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 for a class of Robbins Monro algorithms. Benaïm et al. (2005) generalised this approach for stochastic approximation algorithms whose average behavior is related to a differential inclusion instead. We pursue the analogy by extending to this setting the result of convergence with positive probability to an attractor.

1 Introduction

Settings and bibliography

Stochastic approximation algorithms were born in the early 50s through the work of Robbins and Monro [START_REF] Robbins | A Stochastic Approximation Method[END_REF] and Kiefer and Wolfowitz [START_REF] Kiefer | Stochastic estimation of the maximum of a regression function[END_REF]. Consider a discrete time stochastic process (x n ) n≥0 defined by the following recursive formula:

x n+1 -x n = γ n+1 (F (x n ) + U n+1 ) , (1) 
where F : R m → R m is a Lipschitz function, (γ n ) n is a positive decreasing sequence and (U n ) n a sequence of R m -valued random variables defined on a probability space (Ω, F, P ), adapted to some filtration (F n ) n ⊂ F. In order to describe the limit behavior of the sample paths (x n (ω)) n , a natural idea is to compare them to the solution curves of the dynamical system induced by the ordinary differential equation dx dt = F (x).

(2) This is the celebrated method of ordinary differential equation (ODE) which was introduced by Ljung in [START_REF] Ljung | Analysis of recursive stochastic algorithms[END_REF]. Heuristically, one can think of (1) as a kind of Cauchy-Euler approximation scheme for numerically solving [START_REF] Aumann | Integrals of set-valued functions[END_REF] with step size (γ n ) n and an added noise (U n ) n . We could reasonably expect that, under appropriate assumptions on (γ n ) n and if the noise (U n ) n vanishes, the asymptotic behaviors of (x n ) n and the ODE are closely related. Thereafter, the method was studied and developed by many people (see Kushner and Clark [START_REF] Kushner | Stochastic Approximation Methods for Constrained and Unconstrained Systems[END_REF], Benveniste et al [START_REF] Benveniste | Stochastic Approximations and Adaptive Algorithms[END_REF], Duflo [START_REF] Duflo | Algorithmes stochastiques[END_REF] or Kushner and Yin [START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF]). Originally, only simple dynamics were considered, for example the negative of the gradient of a cost function. However, it appears in several situations, for example, learning models or game theory, that the corresponding vector field may be more complex.

Benaïm and Hirsch have conducted, in a series of papers (essentially [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF] and [START_REF] Benaim | A Dynamical System Approach to Stochastic Approximations[END_REF]), a thorough study of this method. They proved that the asymptotic behavior of stochastic approximation process can be described with a great deal of generality through the study of the asymptotics of the ODE . One of the main results is the characterization of limit sets (x n (ω)) n via the flow induced by F , in the sense that, almost surely, these sets are compact, invariant and contain no proper attractor for the deterministic flow (this is the notion of internal chain recurrence in the sense of Conley [START_REF] Conley | Isolated Invariant Sets and the Morse Index[END_REF], see also Bowen [START_REF] Bowen | Omega limit sets of Axiom A diffeomorphisms[END_REF]). Now, let F : R m ⇉ R m be a sufficiently regular set-valued map and consider some discrete time stochastic processes (x n ) n≥0 satisfying the following recursive formula:

x n+1 -x n -γ n+1 U n+1 ∈ γ n+1 F (x n ), (3) 
where (γ n ) n is a positive decreasing sequence and (U n ) n a sequence of R m -valued random variables defined on a probability space (Ω, F, P ).

In [START_REF] Benaim | Stochastic approximations and differential inclusions[END_REF], Benaïm, Hofbauer and Sorin have generalized the ODE method to the algorithms given by (3) and extended the characterization of limits set in the sense that they are again, under certain assumptions on the step size and the noise, connected and attractor free for the set-valued dynamical system induced by the differential inclusion

dx dt ∈ F (x). (4) 
This generalization allows us to extend this technique to a much wider class of problems arising, for example, in economics or game theory (see Benaïm, Hofbauer and Sorin [START_REF] Benaım | Stochastic Approximations and Differential Inclusions[END_REF]).

In this paper, we pursue the analogy between the ODE method and the differential inclusion method.

The aim is to extend to the case of differential inclusions, the result of Benaïm (see theorem 7.3 in [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]) which guarantees that, under certain assumptions on the step size and the noise, the stochastic approximation process converges with positive probability to a given attractor of the set-valued dynamical system induced by F .

The organization of the paper is as follows. In section 1.2, we define a standard set-valued map and introduce the crucial notion of attainability so as to state a simple version of the main result.

In section 2, we introduce the different notions of internal chain transitivity, asymptotic pseudotrajectories and perturbed solutions. Our main assumption (hypothesis 2.7) is given, the convergence result is stated in full generality and we define a generalised stochastic approximation process which satisfies the above assumption. An example of adaptive learning process to which our results may be applied is given in section 3. Finally, the proof of a crucial result needed in our study is postponed to section 4.

The main result, a simple version

In the following, M ⊂ R m is a compact set.

Definition 1.1. [Standard set-valued map] A correspondance F : R m ⇉ R m is said to be standard if it satisfies the following assumptions:

• for any x ∈ R m , F (x) is a non empty, compact and convex set of R m ,
• F is closed, which means that its graph

Gr(F ) := {(x, y) ∈ R m × R m | y ∈ F (x)} is closed,
• there exists c > 0 such that sup

z∈F (x) z ≤ c(1 + x ).
Under the above assumptions, it is well known (see Aubin and Cellina [START_REF] Aubin | Differential Inclusions: Set-Valued Maps and Viability Theory[END_REF]) that ( 4) admits at least one solution (i.e. an absolutely continuous mapping x : R → R m such that ẋ(t) ∈ F (x(t)) for almost every t) through any initial point. We call S x the set of solutions with initial condition x(0) = x. The set-valued dynamical system induced by the differential inclusion will be denoted Φ = (Φ t ) t∈R . To any x ∈ R m , it associates the non empty set

Φ t (x) := {x(t) | x ∈ S x } .
Finally, S Φ := ∪ x S x is the set of all solution curves. In order to understand the main result, recall some classical definitions about the set-valued dynamics.

Definition 1.2. A non empty compact set A ⊂ R m is called an attractor for Φ, provided it is invariant (i.e. for all x ∈ A, there exists a solution x to (4) with x(0) = x and such that x(R) ⊂ A) and that there is a neighborhood U of A with the property that, for every ǫ > 0, there exists

t ǫ > 0 such that Φ t (U ) ⊂ N ǫ (A) for all t ≥ t ǫ , where N ε (A) is the ε-neighborhood of A.
An open set U with this property is called a fundamental neighborhood of A.

