
A Tactic for Deciding Kleene Algebras

Thomas Braibant

ENS Lyon – INRIA

Damien Pous

CNRS

Abstract

We present a Coq reflexive tactic for deciding equalities or inequalities in Kleene algebras.
This tactic is part of a larger project, whose aim is to provide tools for reasoning about binary
relations in Coq: binary relations form a Kleene algebra, where the star operation is the
reflexive transitive closure. Our tactic relies on an initiality theorem by Kozen, whose proof
goes by replaying finite automata algorithms in an algebraic way, using matrices.

Motivations

Proof assistants like Coq make it possible to leave technical or administrative details to the
computer, by defining high-level tactics. For example, one can define tactics in order to solve
decidable problems automatically (e.g., omega for Presburger arithmetic and ring for ring equal-
ities). Here we present a tactic for solving equations and inequalities in Kleene algebras. This
corresponds to a broader goal: providing tools (tactics) for working with binary relations. In-
deed, Kleene algebras correspond to a non-trivial decidable fragment of binary relations. In the
long term, we plan to use these tools for formalising process algebras and concurrency theory
results: binary relations play a central role in the corresponding semantics.

A starting point for this work is the following remark: proofs about abstract rewriting
(e.g., Newman’s Lemma, equivalence between weak confluence and the Church-Rosser prop-
erty, termination theorems based on commutation properties) are best presented using informal
“diagram chasing arguments”. This is illustrated by Fig. 1, where the same state of a typical
proof is represented thrice. Informal diagrams are drawn on the left. The goal listed in the
middle corresponds to a naive formalisation where the points related by relations are mentioned
explicitly. This is not satisfactory: a lot of variables have to be introduced, the goal is displayed
in a rather verbose way, the user has to draw the intuitive diagrams on its own paper sheet.
On the contrary, if we move to an algebraic setting (the right-hand side goal), where binary
relations are seen as abstract objects, that can be composed using various operators (e.g., union,
intersection, relational composition, iteration), then the diagrams corresponding to a given state
in the proof can easily be read from Coq’s output.

·
S

⋆

''OOOOOO

H·

R
77oooooo

S
⋆ ''

·

· R
⋆

77

·
S

⋆

''OOOOOO ·

·

R
77oooooo

S
⋆ ''

·

R
⋆ 77oooooo

? R
⋆

GG

R,S: relation P

H: ∀ p,r,q, R p r → S⋆ r q

→ ∃ s, S⋆ p s & R⋆ s q

p,q,q’,s: P

Hpq: R p q

Hqs: S⋆ q s

Hsq ’: R⋆ s q’

===========================

∃ s: P, S⋆ p s & R⋆ s q’

R,S: X

H: R · S⋆ ⊆ S⋆ · R⋆

=================

R · (S⋆ · R⋆) ⊆ S⋆ · R⋆

Figure 1: Diagrammatic, concrete, and abstract presentations of the same state in a proof.

1

Some technology is then required to avoid handling some administrative steps explicitly,
which were somehow hidden in concrete proofs contexts. For example, in the right-hand side
proof state of Fig. 1, we first need to re-arrange parentheses in order to be able to rewrite
the goal using hypothesis H. This drawback is eliminated by defining adequate tactics to work
modulo associativity and commutativity.

More importantly, moving to the abstract setting allows us to implement several decision
procedures that could hardly be stated with the concrete presentation. For example, once we
rewrite H in the right-hand side goal of Fig. 1, we obtain the inclusion S⋆·R⋆·R⋆⊆S⋆·R⋆ which is
a (straightforward) theorem of Kleene algebras: it can be proved automatically thanks to the
tactic we describe in this paper.

Outline. We recall the required mathematical background and we sketch the structure of the
tactic in Sect. 1. We give some details about the underlying design choices in Sect. 2. Sect. 3
focuses on the algebraic part of the correctness proof, and the implemented algorithms are
described in Sect 4. We conclude with directions for future work in Sect. 5.

