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  L'archive ouverte pluridisciplinaire

1. Introduction 1.1. Motivations. Proof assistants like Coq or Isabelle/HOL make it possible to leave technical or administrative details to the computer, by defining high-level tactics. For example, one can define tactics to solve decidable problems automatically (e.g., omega for Presburger arithmetic and ring for ring equalities). Here we present a tactic for solving equations and inequations in Kleene algebras. This tactic belongs to a larger project whose aim is to provide tools for working with binary relations in Coq. Indeed, Kleene algebras correspond to a non-trivial decidable fragment of binary relations. In the long term, we plan to use these tools to formalise results in rewriting theory, process algebras, and concurrency theory results. Binary relations play a central role in the corresponding semantics.

A starting point for this work is the following remark: proofs about abstract rewriting (e.g., Newman's Lemma, equivalence between weak confluence and the Church-Rosser property, termination theorems based on commutation properties) are best presented using informal "diagram chasing arguments". This is illustrated by Fig. 1, where the same state of a typical proof is represented three times. Informal diagrams are drawn on the left. The goal listed in the middle corresponds to a naive formalisation where the points related by
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R,S: relation P H: forall p,r,q, R p r → S ⋆ r q → exists s, S ⋆ p s ∧ R ⋆ s q p,q, q', s: P Hpq: R p q Hqs: S ⋆ q s Hsq': R ⋆ s q' exists s, S ⋆ p s ∧ R ⋆ s q' R, S: X relations are mentioned explicitly. This is not satisfactory: a lot of variables have to be introduced, the goal is displayed in a rather verbose way, the user has to draw the intuitive diagrams on its own paper sheet. On the contrary, if we move to an algebraic setting (the right-hand side goal), where binary relations are seen as abstract objects that can be composed using various operators (e.g., union, intersection, relational composition, iteration), statements and Coq's output become rather compact, making the current goal easier to read and to reason about.

H: R•S ⋆ ≤ S ⋆ •R ⋆ R• S ⋆ •R ⋆ ≤ S ⋆ •R ⋆
More importantly, moving to such an abstract setting allows us to implement several decision procedures that could hardly be stated with the concrete presentation. For example, once we rewrite the hypothesis H in the right-hand side goal of Fig. 1, we obtain the inclusion

S ⋆ •R ⋆ •R ⋆ ≤ S ⋆ •R ⋆ ,
which is a (straightforward) theorem of Kleene algebras: the tactic we describe in this paper proves it automatically. 1.2. Mathematical background. A Kleene algebra [START_REF] Kozen | A completeness theorem for Kleene algebras and the algebra of regular events[END_REF] is a tuple X, •, +, 1, 0, ⋆ , where X, •, +, 1, 0 is an idempotent non-commutative semiring, and ⋆ is a unary post-fix operation on X, satisfying the following axiom and inference rules (where ≤ is the partial order defined by x ≤ y

x + y = y):

1 + x • x ⋆ = x ⋆ x • y ≤ y x ⋆ • y ≤ y y • x ≤ y y • x ⋆ ≤ y
Terms of Kleene algebras, ranged over using x, y, are called regular expressions, irrespective of the considered model. Models of Kleene algebras include languages, where the unit [START_REF] Aho | The Design and Analysis of Computer Algorithms[END_REF] is the language reduced to the empty word, product (•) is language concatenation, and star ( ⋆ ) is language iteration; and binary relations, where the unit is the identity relation, product is relational composition, and star is reflexive and transitive closure. Here are some theorems of Kleene algebras:

x ⋆ = x ⋆ • x ⋆ = x ⋆⋆ = (x + 1) ⋆ (x + y) ⋆ = x ⋆ • (y • x ⋆ ) ⋆ x • (y • x) ⋆ = (x • y) ⋆ • x
Among languages, those that can be described by a finite state automaton (or equivalently, generated by a regular expression) are called regular. Thanks to finite automata theory [START_REF] Kleene | Representation of events in nerve nets and finite automata[END_REF][START_REF] Rabin | Finite automata and their decision problems[END_REF], equality of regular languages is decidable:

"two regular languages are equal if and only if the corresponding minimal automata are isomorphic". However, the above theorem is not sufficient to derive equations in all Kleene algebras: it only applies to the model of regular languages. We actually need a more recent theorem, by Kozen [START_REF] Kozen | A completeness theorem for Kleene algebras and the algebra of regular events[END_REF] (independently proved by Krob [START_REF] Krob | Complete systems of B-rational identities[END_REF]):

"if two regular expressions x and y denote the same regular language, then x = y is a theorem of Kleene algebras". In other words, the algebra of regular languages is initial among Kleene algebras: we can use finite automata algorithms to solve equations in an arbitrary Kleene algebra.

The main idea of Kozen's proof is to encode finite automata using matrices over regular expressions, and to replay the algorithms at this algebraic level. Indeed, a finite automaton can be represented with three matrices u, M, v ∈ M 1,n × M n,n × M n,1 : n is the number of states of the automaton, u and v are 0-1 vectors respectively coding for the sets of initial and accepting states, and M is the transition matrix: M i,j labels transitions from state i to state j. Consider for example the following non-deterministic automaton, with three states (like for the automata to be depicted in the sequel, accepting states are marked with two circles, and short, unlabelled arrows point to the starting states): This automaton can be represented using the following matrices:

u = 1 0 0 M =   0 a b c 0 c 0 0 a + b   v =   0 1 1   .
We can remark that the product u • M • v is a scalar (i.e., a regular expression), which can be thought of as the set of one-letter words accepted by the automaton-in the example, Therefore, to mimic the behaviour of a finite automaton and get the whole language it accepts, we just need to iterate over the matrix M . This is possible thanks to another theorem, which actually is the crux of the initiality theorem: "matrices over a Kleene algebra form a Kleene algebra". We hence have a star operation on matrices, and we can interpret an automaton algebraically, by considering the product u • M ⋆ • v. (Again, in the example, we could check that this computation reduces into a regular expression which is equivalent to (a • c) ⋆ • (a + (b + a • c) • (a + b) ⋆ ), which corresponds precisely to the language accepted by the automaton.)

a + b. Similarly, u • M 2 • v = u • M • M • v corresponds
1.3. Overview of our strategy. We define a reflexive tactic. This methodology is quite standard [START_REF] Boyer | Metafunctions: proving them correct and using them efficiently as new proof procedures[END_REF][START_REF] Allen | The semantics of reflected proof[END_REF]. For example, this is how the ring tactic is implemented [START_REF] Grégoire | Proving equalities in a commutative ring done right in Coq[END_REF]. Concretely, this means that we program the decision procedure as a Coq function, and that we prove its correctness and its completeness within the proof assistant:

Definition decide_kleene: regex → regex → bool := ... Theorem Kozen94: forall x y: regex, decide_kleene x y = true ↔ x == y.

The above statement corresponds to correctness and completeness with respect to the syntactic "free" Kleene algebra: regex is the inductive type for regular expressions over a given set of variables, and == is the inductive equality generated by the axioms of Kleene algebras and the rules of equational reasoning. Using reification mechanisms, this is sufficient for our needs: the result can be lifted to other models using simple tactics.

Here are the main requirements we had to take into account for the design of the library: Efficiency. The equational theory of Kleene algebras is PSPACE-complete [START_REF] Meyer | Word problems requiring exponential time[END_REF]; this means that the decide_kleene function must be written with care, using efficient algorithms. Notably, the matricial representation of automata is not efficient, so that formalising Kozen's "mathematical" proof [START_REF] Kozen | A completeness theorem for Kleene algebras and the algebra of regular events[END_REF] in a naive way would be computationally impracticable. Instead, we need to choose appropriate data structures for automata and algorithms, and to rely on the matricial representation only in proofs, using the adequate translation functions. Heterogeneous models. Homogeneous binary relations are a model of Kleene algebras, but binary relations can be heterogeneous: their domain might differ from their co-domain so that they fall out of the scope of standard Kleene algebra. We could use a trick to handle the special case of heterogeneous relations [START_REF] Krauss | Proof pearl: Regular expression equivalence and relation algebra[END_REF], but there is a more general and more algebraic solution that captures all heterogeneous models: it suffices to consider the rather natural notion of typed Kleene algebra [START_REF] Kozen | Typed Kleene algebra[END_REF]. Since we want to put forward the algebraic approach, we tend to prefer this second option. Moreover, as pointed out in next paragraph, we actually exploit this generalisation to formalise Kozen's proof. Matrices. As explained in Sect. 1.2, Kozen's proof relies on the theory of matrices over regular expressions, which we thus need to formalise. First, this formalisation must be tractable from the proof point of view: the overall proof requires a lot of matricial reasoning. Second, we must handle rectangular matrices, which appear in some parts of the proof (see Sect. 4.4). The latter point can be achieved in a nice way thanks to the generalisation to typed Kleene algebra: while only square matrices of form a model of Kleene algebra, rectangular matrices form a model of typed Kleene algebra. Sharing. The overall proof being rather involved, we need to exploit sharing as much as possible. For instance, we work with several models of Kleene algebra (the syntactic model of regular expressions, matrices over regular expressions, languages, matrices over languages, and relations). Since these models share the same properties, we need to share notation, basic laws, theorems, and tactics: this improves readability, usability, and maintainability. Similarly, the proof requires vectors, which we define as a special case of (rectangular) matrices: this saves us from re-developing their theory separately. Modularity. Following mathematical and programming practice, we aim at a modular development: this is required to be able to get sharing between the various parts of the proof. A typical example is the definition of the Kleene algebra of matrices (Sect. 3.3), which corresponds to a rather long proof. With a monolithic definition of Kleene algebra, we would have to prove that all axioms of Kleene algebra hold from scratch.

On the contrary, with a modular definition, we can first prove that matrices form an idempotent semiring, which allows us to use theorems and tactics about semiring when proving that the defined star operation actually satisfies the appropriate laws.

Reification. The final tactic (for deciding Kleene algebras) and some intermediate tactics are defined by reflection. Therefore, we need a way to achieve reification, i.e., to transform a goal into a reified version that lets us perform computations within Coq. Since we work with typed models, this step is more involved than is usually the case.

Outline of the paper. Section 2 is devoted to the underlying design choices. We explain how we define matrices in Sect. 3. The algorithm and its correctness proof are described in Sect. 4. We discuss the efficiency of the tactic in Sect. 5. We conclude with related works and directions for future work in Sect. 6.

Underlying design choices

According to the above constraints and objectives, an essential decision was to build on the recent introduction of firstorder typeclasses in Coq [START_REF] Sozeau | First-class type classes[END_REF]. This section is devoted to the explanation of our methodology: how to use typeclasses to define the algebraic hierarchy in a modular way, how to formalise typed algebras, how to reify the corresponding expressions. We start with a brief description of the implementation of typeclasses in Coq.

Basic introduction to typeclasses in Coq.

