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Abstract—Enabling self-localization of mobile nodes is an swarm of robots, in which few robots are natively capable
important problem that has been widely studied in the liter- of self-localization, whereas the others may infer theimow
ature. The general conclusions is that an accurate localization position by exchanging data with their neighbors on an oppor

requires either sophisticated hardware (GPS, UWB, ultrasounds . . . . o
transceiver) or a dedicated infrastructure (GSM, WLAN). In tunistic basis. Another example is that of a tourist at hist fir

this paper we tackle the problem from a different and rather Visit to a city that may desire to estimate his own position by
new perspective: we investigate how localization performance can opportunistically exchanging data with the passing-byicleb

be improved by means of a cooperative and opportunistic data equipped with GPS-localization system. Yet another exampl
exchange among the nodes. We consider a target node, completelys 1ha case of a sensor node deployed on a given area that needs

unaware of its own position, and a number of mobile nodes to infer it it b h . dat ith bil d
with some self-localization capabilities. When the opportunity 0 Inter 1ts position by exchanging data with mobile nodes

occurs, the target node can exchange data with in-range mobile (Vehicles, persons, robots) that cross the area for diftere
nodes. This opportunistic data exchange is then used by the targe purposes.
node to refine its position estimate by using a technique based

on Linear Matrix Inequalities and barycentric algorithm. To Such a vision offers a number of research challenges, such
investigate the performance of such an opportunistic localization

algorithm, we define a simple mathematical model that describes as the def|n|t|on of efficient node-discovery and Iln.k.—set up
the opportunistic interactions and, then, we run several compugr ~ Protocols in presence of heterogeneous and multi-interfac
simulations for analyzing the effect of the nodes duty-cycle and of devices, the design of suitable algorithms for performing
o i oyt eracins o sty Imoss . 11 PPOIUISLC cata exchange and (e reatd ocaat
zelcf)ylvocalizationpgccuracy of a strayed node in rr):anyp different estimate, _the analysis of the tradeoffs between different p
scenarios. formance indexes (energy consumption and protocol ovedrhea
vs. localization accuracy), not mentioning the reliapjliton-
|. INTRODUCTION fidentiality and security issues.

When dealing with mobile networks, the knowledge of the
position and trajectory of the nodes represents a precioudn this paper we address only a very focussed subset of these
information that can be exploited for many different pugms problems. More specifically, we investigate the probapbithiat
such as communication protocols optimization, path plagni an opportunistic data exchange can take place for different
cooperative task design and so on. The accuracy of tbleoices of some design parameters, such as the radio ceverag
localization estimation is strictly related to the envinment range, the nodes speed, the percentage of time that nodets spe
and the technology used by the devices to localize thenmselMeoking for opportunistic interactions with other node$en,
A cheap and widespread technology like the Received Signe apply the results of this preliminary analysis to a locali
Strength Indicator (RSSI) is very poor for localization,[1]zation technique based on the Linear Matrix Inequality (LM
while more expensive hardware can achieve better perfand a simple barycentric algorithm that is run by a strayed
mance, for instance by comparing the Time-of-Arrival oficad node, unprovided with any native localization equipment.
signals or using acoustic or optical signals or a rather ¢exnp
infrastructure [2], [3], [4]. The remaining of the paper is structured as follows. In

Whereas most of the literature on localization focus on sySection IV we present a short survey of the state of the art
tems and algorithms explicitly designed to provide loaian on standard and cooperative localization. In Section Il we
functionality to the nodes, in this paper we investigate hofermally state the problem and we describe the system model.
localization can be obtained through opportunistic irdéosms Section Il reports the performance figures obtained thinoug
in systems that are not intended for providing such a servi@@mulation and comments the results. Finally, Section \Wwdra
An example of scenario that falls within this category is theome conclusions.