1 Deciding equalities in Kleene algebras

Theoretical background. A Kleene algebra [18] is a tuple 〈X, ·, +, 1, 0, ⋆〉, where 〈X, ·,+, 1, 0〉
is an idempotent non-commutative semiring, and ⋆ is a unary operation on X, satisfying the
following axiom and inference rules (where ≤ is the preorder defined by x ≤ y , x + y = y):

1 + a · a⋆ ≤ a⋆
a · x ≤ x

a⋆ · x ≤ x

x · a ≤ x

x · a⋆ ≤ x

Models of Kleene algebras include regular languages, where the star operation is language iter-
ation; and binary relations, where the product (·) is relational composition, and star is reflexive
and transitive closure (in this model, the above rules basically state that a⋆ is the least reflexive
element which is stable under composition with a).

Thanks to finite automata theory (among others, Kleene [17], Rabin & Scott [23], Nerode [22]),
equality of regular languages is decidable:

“two regular expressions denote the same regular language if and only if the corre-

sponding minimal automata are isomorphic”,

and minimal automata can be computed as follows: 1) construct a non-deterministic finite au-
tomaton with epsilon-transitions (ǫ-NFA), by structural induction on the regular expression; 2)
remove epsilon-transitions to obtain a non-deterministic finite automaton (NFA), by computing
the closure of epsilon-transitions; 3) determinise the automaton using the accessible subsets con-
struction, to obtain a deterministic finite automaton (DFA); 4) minimise the DFA by merging
all states that are equivalent according to Myhill-Nerode’s relation.

However, the above theorem is not sufficient to decide equality in all Kleene algebras: it only
applies to the regular languages model. We actually need a more recent theorem, by Kozen [18]:

“if two regular expressions α and β denote the same regular language, then α = β
can be proved in any Kleene algebra”.

In other words, the algebra of regular languages is initial among Kleene algebras: we can use
the above decision procedure to solve equations in an arbitrary Kleene algebra A. The main
idea of Kozen’s proof is to encode automata using matrices over A, and to replay automaton

2

algorithms at this algebraic level. Indeed, a finite automaton with transitions labelled by the
elements of A can be represented with three matrices (u, M, v) ∈ M1,n × Mn,n × Mn,1: n is
the number of states of the automaton; u and v are 0-1 vectors respectively coding for the sets
of initial and accepting states; and M is the transition matrix: Mi,j is non-empty if there is a
transition from state i to state j. This corresponds to the definition of an ǫ-NFA; definitions of
NFAs and DFAs can easily be recovered by adding conditions on matrices u and M .

We remark that the product u · M · v is a scalar, which can be thought of as the set of
one-letter words accepted by the automaton. Therefore, in order to mimic the actual behaviour
of a finite automaton, we just need to iterate over the matrix M . This is possible thanks to
another theorem by Kozen, which actually is the crux of its initiality theorem: “square matrices

over a Kleene algebra form a Kleene algebra”. We hence have a star operation on matrices,
and we can interpret an automaton algebraically, by considering the product u · M⋆ · v. In the
regular languages model, this expression actually corresponds to the language recognised by the
automaton. We give more details about this proof in Sect. 3.

Overview of our strategy. We define a reflexive tactic. This methodology is quite standard:
it is described in [1] and it was used by Grégoire and Mahboubi to obtain the current ring

tactic [12]. Concretely, this means that we implement the decision as a Coq program (Sect. 4),
so as to be able to prove its correctness within the proof assistant (Sect. 3):

❉❡❢✐♥✐t✐♦♥ decide_Kleene: regexp → regexp → bool := ...

❚❤❡♦r❡♠ Kozen: ∀ a,b: regexp , decide_Kleene a b = true → a =̇ b.

The above statement corresponds to Kozen’s theorem in the special case of the “free Kleene
algebra”: regexp is the obvious inductive type for regular expressions over a given set of vari-
ables, and =̇ is the inductive equality generated by the axioms of Kleene algebras. Using Coq’s
reification mechanism, this is sufficient for our needs: the result can be lifted to other models
using simple tactics (we return to this point in Sect. 2.3).

