
HAL Id: hal-00383203
https://hal.science/hal-00383203

Preprint submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Characteristic Formulae for Event-Recording
Automata

Omer Landry Nguena Timo, Pierre-Alain Reynier

To cite this version:
Omer Landry Nguena Timo, Pierre-Alain Reynier. On Characteristic Formulae for Event-Recording
Automata. 2009. �hal-00383203�

https://hal.science/hal-00383203
https://hal.archives-ouvertes.fr

On Characteristic Formulae

for Event-Recording Automata

Omer-Landry Nguena-Timo1 and Pierre-Alain Reynier2

1 LaBRI, Université Bordeaux I & CNRS, France
nguena@labri.fr

2 LIF, Université Aix-Marseille & CNRS, France
pierre-alain.reynier@lif.univ-mrs.fr

Abstract. A standard bridge between automata theory and logic is pro-
vided by the notion of characteristic formula. This paper investigates this
problem for the class of event-recording automata (ERA), a subclass of
timed automata in which clocks are associated with actions and that en-
joys very good closure properties (complementation, determinization...).
We first study the problem of expressing characteristic formulae for ERA
in Event-Recording Logic (ERL), a logic introduced by Sorea to express
event-based timed specifications. We prove that the construction pro-
posed by Sorea for ERA without invariants is false. More generally, we
prove that bisimulation can not be expressed in ERL for the class of
ERA, even without invariants.
Then, we introduce the logic WTµ, a new logic for event-based timed
specifications, closer to the timed logic Lν . We prove that it is strictly
more expressive than ERL, and that its model-checking problem against
ERA is EXPTIME-complete. Finally, we provide constructions for charac-
terizing ERA up to timed (bi)similarity and study the complexity issues.

1 Introduction

In the untimed setting, automata and logics are central tools for the formal
verification of reactive systems. While the system is usually modelled as an
automaton, the specification may be described both as a formula of a logic or
as an automaton. In the first case the correctness of the system reduces to a
model checking problem, whereas in the second case it requires to compare the
two automata, and different relations can be envisaged, such as bisimulation [14]
or language inclusion. A standard bridge between automata theory and logic is
provided by the notion of characteristic formula. A characteristic formula is a
formula in a temporal logic that completely characterizes the behaviour of an
automaton modulo some choosen relation. For the class of timed automata [3],
a solution has first been proposed in [11], providing formulae in the logic Lν .
Then, these results have been improved in [1], yielding linear constructions.

The subclass of Event-Recording Automata [4] (ERA) is obtained by restrict-
ing clocks to be associated with events. This class enjoys good closure properties
such as determinization and complementation. It has thus attracted attention to

characterize its expressive power in terms of some timed logic [13, 8], but logics
considered there are linear-time. This paper investigates the problem of con-
structing characteristic formulae for the class of event-recording automata, up
to timed similarity and timed bisimilarity, using a branching-time logic devoted
to event-based timed specifications. Such a logic, called Event-Recording Logic
(ERL) and introduced by Sorea in [15], extends the mu-calculus by allowing the
use of event-clocks.

After recalling standard definitions in Section 2, we first study in Section 3
the problem of expressing characteristic formula for timed bisimulation for ERA
in the logic ERL. We prove that an existing attempt, which can be found in [16],
is not correct. We also show that this logic can not characterize ERA up to
timed bisimilarity, even when we only consider the subclass of ERA without
invariants. Then, we consider in Section 4 a new timed logic, called WTµ [12],
to express the characteristic formulae. The definition of this logic is closer from
the definition of Lν as it separates quantifications over discrete successors and
time successors. We prove that it is indeed strictly more expressive than ERL,
and that its model-checking problem over ERA is EXPTIME-complete. Finally,
we provide formulae constructions in WTµ for timed (bi)similarity together with
complexity issues in Section 5.

2 Preliminaries

Let Σ be a finite alphabet, Σ∗ is the set of finite words over Σ. The sets N,
Q, Q≥0, R and R≥0 are respectively the sets of natural, rational, non-negative
rational, real and non-negative real numbers. Given a real number x, ⌊x⌋ (resp.
〈x〉) denotes its integral part (resp. its fractionnal part). We consider as time
domain T the set Q≥0 or the set R≥0. We consider a finite set X of variables,
called clocks. A clock valuation over X is a mapping v : X → T that assigns to
each clock a time value. The set of all clock valuations over X is denoted TX .
Let t ∈ T, the valuation v + t is defined by (v + t)(x) = v(x) + t, ∀x ∈ X . For
a clock y ∈ X , we denote by v[y := 0] the valuation such that for each clock
x ∈ X , (v[y := 0])(x) = 0 if x = y, and (v[y := 0])(x)= v(x) otherwise. Finally,
0 denotes the valuation mapping every clock on 0.

In the context of event-recording automata, each clock refers to a specific
action. Then, we associate clocks with letters of an alphabet. Given an alphabet
Σ, we then denote by XΣ the set of clocks {xa | a ∈ Σ}. We may also write TΣ

to represent the set of clock valuations TXΣ .

Given a set of clocks XΣ , we introduce two sets of clock constraints over XΣ .
The most general one, denoted by C(Σ), is defined by the grammar “g ::= x ∼
c | x − y ∼ c | g ∧ g | tt” where x, y ∈ XΣ , c ∈ Q≥0, ∼ ∈ {<,≤,=,≥, >} and tt

stands for true. We also use the proper subset Cup(Σ) of upper bounds constraints
consisting only of conjunctions of constraints of the form x ≺ c with ≺∈ {<,≤}.
We write v |= g when the clock valuation v satisfies the clock constraint g and
denote by JgK the set of clock valuations v such that v |= g holds.

2

2.1 Timed Transition Systems

Timed transition systems describe systems which combine discrete and contin-
uous evolutions. They are used to define the behavior of timed systems such as
Timed Automata [3], or Event-Clock Automata [4] (see below).

Definition 1 (Timed Transition System (TTS)). A timed transition sys-
tem over the alphabet Σ is a transition system S = 〈Q, q0, Σ,→〉, where Q

is the set of states, q0 ∈ Q is the initial state, and the transition relation

→⊆ Q × (Σ ∪ T) × Q consists of continuous transitions q
d
−→ q′ (d ∈ T), and

discrete transitions q
a
−→ q′ (a ∈ Σ).

Moreover, we require the following standard properties for TTS :

– Time-Determinism : if q
d
−→ q′ and q

d
−→ q′′ with d ∈ T, then q′ = q′′,

– 0-Delay : q
0
−→ q,

– Additivity : if q
d
−→ q′ and q′

d′

−→ q′′ with d, d′ ∈ T, then q
d+d′

−−−→ q′′,

– Continuity : if q
d
−→ q′, then for every d′ and d′′ in T such that d = d′ +d′′,

there exists q′′ such that q
d′

−→ q′′
d′′

−→ q′.

With these properties, a run of S can be defined as a finite sequence of moves

ρ = q0
d0−→ q′0

a0−→ q1
d1−→ q′1

a1−→ q2 . . .
an−−→ qn+1 where discrete and continuous

transitions alternate. To such a run corresponds the timed word w = (ai, τi)0≤i≤n

over Σ where τi =
∑i

j=0 dj is the time at which ai happens, and we say that
the timed word w is accepted by S. The language of S, denoted L(S), is defined
as the set of timed words that are accepted by S.

2.2 Event-Recording Automata

We consider the restriction of Event-Clock Automata to Event-Recording Au-
tomata.

Definition 2 (Event-Recording Automata (ERA) [4]). An event-recording
automaton over the alphabet Σ is a tuple A = 〈L, ℓ0, Σ, T, I〉 where:

– L is a finite set of locations,
– ℓ0 ∈ L is the initial location,
– T ⊆ L × C(Σ) × Σ × L is a finite set of transitions,
– I : L → Cup(Σ) associates an upper bound constraint with each location.