I[l. MODELING localization class that for simplicity we assume to be thaesa
A. Definitions and problem statement for all nodes during simulations. Moreover, the error model
considers two possible characteristics: correlation ajraomn-

We consider a system made of mobiNodes equipped . e o .
with a common communication device (WiFi, Bluetooth O§ecut|ve estimations (considering a tracking-based tqoby

ZBe). We suppose one node, calideris ot apable s <V e e e o el e ot
of self-localization, whereas the other nodes, narRedrs P '

o . . .7 following characterization:
can perform self-localization with a certain accuracy thiat ) o ]
general, varies in time. A given Peecan maintain a list of ¢ At the time¢ = 0, the positioning errore;(0) is the
pastself-positioning estimationsThe problem we address is ~ Medule of a zero mean 2-D Gaussian Random Variable

how self-positioning estimations of Peers can be used by Use  [#(0) ¥(0)], with standard deviation (0)
to estimate its own position. o At the timet > 0, e;(t) is calculated from the two

coordinategx(t) y(t)] drawn according to the correlated

B. Communication model Gaussian distribution:

Every node in the network is equipped with a common
wireless communication interface that is used for (oppuftu exp [_
stic) data exchange. Radio propagation is described by snean Fla()|x(t—1); p) =
of a simple unit-disk model, according to which the radio 2ro(t)o(t —1)4/1—p
transmission is always correctly received within a diséanc (1)
R (coverage rangefrom the transmitter, whereas it is not ~ Wherez(t) = % andz(t—1) = fﬁﬁiji The parameter
received at longer distances. Although the unit-circle eldsl p is the correlation coefficient, which can vary in the
known to be oversimplified, it permits to isolate the perfor-

interval [0, 1], wherep = 0 means independent samples
mance analysis from the characteristics of the radio iaterf andp = 1 means completely correlated (equal) samples.
that, at this stage of the work, is left generic.

The applies for they coordinate.

The accuracy can degrade following the equatidn) =
o(0) + at, wherea is the drift of the estimation error.

We assume that nodes can communicate only during apuring a rendez-vous, peer nodes send packets containing
certain period of time, the so-callescan Phasewhich may their estimated position®; and the class of accuraey?(t).
correspond to an interlaced Inquiry/Scan phase of Bluktoothis information may then be used by the User node to
[5] or to the Active Scanning procedure of IEEE 802.1stimate its own position by means of the opportunistic

systems [6]. The scan phase is repeated with peffod |ocalization mechanism described below.
asynchronously and independently by each node, so that the

offset between the scan phases of two nodes can be moddledSelf-positioning model used by the user

as a random variable with uniform distribution in the in®rv  As mentioned, the User node resorts to opportunistic loca-

(0,T). The ratio between the scan phase and the entire cygi&tion to infer its geographical position. The opporsiit-

time T, is calledduty cycleand denoted by. Whereas the scan positioning process requires the User to stop and stay at a

period T is the same for all the nodes, we suppose that eafked position for a given time intervdll’, during which the

node can fix its own duty cycle depending on the requiremerigde collects the information opportunistically exchahgéth

and the management policy of that node. passing-by Peer nodes. The localization tifrie measured in
We suppose that opportunistic data exchange can occur fiimber of scan periods, starting fram= 1. The opportunistic

a negligible time) only when the scan phases of the two nodgssition estimation works in the following two stages.

overlap in time. Furthermore opportunistic data excharge a 1) At every scan period, the User collects self-positioning

requires the nodes to be mutually in range. We assume that estimationsﬁi(t) from each peer that are within radio

opportunis_t?c interaction i_mmediately takes p_Iace_as sasn range and whose duty cycles overlap the User's duty
both conditions are satisfied. Such an event is comeedez- cycle (rendez-vous). Leth; = max,(e;(1)) denote an

vous upper bound on the error between exact and estimated
position of Peeti, so that

|Pi(t) — Pi(t)|| < eb;  for

T(t)Q72pE(t)E(t71)+T(t71)2):|
2(1-p?)