The equational theory of Kleene algebras is PSPACE-complete [20, 21]. Indeed, the deter-
minisation phase of the algorithm we sketched above can produce automata of exponential size.
Although this is not the case on the typical examples we tried, where our tactic runs almost
instantaneously, this means that the decide Kleene function must be written with some care,
using efficient out-of-the-shelf automaton algorithms. Notably, the matricial representation of
automata is not efficient for all stages of the decision procedure. Therefore, we need to work
with other data-structures for automata, and to write the corresponding translation functions
in order to reason about the algorithms in the uniform setting of matricial automata. We detail
and justify our choices about these algorithms and data structures in Sect. 4.

2 Underlying design choices

Before going through Kozen’s proof (Sect. 3) and giving details about our implementation of
the decision procedure (Sect. 4), we explain the main choices we made about the structure of
our development: how to represent the algebraic hierarchy, how to represent matrices, how to
manage matrix dimensions, and how to resort to syntactical objects using reification.

2.1 Algebraic hierarchy

The mathematical definition of a Kleene algebra is incremental: it is a non-commutative semir-
ing, which is itself composed of a monoid and a semi-lattice. Moreover, proofs naturally follow
this hierarchy: when proving results about semirings, one usually rely on results about both

3

monoids and semi-lattices. In order to structure our development in a similar way, we defined
the algebraic hierarchy using Coq’s recent typeclasses mechanism [24]: we defined several classes,
corresponding to the different algebraic structures, so as to obtain the following “sub-typing”
relations (these relations are projections, declared as morphisms to the typeclass system):

SemiLattice <:

Monoid <:
SemiRing <: KleeneAlgebra <: ...

The other possibilities were to use canonical structures or modules. We tried the latter one;
it was however quite difficult to organise modules, signatures and functors so as to obtain the
desired level of sharing between the various proofs. In particular, when we consider more com-
plex algebraic structures, we can no longer work with syntactical sub-typing between structures
(we only have functors from one structure to another) and we lose the ability to directly use
theorems, definitions, and tactics from lower structures in higher structures.

Except for some limitations due to the novelty of this feature, typeclasses happen to be
much easier to use for our purposes: sharing is obtained in a straightforward way, the code does
not need to be written in a monolithic way (as opposed to using functors), and it brings nice
solutions for overloading notations (e.g., we can use the same infix symbol for multiplication in a
monoid, a semiring, or a matrix semiring). We currently try to compare our strategy with that
from [11], which is based on canonical structures. Although the aims of canonical structures
and typeclasses are quite close, the underlying mechanisms lead to different constraints.

2.2 Matrices

Coq definition. A matrix can be seen as a partial map from pairs of integers to a given type
X, so that a Coq definition of matrices and the sum operation could be the following:

❉❡❢✐♥✐t✐♦♥ MX (n m: nat) := ∀ i j, i<m → j<n → X.

❉❡❢✐♥✐t✐♦♥ plus n m (M N: MX n m) i j (Hi: i<n) (Hj: j<n) := M i j Hi Hj + N i j Hi Hj.

This corresponds to the dependent types approach: a matrix is a map to X from two integers
and two proofs that these integers are lower than the bounds of the matrix. Except that they
use vectors of vectors, this is the approach followed by [11] and [4]. With such a representation,
every access to a matrix elements must be made by exhibiting two proofs, ensuring that the
indices lie within the bounds. For simple operations like the above sum function this is not so
problematic, this however becomes quite a burden when writing more complex operations like
matrix multiplication. We actually chose to move these bounds checks to equality proofs only,
by working with the following definitions:

❉❡❢✐♥✐t✐♦♥ MX n m := nat → nat → X.

❉❡❢✐♥✐t✐♦♥ equal n m (M N: MX n m) := ∀ i j, i<n → j<m → M i j = N i j.

❉❡❢✐♥✐t✐♦♥ dot n m p (A: MX n m) (B: MX m p) := fun i j ⇒ sum 0 m (fun k ⇒ M i k · N k j).

Here, a matrix is an infinite function from pairs of integers to X, and equality is restricted to
the domain of the matrix. With these definitions, we do not need to manipulate proofs when
defining matrix operations (like the above dot function), so that these definitions are both easier
to write and more efficient to compute with. Bounds checks are required a posteriori only, when
proving properties about these matrices operations, e.g., associativity of the product. This is
easy in most cases: these proofs are done within the interactive proof mode, and can often be
solved with high level tactics like omega. We have not yet found drawbacks to this approach,
we do not know whether it scales to more intensive usages like linear algebra [11].