Definition 1.3. Let A ⊂ R m be an attractor for the set-valued dynamical system. The basin of attraction of A is the set

B(A) := {x ∈ R m : Φ [0,+∞[ (x) bounded and ω Φ (x) ⊂ A}, where ω Φ (x) = t≥0 Φ [t,∞[ (x) is the omega limit set of the point x.
Now consider a discrete time stochastic process (x n ) n in M defined by (3), and satisfying the following assumptions:

(i) For all c > 0, n e -c/γn < ∞, (ii) (U n ) n is uniformly bounded and E (U n+1 | F n ) = 0, (iii) F is a standard set-valued map.
Set τ n := n i=1 γ i and m(t) := sup{j | τ j ≤ t}. We call X the continuous time affine interpolated process induced by (x n ) n and γ the piecewise constant deterministic process induced by (γ n ) n :

X(τ i + s) = x i + s x i+1 -x i γ i+1
, for s ∈ [0, γ i+1 ] and γ(τ i + s) := γ i+1 for s ∈ [0, γ i+1 [, and consider its limit set

L(X) := t≥0 {X(s) : s ≥ t}.
The following attainability condition is crucial to show that X converges with positive probability to a given attractor.

Definition 1.4. A point p ∈ M is attainable if, for any t > 0 and any neighborhood U of p,

P (∃s ≥ t : X(s) ∈ U ) > 0.
We call Att(X) the set of attainable points by X. The following statement is a special case of our main result, Theorem 2.15.

Theorem 1.5. Let A ⊂ M be an attractor for Φ with basin of attraction

B(A). If Att(X)∩B(A) = ∅ then P (L(X) ⊂ A) > 0.
Heuristically, this means that if the set of attainable points of the process meets the basin of attraction of a given attractor A, then there is convergence with positive probability toward A.

2 Convergence with positive probability 2.1 Set-valued dynamical systems relative to a differential inclusion.

We recall here some definitions and results due to Benaïm et al (see [START_REF] Benaim | Stochastic approximations and differential inclusions[END_REF]). Let F : R m ⇉ R m be a standard set-valued map and Φ be the set-valued dynamical system associated to the differential inclusion

dx dt ∈ F (x) (5) 
The notion of internally chain transitive set (ICT set) was introduced by Benaïm and Hirsch in [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF] to analyse certain perturbations of the flow relative to an ODE. This is an extension of the notion of chain recurrence due to Conley [START_REF] Conley | Isolated Invariant Sets and the Morse Index[END_REF]. The concept of ICT sets was extended to differential inclusions by Benaïm et al. in [START_REF] Benaim | Stochastic approximations and differential inclusions[END_REF]. We refer to this last reference for an accurate description of ICT sets. Here, we only need the following property (see [START_REF] Benaim | Stochastic approximations and differential inclusions[END_REF], Proposition 3.20): an internally chain transitive set L is invariant, compact and the restricted set-valued dynamical system Φ| L admits no proper attractor (i.e. no attractor distinct from L). The following result is proved in [START_REF] Benaim | Stochastic approximations and differential inclusions[END_REF] (see Theorem 3.23) Theorem 2.1. Let L be an internally chain transitive set and A be an attractor for Φ with basin of attraction B(A). Then

B(A) ∩ L = ∅ ⇒ L ⊂ A.
The space C(R + , R m ) of continuous paths, endowed with the metric

D(x, x ′ ) := ∞ k=1 1 2 k min sup u∈[0,k]
x(u)x ′ (u) , 1 is complete. A continuous map X : R + → R m is an asymptotic pseudotrajectory (APT) of the set-valued dynamical system (Φ t ) t≥0 if, for any T > 0,

lim t→+∞ inf z∈SΦ X(t + •) -z(•) [0,T ] = 0,
where • [0,T ] denotes the uniform norm on [0, T ]. Heuristically this means that, for any T > 0, the curve joining X(t) to X(t + T ) shadows the trajectory of some solution with arbitrary accuracy, provided t is large enough.

A fundamental property of asymptotic pseudotrajectories is that, if X is a bounded APT, then its limit set L(X) is internally chain transitive (see [START_REF] Benaim | Stochastic approximations and differential inclusions[END_REF], Theorem 4.3). Consequently, by Theorem 2.1, we have Corollary 2.2. Let X be an asymptotic pseudotrajectory of the set-valued dynamical system and A an attractor for Φ. If L(X) meets the basin of attraction of A, then it belongs to A.

Let δ be a positive real number. Then F δ is the set-valued map defined by 

F δ (x) := {y | ∃z ∈ B(x, δ) such that d(y, F (z)) < δ} . (6) 
We recall the following theorem due to Benaïm et al (see [START_REF] Benaim | Stochastic approximations and differential inclusions[END_REF] Theorem 4.2).

Theorem 2.4. Any bounded perturbed solution of the differential inclusion ( 5) is an asymptotic pseudotrajectory of the set-valued dynamical system Φ.

A deterministic result

For any application X : R + → M and T > 0, we define the quantity

d X (T ) := sup k∈N inf z∈SΦ z(•) -X(kT + •) [0,T ] .
The following characterization of the basin of attraction will be useful.

Lemma 2.5. Given an attractor A, the basin of attraction of A is the union of all fundamental neighborhoods of A.

Proof. Any fundamental neighborhood is trivially included into B(A). Conversely, let x ∈ B(A) and U 0 be a given fundamental neighborhood of A: for any ε > 0, there exists t 0 ε > 0 such that

Φ t (U 0 ) ⊂ N ε (A), ∀t ≥ t 0 ε . Pick γ > 0 such that N 2γ (A) ⊂ U 0 . There exists T > 0 such that Φ T (x) ⊂ N γ (A). Otherwise, there would exist sequences (z n ) n ⊂ S x and t n ↑ +∞ such that z n (t n ) ∈ (N γ (A)) c , which contradicts the fact that ω Φ (x) is bounded and contained in A.
Finally, by closedness of the set-valued map

x → Φ T (x) 1 , there exists r > 0 such that Φ T (B(x, r)) ⊂ N 2γ (A) ⊂ U 0 . The set U := U 0 ∪ B(x, r) is a fundamental neighborhood of A since, for any ε > 0, Φ t (B(x, r)) ⊂ N ε (A), ∀t ≥ t 0 ε + T,
and the proof is complete. Assume now that X is an APT of the set-valued dynamical system (Φ t ) t≥0 . The following lemma is the extension to differential inclusions of Lemma 6.8 in Benaïm [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF].

Lemma 2.6. Let A ⊂ R m be an attractor for the set-valued dynamical system Φ, with basin of attraction B(A). Then, for any compact set K ⊂ B(A), there exist positive real numbers α(K) and

T (K) such that (X(0) ∈ K and d X (T (K)) < α(K)) ⇒ L(X) ⊂ A.
Proof. Let W be an open set with compact closure such that

A ∪ K ⊂ W ⊂ W ⊂ B(A).
There exists α > 0 such that N 3α (A) ⊂ W and N α (K) ⊂ W . Since W is included in the basin of attraction of A, there exists a fundamental neighborhood which contains W ; hence we can find a positive number T (which depends on α and W ) such that

Φ [T,+∞[ (W ) ⊂ N α (A).
Assume now that X(0) ∈ K and d X (T ) < α. There exists a solution z1 which shadows X on [0, T ]; in particular,

z 1 (0) ∈ N α (X(0)) ⊂ W and X(T ) ∈ N α (z 1 (T )). By definition of T , z 1 (T ) ∈ N α (A), which means that X(T ) ∈ N 2α (A) ⊂ W .
By a recursive argument, we show that the sequence (X(kT )) k≥1 belongs to the set N 2α (A). Assume that X(kT ) ∈ N 2α (A). Then, there exists a solution

z k+1 (•) which is α-close of X(kT + •) on [0, T ]: in particular, z k+1 (0) ∈ N α (X(kT )) ⊂ N 3α (A) ⊂ W and X(kT + T ) ∈ N α (z k+1 (T )) ⊂ N 2α (A). Consequently, the limit set L(X) is contained in W ⊂ B(A). Hence, L(X) ⊂ A by Corollary 2.2.