2

C. Opportunistic interaction model

D. Self-positioning model used by peers

We assume that peer nodes have “native” self-positioning
capabilities, provided by some (non opportunistic) scheme

t>1 (2

Accordingly, we denote by’ and P; the real and the self-
estimated position of peeri#Peers can be classified in
different classes, depending on their native self-loasilin

Furthermore, letP,(¢) be the exact position of User.
Assuming that communication is feasible only when the
nodes are within the coverage rangewe then have

accuracy. For simplicity, we assume that the estimatioarerr
e; = ||P; — P;|| can be modeled as the module of a 2—
dimensional Gaussian Random Varialle(t) y(t)], with

zero mean and variance?. The variance depends on the

1Pu(r) = Pi(8)]| < R ®)

Therefore, for each Peer within the range of User
at time ¢, inequalities (2) and (3) yield the following



//VPI\(Q\\E@) o(t) and the correlation parametgr The impact of other
v X N parameters such as the number of peers within range, the rang
Lo P xPur(® " Py(t) itself and the speed of peer nodes has been studied in other

\

papers [8], [9] and will be briefly summed up.

S B
- 1 2
Pyl(t) A. Reference case

Fig. 1. Raw LMI-only estimation Our reference case involves = 100 peer nodes moving
in a 100 mx 100 m square and one user node remaining at
P..3 P, - the center of this square. Peers and user share the same radio
X Pur(2) range R = 10 meters, so that only a fraction of Peers are
1/’;(3\)*‘;:{1/}(2) within range of the user at each time.

Peers and user also have the same scan périod second
and the same duty cyclé = 50%, so that duty cycles are
always partially overlapped. The scan period of the usetssta
att = 0 while the scan period of each peer starts with an
offset uniformly distributed in0, T").

— LS
P,.(1)=P.,Q)

Fig. 2. LMl+barycentric estimation

triangular inequality The self-positioning estimations of each peer are gergrate
. as follows. First, the trajectory is computed using the Ran-
[Pu(t) — Pi(t)[| < R+ eb; (4)  dom Pedestrian Mobility Model defined in [8]: this model is

ynspired by the Brownian movement, modified so that speeds

erage range of User we get a Linear Matrix Inequalit§™® drawn from aGguss_ian _distributiﬁf_(l.Q,OQ) and at gach
(LMI) that can be solved with standard techniques [7]0M€ Step the next direction is chosen in front of the pedstr
The resulting solution is used asaw (LMI) estimation i.e. m_anothgr Gaussian distribution c_en_tered on thg previous
Fu;(t) of the user position. Fig. 1 shows ho@(t) direction, with a small standard deviation arbitrarily et

is generated at cycle, assuming that only, and P, dir = /6. The trajectory is kept within the considered square
are within the User's range at tinte area. Second, for each position a self-estimation is prediuc

2) Whent > 1, the user can compute the barycenter of ,[Hésing the peer self-positioning model defined in Sectiob.lI-
primary estimations computed sin¢e= 1. We define In the reference case, the accuracy class of each peer has bee

this barycenter as the self-positioning estimation of theet 100 = 1 meter and it is assumed constant over time,
a = 0 m/s. Furthermore, the self-positioning estimates are

Collecting the inequalities (4) for all the peers in the co

user at timet: . . o
not correlatedj.e. p = 0. In practice, each peer self-position
¢ . estimation at cycle is randomly drawn in a disc centered
Zwkpu,r(k) around the exact position of the peer at cytlaising a 2D
E(t) _ k=1 t Ct>1 (5) Gaussian distribution:ebi is the value sg_ch .thaﬁo,ebi] is
the 99 % confidence interval for the positioning error module
Zw’“ e;(t). Different settings for the self-positioning model will be
k=1

tried later in this section.
where w;, is a weighting coefficient which is propor- User, placed in the center of the area, estimates its po-
tional to the number of Peers that have contributed #ition using the opportunistic localization model defined i
the kth raw LMI estimate. Section II-E. The opportunistic-localization time for thger is
This second stage is illustrated in Fig. 2, which showset tol¥ = 2 minutes and the warm-up time is setita, = 30
how P,(1), P.(2) and P,(3) are generated from seconds. We will also see what happens for shorter and longer
P,r(t), t =1, 2, 3, with all weightsw;, equal to waiting times. The performance of the User's opportunistic
1. positioning scheme is evaluated in terms of distance betwee