The overall behaviour of Coq typeclasses [START_REF] Sozeau | First-class type classes[END_REF] is quite intuitive; here is how we would translate to Coq a simple Haskell program that exploits a typeclass Hash to get a number out of certain kind of values:

class Hash a where hash :: a → Int instance Hash Int where hash = id instance (Hash a) ⇒ (Hash [a]) where hash = sum . map hash main = print (hash 4, hash [START_REF] Bertot | Canonical big operators[END_REF][START_REF] Betarte | Formalisation of systems of algebras using dependent record types and subtyping: an example[END_REF][START_REF] Blanqui | CoLoR: a Coq library on rewriting and termination[END_REF], hash [ [START_REF] Bertot | Canonical big operators[END_REF][START_REF] Betarte | Formalisation of systems of algebras using dependent record types and subtyping: an example[END_REF]

,[]])

Class Hash A := { hash: A → nat }. Instance hash_n: Hash nat := { hash x := x }. Instance hash_l A: Hash A → Hash (list A) := { hash l := fold_left (fun a x ⇒ a + hash x) l 0 }. Eval simpl in (hash 4, hash [4;5;6], hash [ [4;5];[]]).

Coq typeclasses are firstorder; everything is done with plain Coq terms. In particular, the Class keyword produces a record type (here, a parametrised one) and the Instance keyword acts like a standard definition. With the above code we get values of the following types:

Hash: Type → Type hash_n: Hash nat hash: forall A, Hash A → A → nat hash_l: forall A, Hash A → Hash (list A)
The function hash is a class projection: it gives access to a field of the class. The subtlety is that the first two arguments of this function are implicit: they are automatically inserted by unification and typeclass resolution. More precisely, when we write "hash [4;5;6] ", Coq actually reads "@hash _ _ [4;5;6]". By unification, the first placeholder has to be list nat, and Coq needs to guess a term of type Hash (list nat) to fill the second placeholder. This term is obtained by a simple proof search, using the two available instances for the class Hash, which yields "@hash_l nat hash_n". Accordingly, we get the following explicit terms for the three calls to hash in the above example.

X: Type.

dot: X → X → X. one: X. plus: X → X → X. zero: X. star: X → X.

dot_neutral_left: forall x, dot one x = x. ...

T: Type. X: T → T → Type. dot: forall n m p, X n m → X m p → X n p. one: forall n, X n n. plus: forall n m, X n m → X n m → X n m. zero: forall n m, X n m. star: forall n, X n n → X n n.
dot_neutral_left: forall n m (x: X n m), dot one x = x. ... input term explicit, instantiated, term hash 4 @hash nat hash_n 4 hash [4;5;6] @hash (list nat) (@hash_l nat hash_n) [4;5;6] hash [ [4;5];[]] @hash (list (list nat)) (@hash_l (list nat) (hash_l nat hash_n)) [ [4;5];[]]

In summary, typeclasses provide overloading (we can use the hash function on several types) and allow one to write much shorter and readable terms, by letting Coq infer the obvious boilerplate. This concludes our very short introduction to typeclasses in Coq; we invite the reader to consult [START_REF] Sozeau | First-class type classes[END_REF] for more details.

2.2.

Using typeclasses to structure the development. We use typeclasses to achieve two tasks: 1) sharing and overloading notation, basic laws, and theorems; 2) getting a modular definition of Kleene algebra, by mimicking the standard mathematical hierarchy: a Kleene algebra contains an idempotent semiring, which is itself composed of a monoid and a semi-lattice. This very small hierarchy is summarised below.

SemiLattice <:

Monoid <:

IdemSemiRing <: KleeneAlgebra

Before we give concrete Coq definitions, recall that we actually want to work with the typed versions of the above algebraic structures, to be able to handle both heterogeneous binary relations and rectangular matrices. The intuition for moving from untyped structures to typed structures is given in Fig. 2: a typical signature for Kleene algebras is presented on the left-hand side; we need to move to the signature on the right-hand side, where a set T of indices (or types) is used to restrain the domain of the various operations. These indices can be thought of as matrix dimensions; we actually moved to a categorical setting: T is a set of objects, X n m is the set of morphisms from n to m, one is the set of identities, and dot is composition. The semi-lattice operations (plus and zero) operate on fixed homsets; Kleene star operates only on square morphisms-those whose source and target coincide. Class Monoid_Ops (G:

Graph) := { dot: ∀ n m p, X n m → X m p → X n p; one: ∀ n, X n n }.
Notation "x == y" := (equal _ _ x y). Notation "x • y" := (dot _ _ _ x y).

Notation "1" := (one _).

Class SemiLattice_Ops (G:

Graph) := { plus: ∀ n m, X n m → X n m → X n m; zero: ∀ n m, X n m; leq: ∀ n m, relation (X n m) := fun n m x y ⇒ plus n m x y == y }.
Class Star_Op (G:

Graph) := { star: ∀ n, X n n → X n n }.
Notation "x ≤ y" := (leq _ _ x y). Notation "x + y" := (plus _ _ x y). Notation "0" := (zero _ _). Notation "x ⋆ " := (star _ x). Classes for algebraic operations. We now can define the Coq classes on which we based our library. We first define three classes, for the operations corresponding to a monoid, a semilattice, and Kleene star. These classes are given in Fig. 3, they are parametrised by a fourth class, Graph, which corresponds to the carrier of the algebraic operations. In a standard, untyped setting, we would expect this carrier to be just a set (a Type); the situation is slightly more complicated here, since we define typed algebraic structures. According to the previous explanations and Fig. 2, the Graph class encapsulates several ingredients: a type for the set of indices (T), an indexed family of types for the sets of morphisms (X), and for each homset, an equivalence relation (equal-we cannot use Leibniz equality: most models of Kleene algebra require a weaker notion of equality).

We associate an intuitive notation to each operation, by using the name provided by the corresponding class projection. To make the effect of these definitions completely clear, assume that we have a graph equipped with monoid operations (i.e., a typing context with G: Graph and Mo: Monoid_Ops G) and consider the following proposition:

∀ (n m: T) (x: X n m) (y: X m n), x•y == 1.
If we unfold notations, we get:

∀ (n m: T) (x: X n m) (y: X m n), equal _ _ (dot _ _ _ x y) (one _).
Necessarily, by unification, the six placeholders have to be filled as follows:

∀ (n m: T) (x: X n m) (y: X m n), equal n n (dot n m n x y) (one n).
Now comes typeclass resolution: as explained in Sect. 2.1, the functions T, X, equal, dot, and one, which are class projections, have implicit arguments that are automatically filled by typeclass resolution (the graph instance for all of them, and the monoid operations instance for dot and one). All in all, the above concise proposition actually expands into: Class KleeneAlgebra := { IdemSemiRing_:> IdemSemiRing; star_make_left: ∀ n (x: Classes for algebraic laws. This was for syntax; we can finally define the classes for the laws corresponding to the four algebraic structures we are interested in. They are given in Fig. 4; we use the section mechanism to assume a graph together with the operations, which become parameters when we close the section. (We motivate our choice to have separate classes for operations and for laws in Sect. 2.4.3.)

∀ (n m: @T G) (x: @X G n m) (y: @X G m n), @equal G n n (@dot G Mo n m n x y) (@one G Mo n).
∀ n m p q (x: X n m) (y: X m p) (z: X p q), x• (y•z) == (x•y)•z; dot_neutral_left: ∀ n m (x: X n m), 1• x == x; dot_neutral_right: ∀ n m (x: X m n), x•1 == x }.
X n n), 1 + x ⋆ •x == x ⋆ ; star_destruct_left: ∀ n m (x: X n n) (y: X n m), x•y ≤ y → x ⋆ •y ≤ y; star_destruct_right: ∀ n m (x: X n n) (y: X m n), y•x ≤ y → y•x ⋆ ≤ y }. End.
The Monoid class actually corresponds to the definition of a category: we assume that composition (dot) is associative and has one as neutral element. Its first field, dot_compat, requires that composition also preserves the user-defined equality: it has to map equals to equals. (This field is declared with a special symbol (:>) and uses the standard Proper class, which is exploited by Coq to perform rewriting with user-defined relations; doing so adds dot_compat as a hint for typeclass resolution, so that we can automatically rewrite in dot operands whenever it makes sense.) Also note that since this class does not mention semi-lattice operations nor the star operation, it does not depend on SLo and Ko when we close the section. We do not comment on the SemiLattice class, which is quite similar.

The first two fields of IdemSemiRing implement the expected inheritance relationship: an idempotent semiring is composed of a monoid and a semi-lattice whose operations properly distribute. By declaring these two fields with a :>, the corresponding projections are added as hints to typeclass resolution, so that one can automatically use any theorem about monoids or semi-lattices in the context of a semiring. Note that we have to use the textual version of 0 (zero) in two laws to explicitly give its domain and co-domain; indeed, in both cases, the argument n cannot be inferred from the context, it has to be specified.

Finally, we obtain the class for Kleene algebras by inheriting from IdemSemiRing and requiring the three laws about Kleene star to hold. The counterpart of star_make_left and the fact that Kleene star is a proper morphism for equal are consequences of the other axioms; this is why we do not include a star_compat or star_make_right field in the signature: we prove these lemma separately (and we declare the former as an instance for typeclass resolution), this saves us from additional proofs when defining new models.

The following example illustrates the ease of use of this approach. Here is how we would state and prove a lemma about idempotent semirings: The special '{ IdemSemiRing} notation allows us to assume a generic idempotent semiring, with all its parameters (a graph, monoid operations, and semi-lattice operations); when we use lemmas like dot_distr_right or plus_assoc, typeclass resolution automatically finds appropriate instances to fill their implicit arguments. Of course, since such simple and boring goals occur frequently in larger and more interesting proofs, we actually defined high-level tactics to solve them automatically. For example, we have a reflexive tactic called semiring_reflexivity which would solve this goal directly: this is the counterpart to ring [START_REF] Grégoire | Proving equalities in a commutative ring done right in Coq[END_REF] for the equational theory of typed, idempotent, non-commutative semirings.

Goal forall '{IdemSemiRing} n (x y: X n n), x•(y+1)+x == x•
Declaring new models. It remains to populate the above classes with concrete structures, i.e., to declare models of Kleene algebra. We sketched the case of heterogeneous binary relations and languages in Fig. 5. As expected, it suffices to define a graph equipped with the various operations, and to prove that they validate all the axioms. The situation is slightly peculiar for languages, which form an untyped model: although the instances are parametrised by a set A coding for the alphabet, there is no notion of domain/co-domain of a language. In fact, all operations are total, they actually lie in a one-object category where domain and co-domain are trivial. Accordingly, we use the singleton type unit for the index type T in the graph instance, and all operations just ignore the superfluous parameters. 2.3. Reification: handling typed models. We also need to define a syntactic model in which to perform computations: since we define a reflexive tactic, the first step is to reify the goal (an equality between two expressions in an arbitrary model) to use a syntactical representation.