Stochastic processes

In the following, (X(t)) t≥0 will be a continuous time R m -valued stochastic process, adapted to some non decreasing sequence (F t ) t of sub sigma algebras of F.

Hypothesis 2.7. There exists a map ω : R 3 + → R + such that, for any α > 0 and T > 0,

P sup s≥t inf z∈SΦ z(•) -X(s + •) [0,T ] ≥ α | F t ≤ ω(t, α, T ) ↓ t→+∞ 0 almost surely. ( 8 
)
Hypothesis 2.7 is a technical assumption, slightly stronger than supposing that X is almost surely an APT. Recall that Att(X) is the set of attainable points by X.

Theorem 2.8. Let A be an attractor and (X(t)) t≥0 be an adapted process satisfying hypothesis 2.7. Then, if Att(X) ∩ B(A) = ∅, we have

P (L(X) ⊂ A) > 0.
Proof. We adapt the proof of Theorem 7.3 in Benaïm [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]. Let U be an open set included in B(A) and call K = U . By Lemma 2.6 there exist α(K) and T (K) such that

(X(0) ∈ K and d X (T (K)) < α(K)) ⇒ L(X) ⊂ A.
Let t be a positive irrational number such that ω(t, α, T ) < 1 and denote t n (k) = k 2 n for n and k in N. We define the stopping time

τ n := inf k∈N {t n (k) | X(t n (k)) ∈ U, t n (k) ≥ t} .
On the intersection of the events {τ n < ∞} and sup s≥τn inf z∈SΦ z(•) -X(s + •) [0,T ] ≤ α the set L(X) is included in A. Consequently, we have

P (L(X) ⊂ A) ≥ k≥[2 n t]+1 E P sup s≥τn inf z∈SΦ z(•) -X(s + •) [0,T ] ≤ α | F tn(k) I τn=tn(k) ≥ k≥[2 n t]+1 (1 -ω(t n (k), α, T )) P (τ n = t n (k)) ≥ (1 -ω(t, α, T )) P (τ n < +∞) , since ω(t n (k), α, T ) ≤ ω(t, α, T ), ∀k ≥ [2 n t] + 1.
On the other hand, the sequence of events {τ n < +∞} is increasing and we have

lim n→+∞ ↑ {τ n < +∞} = ∪ n {τ n < +∞} = {∃s ≥ t | X(s) ∈ U }.
Now take an attainable point p ∈ B(A) and U a neighborhood of p, such that U ⊂ B(A). We have

P (L(X) ⊂ A) ≥ (1 -ω(t, α, T ))P (∃s ≥ t | X(s) ∈ U ) > 0,
and the proof is complete. Now, we consider a compact set M ⊂ R m and a standard set-valued map

F : R m ⇉ R m . Let T > 0. Denote Φ T (M ) := s∈[0,T ] Φ s (M ), ||F || = sup x∈Φ T (M) sup y∈F (x)
||y|| and let us define the compact set

K C := K (||F ||,C) = {y ∈ Lip([0, T ], R m ) | Lip(y) ≤ ||F || + C + 1 , y(0) ∈ M } ,
where C is a positive constant and Lip([0, T ], R m ) is the set of Lipschitz functions from [0, T ] to R m . Remark 2.9. K C is appropriate to our situation since it contains every solution curve, restricted to an interval of length T and any (δ(•), U (•))-perturbed solution of the differential inclusion, with sup t∈[0,T ] U (t) ≤ C and δ ≤ 1.

For δ ∈ [0, 1], let us define the set-valued application (with the convention Λ 0 = Λ):

Λ δ : K C ⇉ K C , z → Λ δ (z), (9) 
where y ∈ Λ δ (z) if and only if there exists an integrable h : Lemma 2.10. Let C > 0 and α > 0. There exist ε > 0 and δ 0 > 0 such that, for any δ < δ 0

[0, T ] → R m such that h(u) ∈ F δ (z(u)) ∀u ∈ [0, T ] and
y(τ ) = z(0) + τ 0 h(u)du, ∀τ ∈ [0, T ]. Remark that F ix(Λ) := {z ∈ K C | z ∈ Λ(z)}
d [0,T ] (z, Λ δ (z)) < ǫ ⇒ d [0,T ] (z, S [0,T ] ) < α.
As a consequence, we obtain the following crucial result.

Proposition 2.11. Assume that there exist a function δ : R + → R + converging to zero and a uniformly bounded random process (U (t)) t≥0 such that (X(t)) t≥0 is almost surely a bounded (δ, U )perturbed solution of the differential inclusion [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF] and such that X(0) ∈ M . If U satisfies the following property

P sup s≥t s+• s U (u)du [0,T ] ≥ ε | F t ≤ ω(t, ε, T ) ↓ t→+∞ 0 ( 10 
)
almost surely, then hypothesis 2.7 holds and Theorem 2.8 may be applied.

Proof. First, X(•) is almost surely an asymptotic pseudotrajectory of the set-valued dynamical system by Theorem 2.4. For Lipschitz (classical) dynamical systems, hypothesis 2.7 holds by an application of Gronwall lemma (see Benaïm [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF], section 7). However, this does not adapt to our situation and this is the reason why we need Lemma 2.10. By assumption, we have almost surely

dX(t) dt -U (t) ∈ F δ(t) (X(t))
, for almost every t > 0.

Let T > 0. For any τ ∈ [0, T ],

X(s + τ ) - s+τ s U (u)du ∈ X(s) + τ 0 F δ(s) (X(s + u))du. Hence, d [0,T ] X(s + •), Λ δ(s) (X(s + •) ≤ s+• s U (u)du [0,T ]
and

P sup s≥t d [0,T ] X(s + •), Λ δ(t) (X(s + •)) ≥ ε | F t ≤ P sup s≥t s+• s U (u)du [0,T ] ≥ ε | F t ≤ ω(t, ε, T ).
Now let α > 0. By Lemma 2.10 there exists ε > 0 (which depends on T and α) such that, for t large enough and s ≥ t,

d [0,T ] X(s + •), S [0,T ] ≥ α ⇒ d [0,T ] X(s + •), Λ δ(t) (X(s + •)) ≥ ε.
Consequently, for these choices of t and ε,

P sup s≥t d [0,T ] X(s + •), S [0,T ] ≥ α | F t ≤ P sup s≥t d [0,T ] X(s + •), Λ δ(t) (X(s + •)) ≥ ε | F t ≤ P sup s≥t s+• s U (u)du [0,T ] ≥ ε | F t ≤ ω(t, ε(α, T ), T ),
and the proof is complete.