o~

We have made numerous experiments with this model, afgfl and estimate positiofP, — P, (t)]|.
observed that in most cases, the self-positioning eswimati Table | sums up the parameter values used for the reference
improves over time. We therefore use the estimation onbraftcase.
a warm-up time denotedu and measured in scan periods Accuracy of the reference cas&he reference case has been
starting att = 1. run 30 times with different random seeds. Taeeuracy Aof
each run is the average localization error after the warm-up
Ill. SIMULATION RESULTS time. The results, in terms of localization error of the user
The models described in the previous section have beewode, strongly differ from one run to the other, as illusichby
implemented using Matlab R2008b and its Robust ContrBlg. 3. The mean of the accuracy over 30 rung js= 1.13 m
Toolbox which provides an LMI solver. In this section weand the standard deviation éss = 0.45 m, while the worst
define a reference test case and study the impact of seleatage has an accuracy of 2.28 m. These wide variations are
parameters, here the duty cycle the accuracy parameterlikely to be ascribed to the different trajectories of peirs



TABLE |
REFERENCE CASE PARAMETERS

10 i 10 SR

N 100 peers R 10m sl 5
T 1s ) 50 % | LR L
Hspeed 1.2 m/s Ospeed 0.2 m/is E o ; “ E o .GJ |
pair () dir(t—1) odir /6 > / >
o im a 0mis o .
p 0 Square 100 x 100 m
wu 30s w 120 s N ) . )
-10 — -10 —
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x (m) x (m)
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Accuracy (meters)

Error (meters)
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Flg 3 Reference case runs 10 20 30 40 50 60 70 80 90 100 110 120
n Time (seconds)

(c) Error comparison

different runs. In fact, depending on the random seed of the

run, peers may be widely spread in space, thus permitting Fig. 4. Reference case run #1/30.

good LMI-only localization and, in turn, good LMI+barycent TABLE Il

estimation, or they may be unevenly distributed in the area DUTY CYCLE IMPACT

forming a small number of groups, a situation that yields to :

poor LMI-only localization and, consequently, to a degtamta 9 KA TA retained

20% 240m 118 m 1.13 peers

of LMI+barycenter performance. 40% 154m 054m 238 peers

To better understand the behavior of the protocol, we report 50 % 1.13m 0.45m 3.01 peers

in Fig. 4(a) the successive user’s raw LMI estimations for a
single run and in Fig. 4(b) the self-localization estimatamf

the user using LMI and barycenter algorithm. In Fig. 4(bj th - As expected, accuracy improves when the duty cycle in-
oldest plots are "far" from the user position and gradualiteases thanks to the higher number of peer self-positjionin
get closer, while in Fig. 4(a) old and new positions argstimations that improves the performance of the raw LMI

equally distributed around the user position. The bary@ent|ocation estimation scheme and, in turn, the barycentric es
estimation clearly improves over time, and is better than thnation.

raw one. This is remarked in Fig. 4(c), where the reader can o
compare the evolution of the raw erioP, — P, .(¢)|| and the C- Peers self-positioning impact
error of the barycentric approa¢tP, — J/D\u(t)H. The run-wide  In this section we measure the impact of the self-positignin
accuracyA is also plotted. model characterizing peers. To this end, we consider three
In most runs, the accuracy of the barycentric estimatighifferent parameters: first, the correlation coefficipramong
tends to improve over time: each additional raw LMI essuccessive self-positioning estimations of each peegrakc
timation contributes to improve the estimation, since nethe self-positioning accuracy class of peers; third, the
information is added. accuracy drifta. of peers. The other parameters are set to the
values of the reference case.
Table Il gathers all the results. As it can be observed,
In this section we measure the impact of the duty cyhe parameters have negligible impact on the accuracy of the
cle length. There is clearly a trade-off between rendeapportunistic localization scheme that, hence, provesdo b
vousprobability (long duty cycle) and energy consumptiorather robust to localization errors of Peers. This is jikelie
(short duty cycle). We have run the simulation 30 times far twto the fact that, despite the errors, the positions provinethe
additional values of duty cyclé: 20 % and 40 %, the other Peers form a uniform “cloud” of points around the User. Then,
parameters being the same as for the reference case abapplying the barycentric scheme, the User always localizes
The results are summed up in Table Il, where the last lineitself near the center of such a cloud. To verify this conjest
a reminder of the test case. however, we plan to consider in future work other error msdel

