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Abstract—Enabling self-localization of mobile nodes is an
important problem that has been widely studied in the liter-
ature. The general conclusions is that an accurate localization
requires either sophisticated hardware (GPS, UWB, ultrasounds
transceiver) or a dedicated infrastructure (GSM, WLAN). In
this paper we tackle the problem from a different and rather
new perspective: we investigate how localization performance can
be improved by means of a cooperative and opportunistic data
exchange among the nodes. We consider a target node, completely
unaware of its own position, and a number of mobile nodes
with some self-localization capabilities. When the opportunity
occurs, the target node can exchange data with in-range mobile
nodes. This opportunistic data exchange is then used by the target
node to refine its position estimate by using a technique based
on Linear Matrix Inequalities and barycentric algorithm. To
investigate the performance of such an opportunistic localization
algorithm, we define a simple mathematical model that describes
the opportunistic interactions and, then, we run several computer
simulations for analyzing the effect of the nodes duty-cycle and of
the native self-localization error modeling considered. The results
show that the opportunistic interactions can actually improve the
self-localization accuracy of a strayed node in many different
scenarios.

I. I NTRODUCTION

When dealing with mobile networks, the knowledge of the
position and trajectory of the nodes represents a precious
information that can be exploited for many different purposes,
such as communication protocols optimization, path planning,
cooperative task design and so on. The accuracy of the
localization estimation is strictly related to the environment
and the technology used by the devices to localize themselves.
A cheap and widespread technology like the Received Signal
Strength Indicator (RSSI) is very poor for localization [1],
while more expensive hardware can achieve better perfor-
mance, for instance by comparing the Time-of-Arrival of radio
signals or using acoustic or optical signals or a rather complex
infrastructure [2], [3], [4].

Whereas most of the literature on localization focus on sys-
tems and algorithms explicitly designed to provide localization
functionality to the nodes, in this paper we investigate how
localization can be obtained through opportunistic interactions
in systems that are not intended for providing such a service.
An example of scenario that falls within this category is the
swarm of robots, in which few robots are natively capable

of self-localization, whereas the others may infer their own
position by exchanging data with their neighbors on an oppor-
tunistic basis. Another example is that of a tourist at his first
visit to a city that may desire to estimate his own position by
opportunistically exchanging data with the passing-by vehicles
equipped with GPS-localization system. Yet another example
is the case of a sensor node deployed on a given area that needs
to infer its position by exchanging data with mobile nodes
(vehicles, persons, robots) that cross the area for different
purposes.

Such a vision offers a number of research challenges, such
as the definition of efficient node-discovery and link-set up
protocols in presence of heterogeneous and multi-interface
devices, the design of suitable algorithms for performing
the opportunistic data exchange and the related localization
estimate, the analysis of the tradeoffs between different per-
formance indexes (energy consumption and protocol overhead
vs. localization accuracy), not mentioning the reliability, con-
fidentiality and security issues.

In this paper we address only a very focussed subset of these
problems. More specifically, we investigate the probability that
an opportunistic data exchange can take place for different
choices of some design parameters, such as the radio coverage
range, the nodes speed, the percentage of time that nodes spend
looking for opportunistic interactions with other nodes. Then,
we apply the results of this preliminary analysis to a locali-
zation technique based on the Linear Matrix Inequality (LMI)
and a simple barycentric algorithm that is run by a strayed
node, unprovided with any native localization equipment.

The remaining of the paper is structured as follows. In
Section IV we present a short survey of the state of the art
on standard and cooperative localization. In Section II we
formally state the problem and we describe the system model.
Section III reports the performance figures obtained through
simulation and comments the results. Finally, Section V draws
some conclusions.

II. M ODELING

A. Definitions and problem statement

We consider a system made of mobileNodes equipped
with a common communication device (WiFi, Bluetooth or



ZigBee). We suppose one node, calledUser, is not capable
of self-localization, whereas the other nodes, namedPeers,
can perform self-localization with a certain accuracy that, in
general, varies in time. A given Peeri can maintain a list of
pastself-positioning estimations. The problem we address is
how self-positioning estimations of Peers can be used by User
to estimate its own position.

B. Communication model

Every node in the network is equipped with a common
wireless communication interface that is used for (opportuni-
stic) data exchange. Radio propagation is described by means
of a simple unit-disk model, according to which the radio
transmission is always correctly received within a distance
R (coverage range) from the transmitter, whereas it is not
received at longer distances. Although the unit-circle model is
known to be oversimplified, it permits to isolate the perfor-
mance analysis from the characteristics of the radio interface
that, at this stage of the work, is left generic.