Phantom types. Unfortunately, these definitions allow one to type the following code:

❉❡❢✐♥✐t✐♦♥ ill_dot n p (M: MX n 16) (N: MX 64 p): MX n p := dot M N.

4

X: Type.

dot: X → X → X.

one: X.

plus: X → X → X.

zero: X.

star: X → X.

dot_neutral_left:

∀ x, dot one x = x.

...

T: Type.

X: T → T → Type.

dot: ∀ A B C, X A B → X B C → X A C.

one: ∀ A, X A A.

plus: ∀ A B, X A B → X A B → X A B.

zero: ∀ A B, X A B.

star: ∀ A, X A A → X A A.

dot_neutral_left:

∀ A B (x: X A B), dot one x = x.

...

Figure 2: From Kleene algebras to typed Kleene algebras.

This definition is accepted by Coq because of the conversion rule: since MX n m is a dependent
type that does not mention n nor m in its body, these type informations can be discarded by the
Coq type system, using the conversion rule (MX n 16 = MX 64 p). This is not so terrible: such
an ill-formed definition will be detected at proof-time. It is however a bit sad not to benefit
from the advantages of a strongly typed programming language here. We partially solved this
problem by resorting to an inductive singleton definition, reifying bounds in phantom types:

■♥❞✉❝t✐✈❡ MX (n m: nat) := box: (nat → nat → X) → MX n m.

❉❡❢✐♥✐t✐♦♥ get (n m: nat) (M: MX n m) := ♠❛t❝❤ f ✇✐t❤ box f ⇒ f ❡♥❞.

❉❡❢✐♥✐t✐♦♥ plus (n m: nat) (M N: MX n m) := box n m (fun i j ⇒ get M i j + get N i j).

Coq no longer equates types MX n 16 and MX 64 p with this definition, so that the above ill dot

function is rejected, and we can trust inferred implicit arguments (e.g., the m argument of dot).
However, we need to artificially introduce the box and get functions at each matrix construction
or access, which is slightly inefficient. We still look for a better solution to this problem.

Computation. From a computational point of view, using lazy functions as a representation
for matrices is two-edged : on the one hand, if the resulting matrix of a computation is seldom
used, then computing the result point-wise, by need, is efficient; on the other hand, making
numerous accesses to the same expensive computation may be a burden. Therefore, we have
defined a memoisation operator that computes every point of a matrix, store the result in an
associative map, and returns a function (of the same type) that accesses the associative map
instead of recomputing the result. Since this memoisation operator can be proved to be an
identity, it can be inserted in our code in a transparent way, at judicious places.

▲❡♠♠❛ mx_force_id : ∀ n m (M : MX n m), mx_force M = M.

2.3 Typed algebras, typed reification

Adding types. Square matrices over a semiring form a semiring, and Kozen needed to ex-
tend this folklore result to Kleene algebras [18]. For rectangular matrices, the various operations
are only partial: dimensions have to agree. Therefore, with naive definitions of the algebraic
structures, we are unable to use theorems and tools developed for monoids, semi-lattices, and
semirings to reason about rectangular matrices. To remedy this problem, we generalised al-
gebraic structures from the beginning, using types. An example is given in Fig. 2: a typical
signature for semirings is presented on the left-hand side; we moved to the signature on the
right-hand side, where a set T of types is used to constrain the various operations. These types
can be thought of as matrix dimensions; we can also remark that we actually moved to a cate-
gorical setting: T is a set of objects, X A B is the set of morphisms from A to B, one is the set of
identities, and dot is composition. As expected, with such definitions, one can form arbitrary
matrices over a typed structure, and obtain another instance of this typed structure:

5

■♥st❛♥❝❡ mx_SemiRing: SemiRing → SemiRing := ...

■♥st❛♥❝❡ mx_KleeneAlgebra: KleeneAlgebra → KleeneAlgebra := ...

Then, thanks to typeclasses, we inherit all theorems, tactics, and notations we defined on generic
structures, at the matricial level. Notably, when defining the star operation on matrices over a
Kleene algebra, we can benefit from all tools for semirings, monoids, and semi-lattices, at the
matricial level. This is quite important since this construction is rather complicated.