B. Duty cycle impact



TABLE Il

CORRELATION IMPACT measuring the power of the received RF signal (RSSI), the
Time of Arrival (ToA) or the Angle of Arrival (AoA) of the
p g a BA TA RF signals from the beacons. In this way, every node estsnate
04 1m Om/s 114m 046m a set of distances from the beacons and, then, guesses its
0.9 1m 0mls 1.15m 048 m " . . . .
099 1m Om/s 119m 048 m position by means of lateration and triangulation teche&u
0 3m Om/s 1.18m 049m [10], [11] or by using statistical estimation methods [12].
8 i m 0%:[”/5/ 11-?:“1 m %-i‘é m Overviews of localization techniques based on RSSI and ToA
0 12 0.03 m,z 1:15m 0:462 mea:_sure_ments can be foqnd_in [13], [14], [15]. Mul_ti-step
0 1m 0l1m/s 123m 048m localization techniques, which involve a number of suceess
0 1Im 03m/s 162m 0.62m refinement phases, have been proposed by Savarese [16] and
0 1m 0 mi/s 1.13m 045m

Sawvides [11]. Other solutions leveraging on specialized a
complex hardware and infrastructure are given in [3], [2], [
When nodes (either static or mobile) can detect each other,
for peers estimation, such as model for podometers, or figlen it is possible to devise cooperative position estimate
MEMS-based inertial navigation systems, or for RSS-basggthniques, which are very well studied in robotics. In [17]
landmarks. the authors utilize Markov localization for self-localinedes
and, then, probabilistic methods to synchronize robotsmest
when they have a contact. Collective localization based on
In previous papers [8], [9], we also studied the impact ¢f distributed Kalman Filter is proposed in [18], whereas an
other parameters; we showed that the accuracy of the ugfthor-free approach where robots infer their positioimese
self-positioning scheme degrades when: the amount of pegfSthe basis of the only information exchanged among them
within range (V) decreases, the range threshfllihcreases or is proposed in [19].
the peers mean speedy..q decreases. We re-evaluate these |n [7] Doherty et al. pioneered the use of semidefinite
parameters and others quickly here. programming (SDP) methods in the localization problem.
For the setup used here, using 50 peers give a mean acCUurgs¥ problem is considered as a bounding problem containing
of 1.76 m while 200 peers give a mean accuracy of 0.77 m (thjgveral convex geometric constraints mathematically erepr
is not as overcrowded as it may seem, if you think of a statiogentated as linear matrix inequalities (LMI). The mechanis
a big mall or a conference room for instance: in a 1800M proposed in this paper is based on this approach, taking into
square, this gives 50 frper peer). Of course, the more peergstimation errors and introducing a barycentric improveime
there are with random trajectories, the more communicatiefer time.
opportunities there are, and the more information are fed toThe Centroid localization method [20] is developed to
the LMI system, which induces better estimations. estimate the user’s location by computing the barycenter of
Another way to improve the accuracy is to increase thgl the positions received from those fixed beacon nodes. To
waiting time of the user: 5 minutes lead to an accuracy @hd the optimum deployment of those beacon nodes for a
0.91 m. In that case, the barycentric estimation takes ing@en application may consume a lot of labor.
account more and more raw LMI estimations, thus giving less|n the APIT method [21], a user chooses three beacon
weight to bad raw estimations. On the contrary, reducing tonbdes around him as the triangle vertex point and uses the
minute degrades the accuracy to 1.67 m. APIT algorithm to test if he is lying in the triangle. If the
We also changed the radio coverage range. A 5 m rangp|T test can be passed, i.e., at least one node’s signal is
leads to an accuracy of 1.01 m, while a 20 m range leadsgecoming barycenter of the triangle will be taken as the
an accuracy of 1.86 m. This is not an intuitive result, singgcation estimation of the user. Continuously, anothefiedit
a larger range would mean more opportunities for sharifiree nodes will be chosen to face the APIT test again. If the
information. However, these additional positions are nfare new test can also be passed, the barycenter of the intensecti
away from the user, which increase both the raw LMI errasf the triangles will be used. By analogy, the user will repea
and the barycentric error. this APIT test until all combinations are exhausted or the
Finally, we also changed the mean peer speed. If peetgisfying accuracy is achieved. It is noticeable thatesitne
are slow (0.6 m/s) the accuracy degrades to 2.14 m. APIT test is used under the condition of static beacon nodes,
peers are fast (3 m/s) the accuracy improves to 0.68 HEtcomplishing it is still not an easy thing. Additionallyjet
When the speed increases, positions taken into account WiibIT test may fail in less than 14% of the cases [21].
largely vary between two successive LMI-only estimations. Other research works jointly solve the time synchronizatio
This diversication of spatial information improves the &elor  and localization problems. For instance, Enlightness [e¢s
of the barycentric estimation. on the availability of beacon nodes (at least 5% of the
nodes) providing absolute time and space information,thiee
GPS in outdoor environments. Enlightness combines re@ursi
Self-localization problem has been investigated in a numbgositioning estimation [23] with a clock offset estimation
of papers. Most common localization methods consist stheme based on the measure of beacon packet delays and