We say that an ERA is without invariants if the mapping I associates tt to each
location. In this case we may remove component I of the definition of A.

Without loss of generality, we assume that the clock constraints of transitions
are consistent with invariants. More formally, we have, for any v ∈ TΣ :

∀(ℓ, g, a, ℓ′) ∈ T, v |= g ⇒ (v |= I(ℓ)) ∧ (v[xa := 0] |= I(ℓ′))

3

The semantics of an event-recording automaton A is defined in the terms
of a timed transition system. Intuitively, it manipulates exactly one clock per
action, which allows to measure time elapsed since the last occurrence of this
action. The formal definition is given by:

Definition 3 (Semantics of an ERA). Given an ERA A = 〈L, ℓ0, Σ, T, I〉,
its semantics is given by the TTS SA defined by SA = 〈Q, q0, Σ,→〉 where
Q = {(ℓ, v) ∈ L×TΣ | v |= I(ℓ)}, q0 = (ℓ0,0), and → consists of continous and
discrete transitions: ∀(ℓ, v) ∈ Q,

Time-elapsing steps: ∀d ∈ T, we have (ℓ, v)
d
−→ (ℓ, v + d) iff v + d |= I(ℓ),

Discrete steps: ∀a ∈ Σ, we have (ℓ, v)
a
−→ (ℓ′, v′) iff there exists a transition

t = (ℓ, g, a, ℓ′) ∈ T such that v |= g and v′ = v[xa := 0].

Finally, we simply denote by L(A) the language of timed words L(SA).

We say that an ERA is determinisitic whenever, for every location ℓ ∈ L, let-
ter a ∈ Σ and valuation v ∈ TΣ , there exists at most one transition (ℓ, g, a, ℓ′) ∈
T such that v |= g holds.

As it has been introduced for timed automata in [3], a time-abstract bisim-
ulation based on the construction of regions can also be defined for ERA. We
briefly recall here this construction, and refer the reader to [4] for more details.

Definition 4 (Clock Region). We consider a constant K ∈ N. A clock re-
gion is an equivalence class of the relation ≃K over clock valuations. For two
valuations v, v′ ∈ TΣ, we have v ≃K v′ iff the following conditions hold:

1. ∀x ∈ XΣ , if v(x) ≤ K or v′(x) ≤ K, then ⌊v(x)⌋ = ⌊v′(x)⌋,
2. ∀x ∈ XΣ s.t. v(x) ≤ K, then 〈v(x)〉 = 0 ⇐⇒ 〈v′(x)〉 = 0,
3. ∀x, y ∈ XΣ s.t. |v(x) − v(y)| ≤ K, then 〈v(x)〉 ≤ 〈v(y)〉 ⇐⇒ 〈v′(x)〉 ≤

〈v′(y)〉.

We let RK(Σ) be the set of clock regions for constant K. We recall that the
size of RK(Σ) is in 2O(m. log Km) where m = |Σ| (see [4]). When the constant
K is clear from the context, we denote by [v] the clock region that contains
v, and by JrK the set of clock valuations whose clock region is equal to r. To
define the region automaton of an ERA A, we can assume that all the constants
occuring in its clock constaints are natural numbers (otherwise, all constants
need to be multiplied by the least common multiple of the denominators of all
rational numbers appearing in clock constraints).

Definition 5 (Region Automaton). Given an ERA A = 〈L, ℓ0, Σ, T, I〉 with
integral constants. Let K be some positive integer. We define the region au-
tomaton of A for constant K, denoted by RK(A) = 〈RK(A), Σ ∪ {τ},→〉, as
follows 3:

– RK(A) = {(ℓ, r) ∈ L × RK(Σ) | ∃v ∈ JrK s.t. v |= I(ℓ)}

3 τ is an action not in Σ intended to represent time elapsing.

4

– (ℓ, r)
τ
−→ (ℓ, r′) ⇐⇒ ∃δ ∈ T s.t. (ℓ, v)

δ
−→ (ℓ, v′) in SA, r = [v] and r′ = [v′]

– ∀a ∈ Σ, (ℓ, r)
a
−→ (ℓ, r′) ⇐⇒ ∃(ℓ, v)

a
−→ (ℓ, v′) in SA s.t. r = [v] and r′ = [v′]

It is well known that if K is larger than the largest integer constant that appears
in the clock constraints of A, then RK(A) is a time-abstract bisimulation of SA.

2.3 Event-Recording Logic

Definition 6 (Event-Recording Logic (ERL) [15]). Let Σ be a finite al-
phabet, Var be a finite set of variables, the formulae of the Event-Recording Logic
over Σ and Var are defined by the grammar:

ϕ ::= tt | ff | X | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [g, a]ϕ | 〈g, a〉ϕ | µX.ϕ | νX.ϕ

where g ∈ C(Σ), a ∈ Σ and X ∈ Var.

In the timed logic Lν [11], the formulae have their own clocks and the se-
mantics is then defined using a valuation for the clocks of the formula. When
defining the semantics of ERL formulae over some alphabet Σ, the clock con-
straints range over event clocks associated with Σ. Then, the semantics is defined
for TTS corresponding to ERA over the same alphabet Σ, and the clock con-
straints are evaluated over the valuation of the ERA. Moreover, variables of
ERL formulae are dealt with using assignment functions. Formally, an assign-
ment function of variables Var over the set Q is a function V : Var → P(Q). The
updating notation V[X := Q′] denotes the assignment V ′ that agrees with V on
all variables except X, where V ′(X) = Q′ ⊆ Q.

Definition 7 (Semantics of ERL). Let Σ be a finite alphabet, Var be a finite
set of variables, A = 〈L, ℓ0, Σ, T, I〉 be an ERA 4 over Σ and SA = 〈Q, q0, Σ,→〉
be its associated TTS. Consider a formula ϕ ∈ ERL over Σ and Var and an
assignment function V of Var over Q. The semantics of ϕ for A under V, denoted
JϕKAV , is given by the set of states (ℓ, v) ∈ Q for which the formula holds, and is
defined inductively as follows:

JttKAV := Q

JffKAV := ∅
JXKAV := V(X)

Jϕ1 ∧ ϕ2K
A
V := Jϕ1K

A
V ∩ Jϕ2K

A
V

Jϕ1 ∨ ϕ2K
A
V := Jϕ1K

A
V ∪ Jϕ2K

A
V

J[g, a]ϕKAV := {(ℓ, v) ∈ Q | ∀δ ∈ T,∀(ℓ, g′, a, ℓ′) ∈ T, v + δ |= g ∧ g′ ⇒
(ℓ′, v′) ∈ JϕKAV , where v′ = (v + δ)[xa := 0]}

J〈g, a〉ϕKAV := {(ℓ, v) ∈ Q | ∃δ ∈ T,∃(ℓ, g′, a, ℓ′) ∈ T s.t. v + δ |= g ∧ g′ and
(ℓ′, v′) ∈ JϕKAV , where v′ = (v + δ)[xa := 0]}

JµX.ϕKAV := ∩{Q′ ⊆ Q | JϕKAV[X:=Q′] ⊆ Q′}

JνX.ϕKAV := ∪{Q′ ⊆ Q | Q′ ⊆ JϕKAV[X:=Q′]}

4 Note that we extend the definition of [15] to ERA with invariants.

5

Using standard definitions, we say that a variable X is bounded (resp. free)
in a formula ϕ whenever it is (resp. it is not) under the scope of a fix-point
operator µ or ν. It is easy to verify that if all variables are bounded in a formula
ϕ (we say that ϕ is a sentence), then the semantics of ϕ does not depend on the
assignment function. In this case, we omit the subscript V, and given an ERA A,
and a configuration q of A, for a sentence ϕ, we write A, q |= ϕ whenever we have
q ∈ JϕKA. We also use the shortcut A |= ϕ whenever A, qA0 |= ϕ. Moreover, we
say that a bounded variable X is guarded if it is in the scope of an operator 〈·〉
or [·]. According to [15], one can assume that every bounded variable is guarded.