Removing types. Typed structures not only make it easier to work with matrices, they
also give rise to a wider range of models. In particular, we can consider heterogeneous binary
relations (between two distinct sets), rather than binary relations on a fixed set. This leads to
the following question: can the usual decision procedures (for semi-lattices, semirings, and the
one presented here for Kleene algebras) be extended to this more general setting?

Consider for example the equation a · (b · a)⋆ = (a · b)⋆ · a, which is a theorem of typed
Kleene algebras as soon as a and b are respectively given types A → B and B → A, for some
A, B; how to make sure that the proof obtained by computing minimal (untyped) automata
and concluding using Kozen initiality theorem is actually a valid, well-typed, proof?

For efficiency and practicability reasons, re-defining our decision procedures to work with
typed objects is not an option (they are written as reflexive tactics). Instead, we managed to
prove the following theorem, which allows one to erase types, i.e., to transform a typed equality
goal into an untyped one:

TΣ ⊢ u = v Γ ⊢ u ⊲ α : A → B Γ ⊢ v ⊲ β : A → B

A ⊢ α = β : A → B
(∗)

Here, Γ ⊢ u ⊲ α : A → B reads “under the evaluation and typing context Γ, the untyped
term u can be evaluated to α, of type A → B”; this predicate can be defined inductively in a
straightforward way, for various algebraic structures. The theorem can then be rephrased as
follows: “given an untyped equality proof of u and v, and typed interpretations α and β for
u and v, we can construct a typed proof of α = β”. We proved it for semi-lattices, monoids,
semirings, and Kleene algebras, so that all of our decision tactics apply to the typed setting
– and in particular, to matrices. While this theorem is trivial for semi-lattices, and rather
simple for monoids, difficulties arise with semirings and Kleene algebras, due to the presence
of annihilator elements. Also note that Kozen investigated a similar question [19] and came up
with a slightly different solution: he solves the case of the Horn theory rather than equational
theory, at the cost of working in a restrained form of Kleene algebras. He moreover relies on
model-theoretic arguments, while our considerations are purely proof-theoretic.

Typed reification. The above discussion about types raises another issue: reflexive tactics
need to work with syntactical objects. For example, in order to construct an automaton, we
need to proceed by structural induction on the given expression. This step is commonly achieved
by moving to the free algebra of terms, and resorting to Coq’s reification mechanism (quote).
However, this mechanism does not handle typed structures, so that we needed to re-implement
it. Since we do not have binders, we were able do this within Ltac: it suffices to eapply

theorem (∗) to the current goal, so that we are left with three goals, with holes for u, v and
Γ; then by using an adequate representation for Γ, and by exploiting the very simple form of
the typing and evaluation predicate, we are able to progressively fill these holes and to close
the two goals about evaluation by repeatedly applying constructors and ad-hoc lemmas about
environments. Unlike Coq’s standard quote, which works by conversion and has no impact on
the size of the current proof, this “lightweight”-quote generates rather large proof-terms. We
would like to understand whether this situation can be improved, still remaining within Ltac.

6

Automata construction

(a + b)⋆

��

α

A

β

A

a∗ · (b · a∗)
∗

����

Removal of ǫ-transitions

• ///o/o/o/o/o/o

��

u′ · M ′⋆ · v′

A

s′ · N ′⋆ · t′

A

•oo o/ o/ o/ o/ o/ o/ o/

��

Determinisation

• ///o/o/o/o/o/o/o

��

u · M⋆ · v

A

s · N⋆ · t

A

•oo o/ o/ o/ o/ o/ o/ o/ o/

��

Minimisation

• ///o/o/o/o/o

��

〈u〉 · 〈M〉⋆ · 〈v〉

A

〈s〉 · 〈N〉⋆ · 〈t〉

A

•oo o/ o/ o/ o/ o/ o/

��
• ///o/o/o/o/o 〈̂u〉 · 〈̂M〉

⋆

· 〈̂v〉 A 〈̂s〉 · 〈̂N〉
⋆

· 〈̂t〉 •oo o/ o/ o/ o/ o/ o/

Figure 3: Soundness of decide Kleene.