Definition rel A B := A → B → Prop. Instance rel_G: Graph := { T := Type; X := rel; equal A B R S := ∀ i j, R i j ↔ S i j }. Proof... Instance rel_Mo: Monoid_Ops rel_G := { dot A B C R S := fun (i: A)(j: C) ⇒ ∃ k: B, R i k ∧ S k j; one A := fun (i j: A) ⇒ i=j }. ... Instance rel_KA: KleeneAlgebra rel_G. Proof... Definition lang A := list A → Prop Instance lang_G A: Graph := { T := unit; X _ _ := lang A; equal _ _ L K := ∀ w, L w ↔ K w }. Proof... Instance lang_Mo A: Monoid_Ops (lang_G A) := { dot _ _ _ L K := fun w ⇒ ∃ u v, w=u++v ∧ L u ∧ K v; one _ := fun w ⇒ w=[] }. ... Instance lang_KA: KleeneAlgebra lang_G. Proof...
For instance, suppose that we have a goal of the form

S•(R•S) ⋆ + f R == f R + (S•R) ⋆ •S,
where R and S are binary relations and f is an arbitrary function on relations. The usual methodology in Coq consists in defining a syntax and an evaluation function such that this goal can be converted into the following one:

eval (var 1•(var 2•var 1) ⋆ + var 3) == eval (var 3 + (var 1•var 2) ⋆ •var 1),
where eval implicitly uses a reification environment, which corresponds to the assignment:

{1 → S; 2 → R; 3 → f R}.
Typed syntax. The situation is slightly more involved here since we work with typed models: R might be a relation from a set A to another set B, S and f R being relations from B to A. As a consequence, we have to keep track of domain/co-domain information when we define the syntax and the reification environments. The corresponding definitions are given in Fig. 6. We assume an arbitrary Kleene algebra (in the previous example, it would be the algebra of heterogeneous binary relations) and two function src and tgt associating a domain and a codomain to each variable (label is an alias for positive, the type of positive numbers, which we use to index variables). The reified inductive type corresponds to the typed reification syntax: it has dependently typed constructors for all operations of Kleene algebras, and an additional constructor for variables, which is typed according to functions src and tgt. To define the evaluation function, we furthermore assume an assignation env from variables to elements of the Kleene algebra with domain and co-domain as specified by src and tgt.

Reifying a goal using this typed syntax is relatively easy: thanks to the typeclass framework, it suffices to parse the goal, looking for typeclass projections to detect operations of interest (recall for example that a starred sub-term is always of the form @star _ _ _ _, regardless of the current model-this model is given in the first two placeholders). At first, we implemented this step as a simple Ltac tactic. For efficiency reasons, we finally moved to an OCaml implementation in a small plugin: this allows one to use efficient data structures like hash-tables to compute the reification environment, and to avoid type-checking the reified terms at each step of their construction.

Context '{KA: KleeneAlgebra}. Variables src, tgt: label → T. Inductive reified: T → T → Type := | r_dot: ∀ n m p, reified n m → reified m p → reified n p | r_one: ∀ n, reified n n | ... | r_var: ∀ i, reified (src i) (tgt i). Variable env: forall i, X (src i) (tgt i). Fixpoint eval n m (x: reified n m): X n m := match x with | r_dot _ _ _ x y ⇒ eval x • eval y | r_one _ ⇒ 1 | ... | r_var i ⇒ env i end.
Untyped regular expressions. To build a reflexive tactic using the above syntax, we need a theorem of the following form (keeping the reification environment implicit for the sake of readability):

Theorem f_correct: forall n m (x y: reified n m), f x y = true → eval x == eval y.

The function f is the decision procedure; it works on reified terms so that its type has to be forall n m, reified n m → reified n m → bool. However, defining such a function directly would be rather impractical: the standard algorithms underlying the decision procedure are essentially untyped, and since these algorithms are rather involved, extending them to take typed regular expressions into account would require a lot of work. Instead, we work with standard, untyped, regular expressions, as defined by the inductive type regex from Fig. 7. Equality of regular expressions is defined inductively, using the rules from equational logic and the laws of Kleene algebra. By declaring the corresponding instances, we get an untyped model (on the right-hand side of Fig. 8-like for languages, we just ignore domain/co-domain information). This is the main model we shall work with to implement the decision procedure and prove its correctness (Sect. 4): as announced in Sect. 1.3, we will get:

Definition decide_kleene: regex → regex → bool := ... Theorem Kozen94: forall x y: regex, decide_kleene x y = true ↔ x == y.

(Here the symbol == expands to the inductive equality predicate eq from Fig. 7.) Untyping theorem. We still have to bridge the gap between this untyped decision procedure (to be presented in Sect. 4) and the reification process we described for typed models. To this end, we exploit a nice property of the equational theory of typed Kleene algebra: it reduces to the equational theory of untyped Kleene algebra [START_REF] Pous | Untyping typed algebraic structures and colouring proof nets of cyclic linear logic[END_REF]. In other words, a typed law holds in all typed Kleene algebras if and only if the underlying untyped law holds in all Kleene algebras.

To state this result formally, it suffices to define the type-erasing function erase from Fig. 8: this function recursively removes all type decorations of a typed regular expression to

Inductive regex: Set := | dot: regex → regex → regex | plus: regex → regex → regex | star: regex → regex | one: regex | zero: regex | var: label → regex.
Inductive eq: regex → regex → Prop := | eq_trans: Transitive eq | plus_idem: forall x, eq (x+x) x | plus_compat: Proper (eq ==> eq ==> eq) plus get a plain regular expression. The corresponding "untyping theorem" is given on the righthand side: two typed expressions whose erasures are equal in the model of untyped regular expressions evaluate to equal values in any typed model, under any variable assignation (again, the reification environment is left implicit here). By composing this theorem with the correctness of the untyped decision procedure-the previous theorem Kozen94, we get the following corollary, which allows us to get a reflexive tactic for typed models even though the decision procedure is untyped.

| star_make_left: forall x, eq (1+x ⋆ •x) (x ⋆ ) | ...
Corollary dk_erase_correct: forall n m (x y: reified n m), decide_kleene (erase x) (erase y) = true → eval x == eval y.

Proving the untyping theorem is non-trivial, it requires the definition of a proof factorisation system; see [START_REF] Pous | Untyping typed algebraic structures and colouring proof nets of cyclic linear logic[END_REF] for a detailed proof and a theoretical study of other untyping theorems. Also note that Kozen investigated a similar problem [START_REF] Kozen | Typed Kleene algebra[END_REF] and came up with a slightly different solution: he solves the case of the Horn theory rather than the equational theory, at the cost of working in a restrained form of Kleene algebras. He moreover relies on model-theoretic arguments, while our considerations are purely proof-theoretic.

Finally note that as it is stated here, theorem erase_faithful requires the axiom Eqdep.eq_rect_eq from Coq standard library. This comes from the inductive type reified from Fig. 6, which has dependent parameters in an arbitrary type (more precisely, the field T of an arbitrary graph G). We get rid of this axiom at the price of an indirection: we actually make this inductive type depend on positive numbers and we use an additional map to enumerate the elements of T that are actually used (since terms are finite, there are only finitely many such elements in a given goal). Since the type positive has decidable equality, we only need provable instances of axiom Eqdep.eq_rect_eq [START_REF] Hedberg | A Coherence Theorem for Martin-Löf's Type Theory[END_REF].

2.4. More details on our approach. We conclude this section with additional remarks on the advantages and drawbacks of our design choices; the reader may safely skip these and move directly to Sect. 3.

2.4.1.

Taking advantage of symmetry arguments. It is common practice in mathematics to rely on symmetry arguments to avoid repeating the same proofs again and again. Surprisingly, by carefully designing our classes and defining appropriate instances, we can also take advantage of some symmetries present in Kleene algebra, in a formal and simple way.

The starting point is the following observation. Consider a typed Kleene algebra as a category with additional structure on the homsets; by formally reversing all arrows, we get a new typed Kleene algebra. Therefore, any statement that holds in all typed Kleene algebra can be reversed, yielding another universally true statement. (This duality principle is standard in category theory [START_REF] Mac | Categories for the Working Mathematician[END_REF]; it is also used in lattice theory [START_REF] Davey | Introduction to Lattices and Order[END_REF], where we can always consider the dual lattice.)

In Coq, it suffices to define instances corresponding to this dual construction. These instances are given in Fig. 9. The dual graph and operations are obtained by swapping domains with co-domains; we get composition by furthermore reversing the order of the arguments. Proving that these reversed operations satisfy the laws of a Kleene algebra is relatively easy since almost all laws already come with their dual counterpart (we actually wrote laws with some care to ensure that the dual operation precisely maps such laws to their counterpart). The two exceptions are associativity of composition, which is in a sense self-dual up to symmetry of equality, and star_make_left whose dual is a consequence of the other axioms, so that it was not included in the signature of Kleene algebras-Fig. 4. (Note that these instances are dangerous from the typeclass resolution point of view: they introduce infinite paths in the proof search trees. Therefore, we do not export them and we use them only on a case by case basis.)

With these instances defined, suppose that we have proved

Lemma iter_right '{KA: KleeneAlgebra}: ∀ n m x y (z: X n m), z•x ≤ y•z → z•x ⋆ ≤ y ⋆ •z.

By symmetry we immediately get

Lemma iter_left '{KA:

KleeneAlgebra}: ∀ n m x y (z: X m n), x•z ≤ z•y → x ⋆ •z ≤ z•y ⋆ . Proof iter_right (KA:=KA').
Indeed, instantiating the Kleene algebra with its dual in lemma iter_right amounts to swapping domains and co-domains in the type of variables (only z is altered since x and y have square types) and reversing the order of all products. Doing so, we precisely get the statement of lemma iter_left, up to conversion. By combining the above two lemmas, we finally get the following one, which we actually use in Sect. 4.4.

Lemma iter '{KA: KleeneAlgebra}: ∀ n m x y (z:

X n m), x•z == z•y → x ⋆ •z == z•y ⋆ . Proof...

Concrete structures.

Our typeclass-based approach may become problematic when dealing with concrete structures without using our notations in a systematic way. This might be a drawback for potential end-users of the library. Indeed, suppose one wants to use a concrete type rather than our uninformative projection X to quantify over some relation R between natural numbers:

Check forall R: rel nat nat, R == R.
This term does not type-check since Coq is unable to unify rel nat nat (the declared type for R) with @X _ _ _ (the type which is expected on both sides of a ==). A solution in this case consists in declaring the instance rel_G from Fig. 5 as a "canonical structure": doing so precisely tells Coq to use rel_G when facing such a unification problem. (By the way, this also tells Coq to use rel_G for unification problems of the form Type = β @T _, which is required by the above example as well.)

Unfortunately, this trick does not play well with our peculiar representation of untyped models, like languages or regular expressions (Fig. 5 and7). Indeed, the dummy occurrences of unit parameters prevent Coq from using the instance lang_G as a canonical structure. Our solution in this case consists in using an appropriate notation to hide the corresponding occurrences of X behind an informative name:

Notation language := (@X lang_G tt tt). Notation regex := (@X re_G tt tt). Check forall L: language, L ⋆ •L ⋆ == L ⋆ . Also note that the ability to declare more general hints for unification [START_REF] Sacerdoti Coen | Nonuniform coercions via unification hints[END_REF] would certainly help to solve this problem in a nicer way. 2.4.3. Separation between operations an laws. When defining the classes for the algebraic structures, it might seem more natural to package operations together with their laws. For example, we could merge the classes Monoid_Ops and Monoid from Fig. 3 and4. There are at least two reasons for keeping separate classes.