Recall that a perturbed solution is an APT. The last proposition is a stochastic version of this result in the sense that the process X(•) is almost surely a perturbed solution, hence almost surely an APT. However, to yield the stronger property (2.7), we reinforce the assumption on U and assume (10) instead of (7).

Convergence of Stochastic approximation algorithms

We introduce here a class of stochastic approximation processes which generalize the Robbins-Monro algorithms. Under some assumptions on the step size and the noise, we prove that hypothesis 2.7 is verified and that the conclusion of Theorem 2.8 holds.

Definition 2.12 (Generalised stochastic approximation process). Let (U n ) n be an uniformly bounded R m -valued random process, (γ n ) n a deterministic positive real sequence and (F n ) n a sequence of setvalued maps on R m . We say that (x n ) n is a generalised stochastic approximation process relative to the standard set-valued map F if the following assumptions are satisfied:

(i) we have the recursive formula 

x n+1 -x n -γ n+1 U n+1 ∈ γ n+1 F n (x n ), ( 
γ i+1 U i+1 | k such that k-1 i=n γ i ≤ T = 0, (iv) for all n ≥ 0, x n ∈ M , (v) for any δ > 0, there exists n 0 ∈ N such that ∀n ≥ n 0 , F n (x n ) ⊂ F δ (x n ).
In the following we will call X = (X(t)) t the continuous time affine interpolated process induced by a given generalised stochastic approximation process (x n ) n (see section 1.2).

Proposition 2.13. The process X is almost surely a (δ, U )-perturbed solution, for some deterministic function δ, and U the piecewise constant continuous time process associated to (U n ) n :

U (t) := U n+1 , ∀t ∈ [τ n , τ n+1 [.
Proof. By straightforward computations (see the proof of proposition 1.3 in Benaïm et al. [START_REF] Benaim | Stochastic approximations and differential inclusions[END_REF]), it is not difficult to see that almost surely, (X(t)) t is a perturbed solution associated to U and

δ(t) := inf δ > 0 | τ n ≥ t ⇒ F n (x n ) ⊂ F δ (x n ) + γ(t) U (t) + c 1 + sup x∈M F (x) ,
which obviously converges to 0.

Remark 2.14. Recall that m(t) = sup{j | τ j ≤ t}. The condition ( 10) is equivalent to

P sup m≥n sup m<k≤m(τm+T ) k-1 i=m γ i+1 U i+1 ≥ ε | F n ≤ ω(n, ε, T ) ↓ n→+∞ 0 almost surely. ( 11 
)
and we use the notation ∆(n, T ) := sup n<k≤m(τn+T )

k-1 i=n γ i+1 U i+1 in the sequel.
Our main result is now stated in full generality.

Theorem 2.15. Let (x n ) n be a stochastic approximation algorithm such that (U n ) n satisfies [START_REF] Conley | Isolated Invariant Sets and the Morse Index[END_REF]. Then, if A is an attractor relative to F , we have

Att(X) ∩ B(A) = ∅ ⇒ P (L(X) ⊂ A) > 0.
Proof. By Proposition 2.13, the conditions requested to apply Proposition 2.11 are satisfied. Hence, hypothesis 2.7 is checked and the result follows directly from Theorem 2.8.

In the particular case where (U n ) n is a martingale difference: [START_REF] Conley | Isolated Invariant Sets and the Morse Index[END_REF] is satisfied under simple assumptions on the noise and step size.

E (U n+1 | F n ) = 0,
Proposition 2.16. Let (U 0 n ) n be a martingale difference noise (not necessarily bounded) and assume that one of the following assumptions is satisfied:

1) There exists some q ≥ 2 such that

γ 1+q/2 n < +∞ and sup n E U 0 n q < +∞.
2) There exists a deterministic sequence

(M n ) n such that M 2 n = o (γ n log n) -1 and, for any n ∈ N, ∀θ ∈ R m , E exp θ, U 0 n+1 | F n ≤ exp M 2 n 2 θ 2 ,
then [START_REF] Conley | Isolated Invariant Sets and the Morse Index[END_REF] is checked.

Proof. For the first point, we refer the reader to Benaïm [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF]. Now for the second, let θ ∈ R m and consider the process (Z n (θ)) n defined by

Z n (θ) := exp n i=1 θ, γ i U 0 i - θ 2 2 n i=1 γ 2 i M 2 i .
(Z n (θ)) n is a supermartingale by assumption. Hence, if we denote S n := k-1 i=n γ 2 i+1 M 2 i+1 and m n := m(τ n + T ), for any β > 0,

P sup n<k≤mn θ, k-1 i=n γ i+1 U i+1 ≥ β | F n = P sup n<k≤mn Z k (θ) Z n (θ) exp θ 2 2 k i=1 γ 2 i M 2 i ≥ e β | F n ≤ P sup n<k≤mn Z k (θ) ≥ Z n (θ) exp β - θ 2 2 S n | F n ≤ exp θ 2 2 S n -β .
Let e ∈ {e 1 , ..., e m , -e 1 , ..., -e m }. We have

P sup n<k≤mn e, k-1 i=n γ i+1 U i+1 ≥ ε | F n = P sup n<k≤mn δe S n , k-1 i=n γ i+1 U i+1 ≥ ε 2 S n | F n ≤ exp -ε 2 2S n . P sup n<k≤mn k-1 i=n γ i+1 U i+1 ≥ ε | F n ≤ 2m exp -ε 2 2S n .
Let us introduce ε n := γ n M 2 n log n. Then, since k-1 i=n γ i+1 ≤ T , we have

P sup n<k≤mn k-1 i=n γ i+1 U i+1 ≥ ε | F n ≤ 2m exp -ε 2 log n 2T sup k≥n ε k .
Since sup k≥n ε k → 0, the application (n, ε, T ) → ω(n, ε, T ) := 2d m≥n exp -ε 2 log n 2T sup k≥n ε k converges to 0 as n tends to infinity and the proof is complete.

Simple examples satisfying the assumptions of Proposition 2.16 are γ n = 1/n and (U 0 n ) n a martingale difference with uniformly bounded moment of order 2 (for 1)) or γ n = (1/log(n)) 2 and (U 0 n ) n a uniformly bounded martingale difference (for 2)).

The following is a useful consequence of this statement.

Corollary 2.17. Assume that U n can be written U n = U 0 n + U 1 n , where • (U 0 n ) n a martingale difference noise satisfying one of the assumptions in the Proposition 2.16,

• (11) is satisfied for (U 1 n ) n .
Then [START_REF] Conley | Isolated Invariant Sets and the Morse Index[END_REF] is satisfied for

(U n ) n
Proof. The sum of two random sequences satisfying [START_REF] Conley | Isolated Invariant Sets and the Morse Index[END_REF] enjoys the same property.