3 Kozen’s proof

The tactic we describe here relies on Kozen’s initiality theorem: to prove that an equality
α = β holds in any Kleene algebra, it suffices to check that the underlying minimal automata
are isomorphic. The overall structure of Kozen’s proof is depicted on Fig. 3: bullets represent
idealised standard automaton constructions; the proof consists in showing that each construction
can be related to a matricial automaton, whose interpretation is provably equal to the initial
expression; we finally conclude by transitivity, if the minimal automata coincide. We briefly
sketch the inner steps of this proof, i.e., the algebraic part, letting the reader refer to [18] for
more details. The algorithms corresponding to the outer arrows are described in Sect. 4.

Building automata. There are several ways of constructing an ǫ-NFA from a regular expres-
sion [27]. We chose Thomson’s construction [26] because of its simplicity: as described in [18],
this is only a matter of block matrix constructions, and we easily show that the ǫ-NFA built
from α evaluates to α, using algebraic laws. For example, the automaton for a sum is defined,
and proved correct, as follows; the other constructions are obtained in a very similar way.

[
u s

]
·

[
M 0

0 N

]⋆

·

[
v

t

]
=

[
u s

]
·

[
M⋆ 0

0 N⋆

]
·

[
v

t

]
= · · · = u · M⋆ · v + s · N⋆ · t

While these constructions are rather simple, they heavily rely on block matrix properties. The
fact that we do not use dependent types to represent matrices greatly helps here.

Removing ǫ-transitions. The automata obtained with Thomson’s construction may contain
ǫ-transitions: their transitions matrices can be written as M = J +

∑
a∈Σ a·Na, where J and the

Na are 0-1 matrices, and J corresponds to the graph of ǫ-transitions. Removing these transitions
to obtain an NFA usually means computing their reflexive and transitive closure, to update the
other transitions. This can be done algebraically: thanks to the identity (a + b)⋆ = a⋆ · (b · a⋆)⋆

(a theorem of Kleene algebras), we have u ·(J +N)⋆ ·v = u ·J⋆ · (N · J⋆)⋆ ·v, and the automaton
on the right (u · J⋆, N · J⋆, v) no longer contains ǫ-transitions. Indeed, J⋆ corresponds to the
reflexive transitive closure of J .

Determinisation. The determinisation algorithm we implemented builds a DFA whose states
are sets of states from the initial NFA; it consists in enumerating the set of subsets of states

7

that are accessible from the set of initial states. Starting from a NFA (u, M, v) with n states,
this algorithm returns a DFA (〈u〉, 〈M〉, 〈v〉) with 〈n〉 states, together with a map ρ from [1..〈n〉]
to the subsets of [1..n]. We sketch the algebraic part of the correctness proof. By letting X
denote the (〈n〉, n) 0-1 matrix defined by Xsj , j ∈ ρ(s), we prove that the returned automaton
satisfies the following commutation properties:

〈M〉 · X = X · M (1) 〈u〉 · X = u (2) 〈v〉 = v · X (3)

The intuition behind X is that this is a “decoding” matrix: it sends the characteristic vectors
of states of the DFA to the characteristic vectors of the corresponding subset of states from
the NFA. Therefore, (1) can be read as follows: executing a transition in the DFA and then
decoding the result amounts to decoding the given state and executing parallel transitions in
the NFA. Similarly, (2) states that the initial state of the DFA corresponds to the set of initial
states of the NFA. From (1), we can deduce 〈M〉⋆ · X = X · M⋆ using a theorem of Kleene
algebras, and we can conclude with (2, 3): the two automata evaluate to the same value:

〈u〉 · 〈M〉⋆ · 〈v〉 = 〈u〉 · 〈M〉⋆ · X · v = 〈u〉 · X · M⋆ · v = u · M⋆ · v .

Minimisation. The algebraic part of the correctness proof for minimisation is similar to
that for determinisation. Starting from a DFA (u, M, v), the algorithm computes a partition
of states, such that equivalence classes are stable under transitions and refine the partition of
states between final and non-final. This partition is computed using Hopcroft’s algorithm, which
is described in Sect. 4; it is then converted into a map [.] sending each state of the given DFA
to the canonical representant of its equivalence class. This map allows us to define a decoding
matrix Y by letting Yij , [i] = j, and the minimised automaton (û, M̂ , v̂) is defined by:

M̂ , Y ⊤ · M · Y û , u · Y v̂ , Y ⊤ · v .