First, by separating operational contents from proof contents, we avoid the standard problems due to the lack of proof irrelevance in Coq, and situations where typeclass resolution might be ambiguous. Indeed, having two proofs asserting that some operations form a semiring is generally harmless; however, if we pack operations with the proof that they satisfy some laws, then two distinct proofs sometimes mean two different operations, which becomes highly problematic. This would typically forbid the technique we presented above to factorise some proofs by duality.

Second, this makes it possible to define other structures sharing the same operations (and hence, notations), but not necessarily the same laws. We exploit this possibility, for example, to define a class for Kleene algebra with converse using fewer laws: the good properties of the converse operation provide more symmetries so that some laws become redundant (we use this class to get shorter proofs for the instances from Fig. 5: the models of binary relations and languages both have a converse operation). This choice is not critical for the library in its current state, because we basically stop at Kleene algebra. However, based on preliminary experiments, having this separation is crucial when considering richer structures like residuated Kleene lattices [START_REF] Jipsen | From semirings to residuated Kleene lattices[END_REF] or allegories [START_REF] Freyd | Categories, Allegories[END_REF].

Matrices.

In this section, we describe our implementation of matrices, building on the previously described framework. Matrices are indeed required to formalise Kozen's initiality proof [START_REF] Kozen | A completeness theorem for Kleene algebras and the algebra of regular events[END_REF], as explained in Sect. 1.2.

3.1.

Which matrices to construct? Assume a graph G. There are at least three ways of defining a new graph for matrices:

(1) Fix an object u ∈ T and use natural numbers (N) as objects: morphisms between n and m are n × m matrices whose elements belong to the square homset

X u u. (2) Use pairs (u, n) ∈ T × N as objects: morphisms from (u, n) to (v, m) are n × m matrices with elements in X u v. (3) Use lists [u 1 , . . . , u n ] ∈ T ⋆ as objects: a morphism from [u 1 , . . . , u n ] to [v 1 , . . . , v m ] is
an n × m matrix M such that M i,j belongs to X u i v j . The third option is the most theoretically appealing one: this is the most general construction. Although we can actually build a typed Kleene algebra of matrices in this way, this requires dealing with a lot of dependent types, which can be tricky. The second option is also rather natural from the mathematical point of view and it does not impose a strongly dependent typing discipline.

However, while formalising the second or the third option is interesting per se, to get new models of typed Kleene algebras, the first construction actually suffices for Kozen's initiality proof. Indeed, this proof only requires matrices over regular expressions and

Context {SLo: SemiLattice_Ops G}. Fixpoint sum i k (f: nat → X) := match k with | O ⇒ O | S k ⇒ f i + sum (S i) k f end.
Context {Mo: Monoid_Ops G}. Definition mx_dot n m p (M:

MX n m) (N: MX m p) := fun i j ⇒ sum O m (fun k ⇒ M i k • N k j).
Definition mx_one n: MX n n := fun i j ⇒ if eq_nat_bool i j then 1 else 0. languages. Since these two models are untyped (their type T for objects is just unit), the three possibilities coincide (we can take tt for the fixed object u without loss of generality).

In the end, we chose the first option, because it is the simplest one.

3.2.

Coq representation for matrices. According to the previous discussion, we assume a graph G: Graph and an object u: T. We furthermore abbreviate the type X u u as X: this is the type of the elements-sometimes called scalars.

Dependently typed representation.

A matrix can be seen as a partial map from pairs of integers to X, so that the Coq type for matrices could be defined as follows:

Definition MX (n m: nat) := forall i j, i<n → j<m → X. Definition mx_equal n m (M N: MX n m) i j (Hi: i<n) (Hj: j<m) := M i j Hi Hj == N i j Hi Hj.

This corresponds to the dependent types approach: a matrix is a map to X from two integers and two proofs that these integers are lower than the bounds of the matrix. Except for the concrete representation, this is the approach followed in [START_REF] Bertot | Canonical big operators[END_REF][START_REF] Garillot | Packaging mathematical structures[END_REF][START_REF] Blanqui | CoLoR: a Coq library on rewriting and termination[END_REF]. With such a type, every access to a matrix element is made by exhibiting two proofs, to ensure that indices lie within the bounds. This is not problematic for simple operations like the function mx_plus below: it suffices to pass the proofs around; this however requires more boilerplate for other functions, like block decomposition operations.

Context {SLo: SemiLattice_Ops G}. Definition mx_plus n m (M N: MX n m) i j (Hi: i<n) (Hj: j<m) := M i j Hi Hj + N i j Hi Hj.

Infinite functions. We actually adopt another strategy: we move bounds checks to equality proofs, by working with the following definitions:

Definition MX n m := nat → nat → X. Definition mx_equal n m (M N: MX n m) := forall i j, i<n → j<m → M i j == N i j.
Here, a matrix is an infinite function from pairs of integers to X, only equality is restricted to the actual domain of the matrix. With these definitions, we do not need to manipulate proofs when defining matrix operations, so that subsequent definitions are easier to write. For instance, the functions for matrix multiplication and block manipulations are given in Fig. 10 and Fig. 11. For multiplication, we use a very naive function to compute the appropriate sum: there is no need to provide an explicit proof that each call to the functional argument is performed within the bounds. Similarly, the mx_sub function, for extracting a sub-matrix, has a very liberal type: it takes an arbitrary p × q matrix M , it returns an arbitrary n × m matrix, and this matrix is obtained by reading M from an arbitrary position (x, y). This function is then instantiated with more sensible arguments to get the four functions corresponding to the decomposition of an (x + n) × (y + m) matrix into four blocks. The converse function, to define a matrix by blocks, uses the following property of subtraction on nat: if S i-x reduces to zero, then i<x; otherwise, it reduces to some S i' with i'=i-x.

O, O ⇒ M i j | O, S j ⇒ N i j | S i, O ⇒ P i j | S i, S j ⇒ Q i j end.
Bounds checks are required a posteriori only, when proving properties about these matrix operations, e.g., that multiplication is associative or that the four sub-matrix functions preserve matricial equality. This is generally straightforward: these proofs are done within the interactive proof mode, so that bound checks can be proved with high-level tactics like omega. (Note that a similar behaviour could also be achieved with a dependently typed definition of matrices by using Coq's Program feature. We prefer our approach for its simplicity: Program tends to generate large terms which are not so easy to work with.)

The correctness proof of our algorithm heavily relies on matricial reasoning (Sect. 4), and in particular block matrix decomposition (Sect. 3.3 and 4.2). Despite this fact, we have not found major drawbacks to this approach yet. We actually believe that it would scale smoothly to even more intensive usages of matrices like, e.g., linear algebra [START_REF] Garillot | Packaging mathematical structures[END_REF].

Phantom types. Unfortunately, these non-dependent definitions allow one to type the following code, where the three additional arguments of dot are implicit:

Definition ill_dot n p (M: MX n 16) (N: MX 64 p): MX n p := dot M N.
This definition is accepted thanks to the conversion rule: the dependent type MX n m does not mention n nor m in its body, so that these arguments can be discarded by the type system (we actually have MX n 16 = MX n 64). While such an ill-formed definition will be detected at proof-time; it is a bit sad to loose the advantages of a strongly typed programming language here. We solved this problem at the cost of some syntactic sugar, by resorting to an inductive singleton definition, reifying bounds in phantom types: Coq no longer equates types MX n 16 and MX n 64 with this definition, so that the above ill_dot function is rejected, and we can trust inferred implicit arguments (e.g., the m argument of dot).

Computation. Although we do not use matrices for computations in this work, we also advocate this lightweight representation from the efficiency point of view. First, using nondependent types is more efficient: not a single boundary proof gets evaluated in matrix computations. Second, using functions to represent matrices allows for fine-grain optimisation: it gives a lazy evaluation strategy by default, which can be efficient if the matrix resulting of a computation is seldom used, but we can also enforce a call-by-value behaviour for some expressions, to avoid repeating numerous calls to a given expensive computation. Indeed, we can define a memoisation operator that computes all elements of a given matrix, stores the results in a map, and returns the closure that looks up in the map rather than recomputing the result. The map can be implemented using lists or binary trees, for example. In any case, we can then prove this memoisation operator to be an identity so that it can be inserted in matrix computations in a transparent way, at judicious places. 

3.3.

Taking the star of a matrix. As expected, we declare the previous operations as new instances, so that we can directly use notations, lemmas, and tactics with matrices. The type of these instances are given below: To obtain the fourth and last instances, we have to define a star operation on matrices, and show that it satisfies the laws for Kleene star. We conclude this section about matrices by a brief description of this construction-see [START_REF] Kozen | A completeness theorem for Kleene algebras and the algebra of regular events[END_REF] for a detailed proof.

The idea is to proceed by induction on the size of the matrix: the problem is trivial if the matrix is empty or of size 1 × 1; otherwise, we decompose the matrix into four blocks and we recurse as follows [START_REF] Aho | The Design and Analysis of Computer Algorithms[END_REF]:

A B C D ⋆ = A ′ A ′ • B • D ′ D ′ • C • A ′ D ′ + D ′ • C • A ′ • B • D ′ where D ′ = D ⋆ , A ′ = (A + B • D ′ • C) ⋆ ( †)
This definition may look mysterious; the special case where C is zero might be more intuitive:

A B 0 D ⋆ = A ⋆ A ⋆ • B • D ⋆ 0 D ⋆ .
As long as we take square matrices for A and D, the way we decompose the matrix does not matter (we actually have to prove it). In practice, since we work with Coq natural numbers (nat), we choose A of size 1 × 1: this allows recursion to go smoothly. The corresponding code is given in Fig. 12. We first define an auxiliary function, mx_star', which follows the above definition by blocks ( †), assuming two functions to perform the recursive calls (i.e., to compute A ′ and D ′ ). The function mx_star_11 computes the star of a 1 × 1 matrix by using the star operation on the underlying element. Using these two functions, we get the final mx_star function as a simple fixpoint. The proof that this operation satisfies the laws of Kleene algebras is complicated [START_REF] Kozen | A completeness theorem for Kleene algebras and the algebra of regular events[END_REF]; note that by making explicit the general block definition with the auxiliary function mx_star', we can easily state theorem mx_star_block: equation ( †) holds for each possible decomposition of the matrix.

= sx (A+B•D'•C) in mx_blocks A' (A' • B• D') (D' • C• A') (D'+D'•C•A'• B•D').