Remark 3.6. Notice that the closedness Λ is essential. Consider a simple example where both players have two actions and the common payoff matrix is

A = 1 1 0 2
A direct computation shows that

N E = { (1, 0), (1 -t, t) : t ∈ [0, 1/2]} ∪ { (0, 1), (0, 1) }.
Let us call the first set L 1 and the second L 2 . We easily see that L 2 is an attractor for the best response dynamics. On the other hand, L 1 is a closed connected component of N E but not of Λ since the Nash equilibrium (x, y) = (1, 0), ( 12 , 1 2 ) is not a local maximizer. Thus the connected component L 1 \{(x, y)} of Λ is not isolated in N E and Corollary 3.5 can not be applied as it will be made clear in its proof.

Proof of Theorem 3.3

Notice that the Markov matrix M 1 n (•, •; y) defined in the previous section is reversible with respect to its invariant distribution π 1 n [y]:

(π 1 n [y]) i ∝ (π 1 0 ) i exp β n U 1 (i, y) .
Also, considering an irreducible Markovian matrix M and its invariant probability measure π, one can define the pseudo inverse Q of M , characterized by

Q(I -M ) = (I -M )Q = I -Π, Q 1 = 0,
where Π is the matrix defined by Π(i, j) = π(j). Let us call π 1 n and Q 1 n (respectively π 2 n and Q 2 n ) the invariant probability and the pseudo inverse of the matrix

M 1 n := M 1 n (•, •; y n ) (resp. M 2 n := M 2 n (•, •; x n ))
. We now define the energy barrier of M 1 0 with respect to the payoff function U 1 . Let Γ i,j be the set of admissible paths from i to j in the graph associated to M 1 0 : γ = (i = i 0 , i 1 , .., i n = j) is admissible if M 1 0 (i k , i k+1 ) > 0, k = 0, .., n -1. Then, denoting for y ∈ Y,

Elev(i, j; y) := min max{-U 1 (k, y) | k ∈ γ}, γ ∈ Γ i,j .
We call

U 1,# (y) := max Elev(i, j; y) + U 1 (i, y) + U 1 (j, y) -max U 1 (•, y) , U 1,# := max y∈Y U 1,# (y).
Obviously, the quantity U 2,# is defined analogously. For v = (x, y) ∈ ∆, we call θ n (v) the random variable

θ n (v) := π 1 n [y], π 2 n [x] .
The stochastic process (v n ) n satisfies the recursive formula

v n+1 -v n = 1 n + 1 (-v n + V n+1 ) = 1 n + 1 (-v n + θ n (v n ) + U n+1 ) , with U n+1 = V n+1 -θ n = δ Xn+1 -π 1 n [y n ], δ Yn+1 -π 2 n [x n ] .
Benaïm and Raimond (see Theorem 4.15 in [START_REF] Benaim | A class of non homogeneous self interacting random processes with applications to learning in games and vertex-reinforced random walks[END_REF]) proved that, if β p n = A p log n with A p < Ãp := 1/2U p,# , then (v n ) n is a generalised stochastic approximation process, taking values in ∆, with step size γ n = 1/n, relatively to the maps F n (v) = -v + θ n [v] and F . Note that the corresponding differential inclusion is the best response dynamics:

( ẋ, ẏ) ∈ (br 1 (y), br 2 (x)) -(x, y) However, this is not sufficient to prove Theorem 3.3 and we need to state the stronger property [START_REF] Conley | Isolated Invariant Sets and the Morse Index[END_REF] on (U n ) n . The following proposition can be easily derived from the proof of Proposition 4.4 in Benaïm and Raimond [START_REF] Benaim | A class of non homogeneous self interacting random processes with applications to learning in games and vertex-reinforced random walks[END_REF].

Proposition 3.7. Assume that β 1 n = A 1 log n for some 0 < A 1 < Ã1 . Then there exists a positive deterministic sequence (u n ) n → 0 such that a)

|Q 1 n | 2 log n n ≤ u n , b) |Π 1 n+1 -Π 1 n | ≤ u n , c) |Q 1 n+1 -Q 1 n | ≤ u n .
Lemma 3.8. Assume that the sequences (β p n ) n (p = 1, 2) satisfy the assumption of Proposition 3.7. Then [START_REF] Conley | Isolated Invariant Sets and the Morse Index[END_REF] 

is satisfied for (1/n) n and (U n ) n . Proof. We call ζ n+1 the term δ Xn+1 -π 1 n [y n ].
We only need to prove that property (11) holds for 1/n and (ζ n ) n . We therefore denote ∆(n, T ) := sup n<k<m(τn+T )

k-1 i=n 1 i+1 ζ i+1 . First of all, ζ n+1 can be written ζ n+1 = δ Xn+1 (Id -Π n ) = δ Xn+1 (Q n -M n Q n ) .
There is then a natural decomposition:

ζ n+1 = (δ Xn+1 Q n -δ Xn M n Q n ) + (δ Xn M n Q n -δ Xn+1 M n Q n ).
The first term is a martingale difference, bounded by |Q n | (up to a constant). Hence it satisfies the assumption 2) of Proposition 2.16, with M n = nun log n . Now, for the second term, we have

k-1 i=n 1 i + 1 δ Xi M i Q i -δ Xi+1 M i Q i ≤ k-1 i=n 1 i + 1 δ Xi+1 M i+1 Q i+1 -δ Xi+1 M i Q i + k-1 i=n 1 i δ Xi M i Q i - 1 i + 1 δ Xi+1 M i+1 Q i+1 + T sup n≤i≤k-1 |Q i | i , since k i=n 1 i(i+1) δ Xi M i Q i ≤ sup {|Q i |/i | n ≤ i ≤ k -1} i=n,.
.,k-1 1/i. The first term on the right side can be written

k-1 i=n 1 i + 1 δ Xi+1 (Q i+1 -Q i + Π i+1 -Π i ) ,
and is bounded by the quantity

T sup {|Q i+1 -Q i | + |Π i+1 -Π i | | i = n, .., k -1}. The telescopic term is bounded by 2 sup n≤i≤k-1 |Qi| i . Consequently, k-1 i=n 1 i + 1 δ Xi M i Q i -δ Xi+1 M i Q i ≤ 2(T + 1) sup i≥n |Q i | i + |Q i+1 -Q i | + |Π i+1 -Π i | .
By Proposition 3.7, the term on the right is decreasing to zero and

P sup m≥n ∆(n, T ) ≥ ε | F n ≤ ω(n, ε, T ) ↓ n 0.
This concludes the proof.

Potential Games and Proof of Corollary 3.5

In this section, we prove that any closed isolated connected component of Λ, the set of local maximizers, is an attractor for the best response dynamics in any given finite N -players potential game. Let (m i ) N i=1 be N natural numbers and assume that the set of pure action for player i is {1, .., m i }. We call ∆ m i the m i -1-dimensional simplex corresponding to its mixed strategies space and U the common n-linear payoff function on ∆ = × N i=1 ∆ m i (see section 3.1). We use the notation

(x i , x -i ) for x = (x 1 , ..., x n ) ∈ ∆.
Remark 3.9. The set ∆ can be written as a finite union of the relative interiors (F k ) k=1..K of its faces (this is also true for more general convex sets, see R. Tyrrell Rockafellar [START_REF] Rockafellar | Convex analysis[END_REF], Theorem 18.2). Additionaly, any

F k is equal to a product F 1 k × • • • × F N k ,
where F i k is the relative interior of one of ∆ m i 's faces. The restriction of U to F k can therefore be seen as a smooth function defined on an open set of R n k , for some natural number n k .