Remark 1 (On greatest fixpoints). To express characteristic formulae, we shall
see later that we need greatest fixpoints on systems of inequations. In this case,
we will use a slightly different presentation. Given a finit set Var of variables,
we will associate to each variable X a formula D(X) over the variables Var. D
is then called a declaration, and the semantics associated with this definition is
the largest solution of the system of inequations X ⊆ D(X) for any X ∈ Var.
It can be proven (see [5] or [7]) that this presentation is equivalent. To specify
the declaration used, we will add it as subscript of the satisfaction relation |=,
writing A, q |=D X.

2.4 Timed Behavioral Relations

We now recall the standard definitions of timed simulation and timed bisimula-
tion. These definitions are given for TTS and can thus be used for ERA.

Definition 8 (Timed simulation and timed bisimulation). Consider two
TTS S1 = 〈Q1, q

1
0 , Σ,→1〉 and S2 = 〈Q2, q

2
0 , Σ,→2〉. A timed simulation be-

tween S1 and S2 is a relation R ⊆ Q1 × Q2 such that whenever q1Rq2 and
α ∈ Σ ∪T, then:

– If q1
α

−→ q′1 then there exists q′2 ∈ Q2 such that q2
α

−→ q′2 and q′1Rq′2.

A relation R is a timed bisimulation between S1 and S2 iff the relations R and
R−1 are timed simulations.

For states q1, q2, we write q1 ≺ q2 (resp. q1 ∼ q2) if and only if there exists a
timed simulation (resp. a timed bisimulation) R with q1Rq2.

Finally, we say that a TTS S2 simulates a TTS S1 (resp. S1 and S2 are
bisimilar) whenever there exists a timed simulation (resp. a timed bisimulation)
between S1 and S2 such that the pair (q1

0 , q2
0) of their initial states belongs to

the relation R, and then we write S1 ≺ S2 (resp. S1 ∼ S2). We naturally extend
these notations to ERA.

Definition 9 (Characteristic formulae). Let A be an ERA. We say that a
sentence ϕ ∈ ERL is a characteristic formula for A if and only if, according to
the behavioural relation considered, the following equivalence holds:

Simulation: ∀B ∈ ERA,A ≺ B ⇐⇒ B |= ϕ

6

Bisimulation: ∀B ∈ ERA,A ∼ B ⇐⇒ B |= ϕ

The following standard result relates simulation with language inclusion.

Proposition 1. Let A1 and B2 be two ERA, we have the following implications:

(i) if A1 ≺ A2, then L(A1) ⊆ L(A2),
(ii) if A2 is deterministic and L(A1) ⊆ L(A2), then A1 ≺ A2.

3 On the use of ERL for characterizing bisimulation

As the logic ERL has been introduced to describe behaviours related to events,
it is natural to try to write in this logic characteristic formulae for timed bisim-
ulation for ERA. An attempt can be found in Sorea’s thesis [16] for the class
of ERA without invariants. We will first show in this section that this attempt
is erroneous, by providing two counter-examples to illustrate how the construc-
tion fails. Then, we will prove that it is in fact not possible to express timed
bisimilarity for ERA (even without invariants) in the logic ERL.

3.1 On the construction proposed in [16]

In [16], the author addresses the problem of constructing characteristic bisimu-
lation formulae for ERA without invariants using ERL formulae with greatest
fixpoints. We recall here the proposed construction and explain why it fails.

Before presenting the construction, we introduce some additional notations.
Given an ERA without invariants A = 〈L, ℓ0, Σ, T 〉, a location ℓ ∈ L and a letter
a ∈ Σ, we define:

– the set of a-labelled transitions leaving ℓ:
Out(ℓ, a) = {t = (ℓ, g, a, ℓ′) ∈ T}

– the union of clock constraints of a-labelled transitions leaving ℓ:
En(ℓ, a) =

∨

{g | ∃(ℓ, g, a, ℓ′) ∈ Out(ℓ, a)}
– the set of locations reached by an a from location ℓ:

F(ℓ, a) = {ℓ′ | ∃(ℓ, g, a, ℓ′) ∈ Out(ℓ, a)}

The formulae defined in [16] are constructed as follows. One considers a
variable ΦA(ℓ) for each location ℓ ∈ L, and then the greatest solution of the
system associated with the declaration D defined by:

ΦA(ℓ)
D
=

∧

a∈Σ







∧

(ℓ,g,a,ℓ′)∈Out(ℓ,a)〈g, a〉ΦA(ℓ′)

∧[En(ℓ, a), a]
(

∨

ℓ′∈F(ℓ,a) ΦA(ℓ′)
)

∧[¬En(ℓ, a), a]ff






(1)

These definitions should verify the following correctness property: for any
ERA B, one has B |=D ΦA(ℓ0) if and only if A ∼ B.

Note that the construction introduces as clock constraints formulae obtained
by disjunctions and negations. They can be rewritten in the syntax of ERL using
the property [g1 ∨ g2, a]ϕ ≡ [g1, a]ϕ ∧ [g2, a]ϕ.

7

Before proving that the construction is not correct, we give some intuition
on how it fails. To express bisimulation for a finite state automaton A, the
standard approach consists in building a formula ΦA(q) for each state q of A, and
considering the greatest solution of this system. Roughly, this formula verifies
that any behaviour of A can be performed, and conversely that any possible
behaviour corresponds to some of A. More formally, the standard formula for
state q looks like:

ΦA(q) =
∧

a∈Σ













∧

q
a−→q′∈A

〈a〉ΦA(q′)






∧






[a]

∨

q
a−→q′∈A

ΦA(q′)












(2)

This is the way characteristic formulae for bisimulation are defined for in-
stance in [11, 1]. In the construction of [16], the first conjunct corresponds to
the first part of (2) while the two other conjuncts correspond to the second part
of (2). But we can see that both parts are not well encoded. In the first one,
notice that the constraint 〈g, a〉ΦA(ℓ′) implies the existence of at least one time
successor in g that corresponds to the edge while all time successors in g should
be able to fire this edge. In the second part, it is required that all a-successors
occuring in En(ℓ, a) correspond to some a-successor of ℓ. But the a-successors
of ℓ may have different clock constraints, and thus should not all be allowed in
the whole set En(ℓ, a). We will see in Section 5 that the first point can be solved
using the richer logic WTµ, and that the second point can be solved using the
region construction.

ℓ ℓ′
0 ≤ xa ≤ 1

a

A

xa = 1
a

B

Fig. 1. A counter-example to [16].

We provide a counter-example exhibiting the first aspect. Consider the two
ERA depicted on Figure 1. It is easy to see that A and B are not timed bisimilar.
Let us write the formulae for A (Σ = {a}) according to (1):

ΦA(ℓ) = 〈0 ≤ xa ≤ 1, a〉[tt, a]ff ∧ [0 ≤ xa ≤ 1, a][tt, a]ff ∧ [xa > 1, a]ff

We have B |=D ΦA(ℓ), what shows that the construction is not correct. More
precisely, this is due to the uncompleteness of the first part of the formula of (1).

Consider the two ERA depicted on Figure 2. It is easy to verify that A and
B are not timed bisimilar. However, the formulae for the ERA A according to
(1) (with Σ = {a}) are:

ΦA(ℓ0) = 〈0 ≤ xa ≤ 1, a〉ΦA(ℓ1) ∧ 〈1 ≤ xa ≤ 2, a〉ΦA(ℓ2)
∧[0 ≤ xa ≤ 2](ΦA(ℓ1) ∨ ΦA(ℓ2)) ∧ [xa > 2, a]ff

ΦA(ℓ1) = 〈xa = 0, a〉ΦA(ℓ3) ∧ [xa = 0, a]ΦA(ℓ3) ∧ [xa > 0, a]ff
ΦA(ℓ2) = [tt, a]ff
ΦA(ℓ3) = [tt, a]ff

8

One can verify that B, qB0 |=D ΦA(ℓ0) and thus the construction fails. It is
worth noticing here that this is due the constraint [0 ≤ xa ≤ 2](ΦA(ℓ1)∨ΦA(ℓ2))
which is not enough restrictive.