The algorithm and its proof

We now focus on the heart of our tactic: the decision procedure and the corresponding correctness proof. The algorithm we chose to implement to decide whether two regular expressions denote the same language can be decomposed into five steps:

(1) normalise both expressions to turn them into "strict star form";

(2) build non-deterministic finite automata with epsilon-transitions (ǫ-NFA);

(3) remove epsilon-transitions to get non-deterministic finite automata (NFA); (4) determinise the automata to obtain deterministic finite automata (DFA);

(5) check that the two DFAs are equivalent. The fourth step can produce automata of exponential size. Therefore, we have to carefully select our construction algorithm, so that it produces rather small automata. More generally, we have to take a particular care about efficiency; this drives our choices about both data structures and algorithms.

The Coq types we used to represent finite automata are given in Fig. 13; we use modules only for handling the name-space; the type regex is that from Fig. 7 (Sect. 2.3), label and state are aliases for the type of numbers. The first record type, MAUT.t, corresponds to the matricial representation of automata; it is rather high-level but computationally inefficient (MX n m is the type of n × m matrices over regex-Sect. 3). We only use this type in proofs, through the evaluation function MAUT.eval (the function mx_to_scal casts a 1 × 1 matrix into a regular expression). The three other types are efficient representations for the three kinds of automata we mentioned above; fields size and labels respectively code for the number of states and labels, the other fields are self-explanatory. In each case, we define a translation function to matricial automata, to_MAUT, so that each kind of automata can eventually be evaluated into a regular expression.

The overall structure of the correctness proof is depicted in Fig. 14. Datatypes are recalled on the left-hand side; the outer part of the right-hand side corresponds to computations: starting from two regular expressions x and y, two DFAs A 3 and B 3 are constructed and tested for equivalence. The proof corresponds to the inner equalities (==): each automata construction preserves the semantics of the initial regular expressions, two DFAs evaluate to equal values when they are declared equivalent by the corresponding algorithm.

In the following sections, we give more details about each step of the decision procedure, together with a sketch of our correctness proof (although we work with different algorithms, this proof is largely based on Kozen's one [START_REF] Kozen | A completeness theorem for Kleene algebras and the algebra of regular events[END_REF]).

Normalisation, strict star form.

There exists no complete rewriting system to decide equations of Kleene algebra (their equational theory is not finitely based [START_REF] Redko | On defining relations for the algebra of regular events[END_REF]); this is why one usually goes through finite automata constructions. One can still use rewriting techniques to simplify the regular expressions before going into these expensive constructions. By doing so, one can reduce the size of the generated automata, and hence, the time needed to check for their equivalence.
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eNFA.t

Epsilon removal

A 1 For example, a possibility consists in normalising expressions with respect to the following convergent rewriting system. (Although we actually implemented this trivial optimisation, we will not discuss it here.)
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Among other laws one might want to exploit in a preliminary normalisation step, there are the following ones:

1 ⋆ → 1 x ⋆⋆ → x ⋆ .
More generally, any star expression x ⋆ where x accepts the empty word can be simplified using the simple syntactic procedure proposed by Brüggemann-Klein [START_REF] Brüggemann-Klein | Regular expressions into finite automata[END_REF]. For example, this procedure reduces the expression on the left-hand side below to the one on the right-hand side, which is in strict star form: all occurrences of the star operation act on strict regular expressions, regular expressions that do not accept the empty word.

((a + 1)

• ((b + 1) ⋆ • c + d ⋆ )) ⋆ → (a + b ⋆ • c + d) ⋆ .
In Coq, this procedure translates into a simple fixpoint whose correctness relies on the following laws:

(x + 1) ⋆ = x ⋆ (x + y ⋆ ) ⋆ = (x + y) ⋆ (x • y) ⋆ = (x + y) ⋆ (if
x and y accept the empty word)

Fixpoint ssf: regex → regex := ... Theorem ssf_correct: forall x, ssf x == x.

The above theorem corresponds to the first step of the overall proof, as depicted in Fig. 14.

As we shall explain in Sect. 4.3, working with expressions in strict star form also allows us to get a simpler and more efficient algorithm to remove epsilon transitions. This means that we also proved the ssf function complete, i.e., that it always produces expressions in strict star form:

Inductive strict_star_form: regex → Prop := ... Theorem ssf_complete: forall x, strict_star_form (ssf x).

One could also normalise expressions modulo idempotence of +, to avoid replications in the generated automata. This in turn requires normalising terms modulo associativity and commutativity of +, and associativity of •, so that terms like ((a+b)•c)•d+(b+a)•(c•d) can be reduced modulo idempotence. Such a phase can easily be implemented, but it results in a slower procedure in practice (normalisation requires quadratic time and non-trivial instances of the idempotence law do not appear so frequently). We do not include this step in the current release.

4.2.

Construction. There are several ways of constructing an ǫ-NFA from a regular expression. At first, we implemented Thompson's construction [START_REF] Thompson | Regular expression search algorithm[END_REF], for its simplicity; we finally switched to a variant of Ilie and Yu's construction [START_REF] Ilie | Follow automata[END_REF], which produces smaller automata. This algorithm constructs an automaton with a single initial state and a single accepting state (respectively denoted by i and f ); it proceeds by structural induction on the given regular expression. The corresponding steps are depicted on the left-hand side of Fig. 15; the first drawing corresponds to the base cases (zero, one, variable); the second one is union (plus): we recursively build the two sub-automata between i and f ; the third one is concatenation: we introduce a new state, p, build the first sub-automaton between i and p, and the second one between p and f ; the last one is for iteration (star): we build the sub-automata between a new state p and p itself, and we link i, p, and f with two epsilontransitions. The corresponding Coq code is given on the right-hand side. To avoid costly union operations, we actually use an accumulator (A) to which we recursively add states and transitions (the functions add_one and add_var respectively add epsilon and labelled transitions to the accumulator-the function incr adds a new state to the accumulator and returns this state together with the extended accumulator).

We actually implemented this algorithm twice, by using two distinct datatypes for the accumulator: first, with a high-level matricial representation; then with efficient maps for storing epsilon and labelled transitions. Doing so allows us to separate the correctness proof into an algebraic part, which we can do with the high-level representation, and an implementation-dependent part consisting in showing that the two versions are equivalent.

These two versions correspond to the following modules: function (defined in Fig. 11). We did not include the corresponding details for the lowlevel representation: they are slightly verbose and they can easily be deduced. Notice that pre_NFA does not include a generic add function: while the matricial representation allows us to label transitions with arbitrary regular expressions, the efficient representation statically ensures that transitions are labelled either with epsilon or with a variable (a letter of the alphabet).

The final construction functions, from regex to MAUT.t or eNFA.t, are obtained by calling build between the two states 0 and 1 of an empty accumulator (note that the occurrence of 0 in the definition of pre_MAUT.empty denotes the empty (2, 2)-matrix).

Since the two versions of the algorithm only differ by their underlying data structures, proving that they are equivalent is routine ([=] denotes matricial automata equality):

Lemma constructions_equiv: forall x, regex_to_MAUT x [=] eNFA.to_MAUT (regex_to_eNFA x).
Let us now focus on the algebraic part of the proof. We have to show:

Theorem construction_correct: forall x, MAUT.eval (regex_to_MAUT x) == x.
The key lemma is the following one: calling build x i f A to insert an automaton for the regular expression x between the states i and f of A is equivalent to inserting directly a transition with label x (recall that transitions can be labelled with arbitrary regular expressions in matricial automata); moreover, this holds whatever the initial and final states s and t we choose for evaluating the automaton.

Lemma build_correct: forall x i f s t A,

i<size A → f<size A → s<size A → t<size A → eval s t (build x i f A) == eval s t (add x i f A).

As expected, we proceed by structural induction on the regular expression x. As an example of the involved algebraic reasoning, the following property of star w.r.t. block matrices is used twice in the proof of the above lemma: with (x, y, z) = (e, 0, f ), it gives the case of a concatenation (e • f ); with (x, y, z) = (1, e, 1) it yields iteration (e ⋆ ). This laws follows from the general characterisation of the star operation on block matrices (Equation ( †) in Sect. 3.3). In both cases, the line and the column that are added on the left-hand side correspond to the state (p) generated by the construction.
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In the special case where A is the empty accumulator, lemma build_correct gives:

MAUT.eval (regex_to_MAUT x) == eval 0 1 (build x 0 1 empty) == eval 0 1 (add x 0 1 empty) ==

1 0 • 0 x 0 0 ⋆ • 0 1 == 1 0 • 1 x 0 1 • 0 1 == x
i.e., theorem construction_correct.
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. Running the construction algorithm on an expression and its strict star form.

Finally, by combining the equivalence of the two algorithms (lemma constructions_equiv) and the correctness of the high-level one (theorem construction_correct), we obtain the correctness of the efficient construction algorithm. In other words, we can fill the two triangles corresponding to the second step in Fig. 14:

Theorem construction_correct': forall x, eNFA.eval (regex_to_eNFA x) == x.

4.3.

Epsilon transitions removal. The automata obtained with the above construction contain epsilon-transitions: each starred sub-expression produces two epsilon-transitions, and each occurrence of 1 gives one epsilon-transition. Indeed, their transitions matrices are of the form M = J + N with N = a a • N a , where J and the N a are 0-1 matrices. These matrices just correspond to the graphs of epsilon and labelled transitions.

Removing epsilon-transitions can be done at the algebraic level using the following law:

(x + y) ⋆ = x ⋆ • (y • x ⋆ ) ⋆ , from which we get u • (J + N ) ⋆ • v = u • J ⋆ • (N • J ⋆ ) ⋆ • v ,
so that the automata u, N, v and u • J ⋆ , N • J ⋆ , v are equivalent. We can moreover notice that the latter automaton no longer contains epsilon-transitions: this is a NFA (the transition matrix, N •J ⋆ , can be written as a a•N a •J ⋆ , where the N a •J ⋆ are 0-1 matrices). This algebraic proof is not surprising: looking at 0-1 matrices as binary relations between states, J ⋆ actually corresponds to the reflexive-transitive closure of J.

Although this is how we prove the correctness of this step, computing J ⋆ algebraically is inefficient: we have to implement a proper transitive closure algorithm for the lowlevel representation of automata. We actually rely on a property of the construction from Sect. 4.2: when given regular expressions in strict star form (Sect. 4.1), the produced ǫ-NFAs have acyclic epsilon-transitions. Intuitively, the only possibility for introducing an epsilon-cycle in the construction from Sect. 4.2 comes from star expressions. Therefore, by forbidding the empty word to appear in such cases, we prevent the formation of epsiloncycles.

Consider for example Fig. 16, where we have executed the construction algorithm of Fig. 15 on two regular expressions (these are the expressions from Sect. 4.1-the right-hand side expression is the strict star form of the left-hand side one). There are two epsilon-loops in the left hand-side automaton, corresponding to the two occurrences of star that are applied to non-strict expressions ((b + 1) ⋆ and the whole term). On the contrary, in the automaton generated from the strict star form-the second regular expression, the states belonging to these loops are merged and the corresponding transitions are absent: the epsilon-transitions form a directed acyclic graph (here, a tree).