The best response map BR(x) = (BR 1 (x), . . . , BR n (x)), where BR i (x) = Argmax z∈∆ m i U (z, x -i ), has nonempty compact convex values and is upper semicontinuous. Therefore consider the best response dynamics .

x ∈ Br(x)x.

Benaïm, Hofbauer and Sorin, in [START_REF] Benaim | Stochastic approximations and differential inclusions[END_REF], proved that U is a Lyapunov function for N E. Namely, U verifies the following two properties Proof. Let x be a local maximizer of U . Since U (•, x -i ) is linear for all i, we easily derive that x i is a global maximizer for U (•, x -i ).

(i) U (x) < U (y) for all x ∈ ∆\N E, y ∈ Φ t (x), t > 0, (ii) U (x) ≤ U (y) for all x ∈ N E, y ∈ Φ t (x), t ≥ 0.
Proposition 3.11. For any finite game Γ, the set of Nash equilibria consists of finitely many connected components.

For a proof of the above result see Kohlberg and Mertens [START_REF] Kohlberg | On the strategic stability of equilibria[END_REF]. Lemma 3.12. Let k ∈ {1, .., K}. Then

N E ∩ F k ⊂ Σ U |F k , where Σ U |F k is the set of critical points of U |F k , the restriction of U to F k .
Proof. Let x be an element of N E ∩ F k . By definition of Nash equilibria, we know that, for all i ∈ {1, . . . , N }, the point xi is a global maximizer in F i k for the function

U |F k (•, x-i ). In particular, x is a critical point for U |F k . Lemma 3.13. The potential function U is constant on every connected component C of N E. Proof. Let C be a connected component of N E in ∆. First, we write C = ∪ k=1..K C k , where, for any k, C k = C ∩ F k . Pick k ∈ {1, .., K}. Since U |F k is
smooth, the image of its critical set has null Lebesgue measure by Sard's Lemma. Hence, by Lemma 3.12, this is also true for the image of C k . In particular, U (C) has null Lebesgue measure, which means that it contains no interval. The result follows by connectedness of C and continuity of U . Remark 3.14. This result still holds for the more general class of potential games studied in [START_REF] Benaim | Stochastic approximations and differential inclusions[END_REF], where the strategy spaces are convex compact subsets of euclidean spaces, with countably many faces and the common payoff function is just assumed to be N -concave and smooth. However, Proposition 3.11 is not, a priori, true anymore. Lemma 3.15. Assume that L is a closed (in ∆) isolated connected component of Λ. Then it is also an isolated connected component of N E.

Proof. By Lemma 3.13, there exists a constant c ∈ R such that U (L) = {c}. Assume that there exists a sequence (x n ) ⊂ N E\L and x ∈ L such that (x n ) converges to x. By Proposition 3.11, there exists a connected component of Nash equilibria C which contains L and such that, for n large enough, x n ∈ C. In particular, U (x n ) = c by Lemma 3.13. Moreover, since x a local maximizer, there is a neighborhood V of x such that for all y ∈ V , U (y) ≤ c. For n large enough, x n ∈ V and it is also a local maximizer which is a contradiction. Therefore L is isolated in the set of Nash equilibria and L = C. The following proposition is a simplified version of Proposition 3.25 in [START_REF] Benaim | Stochastic approximations and differential inclusions[END_REF]. Proposition 3.16. Let M be an Euclidean space, K ∈ M be a compact set, V ⊂ M be a bounded open neighborhood of K and U : V -→ R -. Let the following hold : a) For all t ≥ 0, Φ t (V ) ⊂ V (i.e., V is strongly positively invariant);

b) U -1 (0) = K; c) U is continuous and for all u ∈ V \ K, t > 0 and v ∈ Φ t (u), U (v) > U (u).
Then there exists an attractor contained in K whose basin contains V , and with U -1 (]r, 0]) as a fundamental neighborhood for r > 0 small enough. Proposition 3.17. If L is a closed (in ∆) isolated connected component of Λ, then it is an attractor for the best response dynamics.

Proof. By Lemma 3.13, there exists a number c ∈ R such that L ⊂ U -1 (c). Without loss of generality we assume that c = 0. In order to use Proposition 3.16, we construct an appropriate open neighborhood V r of L. First, by Lemma 3.15, there exists an open neighborhood W of L such that

W ∩ N E = L. (12) 
Moreover there exists another open neighborhood V of L such that V ⊂ W and, for all u ∈ V \L, U (u) < 0. Indeed, assume by contradiction that there exists a sequence (u n ) n ⊂ W \L which converges to u ∈ L and such that U (u n ) ≥ 0 for all n ≥ 0. There exists a neighborhood V u of u such that for all v ∈ V u , U (v) ≤ 0. For n large enough, V u is also a neighborhood of u n , hence U (u n ) = 0 and u n belongs to Λ, which contradicts [START_REF] Duflo | Algorithmes stochastiques[END_REF]. By continuity of U , there exists a real number r such that

U -1 (] -r, +∞[) ∩ V ⊂ V . Pick V r = U -1 (] -r, +∞[∩V (notice that V r
is an open set, included in V ) and consider the function Ũ : V r -→ R which is the restriction of the function U to V r . By construction of V r , we clearly have Ũ -1 (0) = L and point b) is therefore checked. Now let t > 0, u ∈ V r \L and v ∈ Φ t (u). By Property (i) of a Lyapunov function (see p.16), U (v) > U (u) > -r and point c) is satisfied. Now assume that v / ∈ V r . Then, since v ∈ U -1 (]-r, +∞[), v / ∈ V and there exists some 0 < t ′ < t and w ∈ Φ t ′ (u) ∩ (V \ V r ), which implies that U (u) < U (w) ≤ -r < U (u), a contradiction. Consequently v ∈ V r . This proves that points a) is checked and Proposition 3.16 applies: there exists an attractor included in L and whose basin of attraction contains V r . The proposition is proved since L clearly admits no proper attractor.