ℓ0

ℓ1 ℓ2

ℓ3

0 ≤ xa ≤ 1,
a

1 ≤ xa ≤ 2,
a

xa = 0,
a

A

0 ≤ xa ≤ 2,
a

1 ≤ xa ≤ 2,
a

xa = 0,
a

B

Fig. 2. A second counter-example to [16].

3.2 Impossibility Result for ERL

The construction of [16] was proposed for the class of ERA without invariants.
It would be rather easy to prove that the logic ERL cannot express timed bisim-
ilarity for ERA with invariants as this logic can not quantify over time elapsing
independantly of the firing of a discrete transition. We prove here a stronger
result by showing that the logic ERL can not express timed bisimulation for the
restricted class of ERA without invariants. Following previous discussion, the
logic ERL lacks a way to require the existence of a discrete transition for all
the time successors satisfying some clock constraint. We will use this remark to
prove the following main result:

Theorem 1. The logic ERL can not express timed bisimilarity for ERA, even
without invariants.

Proof. We consider the ERA A depicted on Figure 1 and proceed by contradic-
tion. We thus assume that there exists a ERL formula ϕ characterizing A up to
timed bisimilarity. To simplify the presentation, we assume that A is defined over
the alphabet restricted to letter a, but the result would hold for any alphabet.

We denote by d ∈ N>0 the greatest denominator of constants appearing in
clock constraints of ϕ. In the sequel, we call granularity of ϕ the value 1

d
.

In a first step, we simplify the formula ϕ. By Knaster-Tarski theorem, we
have the following equalities: (for any ERL formula Φ, any ERA B and any V)

JµX.Φ(X)KBV = J
∨

i≥0

Φi(ff)KBV ; JνX.Φ(X)KBV = J
∧

i≥0

Φi(tt)KBV

As mentionned before, we can assume that all variables of sentences of ERL are
guarded, i.e. are under the scope of the operator 〈·〉 or [·]. A consequence is that

9

when interpreting fixpoints over structures without loops, one can limit above
infinite disjunctions and conjunctions up to the maximal length of executions of
the structure. For an ERA whose maximal depth 5 is 1 (such as A for instance),
we can replace in ϕ the fixpoints operators by the above equations with index
i ranging over the set {0, 1, 2}. We denote by Unfold1 this operation, and by
ERAd≤1 the set of ERA whose maximal depth is smaller or equal to 1. Then,
we have:

∀B ∈ ERAd≤1, B |= ϕ ⇐⇒ B |= Unfold1(ϕ) (3)

Thus, the outermost operators of the formula Unfold1(ϕ) belong to the set
{∨,∧, 〈·〉, [·]}. We can then transform the formula Unfold1(ϕ) in a standard

conjunctive normal form and write Unfold1(ϕ) =
∨k

i=1

∧mi

j=1 Φi,j where every
formula Φi,j has as outermost operator either 〈·〉 or [·]. Now, as the ERA A is
of maximal depth 1 and is naturally timed bisimilar to itself, it satisfies this
formula in its initial configuration qA0 , and thus there exists i ∈ {1, . . . , k} such
that A, qA0 |= Φi,j for any j ∈ {1, . . . ,mi}. To ease the reading, we omit in the
sequel the index i. Up to a reordering of the formulae Φj , we can suppose that
there exists an index p such that a formula Φj has as outermost operator the
operator 〈·〉 if and only if j ≤ p.

In this second part, we define an ERA B which is not not bisimilar to A.
This ERA B is defined over Σ = {a} and contains exactly two locations, denoted
respectively ℓ1 and ℓ′1, such that the first one is initial. We denote by qB0 = (ℓ1, 0)
the initial configuration of B. In the sequel, we will define a finite set of rational
numbers F . We exactly add one edge (ℓ1, gf , a, ℓ′1) for each f ∈ F , with the
constraint gf defined as xa = f . It is easy to verify that A and B are not timed
bisimilar as there necessary exists some point in the interval [0, 1] that does no
belong to F . We now detail how we build the set F to ensure that B, qB0 |= ϕ.
For each j ∈ {1, . . . , p}, we can write Φj = 〈gj , a〉ξj for some constraint gj and
formula ξj . By construction, we have A, qA0 |= Φj , and thus there exists a delay

δ ∈ T such that the steps qA0
δ
−→ (ℓ, δ)

a
−→ (ℓ′, 0) exist in A with A, (ℓ′, 0) |= ξj .

Note that independantly of the delay after which the a-labelled transition is
fired, the configuration reached is the same. As the constraint gj is defined with

granularity 1
d
∈ Q>0, we can choose δj ∈ Q≥0 ∩ [0, 1] such that qA0

δj

−→ (ℓ, δj)
a
−→

(ℓ′, 0) with A, (ℓ′, 0) |= ξj . Finally, the finite set of rational values F is defined
as F = {δj | 1 ≤ j ≤ p}.

It remains to prove that the ERA B satisfies the formula ϕ. As the maximal
depth of B is 1, and using property (3), it is sufficient to prove that for any j, we
have B, qB0 |= Φj . First consider formulae Φj for j > p. In this case the formula is
of the form [gj , a]ξj . Then the property holds because any a-labelled transition
firable from qB0 in B also exists in A, leading to identical configurations (ℓ′, 0)
and (ℓ′1, 0), with no actions available in ℓ′ and ℓ′1. Second, we consider a formula
Φj with j ≤ p. In this case, the choice of the delay δj ∈ F ensures that the

transitions qB0
δj

−→ (ℓ1, δj)
a
−→ (ℓ′1, 0) exist in B and as A, (ℓ′, 0) |= ξj , we also have

B, (ℓ′1, 0) |= ξj .

5 The maximal depth of an ERA denotes the length of a longest untimed path.

10

Finally, we have proven that B |= ϕ holds while A and B are not timed
bisimilar, thus yielding a contradiction. ⊓⊔

4 A µ-calculus for Event-Recording Automata

We introduce here a new µ-calculus for ERA, called WTµ [12]. This stands for
Weak Timed µ-calculus, as it can be seen as a timed µ-calculus (as Tµ [9] or
Lν [11]) devoted to the weak class of timed systems represented by ERA. Its
definition differs from ERL in that it separates delay successors and discrete
successors, as it is done for instance in the logic Lν . We prove in this section
that it is strictly more expressive than the logic ERL and that it preserves the
good model-checking properties of ERL. We will show in the next section that
it allows to express timed (bi)similarity for ERA.

4.1 The Logic WTµ

Definition 10 (Syntax). Let Σ be a finite alphabet and Var be a finite set of
variables. A formula ϕ of WTµ is generated using the following grammar:

ϕ ::= tt | ff | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉ϕ | 〈g〉ϕ | [a]ϕ | [g]ϕ | µX.ϕ | νX.ϕ

where g ∈ C(Σ), a ∈ Σ and X ∈ Var.

As for the logic ERL, we use auxiliary assignment functions, and the notions
of free variable, bounded variable, and sentence.