This acyclicity property allows us to use a very simple algorithm to compute the transitive closure. With respect to standard algorithms for the general (cyclic) case, this algorithm is easier to implement in Coq, slightly more efficient, and simpler to certify. More concretely, we need to prove that the construction algorithm returns ǫ-NFAs whose reversed epsilon-transitions are well-founded, when given expressions in strict star form:

Definition eNFA_well_founded A := well_founded (fun i j ⇒ In i (eNFA.epsilon A j)). Theorem construction_wf: forall x, strict_star_form x → eNFA_well_founded (regex_to_eNFA x).
(Note that this proof is non-trivial.) Our function to convert ǫ-NFAs into NFAs takes such a well-founded proof as an argument, and uses it to compute the reflexive-transitive closure of epsilon-transitions:

Definition eNFA_to_NFA (A: eNFA.t): eNFA_well_founded A → NFA.t := ...
This step is easy to implement since we can proceed by well-founded induction. In particular, there is no need to bound the recursion level with the number of states, to keep track of the states whose transitive closure is being computed to avoid infinite loops, or to prove that a function defined in this way terminates. (Note that we still use memoisation, to take advantage of the sharing offered by the directed acyclic graph structure.)

We finally prove that the previous function returns an automaton whose translation into a matricial automaton is exactly u • J ⋆ , N • J ⋆ , v , so that the above algebraic proof applies. This closes the third step in Fig. 14.

Theorem epsilon_correct: forall A (HA: eNFA_well_founded A), NFA.eval (eNFA_to_NFA A HA) == eNFA.eval A.

Comparison with Ilie and Yu's construction. Let us make a digression here to compare our construction algorithm with the one proposed by Ilie and Yu [28, Algorithm 4, p. 144]. The steps of the recursive procedure, as presented in Fig. 15, are exactly the same; the only difference is that they refine the automaton by merging some states and removing useless transitions: (a) the state introduced in the dot case is removed when it is preceded or followed by a single epsilon-transition; (b) epsilon-cycles introduced in the star case are merged into a single state; (c) if at the end of the algorithm, the initial state only has one outgoing epsilon-transition, the initial state is shifted along this transition; (d) duplicated transitions are merged into a single one.

• b Ô Ô c Ô Ô G G • ǫ h h a,d ǫ G G ⊚
For instance, running Ilie and Yu's construction on the right-hand side expression of Fig. 16 yields the automaton on the right. This automaton is actually smaller than the one we generate: two states and two epsilontransitions are removed using (a) and (c). Moreover, thanks to optimisation (b), Ilie and Yu also get this automaton when starting from the left-hand side expression, although this expression is not in strict star form.

We did not implement (a) for two reasons: first, this optimisation is not so simple to code efficiently (we need to be able to merge states and to detect that only one epsilon transition reaches a given state), second, we could hardly validate its correctness at the algebraic level (recall that we need to motivate each step by some matricial reasoning). Similarly, although step (c) is easy to implement, proving its correctness would require substantial additional work. On the contrary, our presentation of the algorithm directly enforces (d): the data structures we use systematically merge duplicate transitions.

The remaining optimisation is (b), which would be even harder to implement and to prove correct than (a). Fortunately, by working with expressions in strict star form, the need for this optimisation vanishes: epsilon-cycles cannot appear. In the end, although we implement (b) by putting expressions in strict star form first, the only difference with Ilie and Yu's construction is that we do not perform steps (a) and (c). 4.4. Determinisation. Determinisation is exponential in worst case: this is a power-set construction. However, examples where this bound is reached are rather contrived: the empirical complexity is tractable. Starting from a NFA u, M, v with n states, the algorithm consists in a standard depth-first enumeration of the subsets accessible from the set of initial states. It returns a DFA u, M , v with n states, together with a injective map ρ from [1.. n] to subsets of [1..n]. We sketch the algebraic part of the correctness proof. Let X be the rectangular ( n, n) 0-1 matrix defined by X sj j ∈ ρ(s); the intuition is that X is a "decoding" matrix: it sends states of the DFA to the characteristic vectors of the corresponding subsets of the NFA. By a precise analysis of the algorithm, we prove that the following commutation properties hold:

M • X = X • M (1) u • X = u (2) v = X • v (3)
Equation ( 1) can be read as follows: executing a transition in the DFA and then decoding the result is equivalent to decoding the starting state and executing parallel transitions in the NFA. Similarly, (2) states that the initial state of the DFA corresponds to the set of initial states of the NFA, and (3) assesses that the final states of the DFA are those containing at least one accepting state of the NFA.

From (1), we deduce that M ⋆ • X = X • M ⋆ using the lemma iter from Sect. 2.4.1; we conclude with [START_REF] Allen | The semantics of reflected proof[END_REF][START_REF] Barthe | Implicit coercions in type systems[END_REF]:

u • M ⋆ • v = u • M ⋆ • X • v = u • X • M ⋆ • v = u • M ⋆ • v .
The DFA evaluates like the starting NFA: we can fill the two squares corresponding to the fourth step in Fig. 14.

Let us mention a Coq-specific technical difficulty in the concrete implementation of this algorithm. The problem comes from termination: even though it theoretically suffices to execute the main loop at most 2 n times (there are 2 n subsets of [1..n]), we cannot use this bound directly in practice. Indeed, NFAs with 500 states frequently result in DFAs of about a thousand states, so that we should be able to compute them rather easily. However, using the number 2 n to bound the recursion depth in Coq requires to compute this number before entering the recursive function. For n = 500 this is obviously out of reach (this number has to be in unary format-nat-since it is used to ensure structural recursion).

We have tried to use well-founded recursion, which was rather inconvenient: this requires mixing some non-trivial proofs with the code. We currently use the following "pseudofixpoint operators", defined in continuation passing style: Intuitively, linearfix n f k lazily approximates a potential fixpoint of the functional f: if a fixpoint is not reached after n iterations, it uses k to escape. The powerfix operator behaves similarly, except that it escapes after 2 n -1 iterations: we prove that powerfix n f k a is equal to linearfix (2 n -1) f k a. Thanks to these operators, we can write the code to be executed using powerfix, while keeping the ability to reason about the simpler code obtained with a naive structural iteration over 2 n : both versions of the code are easily proved equivalent, using the intermediate linearfix characterisation.

4.5. Equivalence checking. Two DFAs are equivalent if and only if their respective minimised DFAs are equal up-to isomorphism. Therefore, computing the minimised DFAs and exploring all state permutations is sufficient to obtain decidability. However, there is a more direct and efficient approach that does not require minimisation: one can use the almost linear algorithm by Hopcroft and Karp [START_REF] Aho | The Design and Analysis of Computer Algorithms[END_REF]. This algorithm proceeds as follow: it computes the disjoint union automata u, M, v , and checks that the former initial states (i A , i B ) are equivalent. Intuitively, two states are equivalent if they can match each other's transitions to reach equivalent states, with the constraint that no accepting state can be equivalent to a non-accepting one.

Let us execute this algorithm on the simple example given on the left-hand side of Fig. 17. We start with the pair of states (x, u); these two states are non-accepting so that we can declare them equivalent a priori. We then have to check that they can match each other's transitions, i.e., that y and v are equivalent. Both states are accepting, we declare them equivalent, and we move to the pair (z, w) (according to the transitions of the automata). Again, since these two states are non-accepting, we declare them equivalent and we follow their transitions. This brings us back to the pair (y, v). Since this pair was already encountered, we can stop: the two automata are equivalent, they recognise the same language. The algorithm always terminates: there are finitely many pairs of states, and each pair is visited at most once.

This presentation of the algorithm makes it quadratic in worst case. Almost linear time complexity is obtained by recording a set of equivalence classes rather than the set of visited pairs. To illustrate this idea, consider the example on the right-hand side of Fig. 17: starting from the pair (x, u) and following transitions along a, we reach a situation where the pairs (x, u), (y, v), (z, w), and (z, v) have been declared as equivalent and where we still need to check transitions along b. All of them result in already declared pairs, except the initial one (x, u), which yields (y, w). Although this pair was not visited, it belongs to the equivalence relation generated by the previously visited pairs. Therefore, there is no need to add this pair, and the algorithm can stop immediately. This makes the algorithm almost linear: two equivalence classes are merged at each step of the loop so that this loop is executed at most n + m times, where n and m are the number of states of the compared DFAs. Using a disjoint-sets data structure for maintaining equivalence classes ensures that each step is done in almost-constant time [START_REF] Cormen | Introduction to Algorithms[END_REF].

To our knowledge, there is only one implementation of disjoint-sets in Coq [START_REF] Leroy | A formally verified compiler back-end[END_REF]. However, this implementation uses sig types to ensure basic invariants along computations, so that reduction of the corresponding terms inside Coq is not optimal: useless proof terms are constantly built and thrown away. Although this drawback disappears when the code is extracted (the goal in [START_REF] Leroy | A formally verified compiler back-end[END_REF] was to obtain a certified compiler, by extraction), this is problematic in our case: since we build a reflexive tactic, computations are performed inside Coq. Conchon and Filiâtre also certified a persistent union-find data structure in Coq [START_REF] Conchon | A Persistent Union-Find Data Structure[END_REF], but this development consists in a modelling of an OCaml library, not in a proper Coq implementation that could be used to perform computations. Therefore, we had to re-implement and prove this data structure from scratch. Namely, we implemented disjoint-sets forests [START_REF] Cormen | Introduction to Algorithms[END_REF] with path compression and the usual "union by rank" heuristic, along the lines of [START_REF] Leroy | A formally verified compiler back-end[END_REF], but without using sig-types.

We do not give the Coq code for checking equivalence of DFAs here: it closely follows [START_REF] Aho | The Design and Analysis of Computer Algorithms[END_REF] and can be downloaded from [START_REF] Braibant | Coq library: ATBR, algebraic tools for working with binary relations[END_REF]. Note that since recursion is not structural, we need to explicitly bound the recursion depth. As explained above, the size of the disjoint union automaton (n + m) does the job.

Like previously, the correctness of this last step reduces to algebraic reasoning. Define a 0-1 matrix Y to encode the equivalence relation on states obtained with a successful run of the algorithm:

Y ij =
1 if states i and j are equivalent, 0 otherwise.

We prove that this matrix satisfies the following properties (like for the determinisation step, these proofs are quite technical and correspond to a detailed analysis of the algorithm-in particular, we have to show that the bound we impose for the recursion depth is appropriate):

1 ≤ Y (1) Y • Y ≤ Y (2) Y • M ≤ M • Y (3) i A • Y = i B • Y (4) Y • v = v (5)
Equations (1, 2) correspond to the fact that Y encodes a reflexive and transitive relation. Equation (3) comes from the fact that Y is a simulation: transitions starting from related states yield related states. The last two equations assess that the starting states are related (4), and that related states are either accepting or non-accepting [START_REF] Betarte | Formalisation of systems of algebras using dependent record types and subtyping: an example[END_REF]. This allows us to conclude using algebraic reasoning: from (1, 2, 3) and Kleene algebra laws, we deduce

M ⋆ • Y = Y • (M • Y ) ⋆ . (6) 
Correctness follows:

i A • M ⋆ • v = i A • M ⋆ • Y • v (by 5) = i A • Y • (M • Y ) ⋆ • v (by 6) = i B • Y • (M • Y ) ⋆ • v (by 4) = i B • M ⋆ • Y • v (by 6) = i B • M ⋆ • v . ( by 5) 
In other words, we obtained the bottom line equality of Fig. 14.