Proof of Lemma 2.10

In the following, L 1 ([0, T ]) is the set of all Lebesgue-integrable functions from

[0, T ] to R m . Let H : [0, T ] ⇉ R m be a set-valued map, such that, for any u ∈ [0, T ], H(u) is a nonempty subset of R m . Definition 4.1. We call S(H) the set of integrable selections from [0, T ] to R m : S(H) := h ∈ L 1 ([0, T ]) such that ∀u ∈ [0, T ], h(u) ∈ H(u) .
With such a definition, we introduce the set-valued integral of H on [0, T ]:

[0,T ] H(u)du := [0,T ] h(u)du | h ∈ S(H) .
H is said to be measurable if its graph {(t, x) | x ∈ H(t)} is measurable and integrally bounded if there exists an integrable function h :

[0, T ] → R + such that sup x∈H(t) x ≤ h(t), ∀t ∈ [0, T ]. Let h ∈ S(H). We call Ψ h the map defined by τ ∈ [0, T ] → τ 0 h(u)du.
The following theorem is due to Aumann [ Proof. Since the sequence (H n ) is uniformly integrally bounded, the h n are all bounded by an integrable function g : [0, T ] → R + . Then there is a subsequence of (h n ) with a weak limit h ∈ L 1 ([0, T ]) (See Dunford and Schwartz [START_REF] Dunford | Linear operators. Part 1: General theory[END_REF], Theorem IV.8.9).We may assume without loss of generality that (h n ) actually converges weakly to h. We now prove that h belongs to the set S(H).

For A ⊂ L 1 ([0, T ]), we call co(A) the smallest closed (for the L 1 norm) convex set containing A.

Recall that, by Mazur's theorem, a convex subset of L 1 ([0, T ]) is closed if and only if it is weakly closed. Consequently, let k ∈ N. the set co((h n ) n≥k ) is closed and convex and therefore weakly closed. Hence it contains h, which belongs to the weakly closed convex hull of (h n ) n≥k . hence,

h ∈ co((h n ) n≥k ) = co((h n ) n≥k ),
which means that there exists g k ∈ co((h n ) n≥k ) such that hg k L 1 ≤ 1/k. Finally, (g k ) converges to h in L 1 and we may assume without loss of generality that (g k ) k converges to h almost everywhere on [0, T ]. From Caratheodory's theorem, the convex hull of a set A is the set of all barycenters of families of m + 1 elements of A. Consequently, for any k and u ∈ [0, T ], since (h n (u)) n≥k is a set of points in R m , we have

g k (u) = m j=0
λ j k (u)e j k (u), where λ j k (u) ≥ 0, m j=0 λ j k (u) = 1 and e j k (u) ∈ {h n (u) | n ≥ k} ⊂ B(0, g(u)). By compactness, we may assume that, for any j, (e j k (u)) k converges to some e j (u) and (λ j k (u)) k ) converges to λ j (u), such that λ j (u) ≥ 0 and For any j, since e j (u) belongs to the limit set of the sequence (h n (u)) n , it belongs to H(u). Hence, h(u) belongs to co(H(u)) and, if H(u) is convex, h(u) ∈ H(u). The proof is complete. Lemma 4.4. Let (K, d) be a compact metric space and (Λ n ) n , Λ : K ⇉ K be set-valued maps such that Λ is standard and F ix(Λ) = {x ∈ K | x ∈ Λ(x)} = ∅. Assume that, for any x ∈ K, * Λ n+1 (x) ⊂ Λ n (x), Proof. Let x ∈ R m . F (x) is contained in F δ . Hence, it is not empty. Let x n → x and (y n ) n be a sequence of F δ (x n ) converging to some y. Then there exists a sequence (z n ) n such that d(z n , x n ) < δ and d(y n , F (z n )) < δ.

hence there exists a sequence (α n ) n such that α n ∈ F (z n ) and d(y n , α n ) < δ. Without loss of generality, we may assume that z n → z and α n → α. By closeness of the graph of F , we obtain d(z, x) < δ, α ∈ F (z) and d(y, α) < δ, and F δ is closed (and, in particular, has closed images).

Remark 4.8. Note that the images are, a priori, not convex. Lemma 4.9. Let (x n ) n be a sequence of R m , converging to x and (δ n ) n be a positive, vanishing sequence. Then we have lim sup n→+∞ F δn (x n ) ⊂ F (x).

Proof. Let y ∈ lim sup n F δn (x n ). By definition, there exists a sequence (y n ) which converges to y and such that y n ∈ F δn (x n ) (actually it is a subsequence but there is no loss of generality to keep the initial indexation). Hence there exists a sequence (z n ) such that d(z n , x n ) < δ n , d(y n , F (z n )) < δ n , which means that d(x n , α n ) < δ n for some sequence (α n ) n satisfying α n ∈ F (z n ). Without loss of generality we may assume that α n → α and z n → z. Hence we have y = α ∈ F (z) = F (x). Proof. This result follows from Lemma 4.4 and Corollary 4.10.

  is the set of the restrictions on [0, T ] of the solutions curves starting from M , which we denote S [0,T ] from now on. Additionaly, we call d [0,T ] the distance associated to the uniform norm on [0, T ]. The following lemma is an immediate consequence of Corollary 4.11, proved in the last section.

  ii) the step size satisfies n γ n = +∞, lim n γ n = 0, (iii) for all T > 0, we have almost surely lim
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  j=0 λ j (u) = 1. Finally, h(u) = lim k g k (u) = m j=0λ j (u)e j (u).
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 410 Let (z n ) n be a sequence converging to z in C ([0, T ], R m ). Then we have, for any positive, vanishing sequence(δ n ) n , lim sup n→+∞ Λ δn (z n ) ⊂ Λ(z).Proof. Let y ∈ lim sup n Λ δn (z n ). This means that there exists a sequence y n ∈ Λ δn (z n ) which converges to y. Hence, for all n ∈ N, there exists h n ∈ S(F δn (z n )) such that ∀τ ∈ [0, T ], y n (τ ) = z n (0) + τ 0 h n (u)du By Corollary 4.3 and Lemma 4.9, there exists a function h on [0, T ] such that τ 0 h n (u)du → n τ 0 h(u)du, ∀τ ∈ [0, T ] and h ∈ S(F (z)), which completes the proof. Corollary 4.11. Let Λ n := Λ δn . Suppose there exists a compact K ⊂ C ([0, T ], R m ) such that Λ n : K ⇉ K for all n. Then, for all δ > 0, there exists ǫ > 0 and n 0 ∈ N such that, for all n > n 0 , d(z, Λ n (z)) ≤ ǫ ⇒ d(z, F ix(Λ)) ≤ δ.

2 ]

 2 Theorem 4.2. Let H be a set-valued map on [0, T ] with nonempty images. Then * [0,T ] H(u)du is convex, * If H is measurable and integrally bounded then [0,T ] H(u)du is nonempty. * If H has closed images then [0,T ] H(u)du is compact. * If (H k ) k is a sequence of uniformly integrally bounded set-valued functions then where x ∈ lim sup k A k if and only if every neighborhood of x intersects infinitely many A k .The next proposition is not a direct consequence of these results. However, the proofs of the third and fourth points can be adapted to derive it: Proposition 4.3. Let (H n ) be a sequence of set-valued maps from [0, T ] to R m uniformly integrally bounded and H be a set-valued map with non empty images. We assume that, for any τ ∈ [0, T ], lim sup n H n (τ ) ⊂ H(τ ). For any n ∈ N, let h n ∈ S(H n ). Then,(i) If, for any u, H(u) is convex, there exists h ∈ S(H) such that h n converges weakly in L 1 ([0, T ])to h (up to a subsequence). In particular, Ψ hn converges simply to Ψ h .(ii) Without the convexity assumption, there exists a function h on [0, T ] with the property that, for any u ∈ [0, T ], h(u) ∈ co(H(u)), the convex hull of H(u) (i.e. the smallest convex set containing A) and such that h n converges weakly in L 1 ([0, T ]) to h. In particular, Ψ hn converges simply to Ψ h .

	lim sup	H k (u)du ⊂		lim sup	H k (u)du,
	k	[0,T ]	[0,T ]	k

This is an easy consequence of Definition 1.1.
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Application to the Markovian fictitious play learning model

We discuss here a Markovian strategy in a two-person game and study the induced dynamics. The model is studied by Benaïm and Raimond in [START_REF] Benaim | A class of non homogeneous self interacting random processes with applications to learning in games and vertex-reinforced random walks[END_REF] and was inspired by a so-called pairwise comparison dynamics introduced in Benaïm et al. [START_REF] Benaım | Stochastic Approximations and Differential Inclusions[END_REF].