Definition 11 (Semantics). For a given ERA A = 〈L, ℓ0, Σ, T, I〉 with asso-
ciated TTS SA = 〈Q, q0, Σ,→〉, a given formula ϕ ∈ WTµ, and an assignment
function V : Var → P(Q), the set of states satisfying the fomula, denoted JϕKAV ,
is inductively defined as follows:

J〈a〉ϕKAV := {(ℓ, v) ∈ Q | ∃(ℓ, g, a, ℓ′) ∈ T s.t. v |= g and
(ℓ′, v′) ∈ JϕKAV , where v′ = v[xa := 0]}

J〈g〉ϕKAV := {(ℓ, v) ∈ Q | ∃δ ∈ T s.t. v + δ |= g and (ℓ, v + δ) ∈ JϕKAV }
J[a]ϕKAV := {(ℓ, v) ∈ Q | ∀(ℓ, g, a, ℓ′) ∈ T, v |= g ⇒

(ℓ′, v′) ∈ JϕKAV , where v′ = v[xa := 0]}
J[g]ϕKAV := {(ℓ, v) ∈ Q | ∀δ ∈ T, v + δ |= g ⇒ (ℓ, v + δ) ∈ JϕKAV }

JµX.ϕKAV := ∩{Q′ ⊆ Q | JϕKAV[X:=Q′] ⊆ Q′}

JνX.ϕKAV := ∪{Q′ ⊆ Q | Q′ ⊆ JϕKAV[X:=Q′]}

The cases of atomic and boolean formulae are standard.

4.2 Expressivity

As expected, the logic WTµ increases the expressive power of ERL. Before prov-
ing this main result, we introduce some definitions.

11

Definition 12. Given two sentences ϕ and ϕ′ in ERL∪WTµ, we say that they
are equivalent if and only if, for any ERA A, we have JϕKA = Jϕ′KA.
We say that a logic L2 is more expressive than a logic L1 if for any sentence in
L1, there exists an equivalent sentence in L2.

Then we can state the following property:

Proposition 2. Given a sentence ϕ ∈ ERL, we denote by ϕ̂ the sentence of
WTµ obtained by substituting any operator [g, a] (resp. 〈g, a〉) by the two opera-
tors [g][a] (resp. 〈g〉〈a〉). Then ϕ and ϕ̂ are equivalent.

Proof. Proceeding by induction on the length of the formula ϕ, the result directly
follows from the definitions. ⊓⊔

In the sequel, we consider the ERA A1 reduced to a single location ℓ with
no invariant and no transitions. We denote by Q its set of configurations.

Proposition 3. For any ERL sentence ϕ, we have JϕKA1 = ∅ or JϕKA1 = Q.

Proof. According to [15], one can assume that the formulae of ERL are guarded,
that is every bounded variable is in the scope of an operator 〈·〉 or [·]. Then, since
automaton A1 contains no transition, we have, for any variable assignment V,
that J[g, a]ϕKA1

V = Q = JttKA1

V and J〈g, a〉ϕKA1

V = ∅ = JffKA1

V . As a consequence,
any ERL formula in which every variable is bounded (a sentence) is equivalent
to a formula obtained by the following grammar: ϕ ::= tt | ff | ϕ1∧ϕ2 | ϕ1∨ϕ2 |
µX.ϕ | νX.ϕ. The result follows by induction on the length of the formula. ⊓⊔

Theorem 2. The logic WTµ is strictly more expressive than the logic ERL
(even for ERA without invariants).

Proof. First, Proposition 2 exactly proves that the logic WTµ is more expressive
than the logic ERL.

Second, we have to prove that the converse is false. Consider the ERA A1

introduced above, and note that A1 has no invariants. We consider the WTµ

sentence ϕ = 〈xa = 1〉tt. Then a configuration (ℓ, v) of A1 satisfies sentence ϕ

if and only if v(xa) ≤ 1. On the other side, Proposition 3 shows that any ERL
sentence has a trivial satisfiability set on A. Thus, no ERL sentence is equivalent
to ϕ, proving the result. ⊓⊔

4.3 Model-Checking

We consider the model checking problem of WTµ sentences on ERA models.
This problem consists, given a WTµ sentence ϕ and an ERA A, in deciding
whether the relation A |= ϕ holds.

Theorem 3. The Model-Checking problem of WTµ on ERA is EXPTIME-complete,
even for the fragment of WTµ restricted to greatest fixpoints.

12

Proof. EXPTIME-membership: This easily follows from the EXPTIME-membership
of the model-checking of the logic L+

µ,ν over timed automata [2]. However, to ob-
tain precise complexity results, we sketch here the reasonning.

We first state the following Lemma:

Lemma 1. Let Σ be a finite alphabet. Let A ∈ ERA, ϕ ∈ WTµ be a formula
without fixpoint quantifier and K denote the maximal integer constant of A and
ϕ. Denote by X1, . . . ,Xn the free variables X1, . . . ,Xn of ϕ and let V be an
assignment function over these variables such that for any i, V(Xi) is a union
of regions in RK(A). Then, the semantics JϕKAV is also a union of regions of
RK(A).

Proof. We proceed by induction on the length of ϕ and consider the type of ϕ:

– ϕ = tt or ϕ = ff. The result follows as QA and ∅ are union of regions.
– ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2. The result follows from the induction property

as union of regions are closed under boolean operations.
– ϕ = Xi for some i ∈ {1, . . . , n}. Then JϕKAV = V(Xi) and the result follows

from the hypothesis on V.
– ϕ = 〈g〉ϕ′ or ϕ = [g]ϕ′ with g ∈ C(Σ). By induction property the semantics

Jϕ′KAV is a union of regions. Then, the result follows from the time-abstract
bisimulation property of clock regions which implies that the time predeces-
sors of a clock region is a union of clock regions.

– ϕ = 〈a〉ϕ′ or ϕ = [a]ϕ′ with a ∈ Σ. By induction property the semantics
Jϕ′KAV is a union of regions. Then, the result follows from the time-abstract
bisimulation property of regions which implies that the predecessors of a
region by a discrete transition is a union of regions.

This concludes the proof. ⊓⊔

As a corollary, we get:

Lemma 2. Let Σ be a finite alphabet. Let A ∈ ERA, and ϕ be a sentence in
WTµ. Denote by K the maximal integer constant of A and ϕ. Then the semantics
of ϕ over A, JϕKA, is a union of regions of RK(A). In other terms, we have:

∀ℓ ∈ LA,∀v, v′ ∈ TΣ s.t. v ≃K v′,A, (ℓ, v) |= ϕ ⇐⇒ A, (ℓ, v′) |= ϕ

Proof. As the semantics of formulae of WTµ leads to monotone functions, Knaster-
Tarski theorem implies that fixpoint formulae can be evaluated using eventually
infinite intersections and unions given by:

JµX.ϕ(X)KAV =
⋃

i≥0

Jϕi(ff)KAV , JνX.ϕ(X)KAV =
⋂

i≥0

Jϕi(tt)KAV

As ∅ and Q are both union of regions, Lemma 1 entails that the iterative eval-
uation of fixpoints leads also to union of regions. As the number of regions if
finite, these evaluations terminate, returning also a union of regions. ⊓⊔

13

The proof of Lemma 2 thus yields that the model checking problem is de-
cidable. To obtain results on complexity issues, we reduce the model checking
problem to an equivalent model checking problem for standard µ-calculus. There-
fore, we define the semantics of WTµ over RK(A). The only operators for which
the semantics is non standard are the following:

J〈g〉ϕK
RK(A)
V = {(ℓ, r) ∈ RK(A) | ∃r′ ∈ RK(Σ) s.t. (ℓ, r)

τ
−→ (ℓ, r′), Jr′K ⊆ JgK

and (ℓ, r′) ∈ JϕK
RK(A)
V }

J[g]ϕK
RK(A)
V = {(ℓ, r) ∈ RK(A) | ∀r′ ∈ RK(Σ) s.t. (ℓ, r)

τ
−→ (ℓ, r′), if Jr′K ⊆ JgK

then (ℓ, r′) ∈ JϕK
RK(A)
V }

Then, we can prove the correction of this semantics as in [9, 11]:

∀v ∈ TΣ ,A, (ℓ, v) |= ϕ ⇐⇒ RK(A), (ℓ, [v]) |= ϕ

However, the semantics of WTµ over RK(A) does not exactly match this of stan-
dard mu-calculus. This is due to inclusion testing between Jr′K and JgK. To solve
this problem, we can for instance introduce atomic propositions corresponding
to the clocks constraints g ∈ C(Σ) of the fomula ϕ. A predicate g is satisfied in
a region (ℓ, r) if and only if the inclusion JrK ⊆ JgK holds. Then, we can write
the following equivalences:

〈g〉ϕ ≡ 〈τ〉(g ∧ ϕ); [g]ϕ ≡ [τ](g → ϕ) ≡ [τ](¬g ∨ ϕ)

Note that the number of atomic propositions introduced for a formula ϕ ∈ WTµ

is linear in the size of this formula. Another approach consists in enlarging the
alphabet to include the clock constraints. This approach is described in [12].