D. Other parameters

IV. RELATED WORK



timestamps. 7
In [24], an advanced integration of 802.11b equipments and
Inertial Navigation System (INS) is used to enhance theoperf (8]
mance of the indoor positioning system. As a result, a system
performance close to the meter accuracy can be achieved with
a low density of access points in the environment, provided
that users carry inexpensive INS equipment.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an algorithm in which a still use[er]
infers localization information using the positions of eth
passing-by nodes. The opportunistic interaction is m@del[ell]
by considering several parameters that permit to compare th
performance of the scheme in different scenarios. 12l

In all the cases considered in this study, we obtained"a
localization error lower thar2.5 meters that can be reduced
to less than 1 meter with an accurate tuning of the systd#dl
parameters. In particular, the duty cycle of the opportigiis

L. Doherty, L. E. Ghaoui, and K. S. J. Pister, “Convex piosi
estimation in wireless sensor networks,” Bmoc. of IEEE INFOCOM
Anchorage, AK, USA, April 2001, pp. 1655-1663.

G. Kang, T. Pérennou, and M. Diaz, “Barycentric locatestimation for
indoors localization in opportunistic wireless netwotks, Proc. of the
Second International Conference on Future Generation Conication
and Networking (FGCN 20085anya, China, December 2008, pp. 220—
225.

[9] ——, “An opportunistic indoors positioning scheme basedestimated

positions,” inProc. of the IEEE Symposium on Computers and Commu-
nications (ISCC’'09) Sousse, Tunisia, July 2009.

A. Sawvides, H. Park, and M. B. Srivastava, “The n-hop titaieration
primitive for node localization problemsilobile Network Applicatons
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——, “The bits and flops of the n-hop multilateration priiwé for node
localization problems,” irProc. of the 1st ACM international workshop
on Wireless sensor networks and applications (WSNAARanta, GA,
USA, September 2002, pp. 112-121.

N. Patwari, R. O'Dea, and Y. Wang, “Relative locationviireless net-
works,” in Proc. of the IEEE VTS 53rd Vehicular Technology Conference
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N. S. Correal, “Locating the nodes: cooperative localaraiin wireless
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scan phase has been observed to have a significant impact ons4-69, July 2005.

the user self-positioning estimation: the shorter the dytle [14]
the less the rendezvous probability with peers and, in turn,
the lower the localization accuracy. Furthermore, we oleskr [15]
that the proposed opportunistic localization scheme iserat
robust to the self-positioning error model for Peers. In,fde
correlation, the standard deviation and the drift of thd-sel
positioning error do not significantly affect the localipat [16]
accuracy, provided that the algorithm is performed over the
data gathered with a large enough number of opportunistic
exchanges. (7]
In order to complete this work, some improvements will be
done. We will try to define a more realistic set-up involvingis]
different types of peer nodes, e.g. access points with well-
known positions but only partial coverage and mobile peers
carrying cheap INS systems which accuracy drifts over time.
We will also implement the opportunistic meeting moddf®]
defined in [25] that applies to peer meetings. It is also [bbssi
to take into account different self-localization modelsdan

opportunistic update. [20]
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