The model

The motivation is the following. We assume, in the initial model, that the information situation is the same as in the smooth fictitious play developped by Fudenberg and Levine (see [START_REF] Fudenberg | Learning mixed equilibria[END_REF] and [START_REF] Fudenberg | The Theory of Learning in Games[END_REF]) where the considered player uses a best response strategy against the empirical moves of his opponent, with respect to a smooth perturbation of the payoff function. A player adopting a smooth fictitious play strategy needs to be informed of his payoff function as well as the moves of his opponents up to this stage. For some reason (for instance if his set of actions is too large, if he has computational limitations or, more simply, if he is not allowed to play every action at each stage), we consider here that the set of moves he can play at some instant is a subset of his action set, which depends on the last action taken. More formally, we consider a two players game in normal form. Let I and L be the (finite) sets of moves of respectively player 1 and player 2. These sets are of the form

The maps (U 1 , U 2 ) : I × L → R × R denote the payoff (or utility) functions of players. The sets of mixed strategies available to players are denoted X = ∆(I) and Y = ∆(L), where

and analogously for ∆(L). The product X × Y is denoted ∆. We will use the classical abuse of language for y ∈ Y:

For x ∈ X, y ∈ Y, we call br 1 (y) := Argmax x∈X U 1 (x, y) and br 2 (x) = Argmax y∈Y U 2 (x, y). We define the set-valued map

We assume that a given game is played repeatedly and call X n (resp. Y n ) the move of player 1 (resp. player 2) at stage n. The empirical distribution of moves up to stage n is denoted x n (resp. y n ). We

Let M 1 0 be an irreducible matrix, reversible with respect to its invariant probability distribution

0 represents the possibility or not to play an action depending on the last move: player 1 will be able to play action j after having played i if and only if M 1 0 (i, j) > 0. For n ∈ N and y ∈ Y, let us define the Markov matrix

where (β 1 n ) n is some positive deterministic sequence.

Definition 3.1. A Markovian fictitious play (MFP) strategy for player 1, associated with (β 1 n ) n and (M 1 0 , π 1 0 ) is a strategy σ such that, for any n ∈ N,

From now, we assume that both players use a Markovian fictitious play strategy, associated to M p 0 and (β p n ) n (p = 1, 2). Let us introduce the random sequences

We call Att(v) the attainability set of the discrete process (v n ) n . Recall that p ∈ Att(v) if and only if, for any neighborhood N of p and any n 0 ∈ N,

Proposition 3.2. Assume that the matrices M p 0 (p = 1, 2) have positive diagonal entries. Then Att(v) is equal to the whole state space ∆.

Proof. By irreducibility, from any instant n, given any player i, any move a i j and any positive integer p, player i will play action a i j p times in a row with positive probability.

Theorem 3.3. Assume that the matrices M p 0 (p = 1, 2) have positive diagonal entries. There exist positive values Ãp , p = 1, 2 (which depend only on the payoff functions and M p 0 , p = 1, 2) such that, if agent p plays accordingly to a MFP strategy with β p n = A p log n and A p < Ãp , then

for any attractor A for the set-valued dynamical system induced by F .

In particular, a strict Nash equilibrium is always an attractor for the best response dynamics. Hence Corollary 3.4. Let v = (x, ŷ) be a strict Nash equilibrium. Then, under the assumptions of Theorem 3.3,

Another consequence of Theorem 3.3 is the following. Assume that U 1 = U 2 = U (we will call such a game a potential game) and call Λ the set of local maximizers of U :

where N u is the set of open neighborhoods of u. The set of Nash equilibria is denoted by N E.

Corollary 3.5. Assume that L is a closed (in ∆) connected component of Λ, which is isolated in the sense that there exists an open neighborhood W of L such that W ∩ Λ = L. Then L is an attractor for the best-response dynamics and therefore, under the assumptions of Theorem 3.3,

Proof. The fact that L is an attractor for the best response dynamics is proved in greater generality in section 3.3, Proposition 3.17.

Then, for all δ > 0, there exist ǫ > 0 and n 0 ∈ N such that for all n > n 0

Proof. First notice that, since F ix(Λ) is non empty and Λ n+1 (x) ⊂ Λ n (x), there exists x ∈ K such that x ∈ Λ n (x) for all n. Assume that there are δ > 0, a strictly increasing sequence of integers (n k ) k≥1 and a sequence (x k ) k≥1 in K such that

Then, there exists a sequence (y k ) k≥1 such that y k ∈ Λ n k (x k ) and

Without loss of generality, we may assume that x k → x ∈ K and y k → y. Consequently, d(x, F ix(Λ)) ≥ δ > 0 and x = y. On the other hand,

which means that x ∈ Λ(x), a contradiction.

Remark 4.5. If the Λ n are closed, then it is sufficient to assume that ∩ n Λ n (x) = Λ(x), ∀x. Indeed, by monotonicity and the fact that

From now, we consider a bounded standard set-valued map F : R m ⇉ R m and T > 0. Let δ be a positive real number. Then F δ is the set-valued map defined by ( 6) and Λ δ is the set-valued map defined by ( 9), extended to C ([0, T ], R m ). Note that, with our current notations, the definition of the set-valued map Λ δ can be written, for δ ≥ 0:

Proposition 4.6. Λ is a closed set-valued map with non empty images.

Proof. First, Λ has non empty images since T 0 F (z) is non empty, for any z (see Theorem 4.2). Let (z n ) n be a sequence of C([0, T ], R m ), which converges to some z in C([0, T ], R m ) and let (y n ) n be a sequence converging to y such that, for all n ∈ N, y n ∈ Λ(z n ). This implies that, ∀n ∈ N, ∃h n ∈ S(F (z n )) such that y n (τ ) = z n (0) + Ψ hn (τ ).

We call H n := F (z n ) and H := F (z). By assumptions we made on F , H n and H have compact, convex and nonempty values. The assumptions of Proposition 4.3 are satisfied. Hence, there exists h ∈ S(F (z)) such that y = z(0) + Ψ h .

Lemma 4.7. For any δ > 0, F δ is a closed set-valued map with non empty images.