Finally, we obtain the reduction desired to a model checking problem of the
standard mu-calculus over the region automaton. This problem, for a mu-calculus
formula ϕ and a finite structure S, can be solved in time O((|S|×|ϕ|)n+1), where
n is the number of alternations of greatest and least fixpoints quantifiers in ϕ [17].
As the size of RK(A) is in |A|×2O(|Σ|. log K|Σ|), and n is in O(|ϕ|), we obtain that
the model checking problem of WTµ over ERA is in EXPTIME, with a precise
time complexity.

EXPTIME-hardness: We adapt the proof of [2] to encode the acceptance problem
of a word w0 by a Linear Bounded Alternating Turing Machine (LBATM) M
which is EXPTIME-complete [6]. One can assume w.l.o.g that the alphabet of
M is {a, b}, and let n = |w0|. Configurations of M are triples (q, w, i) where
i ≤ n denotes the position of the tape head. A transition (q, α, α′, δ, q′) of M can
be fired from (q, w, i) iff w[i] = α. Then, it writes α′ instead, and moves left or
right according to δ. As M is alternating, Q is partitioned into Qor and Qand.
A configuration (q, w, i) with q ∈ Qor (resp. q ∈ Qand) is winning iff q = qf

or there exists an accepting successor configuration (resp. if all its successor
configurations are accepting).
As we want to build an ERA A while the construction of [2] is done for timed
automata, we make some modifications to control the resets of clocks. Locations

14

of A are pairs (q, i) ∈ Q × N, where i denotes the position of the tape head.
The value of cell i of the tape is encoded by the relative values of two clocks,
say xai

and xbi
. The alphabet of A thus contains Σ = {ai, bi | 1 ≤ i ≤ n}. We

add a letter τ not in Σ. A transition (q, α, α′, δ, q′) is represented in A by the

transitions (q, i)
gi,σi
−−−→ (q′, i′), where:

1. gi = xai
< xbi

∧ xτ = 1 if α = a, and gi = xai
> xbi

∧ xτ = 1 otherwise,

2. σi = xai
if α′ = a, and σi = xbi

otherwise,

3. i′ = i + 1 if δ = R and i < n, and i′ = i − 1 if δ = L and i > 1.

To force time elapsing between two transitions corresponding to moves of M,

we use letter τ and add transitions (q, i)
xτ=1,τ
−−−−−→ (q, i) for any location (q, i).

The initialization of the clocks to represent the word w0 can be done using a
sequence of transitions ui interleaved by transitions labelled by τ . Finally, we
use the following WTµ formula, with only greatest fixpoints:

ϕ = [tt][u1][τ] . . . [tt][un][τ].νX.([accept]ff ∧ [tt][Σ][τ]〈tt〉〈Σ〉〈τ〉X)
where accept denotes a special letter only firable from the final state of M. Then
one can prove that M accepts w0 iff A 6|= ϕ. Note that the size of A and ϕ are
polynomial in the sizes of M and w0. ⊓⊔

Remark 2. As in [2], the hardness proof could be done without diagonal con-
straints.

5 Characteristic Formulae Constructions

We describe in this section formulae constructions in the logic WTµ to express
timed similarity and timed bisimilarity for ERA with invariants. In the sequel,
we consider an ERA A = 〈LA, ℓA0 , Σ, TA, IA〉 over the alphabet Σ. Let ℓ ∈ LA

and a ∈ Σ, we first introduce an operation, denoted Split(ℓ, a), related to the
determinization of ERA. Split(ℓ, a) is a finite set of constraints {g1, . . . , gn} ⊆
C(Σ) such that:

(i) it partitions the constraint En(ℓ, a):
⋃

iJgiK = JEn(ℓ, a)K and ∀i 6= j, JgiK ∩
JgjK = ∅,

(ii) its elements ”match” the clock constraints of a-labelled transitions leaving
ℓ: ∀i ∈ {1, . . . , n},∀(ℓ, g, a, ℓ′) ∈ TA, JgiK ⊆ JgK or JgiK ∩ JgK = ∅.

We do not investigate here how such an operator can be defined as it is not the
purpose of this work. It can for instance be defined using the region construction,
and then be optimized using some merging operations on zones. It is worth notic-
ing that in the worst case, the size of Split(ℓ, a) may be |Out(ℓ, a)|×2O(|Σ| log K|Σ|),
with K the largest integer constant of A (due to the region construction). How-
ever, if the ERA A is deterministic, then its size is linear in the size of Out(ℓ, a).
Indeed, the determinisim implies that the clock constraints of a-labelled transi-
tions leaving ℓ are disjoint.

15

5.1 Characteristic Formulae for Timed Bisimilation

Definition 13. We define a declaration D∼A associating a formula to each loca-
tion ℓ of A, and consider the greatest solution of this system of fixpoint equations.

Φ∼A(ℓ)
D∼A=















































































∧

a∈Σ

∧

(ℓ,g,a,ℓ′)∈TA

[g]〈a〉 Φ∼A(ℓ′) (C1)

∧
[IA(ℓ)] Φ∼A(ℓ) (C2)

∧
∧

a∈Σ

∧

g∈Split(ℓ,a)

[g][a]
∨

(ℓ,g′,a,ℓ′)∈TA|JgK⊆Jg′K

Φ∼A(ℓ′) (C3)

∧
∧

a∈Σ

[¬En(ℓ, a)][a]ff (C4)

∧
[¬IA(ℓ)] ff (C5)

Before proving the correctness of this construction, we give some intuition
on its definition. Let B be an ERA and analyze how these formulae constrain
B. The parts C1 and C2 express the simulation constraints (A ≺ B), while the
three other constraints express the converse (B ≺ A). More precisely, note that
C1 requires that any discrete transition of A also exists in B: for any transition
in A and for all delays after which it is firable, there exists a corresponding
transition in B leading to a bisimilar configuration. This combination of a uni-
versal quantification over delays with an existential quantification over discrete
successors was missing in ERL, as shown in Section 3. In the converse direction,
discrete transitions are encoded in C3 and C4. C4 states that an a transition can
only happen in B when it is possible in A. C3 uses the decomposition Split(ℓ, a)
of the clock constraint En(ℓ, a) to express that any a transition in B corresponds
to some a transition of A firable from the same valuation. This corrects the
corresponding constraint of the construction of [16] (see Section 3). Finally, C2

and C5 handle the case of delay transitions.

Remark 3 (On the size of formulae Φ∼A). Due to the use of the operator Split,
these formulae are in the worst case of size |A|×2O(|Σ| log K|Σ|), with K the largest
integer constant of A, whereas if A is deterministic, then their size is linear in the
size of A. We believe that this exponential blow-up is not avoidable. Indeed, for
ERA, once a discrete transition labelled by a has been fired, one can not recover
the value of clock xa before this firing as it has been reset. Formulae of [1], which
have a linear size, compare the clock valuation with the guards after the discrete
firing. Moreover, note that this exponential blow-up has no consequences on the
theoretical time complexity of timed bisimilarity checking (see Corollary 1), as
linear formulae would lead to the same complexity.

The following result states the correctness of the previous construction.