C. Opportunistic interaction model

We assume that nodes can communicate only during a
certain period of time, the so-calledScan Phase, which may
correspond to an interlaced Inquiry/Scan phase of Bluetooth
[5] or to the Active Scanning procedure of IEEE 802.11
systems [6]. The scan phase is repeated with periodT ,
asynchronously and independently by each node, so that the
offset between the scan phases of two nodes can be modeled
as a random variable with uniform distribution in the interval
(0, T ). The ratio between the scan phase and the entire cycle
timeT , is calledduty cycleand denoted byδ. Whereas the scan
periodT is the same for all the nodes, we suppose that each
node can fix its own duty cycle depending on the requirements
and the management policy of that node.

We suppose that opportunistic data exchange can occur (in
a negligible time) only when the scan phases of the two nodes
overlap in time. Furthermore opportunistic data exchange also
requires the nodes to be mutually in range. We assume that
opportunistic interaction immediately takes place as soonas
both conditions are satisfied. Such an event is coinedrendez-
vous.

D. Self-positioning model used by peers

We assume that peer nodes have “native” self-positioning
capabilities, provided by some (non opportunistic) scheme.
Accordingly, we denote byPi and P̂i the real and the self-
estimated position of peer #i. Peers can be classified in
different classes, depending on their native self-localization
accuracy. For simplicity, we assume that the estimation error
ei = ‖Pi − P̂i‖ can be modeled as the module of a 2–
dimensional Gaussian Random Variable[x(t) y(t)], with
zero mean and varianceσ2. The variance depends on the
localization class that for simplicity we assume to be the same
for all nodes during simulations. Moreover, the error model
considers two possible characteristics: correlation among con-
secutive estimations (considering a tracking-based technique)

and degradation of the estimate in time, so that the positioning
error is better modeled as a stochastic processei(t), with the
following characterization:

• At the time t = 0, the positioning errorei(0) is the
module of a zero mean 2–D Gaussian Random Variable
[x(0) y(0)], with standard deviationσ(0)

• At the time t > 0, ei(t) is calculated from the two
coordinates[x(t) y(t)] drawn according to the correlated
Gaussian distribution:

f(x(t)|x(t−1); ρ) =
exp

[
−x(t)2−2ρx(t)x(t−1)+x(t−1)2)

2(1−ρ2)

]

2πσ(t)σ(t − 1)
√

1 − ρ2

(1)
wherex(t) = x(t)

σ(t) andx(t−1) = x(t−1)
σ(t−1) . The parameter

ρ is the correlation coefficient, which can vary in the
interval [0, 1], whereρ = 0 means independent samples
andρ = 1 means completely correlated (equal) samples.
The applies for they coordinate.

The accuracy can degrade following the equationσ(t) =
σ(0) + αt, whereα is the drift of the estimation error.

During a rendez-vous, peer nodes send packets containing
their estimated positionŝPi and the class of accuracyσ2(t).
This information may then be used by the User node to
estimate its own position by means of the opportunistic
localization mechanism described below.

E. Self-positioning model used by the user

As mentioned, the User node resorts to opportunistic loca-
lization to infer its geographical position. The opportunistic-
positioning process requires the User to stop and stay at a
fixed position for a given time intervalW , during which the
node collects the information opportunistically exchanged with
passing-by Peer nodes. The localization timet is measured in
number of scan periods, starting fromt = 1. The opportunistic
position estimation works in the following two stages.

1) At every scan periodt, the User collects self-positioning
estimationsP̂i(t) from each peer that are within radio
range and whose duty cycles overlap the User’s duty
cycle (rendez-vous). Letebi = maxt(ei(t)) denote an
upper bound on the error between exact and estimated
position of Peeri, so that

‖P̂i(t) − Pi(t)‖ ≤ ebi for t ≥ 1 (2)

Furthermore, letPu(t) be the exact position of User.
Assuming that communication is feasible only when the
nodes are within the coverage rangeR, we then have

‖Pu(r) − Pi(t)‖ < R (3)

Therefore, for each Peeri within the range of User
at time t, inequalities (2) and (3) yield the following
triangular inequality

‖Pu(t) − P̂i(t)‖ ≤ R + ebi (4)



Fig. 1. Raw LMI-only estimation

Fig. 2. LMI+barycentric estimation

Collecting the inequalities (4) for all the peers in the cov-
erage range of User we get a Linear Matrix Inequality
(LMI) that can be solved with standard techniques [7].
The resulting solution is used as araw (LMI) estimation
P̂u,r(t) of the user position. Fig. 1 shows hoŵPu,r(t)
is generated at cyclet, assuming that onlyP1 and P2

are within the User’s range at timet.
2) Whent > 1, the user can compute the barycenter of the

primary estimations computed sincet = 1. We define
this barycenter as the self-positioning estimation of the
user at timet:

P̂u(t) =

t∑

k=1

wkP̂u,r(k)

t∑

k=1

wk

, t ≥ 1 (5)

(6)

where wk is a weighting coefficient which is propor-
tional to the number of Peers that have contributed to
the kth raw LMI estimate.
This second stage is illustrated in Fig. 2, which shows
how P̂u(1), P̂u(2) and P̂u(3) are generated from
P̂u,r(t), t = 1, 2, 3, with all weights wk equal to
1.

