs. The separation is obtained via a two-
field problem consisting of the actual fields (u,σ) and the auxiliary fields
(uaux,σaux). Then, the Lagrangian conservation law for a virtual crack ex-
tension field q leads to the following expression of the domain-independent
dynamic interaction integral I int:

I int = −
∫

A
qk,j

[

(σaux
ml um,l − ρu̇lu̇

aux
l )δkj − (σaux

ij ui,k + σiju
aux
i,k )

]

dS

+
∫

A
qk
[

(σaux
ij,j ui,k + ρüiu

aux
i,k ) + (ρu̇aux

i u̇i,k + ρu̇iu̇
aux
i,k )

]

dS, (A.1)

where A is the area delimited by any contour ∂A enclosing the crack tip. q

is the virtual crack extension field and is taken to be tangent to the crack
faces, with a unit norm at the crack tip (‖q‖ = 1) and a zero norm outside A
(‖q‖ = 0) as presented in Figure A.1.
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Fig. A.1. Virtual crack extension field tangent to the crack faces for a curved crack.

Then, a dynamic energy analysis provides an equivalent to Irwin’s relation in
plane strain:

I int =
2(1 − ν2)

E
(f1(ȧ)K

dyn
I Kaux

I + f2(ȧ)K
dyn
II Kaux

II ), (A.2)

where Kaux
I and Kaux

II are the stress intensity factors of the auxiliary fields, fi

are universal functions of the velocity of the crack tip ȧ:

fi(ȧ) =
βi(1 − β2

2)

(κ+ 1)D(ȧ)
for i = 1, 2

βi =

√

√

√

√1 −
(

ȧ

ci

)2

and D(ȧ) = 4β1β2 − (1 + β2
2)

2, (A.3)

where c1 and c2 are the dilatational and shear wave speeds and κ = 3− 4ν for
plain strain.

By choosing the exact mode I or mode II asymptotic solution for (uaux,σaux),
that is setting either (Kaux

I , Kaux
II ) = (1, 0) or (Kaux

I , Kaux
II ) = (0, 1), we can

compute Kdyn
I and Kdyn

II .

For numerical implementation purposes, the interaction integral is calculated
using a J-domain (see, for example, [13, 14]). This J-domain is an external
mesh centered at the crack tip and oriented by the local crack axis as shown
in Figures A.1 and A.2.

A.2 Fracture criteria

From a simple point of view, crack growth simulation can be thought of as
answering to three questions: when is the crack growing? how far? in which
direction?
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Fig. A.2. J-domain and virtual crack extension field used for interaction integral
calculation.

As stated previously, we consider that brittle fracture is governed by dynamics
stress intensity factors. A preferential direction θ∗, defined as the direction of
the maximum hoop stress (see, e.g., [23]), is assumed for the propagation of
the crack. The analytical expression of this direction, in terms of dynamic
SIFs is

θ∗ = 2 arctan
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Kdyn
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Kdyn
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− sign(Kdyn
II )

√

√

√

√

√8 +

(

Kdyn
I

Kdyn
II

)2

















. (A.4)

Then, the intensity of the loading near the crack tip is calculated using the
maximum hoop stress intensity factor K∗ corresponding to the hoop stress
intensity factor in the preferential direction:

K∗ = cos3 θ
∗

2
< Kdyn

I > −3

2
cos

θ∗

2
Kdyn

II , (A.5)

where < Kdyn
I > is the positive part of Kdyn

I and avoids any closure effects.
Crack initiation occurs when this equivalent SIF reaches the dynamic initia-
tion toughness KId. During the dynamic growth of a crack, the instantaneous
maximum hoop stress intensity factor stays equal to the dynamic crack growth
toughness K1D, which can now depend on the velocity ȧ of the crack tip. Fol-
lowing Kanninen and Popelar [20] and Grégoire et al. [15], the dynamic crack
growth toughness is defined as:

KID(ȧ) =
K1d

1 − ȧ
cr

, (A.6)

where cr, the Rayleigh wave speed, is the theoretical maximum velocity of a
crack in a homogeneous medium. By setting K∗ equal to K1D, we obtain the
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following expression for the crack velocity:

ȧ = cr

(

1 − K1d

K∗

)

. (A.7)
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[34] J. Réthoré, A. Gravouil, and A. Combescure. An energy-conserving
scheme for dynamic crack growth using the extended finite element
method. International Journal for Numerical Methods in Engineering,
63:631–659, 2005.
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