4.6.

Putting it all together. By combining the proofs from the above sections according to Fig. 14, we obtain the decision procedure and its correctness proof:

Definition regex_to_DFA x := let x' := ssf x in let A1 := regex_to_eNFA x' in let A2 := eNFA_to_NFA A1 (construction_wf (ssf_complete x)) in let A3 := NFA_to_DFA A2 in A3. Definition decide_kleene x y := DFA_equiv (regex_to_DFA x) (regex_to_DFA y). Theorem decide_kleene_correct: forall x y, decide_kleene x y = true → x == y.

As explained in Sect. 2.3, although the above equality lies in the syntactic model of regular expressions, we can actually port it to any model of typed Kleene algebras using reification and the untyping theorem. 4.7. Completeness: counter-examples. As announced in Sect. 1.3, we also proved the converse implication, i.e., completeness. This basically amounts to exhibiting a counterexample in the case where the DFAs are not equivalent. From the algorithmic point of view, it suffices to record the word that is being read in the algorithm from Sect. 4.5; when two states that should be equivalent differ by their accepting status, we know that the current word is accepted by one DFA and not by the other one. Accordingly, the decide_kleene function actually returns an option (list label) rather than a boolean, so that the counter-example can be given to the user.

For the proof, the main step to get the converse of decide_kleene_correct consists in showing that the language accepted by a DFA is exactly the language obtained by interpreting the regular expression returned by DFA.eval: Definition DFA_language: DFA.t → language := ... Definition regex_language: regex → language := ... Lemma language_DFA_eval: forall A, DFA_language A == regex_language (DFA.eval A).

(Recall that languages-predicates over lists of letters-form a Kleene algebra which we defined in Fig. 5; in particular, the above symbol == denotes equality in this model, i.e., pointwise equivalence of the predicates.) The function DFA.eval corresponds to a matricial product (Fig. 13) so that the above lemma requires us to work with matrices over languages. This is actually the only place in the proof where we need this model.

Efficiency

On typical use cases, the tactic returns instantaneously. We had to perform some additional tests to check that the decision procedure actually scales on larger expressions. This would be important, for example, in a scenario where equations to be solved by the tactic are generated automatically, by an external tool.

A key factor is the concrete representation of numbers, which we detail first.

Numbers, finite sets, and finite maps. To code the decision procedure, we mainly needed natural numbers, finite sets, and finite maps. Coq provides several representations for natural numbers: Peano integers (nat), binary positive numbers (positive), and big natural numbers in base 2 31 (BigN.t), the latter being shipped with an underlying mechanism to use machine integers and perform efficient computations. (On the contrary, unary and binary numbers are allocated on the heap, as any other datatype.) Similarly, there are various implementations of finite maps and finite sets, based on ordered lists (FMapList), AVL trees (FMapAVL), or uncompressed Patricia trees (FMapPositive). While Coq standard library features well-defined interfaces for finite sets and finite maps, the different definitions of numbers lack this standardisation. In particular, the provided tools vary greatly depending on the implementation. For example, the tactic omega, which decides Presburger's arithmetic on nat, is not available for positive. To abstract from this choice of basic data structures, and to obtain a modular code, we designed a small interface to package natural numbers together with the various operations we need, including sets and maps. We specified these operations with respect to nat, and we defined several automation tactics. In particular, by automatically translating goals to the nat representation, we can use the omega tactic in a transparent way.

Tests. We defined several implementations of this interface, so that we could experiment with the possible choices and compare their performances. Of course, unary natural numbers behave badly since they bring an additional exponential factor. However, thanks to the efficient implementation of radix-2 search trees for finite maps and finite sets (FMapPositive and FSetPositive), we actually get higher performances by using positive binary numbers rather than machine integers (BigN.t). This is no longer true with the extracted code: using machine integers is faster on large expressions with a thousand internal nodes.

We performed intensive tests on randomly generated regular expressions. The decision procedure tends to run in less than one second for expressions with 150 internal nodes and 20 variables, and less than one minute for even larger expressions (1000 internal nodes, 40 variables), which are very unlikely to appear in "human-written" proofs. The above timings correspond to the "tactic scenario", where execution takes place inside Coq; when extracting to OCaml, the resulting code executes approximately ten times faster.

We do not include a more precise timing table here for several reasons: timings are machine-dependent, generating random regular expressions in a uniform way is difficult, and the nature of the algorithm makes it highly non-deterministic from the complexity point of view. Indeed, the running time is roughly proportional to the sizes of the generated DFAs, and these sizes greatly vary from one case to another (exponential in the worst case, pretty small in the average case). In particular, with large expressions, the mean time recorded on a thousand random tests is not significant: the standard deviation is too high. Nonetheless, our benchmarks are available for the interested reader [START_REF] Braibant | Coq library: ATBR, algebraic tools for working with binary relations[END_REF].

Conclusions

We presented a correct and complete reflexive tactic for deciding Kleene algebra equalities. This tactic belongs to a broader project whose aim is to provide algebraic tools for working with binary relations in Coq; the development is axiom-free and consists of approximately 11 000 lines (excluding comments); it can be downloaded from [START_REF] Braibant | Coq library: ATBR, algebraic tools for working with binary relations[END_REF]. To our knowledge, this is the first certified efficient implementation of these algorithms and their integration as a generic tactic.

Related works.

Algebraic tools for binary relations. The idea of reasoning about binary relations algebraically is old [START_REF] Tarski | A Formalization of Set Theory without Variables[END_REF][START_REF] Doornbos | A calculational approach to mathematical induction[END_REF]. Among others [START_REF] Kahl | Calculational relation-algebraic proofs in Isabelle/Isar[END_REF][START_REF] Oheimb | RALL: Machine-supported proofs for relation algebra[END_REF], Struth applied this idea within an interactive theorem prover [START_REF] Struth | Calculating Church-Rosser proofs in Kleene algebra[END_REF]. He later turned to automated first-order theorem provers (ATP): Höfner and him verified facts about various relation algebras [START_REF] Höfner | Automated reasoning in Kleene algebra[END_REF][START_REF] Höfner | On automating the calculus of relations[END_REF] using Prover9, a resolution/paramodulation based ATP. Our approaches are quite different: we implemented a decision procedure for a decidable theory, whereas their proposal consists in feeding a generic automated prover with the axioms of some algebras, and to see how far the prover can go by itself. As a consequence, their methodology applies directly to a very wide class of goals and algebras, while we are restricted to the equational theory of Kleene algebras. On the other hand, our tactic always terminates, while Prover9 is unpredictable: even for very simple goals, it can diverge, find a proof immediately, or find a proof in a few minutes [START_REF] Höfner | On automating the calculus of relations[END_REF].

Narboux defined a set of Coq tactics for diagrammatic proofs [START_REF] Narboux | Formalisation et automatisation du raisonnement géométrique en Coq[END_REF]. He works in the concrete setting of binary relations, which makes it possible to represent more diagrams, but does not scale to other models. The level of automation is rather low: it basically reduces to a set of hints for the auto tactic.

Finite automata theory. The notion of strict star form (Sect. 4.3) was inspired by the standard notion of star normal form [START_REF] Brüggemann-Klein | Regular expressions into finite automata[END_REF] and the idea of star unavoidability [START_REF] Ilie | Follow automata[END_REF]. To our knowledge, using this notion to get ǫ-NFAs with acyclic epsilon-transitions is a new idea.

At the time we started this project, Briais formalised decidability of regular languages equality [START_REF] Briais | Coq development: Finite automata theory[END_REF] (but not Kozen's initiality theorem). However, his approach is not computational, so that even straightforward identities cannot be checked by letting Coq compute.

Nipkow and Krauss also recently implemented an algorithm to decide regular expressions equivalence in Isabelle/HOL [START_REF] Krauss | Proof pearl: Regular expression equivalence and relation algebra[END_REF]. Their approach is much simpler, for several reasons. First, they implemented an algorithm based on Brzozowski's derivatives [START_REF] Brzozowski | Derivatives of regular expressions[END_REF][START_REF] Rutten | Automata and coinduction (an exercise in coalgebra)[END_REF], which is much simpler than ours, but also less efficient: the DFAs are produced directly from the regular expressions, but they can be much larger [START_REF] Ilie | Follow automata[END_REF]. Second, they do not prove Kozen's initiality theorem: they prove correctness in the model of regular languages and they use a nice mathematical trick to reach the model of binary relations. As a consequence, their tactic cannot be used with other models like matrices, (min, +) algebras, or weighted relations (graphs whose vertices are labelled by the elements of an arbitrary Kleene algebra). Third, they do not formalise the proof of completeness, or equivalently, the fact that the algorithm always terminates (Isabelle/HOL computations do not need to terminate so that they can use a "while-option" combinator). For all these reasons, their development is much more concise than ours.

Formalisation of algebraic hierarchies. The problem of formalising mathematical structures or algebraic hierarchies in type theory is well-known and usually considered as difficult [START_REF] Barthe | Implicit coercions in type systems[END_REF][START_REF] Betarte | Formalisation of systems of algebras using dependent record types and subtyping: an example[END_REF][START_REF] Geuvers | A constructive algebraic hierarchy in Coq[END_REF][START_REF] Sacerdoti Coen | Working with mathematical structures in Type Theory[END_REF][START_REF] Garillot | Packaging mathematical structures[END_REF]. Thanks to the recent addition of firstorder typeclasses [START_REF] Sozeau | First-class type classes[END_REF], we can use a very simple and naive solution here, which gives us overloading for notations, lemmas, and tactics, as well as modularity, sharing, and a basis for reification (Sect. 2).

Since we started this project, Spitters and van der Weegen also described how to use typeclasses to define an algebraic hierarchy [START_REF] Spitters | Type classes for mathematics in type theory[END_REF]. Leaving apart the fact that we work with typed structures, they follow the strategy we presented here (and previously in [START_REF] Braibant | An efficient Coq tactic for deciding Kleene algebras[END_REF]); in particular, they use separate classes for operations and laws, and they attach notations to class projections. They actually use an even stronger discipline: each operation comes with a class (e.g., our Monoid_Ops class corresponds to their classes SemiGroupOp and MonoidUnit).

We discussed two drawbacks of this approach in Sect. 2.4, the most important one from our point of view being the difficulty we had when trying to work with richer structures. Indeed, the hierarchy we need for this work is really small (it has depth three where the one from [START_REF] Garillot | Packaging mathematical structures[END_REF] had depth ten at the time of writing), so that there are few instances to declare for typeclass resolution. As a consequence, typeclass resolution is efficient and the approach works out of the box. On the contrary, our attempts to define richer structures were rather frustrating. There are many more instances to declare (these include all the inheritance relationships, all model constructions like matrices, all the compatibility lemmas that give the ability to rewrite using user-defined relations). Thus, typeclass resolution becomes too slow to be used in practice-when we manage not to introduce infinite loops, which also happens to be difficult.