We have made numerous experiments with this model, and
observed that in most cases, the self-positioning estimation
improves over time. We therefore use the estimation only after
a warm-up time denotedwu and measured in scan periods
starting att = 1.

III. S IMULATION RESULTS

The models described in the previous section have been
implemented using Matlab R2008b and its Robust Control
Toolbox which provides an LMI solver. In this section we
define a reference test case and study the impact of selected
parameters, here the duty cycleδ, the accuracy parameter
σ(t) and the correlation parameterρ. The impact of other

TABLE I
REFERENCE CASE PARAMETERS

N 100 peers R 10 m
T 1 s δ 50 %

µspeed 1.2 m/s σspeed 0.2 m/s
µdir(t) dir(t − 1) σdir π/6

σi 1 m α 0 m/s
ρ 0 Square 100 × 100 m

wu 30 s W 120 s

parameters such as the number of peers within range, the range
itself and the speed of peer nodes has been studied in other
papers [8], [9] and will be briefly summed up.

A. Reference case

Our reference case involvesN = 100 peer nodes moving
in a 100 m× 100 m square and one user node remaining at
the center of this square. Peers and user share the same radio
rangeR = 10 meters, so that only a fraction of Peers are
within range of the user at each time.

Peers and user also have the same scan periodT = 1 second
and the same duty cycleδ = 50%, so that duty cycles are
always partially overlapped. The scan period of the user starts
at t = 0 while the scan period of each peer starts with an
offset uniformly distributed in(0, T ).

The self-positioning estimations of each peer are generated
as follows. First, the trajectory is computed using the Ran-
dom Pedestrian Mobility Model defined in [8]: this model is
inspired by the Brownian movement, modified so that speeds
are drawn from a Gaussian distributionN(1.2, 0.2) and at each
time step the next direction is chosen in front of the pedestrian,
i.e. in another Gaussian distribution centered on the previous
direction, with a small standard deviation arbitrarily setto
σdir = π/6. The trajectory is kept within the considered square
area. Second, for each position a self-estimation is produced
using the peer self-positioning model defined in Section II-D.
In the reference case, the accuracy class of each peer has been
set toσ = 1 meter and it is assumed constant over time,i.e.
α = 0 m/s. Furthermore, the self-positioning estimates are
not correlated,i.e. ρ = 0. In practice, each peer self-position
estimation at cyclet is randomly drawn in a disc centered
around the exact position of the peer at cyclet, using a 2D
Gaussian distribution;ebi is the value such that[0, ebi] is
the 99 % confidence interval for the positioning error module
ei(t). Different settings for the self-positioning model will be
tried later in this section.

User, placed in the center of the area, estimates its po-
sition using the opportunistic localization model defined in
Section II-E. The opportunistic-localization time for theuser is
set toW = 2 minutes and the warm-up time is set towu = 30
seconds. We will also see what happens for shorter and longer
waiting times. The performance of the User’s opportunistic-
positioning scheme is evaluated in terms of distance between
real and estimate position||Pu − P̂u(t)||.

Table I sums up the parameter values used for the reference
case.
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Fig. 3. Reference case runs

Accuracy of the reference case:The reference case has been
run 30 times with different random seeds. Theaccuracy Aof
each run is the average localization error after the warm-up
time. The results, in terms of localization error of the user
node, strongly differ from one run to the other, as illustrated by
Fig. 3. The mean of the accuracy over 30 runs isµA = 1.13 m
and the standard deviation isσA = 0.45 m, while the worst
case has an accuracy of 2.28 m. These wide variations are
likely to be ascribed to the different trajectories of peersin
different runs. In fact, depending on the random seed of the
run, peers may be widely spread in space, thus permitting
good LMI-only localization and, in turn, good LMI+barycenter
estimation, or they may be unevenly distributed in the area
forming a small number of groups, a situation that yields to
poor LMI-only localization and, consequently, to a degradation
of LMI+barycenter performance.