16

Theorem 4. Let A and B be two ERA over Σ and consider ℓ and m two
locations of A and B respectively. Then for any valuation v ∈ TΣ, we have :

(ℓ, v) ∼ (m, v) ⇐⇒ B, (m, v) |=D∼A
Φ∼A(ℓ)

In particular, we have: A ∼ B ⇐⇒ B |=D∼A
Φ∼A(ℓA0)

Proof. To prove Theorem 4 we establish successively the two implications:

⇐ If B, (m, v) |=D∼A
Φ∼A(ℓ), then we have (ℓ, v) ∼ (m, v).

⇒ If (ℓ, v) ∼ (m, v), then B, (m, v) |=D∼A
Φ∼A(ℓ) holds.

Let us denote by QA and QB the set of configurations of A and B respectively.
Proof of ⇐. We consider the relation R ⊆ QA×QB defined as R = {((ℓ, v), (m, v)) |
B, (m, v) |=D∼A

Φ∼A(ℓ)} and show that it is a timed bisimulation. In other terms,
we must verify the conditions of Definition 8.

(i) Step in A. Consider σ ∈ Σ ∪ T such that (ℓ, v)
σ
−→ (ℓ′, v′) in A, and

show that there exists m′ ∈ LB such that (m, v)
σ
−→ (m′, v′) in B and

(ℓ′, v′)R(m′, v′). We distinguish two cases according to the nature of σ.
– If σ = a ∈ Σ. Then there exists a transition (ℓ, g, a, ℓ′) ∈ TA corre-

sponding to this firing. In particular, we have v |= g and v′ = v[xa :=
0]. By hypothesis, we have B, (m, v) |=D∼A

Φ∼A(ℓ). In particular the
transition of A corresponds to a conjunct in part C1 of Φ∼A(ℓ), and we
thus have B, (m, v) |=D∼A

[g]〈a〉Φ∼A(ℓ′). As v |= g, this implies the ex-

istence of a step (m, v)
a
−→ (m′, v′′) in B, with B, (m, v′′) |=D∼A

Φ∼A(ℓ′).
The semantics of ERA implies that v′′ = v[xa := 0], and then v′′ = v′,
what concludes this case.

– If σ = δ ∈ T. Then we have (ℓ, v)
δ
−→ (ℓ, v + δ) in A what implies

that v + δ |= IA(ℓ). Part C2 of Φ∼A(ℓ) then implies the existence of

the transition (m, v)
δ
−→ (m, v + δ) in B, such that B, (m, v + δ) |=D∼A

Φ∼A(ℓ), as desired.
This shows that the relation R is a timed simulation between A and B.

(ii) Step in B. Conversely, we show that the relation R−1 is a timed simulation

between B and A. As above, let us consider σ ∈ Σ ∪T such that (m, v)
σ
−→

(m′, v′) in B, and show that there exists ℓ′ ∈ LA such that (ℓ, v)
σ
−→ (ℓ′, v′)

in A and (ℓ′, v′)R(m′, v′). Again, we distinguish two cases according to the
nature of σ.
– If σ = a ∈ Σ. By hypothesis, we have B, (m, v) |=D∼A

Φ∼A(ℓ).
In particular, part C4 of this formula is satisfied what implies that
v |= En(ℓ, a). Then, as Split(ℓ, a) partitions the constraint En(ℓ, a),
there exists a unique clock constraint g ∈ Split(ℓ, a) such that v |= g.
The corresponding conjunct of part C3 implies that B, (m′, v′) |=D∼A
∨

(ℓ,g′,a,ℓ′)∈TA|JgK⊆Jg′K Φ∼A(ℓ′). The second property of Split(ℓ, a) im-

plies, as JgK is not empty, that there exists a transition (ℓ, g′, a, ℓ′) ∈
TA such that B, (m′, v′) |=D∼A

Φ∼A(ℓ′) and with JgK ⊆ Jg′K. As a

consequence, we have v |= g′ and then (ℓ, v)
a
−→ (ℓ′, v′′) in A, with

v′′ = v[xa := 0] = v′, what concludes this case.

17

– If σ = δ ∈ T. Then we have (m, v)
δ
−→ (m, v+δ) in B. Part C5 of formula

Φ∼A(ℓ) implies that v+δ |= IA(ℓ). Thus, the transition (ℓ, v)
δ
−→ (ℓ, v+

δ) exists in A. Moreover, since v + δ |= IA(ℓ), part C2 of the formula
Φ∼A(ℓ) implies that (m, v + δ) |=D∼A

Φ∼A(ℓ), as desired.

This concludes the proof that R−1 is also a timed simulation between B
and A, and thus R is a timed bisimulation as desired. This concludes the
proof of the first implication.

Proof of ⇒. We assume that the property B, (m, v) |=D∼A
Φ∼A(ℓ) holds and

want to show that the two configurations (ℓ, v) and (m, v) are timed bisimilar.
Recall that the formulae Φ∼A(ℓ) are defined as the greatest solution of a system
of inequations. Using the notion of coinduction [14], any solution of these inequa-
tions also satisfies these formulae. We consider the assignment function V over
the variabes Φ∼A(ℓ) defined by V(Φ∼A(ℓ)) = {(m, v) ∈ QB | (ℓ, v) ∼ (m, v)} for
any ℓ ∈ LA. It is then sufficient to prove the following inclusions:

∀ℓ ∈ LA, JΦ∼A(ℓ)KBV ⊆ JD∼A(Φ∼A(ℓ))KBV (4)

Let (m, v) ∈ JΦ∼A(ℓ)KBV (that is such that (ℓ, v) ∼ (m, v)). The proof proceeds
by considering each conjunct ξ of D∼A(Φ∼A(ℓ)).

1. ξ = [g]〈a〉Φ∼A(ℓ′) for some transition (ℓ, g, a, ℓ′) ∈ TA. We consider two cases
whether this transition can be fired from the configuration (ℓ, v) or not. If it
is not the case, that is ∀δ ∈ T, v+δ 6|= g, then we trivially have B, (m, v) |= ξ.
Otherwise, there exists a delay δ ∈ T such that v + δ |= g. Then, we have

(ℓ, v+δ)
a
−→ (ℓ′, v′) in A, with v′ = (v+δ)[xa := 0]. By bisimulation property

and by time determinism, we have that (ℓ, v + δ) ∼ (m, v + δ) and then that

there exists a configuration (m′, v′′) of B such that (m, v + δ)
a
−→ (m′, v′′) in

B and (ℓ′, v′) ∼ (m′, v′′). Semantics of ERA implies that v′ = v′′ and thus
the result follows since, by definition of V, we have (m′, v′) ∈ JΦ∼A(ℓ′)KBV .

2. ξ = [IA(ℓ)]Φ∼A(ℓ). For any δ ∈ T such that v + δ |= IA(ℓ), we have (ℓ, v)
δ
−→

(ℓ, v+δ) in A. By bisimulation property and time determinism, we then have
(ℓ, v + δ) ∼ (m, v + δ). This concludes this case.

3. ξ = [g][a]
∨

(ℓ,g′,a,ℓ′)∈TA|JgK⊆Jg′K Φ∼A(ℓ′), for some clock constraint g ∈ Split(ℓ, a).

Consider, if some exists, a delay δ ∈ T such that v + δ |= g and (m, v)
δ
−→

(m, v + δ)
a
−→ (m′, v′) in B. Then, we must show that the following holds:

B, (m′, v′) |=D∼A

∨

(ℓ,g′,a,ℓ′)∈TA|JgK⊆Jg′K Φ∼A(ℓ′). First, we have by bisimu-

lation and time-determi-nism that (ℓ, v)
δ
−→ (ℓ, v + δ) exists in A and that

(ℓ, v + δ) ∼ (m, v + δ) holds. Bisimulation then imples that there exists a

transition (ℓ, v + δ)
a
−→ (ℓ′, v′′) in B such that (ℓ′, v′′) ∼ (m′, v′). This im-

plies that there exists a transition (ℓ, g′, a, ℓ′) in TA such that v + δ |= g′.
By the second property of Split(ℓ, a), this implies that JgK ⊆ Jg′K, and thus
this transition belongs to the disjunction of ξ. In particular, we thus have
B, (m′, v′) |=D∼A

Φ∼A(ℓ′), as required.