Therefore, for rather large algebraic hierarchies, it is unclear to us whether one should pursue with this simple approach, betting that these problems can be resolved by improving the implementation of typeclasses. Despite their apparent complexity, solutions like the ones proposed in [START_REF] Garillot | Packaging mathematical structures[END_REF] might be less hazardous. 6.2. Directions for future work. We conclude with possible directions for future work.

Earlier failure checks. Our algorithm for checking equivalence of DFAs returns whenever two non-equivalent states are encountered. This makes the tactic faster in case of failure, which is interesting when the tactic is used in a "try" block, where failures are expected to happen. We could actually go one step further, by checking the equivalence on-the-fly, during the determinisation phase. This means computing the DFAs lazily and stopping as soon as a discrepancy is found. Doing so, we would avoid the potentially expensive computation of the whole DFAs in case of failure. Although this approach is definitely more efficient than the current one for the case of failures, it introduces some difficulties in the correctness proof, which we did not complete.

A simpler proof of initiality. Since we wanted to get a tactic for all models of Kleene algebras, we had to formalise Kozen's initiality proof. With this goal in mind, the derivativebased algorithm implemented by Nipkow and Krauss [START_REF] Krauss | Proof pearl: Regular expression equivalence and relation algebra[END_REF] is quite appealing for its simplicity. Moreover, since the notion of derivative is purely syntactic, it is very well suited to algebraic reasoning. However, rather surprisingly, we could not find a way to replay Kozen's initiality proof with this algorithm. We leave this question for future work.

KAT, Hoare logic. We plan to extend our decision procedure to deal with Kleene algebras with tests (KAT), so as to provide automation to prove correctness of programs in Hoare logic [START_REF] Kozen | On Hoare logic and Kleene algebra with tests[END_REF]. A first possibility would be to encode KAT expressions into KA [START_REF] Kozen | Kleene algebra with tests: Completeness and decidability[END_REF] and to use the current tactic. This encoding being exponential in the number of predicate variables, it is unclear whether this approach would be tractable. A more involved approach would be to use the dedicated automata construction presented in [START_REF] Cohen | The complexity of Kleene algebra with tests[END_REF].

Richer algebras. Kleene algebras lack several important operations from binary relations: intersection, converse, complement, residuals. . . We plan to develop other tools for algebras dealing with these operators, like Kleene algebras with converse [START_REF] Crvenkovic | The variety of Kleene algebras with conversion is not finitely based[END_REF], residuated Kleene lattices [START_REF] Jipsen | From semirings to residuated Kleene lattices[END_REF], or allegories [START_REF] Freyd | Categories, Allegories[END_REF]. In particular, residuated structures provide means of encoding properties like well-foundedness [START_REF] Doornbos | A calculational approach to mathematical induction[END_REF], which are quite important for program semantics. These structures are not known to be decidable; waiting for new algorithms to be found, we can already build on our library to implement various tools for working with these structures in the Coq proof assistant.
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 1 Figure 1. Diagrammatic, concrete, and abstract presentations of the same state in a proof.

  to the set of two-letters words accepted by the automaton-here, a • c + b • a + b • b.
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 2 Figure 2. From Kleene algebras to typed Kleene algebras.

  Class Graph := { T: Type; X: T → T → Type; equal: ∀ n m, relation (X n m); equal_:> ∀ n m, Equivalence (equal n m) }.
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 3 Figure 3. Classes for the typed algebraic operations.

  Section. Context (G: Graph) {Mo: Monoid_Ops G} {SLo: SemiLattice_Ops G} {Ko: Star_Op G}. Class Monoid := { dot_compat:> ∀ n m p, Proper (equal n m ==> equal m p ==> equal n p) (dot n m p); dot_assoc:

  Class SemiLattice := { plus_compat:> ∀ n m, Proper (equal n m ==> equal n m ==> equal n m) (plus n m); plus_neutral_left: ∀ n m (x: X n m), 0+x == x; plus_idem: ∀ n m (x: X n m), x+x == x; plus_assoc: ∀ n m (x y z: X n m), x+(y+z) == (x+y)+z; plus_com: ∀ n m (x y: X n m), x+y == y+x }. Class IdemSemiRing := { Monoid_:> Monoid; SemiLattice_:> SemiLattice; dot_ann_left: ∀ n m p (x: X m p), zero n m • x == 0; dot_ann_right: ∀ n m p (x: X p m), x • zero m n == 0; dot_distr_left: ∀ n m p (x y: X n m) (z: X m p), (x+y)•z == x•z + y•z; dot_distr_right: ∀ n m p (x y: X m n) (z: X p m), z•(x+y) == z•x + z•y }.
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 4 Figure 4. Classes for the typed algebraic structures.
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 5 Figure 5. Instances for heterogeneous binary relations and languages.
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 6 Figure 6. Typed syntax for reification and evaluation function.

  Instance re_G: Graph := { T := unit; X _ _ := regex; equal _ _ := eq }. Proof... Instance re_Mo: Monoid_Ops re_G := { dot _ _ _ := dot; one _ := one }. ... Instance re_KA: KleeneAlgebra re_G. Proof...

Figure 7 .

 7 Figure 7. Regular expressions, axiomatic equality, and corresponding instances.

Fixpoint

  erase n m (x: reified n m): regex := match x with | r_dot _ _ _ x y ⇒ erase x • erase y | r_one _ ⇒ 1 | ... | r_var i ⇒ var i end.Theorem erase_faithful:forall n m (x y: reified n m), erase x == erase y → eval x == eval y. Proof...

Figure 8 .

 8 Figure 8. Type erasing function and untyping theorem.

Context

  {G: Graph} {Mo: Monoid_Ops G} {SLo: SemiLattice_Ops G} {Ko: Star_Op G}. Instance G': Graph := { T := T; X n m := X m n; equal n m := equal m n; equal_ n m := equal_ m n }. Instance Mo': Monoid_Ops G' := { dot n m p x y := @dot G Mo p m n y x; one := @one G Mo }. Instance SLo': SemiLattice_Ops G' := { plus n m := @plus G SLo m n; zero n m := @zero G SLo m n }. Instance Ko': Star_Op G' := { star := @star G Ko }. Instance M' {M: Monoid G}: Monoid G' := { dot_neutral_left n m := @dot_neutral_right G Mo M m n; dot_neutral_right n m := @dot_neutral_left G Mo M m n; dot_compat n m p x x' Hx y y' Hy := @dot_compat G Mo M p m n y y' Hy x x' Hx }. Proof. intros. symmetry. simpl. apply dot_assoc. Qed. ... Instance KA' {KA: KleeneAlgebra G}: KleeneAlgebra G' := { star_destruct_left n m := @star_destruct_right G Mo SLo Ko KA m n; star_destruct_right n m := @star_destruct_left G Mo SLo KA m n }. Proof...

Figure 9 .

 9 Figure 9. Instances for the dual Kleene algebra.

Figure 10 .

 10 Figure 10. Definition of matricial product and identity matrix.

  Definition mx_sub p q x y n m (M: MX p q): MX n m := fun i j ⇒ M (x+i) (y+j). Variables x y n m: nat. Definition mx_sub00 := mx_sub (x+n) (y+m) 0 0 x y. Definition mx_sub01 := mx_sub (x+n) (y+m) 0 y x m. Definition mx_sub10 := mx_sub (x+n) (y+m) x 0 n y. Definition mx_sub11 := mx_sub (x+n) (y+m) x y n m. Definition mx_blocks x y n m (M: MX x y) (N: MX x m) (P: MX n y) (Q: MX n m): MX (x+n) (y+m) := fun i j ⇒ match S i-x, S j-y with |

Figure 11 .

 11 Figure 11. Definition of sub-matrix extraction and block matrix construction.

  Inductive MX (n m: nat) := box: (nat → nat → X) → MX n m. Definition get n m (M: MX n m) := match M with box f ⇒ f end. Definition mx_plus n m (M N: MX n m) := box n m (fun i j ⇒ get M i j + get N i j).

  Definition mx_force n m (M: MX n m): MX n m := let l := mx_to_maps M in box n m (fun i j ⇒ mget i (mget j l)). Lemma mx_force_id : forall n m (M : MX n m), mx_force M == M.

  Instance mx_G: Graph := { T := nat; X := MX; equal := mx_equal }. Instance mx_SLo: SemiLattice_Ops G → SemiLattice_Ops mx_G. Instance mx_Mo: SemiLattice_Ops G → Monoid_Ops G → Monoid_Ops mx_G. Instance mx_Ko: SemiLattice_Ops G → Monoid_Ops G → Star_Op G → Star_Op mx_G. Instance mx_SL: '{SemiLattice G} → SemiLattice mx_G. Instance mx_ISR: '{IdemSemiRing G} → IdemSemiRing mx_G. Instance mx_KA: '{KleeneAlgebra G} → KleeneAlgebra mx_G.

  Definition mx_star' x n (sx: MX x x → MX x x) (sn: MX n n → MX n n) (M: MX (x+n) (x+n)): MX (x+n) (x+n) := let A := mx_sub00 M in let B := mx_sub01 M in let C := mx_sub10 M in let D := mx_sub11 M in let D' := sn D in let A' :

  Definition mx_star_11 (M: MX 1 1): MX 1 1 := fun _ _ ⇒ (M O O) ⋆ . Fixpoint mx_star n: MX n n → MX n n := match n with | O ⇒ fun M ⇒ M | S n ⇒ mx_star' mx_star_11 (mx_star n) end. Theorem mx_star_block x n (M: MX (x+n) (x+n)): mx_star (x+n) M == mx_star' (mx_star x) (mx_star n) M. Proof...

Figure 12 .

 12 Figure 12. Definition of the star operation on matrices.

Figure 13 .

 13 Figure 13. Coq types and evaluation functions for the four automata representations.

Figure 14 .

 14 Figure 14. Overall picture for the algorithm and its correctness.

3 GFigure 17 .

 317 Figure 17. Checking for DFA equivalence (Hopcroft and Karp).

  Variables A B: Type. Fixpoint linearfix n (f: (A → B) → A → B) (k: A → B) (a: A): B := match n with O ⇒ k a | S n ⇒ f (linearfix n f k) a end. Fixpoint powerfix n (f: (A → B) → A → B) (k: A → B) (a: A): B := match n with O ⇒ k a | S n ⇒ f (powerfix n f (powerfix n f k)) a end.
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let (p,A) := incr A in add_one i p (build x p p (add_one p f A)) end. Basically, we have the record types MAUT.t and eNFA.t from Fig. 13, without the fields for initial and final states. (The other difference being that we use maps rather than functions on the the efficient side-pre_eNFA.) On the high-level side-pre_MAUT, we use generic matricial constructions: adding a transition to the automaton consists in performing an addition with the matrix containing only that transition (mx_point i f x is the matrix with x at position (i,f) and zeros everywhere else); adding a state to the automaton consists in adding a empty row and a empty column to the matrix, thanks to the mx_blocks