To better understand the behavior of the protocol, we report
in Fig. 4(a) the successive user’s raw LMI estimations for a
single run and in Fig. 4(b) the self-localization estimations of
the user using LMI and barycenter algorithm. In Fig. 4(b), the
oldest plots are "far" from the user position and gradually
get closer, while in Fig. 4(a) old and new positions are
equally distributed around the user position. The barycentric
estimation clearly improves over time, and is better than the
raw one. This is remarked in Fig. 4(c), where the reader can
compare the evolution of the raw error||Pu−P̂u,r(t)|| and the
error of the barycentric approach||Pu− P̂u(t)||. The run-wide
accuracyA is also plotted.

In most runs, the accuracy of the barycentric estimation
tends to improve over time: each additional raw LMI es-
timation contributes to improve the estimation, since new
information is added.

B. Duty cycle impact

In this section we measure the impact of the duty cy-
cle length. There is clearly a trade-off between rendez-
vousprobability (long duty cycle) and energy consumption
(short duty cycle). We have run the simulation 30 times for two
additional values of duty cycleδ: 20 % and 40 %, the other
parameters being the same as for the reference case above.
The results are summed up in Table II, where the last line is
a reminder of the test case.
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TABLE II
DUTY CYCLE IMPACT

δ µA σA retained
20 % 2.40 m 1.18 m 1.13 peers
40 % 1.54 m 0.54 m 2.38 peers
50 % 1.13 m 0.45 m 3.01 peers

As expected, accuracy improves when the duty cycle in-
creases thanks to the higher number of peer self-positioning
estimations that improves the performance of the raw LMI
location estimation scheme and, in turn, the barycentric esti-
mation.

C. Peers self-positioning impact

In this section we measure the impact of the self-positioning
model characterizing peers. To this end, we consider three
different parameters: first, the correlation coefficientρ among
successive self-positioning estimations of each peer; second,
the self-positioning accuracy classσ of peers; third, the
accuracy driftα of peers. The other parameters are set to the
values of the reference case.

Table III gathers all the results. As it can be observed,
the parameters have negligible impact on the accuracy of the
opportunistic localization scheme that, hence, proves to be
rather robust to localization errors of Peers. This is likely due
to the fact that, despite the errors, the positions providedby the
Peers form a uniform “cloud” of points around the User. Then,
applying the barycentric scheme, the User always localizes
itself near the center of such a cloud. To verify this conjecture,
however, we plan to consider in future work other error models



TABLE III
CORRELATION IMPACT

ρ σi α µA σA

0.4 1 m 0 m/s 1.14 m 0.46 m
0.9 1 m 0 m/s 1.15 m 0.48 m
0.99 1 m 0 m/s 1.19 m 0.48 m

0 3 m 0 m/s 1.18 m 0.49 m
0 5 m 0 m/s 1.24 m 0.54 m
0 1 m 0.01 m/s 1.14 m 0.45 m
0 1 m 0.03 m/s 1.15 m 0.46 m
0 1 m 0.1 m/s 1.23 m 0.48 m
0 1 m 0.3 m/s 1.62 m 0.62 m
0 1 m 0 m/s 1.13 m 0.45 m

for peers estimation, such as model for podometers, or for
MEMS-based inertial navigation systems, or for RSS-based
landmarks.

D. Other parameters

In previous papers [8], [9], we also studied the impact of
other parameters; we showed that the accuracy of the user
self-positioning scheme degrades when: the amount of peers
within range (N ) decreases, the range thresholdR increases or
the peers mean speedµspeed decreases. We re-evaluate these
parameters and others quickly here.

For the setup used here, using 50 peers give a mean accuracy
of 1.76 m while 200 peers give a mean accuracy of 0.77 m (this
is not as overcrowded as it may seem, if you think of a station,
a big mall or a conference room for instance: in a 100m×100m
square, this gives 50 m2 per peer). Of course, the more peers
there are with random trajectories, the more communication
opportunities there are, and the more information are fed to
the LMI system, which induces better estimations.

Another way to improve the accuracy is to increase the
waiting time of the user: 5 minutes lead to an accuracy of
0.91 m. In that case, the barycentric estimation takes into
account more and more raw LMI estimations, thus giving less
weight to bad raw estimations. On the contrary, reducing to 1
minute degrades the accuracy to 1.67 m.

We also changed the radio coverage range. A 5 m range
leads to an accuracy of 1.01 m, while a 20 m range leads to
an accuracy of 1.86 m. This is not an intuitive result, since
a larger range would mean more opportunities for sharing
information. However, these additional positions are morefar
away from the user, which increase both the raw LMI error
and the barycentric error.