18

4. ξ = [¬En(ℓ, a)][a]ff. By contradiction, assume that the property is not sat-
isfied, that is that there exists a delay δ ∈ T such that v + δ 6∈ En(ℓ, a) and

(m, v + δ)
a
−→ (m′, v′) in B for some configuration (m′, v′). By bisimulation,

an a-labelled transition is also firable from the configuration (ℓ, v + δ), what
contradicts the fact that v + δ 6∈ En(ℓ, a).

5. ξ = [¬IA(ℓ)]ff. By contradiction, assume that the property is not satisfied,

that is that there exists a delay δ ∈ T such that v + δ 6|= IA(ℓ) and (m, v)
δ
−→

(m, v + δ) in B. By bisimulation, we also have (ℓ, v)
δ
−→ (ℓ, v + δ) in B what

contradicts v + δ 6|= IA(ℓ).

This concludes the proof of the property (4), and thus the second implication
also holds.

This concludes the proof of Theorem 4. ⊓⊔

Corollary 1. One can decide timed bisimilarity of two ERA A and B over Σ

in time |A| × |B| × 2O(|Σ| log K|Σ|) (K denotes the largest constant of A and B).

Proof. Using the previous theorem, this problem reduces to the model checking
problem of B against formula Φ∼A(ℓA0) under the declaration D∼A. Note that
Φ∼A contains only greatest fixpoints and thus is alternation-free. As there exists
better complexity results for this class (see [7]), the proof of Theorem 3 shows
that the time complexity of this problem is in O(|RK(B)| × |Φ∼A|). The result
follows from the size of RK(B) and previous remarks on the size of the formulae
Φ∼A. ⊓⊔

5.2 Characteristic Formulae for Timed Simulation

Definition 14. We define a declaration D≻A associating a formula to each loca-
tion ℓ of A, and consider the greatest solution of this system of fixpoint equations.

Φ≻A(ℓ)
D≻A

=















∧

a∈Σ

∧

(ℓ,g,a,ℓ′)∈T

[g]〈a〉 Φ≻A(ℓ′) (C′
1)

∧
[IA(ℓ)] Φ≻A(ℓ) (C′

2)

Note that this construction leads to formulae of size linear in the size of A. The
following result states the correctness of the previous construction.

Theorem 5. Let A and B be two ERA over Σ and consider ℓ and m two
locations of A and B respectively. Then for any valuation v ∈ TΣ, we have :

(ℓ, v) ≺ (m, v) ⇐⇒ B, (m, v) |=D≻A
Φ≻A(ℓ)

In particular, we have: A ≺ B ⇐⇒ B |=D≻A
Φ≻A(ℓA0)

We omit the proof as it is similar to that of Theorem 4. As for bisimilarity, we
obtain an EXPTIME procedure to decide timed similarity:

19

Corollary 2. One can decide timed similarity of two ERA A and B over Σ in
time |A| × |B| × 2O(|Σ| log K|Σ|) (K denotes the largest constant of A and B).

Moreover, this procedure can also be used to decide language inclusion between
ERA. More precisely, we have:

Corollary 3. Given two ERA A and B, the procedure checking timed simulation
leads to an EXPTIME procedure to decide whether L(A) ⊆ L(B) holds or not.

Proof. We first determinize automaton B, resulting in B′. Following [4], the
number of locations and transitions of B′ is then exponential in the size of B.
Using Proposition 1, language inclusion reduces to A ≺ B′, and then to the
model checking problem B′ |=D≻A

Φ≻A(ℓA0). Using previous analysis, this can
be checked in time |RK(B′)| × |Φ≻A|. Finally, we obtain a procedure to decide
this language inclusion in time |A| × 2|B|, which belongs thus to EXPTIME. ⊓⊔

Note that the problem of language inclusion is PSPACE-complete [4], thus
this procedure is not optimal. However, the known algorithm [4] matching the
lower bound consists in guessing a path in the region automaton. A zone-based
version of this procedure may thus be an interesting alternative in practice.

6 Conclusion

In this paper, we focused on the construction of characteristic formulae for ERA
up to timed (bi)similarity. After having shown that the problem could not be
solved in the logic ERL, we have introduced the new logic WTµ, and have
proven that it is strictly more expressive than ERL and that its model checking
problem over ERA is EXPTIME-complete. We have finally provided characteristic
formulae constructions in WTµ for the whole class of ERA with invariants.

Compared to existing results of [1] for timed automata which can also be
applied to ERA using natural translations, we obtain procedures in the same
class of complexity (EXPTIME), but our time complexity are more precise. For
instance, for a fixed alphabet Σ and if constants are encoded in unary, then timed
(bi)simulation can be checked in polynomial time! Moreover, our algorithm for
model checking WTµ against ERA should also be more efficient than going
through Lν and timed automata as it involves only one copy of the event-clocks.
Finally, we obtain a non-optimal procedure for inclusion checking between ERA,
which we believe could lead to good results in practice.

As future work, we plan to study how the good decidability results of the
satisfiability problem for ERL transfer to WTµ. We also envisage to adapt the
implementation of the procedures of [1] done in the tool CMC [10] to this frame-
work for ERA.

References

1. L. Aceto, A. Ingólfsdóttir, M. L. Pedersen, and J. Poulsen. Characteristic formulae
for timed automata. Theoretical Informatics and Application, 34(6):565–584, 2000.

20

2. L. Aceto and F. Laroussinie. Is your model-checker on time ? Journal of Logic and

Algebraic Programming, 52–53:7–51, 2002.
3. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
4. R. Alur, L. Fix, and T. A. Henzinger. A determinizable class of timed automata.

In Proc. CAV’94, volume 818 of LNCS, pages 1–13. Springer, 1994.
5. H. Bekic. Definable operation in general algebras, and the theory of automata

and flowcharts. In Programming Languages and Their Definition, pages 30–55.
Springer-Verlag, 1984.

6. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

7. R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. Formal Methods in System Design, pages 48–
58, 1993.

8. D. D’Souza. A logical characterisation of event clock automata. Int. J. Found.

Comput. Sci., 14(4):625–640, 2003.
9. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking

for real-time systems. Information and Computation, 111(2):193–244, 1994.
10. F. Laroussinie and K. G. Larsen. CMC: A tool for compositional model-checking of

real-time systems. In Proc. FORTE-PSTV’98, pages 439–456. Kluwer Academic,
1998.

11. F. Laroussinie, K. G. Larsen, and C. Weise. From timed automata to logic – and
back. In Proc. MFCS’95, volume 969 of LNCS, pages 529–539. Springer, 1995.

12. O.-L. Nguena-Timo. The logic WTµ. Technical Report RR-1460-09, LaBRI, 2009.
13. J.-F. Raskin and P.-Y. Schobbens. The logic of event clocks - decidability, com-

plexity and expressiveness. Journal of Automata, Languages and Combinatorics,
4(3):247–286, 1999.

14. D. Sangiorgi. Bisimulation: From the origins to today. In H. Ganzinger, editor,
Proc. LICS’04, pages 298–302. IEEE Computer Society Press, July 2004.

15. M. Sorea. A decidable fixpoint logic for time-outs. In Proc. CONCUR’02, volume
2421 of LNCS, pages 255–271. Springer, 2002.

16. M. Sorea. Verification of Real-Time Systems through Lazy Approximations. PhD
thesis, University of Ulm, 2004.

17. W. Thomas. Languages, automata, and logic. In Handbook of formal languages,

vol. 3: beyond words, pages 389–455. Springer-Verlag, 1997.

21