Finally, we also changed the mean peer speed. If peers
are slow (0.6 m/s) the accuracy degrades to 2.14 m. If
peers are fast (3 m/s) the accuracy improves to 0.68 m.
When the speed increases, positions taken into account will
largely vary between two successive LMI-only estimations.
This diversication of spatial information improves the behavior
of the barycentric estimation.

IV. RELATED WORK

Self-localization problem has been investigated in a number
of papers. Most common localization methods consist in

measuring the power of the received RF signal (RSSI), the
Time of Arrival (ToA) or the Angle of Arrival (AoA) of the
RF signals from the beacons. In this way, every node estimates
a set of distances from the beacons and, then, guesses its
position by means of lateration and triangulation techniques
[10], [11] or by using statistical estimation methods [12].
Overviews of localization techniques based on RSSI and ToA
measurements can be found in [13], [14], [15]. Multi-step
localization techniques, which involve a number of successive
refinement phases, have been proposed by Savarese [16] and
Savvides [11]. Other solutions leveraging on specialized and
complex hardware and infrastructure are given in [3], [2], [4].
When nodes (either static or mobile) can detect each other,
then it is possible to devise cooperative position estimate
techniques, which are very well studied in robotics. In [17]
the authors utilize Markov localization for self-localizenodes
and, then, probabilistic methods to synchronize robots estimate
when they have a contact. Collective localization based on
a distributed Kalman Filter is proposed in [18], whereas an
anchor-free approach where robots infer their position estimate
on the basis of the only information exchanged among them
is proposed in [19].

In [7] Doherty et al. pioneered the use of semidefinite
programming (SDP) methods in the localization problem.
The problem is considered as a bounding problem containing
several convex geometric constraints mathematically repre-
sentated as linear matrix inequalities (LMI). The mechanism
proposed in this paper is based on this approach, taking into
estimation errors and introducing a barycentric improvement
over time.

The Centroid localization method [20] is developed to
estimate the user’s location by computing the barycenter of
all the positions received from those fixed beacon nodes. To
find the optimum deployment of those beacon nodes for a
given application may consume a lot of labor.

In the APIT method [21], a user chooses three beacon
nodes around him as the triangle vertex point and uses the
APIT algorithm to test if he is lying in the triangle. If the
APIT test can be passed, i.e., at least one node’s signal is
becoming barycenter of the triangle will be taken as the
location estimation of the user. Continuously, another different
three nodes will be chosen to face the APIT test again. If the
new test can also be passed, the barycenter of the intersection
of the triangles will be used. By analogy, the user will repeat
this APIT test until all combinations are exhausted or the
satisfying accuracy is achieved. It is noticeable that since the
APIT test is used under the condition of static beacon nodes,
accomplishing it is still not an easy thing. Additionally, the
APIT test may fail in less than 14% of the cases [21].

Other research works jointly solve the time synchronization
and localization problems. For instance, Enlightness [22]relies
on the availability of beacon nodes (at least 5% of the
nodes) providing absolute time and space information, likethe
GPS in outdoor environments. Enlightness combines recursive
positioning estimation [23] with a clock offset estimation
scheme based on the measure of beacon packet delays and



timestamps.
In [24], an advanced integration of 802.11b equipments and

Inertial Navigation System (INS) is used to enhance the perfor-
mance of the indoor positioning system. As a result, a system
performance close to the meter accuracy can be achieved with
a low density of access points in the environment, provided
that users carry inexpensive INS equipment.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an algorithm in which a still user
infers localization information using the positions of other
passing-by nodes. The opportunistic interaction is modeled
by considering several parameters that permit to compare the
performance of the scheme in different scenarios.

In all the cases considered in this study, we obtained a
localization error lower than2.5 meters that can be reduced
to less than 1 meter with an accurate tuning of the system
parameters. In particular, the duty cycle of the opportunistic-
scan phase has been observed to have a significant impact on
the user self-positioning estimation: the shorter the dutycycle
the less the rendezvous probability with peers and, in turn,
the lower the localization accuracy. Furthermore, we observed
that the proposed opportunistic localization scheme is rather
robust to the self-positioning error model for Peers. In fact, the
correlation, the standard deviation and the drift of the self-
positioning error do not significantly affect the localization
accuracy, provided that the algorithm is performed over the
data gathered with a large enough number of opportunistic
exchanges.

In order to complete this work, some improvements will be
done. We will try to define a more realistic set-up involving
different types of peer nodes, e.g. access points with well-
known positions but only partial coverage and mobile peers
carrying cheap INS systems which accuracy drifts over time.
We will also implement the opportunistic meeting model
defined in [25] that applies to peer meetings. It is also possible
to take into account different self-localization models and
opportunistic update.
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