We finally prove that Y · M̂ = M · Y and Y · v̂ = v (the first equality means that merging
equivalence classes and then computing transitions in the minimised automaton amounts to
computing transitions in the initial automaton and then merging the resulting states). As

previously, this yields û · (M̂)⋆ · v̂ = u · M⋆ · v : the automata are equivalent.

4 Implementing the decision procedure

We now focus on the external part of Fig. 3, that is, the algorithmic details of our imple-
mentation. As explained in the introduction, the equational theory of Kleene algebras being
PSPACE-complete, we have to care about efficiency. This drives our choices about both data-
structures and algorithms: accessible subset construction for determinisation, and Hopcroft’s
minimisation algorithm [15] (which runs in O(n log n) where n is the size of the input DFA).

Boolean matrices. It is inefficient to work with matrices over the free Kleene algebra: there
are many terms that will never appear in automata matrices (like (a+1)⋆), and we must reason
up to the axioms of Kleene algebra, that equate, e.g., 1+a and 0⋆+(1+0·b)·a. Since Thomson’s
construction yields automata whose transition matrix can be written as M = J +

∑
a∈Σ a ·Na,

where J and the Na are 0-1 matrices, it actually suffices to work with matrices built upon the
Kleene algebra of booleans: 〈bool,andb,orb,true, false ,fun ⇒true〉. Then, in proofs, we inject
these matrices into those built upon the free Kleene algebra (e.g., for evaluating automata
formally). This allows us to write optimised functions for boolean matrices: there are only two
values to consider and we can exploit laziness. In particular, removing ǫ-transitions can be done

8

(a + b)⋆

��

α

AThomson’s Construction

(u′, M ′, v′)

��

u′ · M ′⋆ · v′

ARemoval of ǫ-transitions

(u, M, v)
��

u · M⋆ · v

A

State → StateSet

222r2r2r2r2r2r

��
Determinisation

State → State ///o/o/o/o

��

〈u〉 · 〈M〉⋆ · 〈v〉

AMinimisation

State → State ///o/o/o/o 〈̂u〉 · 〈̂M〉
⋆

· 〈̂v〉

Figure 4: Proof and code relationship.

easily and efficiently with this representation of automata: as showed in Sect. 3, it suffices to
compute the star of a boolean matrix (J⋆), and some multiplications (u · J⋆ and the Na · J

⋆).

FSets. The matricial representation of automata is no longer adequate when it comes to
determinisation and minimisation. Therefore, starting from the ǫ-free NFA we built, we convert
our matrices to more convenient representations, like transition functions. As can be seen on
Fig. 4, we start with non-deterministic transition functions that map states to sets of states,
and we later use deterministic transition functions that map states to states. To build efficiently
these functions, we use the finite sets and finite maps libraries of Coq to represent state sets,
partitions of states, and so on. . . These libraries being rather complete, this also gives us proper
tools for proving the correction of our algorithms, and linking these structures to the matricial
representation of automata (the horizontal arrows from Figs. 3 and 4).

Determinisation. Determinisation is exponential in worst case: this is a power-set construc-
tion. However, examples where this bound is reached are rather contrived, and the practical
complexity is much better: most subsets of states cannot be reached from the subset of initial
states. It is therefore crucial to implement the accessible subset construction, so as to avoid
useless computations. We only give a very high level view of our implementation here: the
standard algorithm is basically a while loop; that we translate into a tail-recursive fix-point;
termination is not structural: it requires us to compute the exponential worst case bound, and
we use a standard trick in order to avoid this useless and problematic computation. The proof
of the algorithm requires us to find the adequate invariant for the loop; due to tail-recursion,
this rather large invariant cannot be defined progressively with Coq’s help: it has to be defined
by hand, in a monolithic way.

Minimisation. We have to compute the Myhill-Nerode equivalence relation, which equates
states sharing the same behaviour, i.e., accepting the same the language. Our implementation
of Hopcroft’s algorithm [14, 15] is given in Fig. 5: it consists in a ‘while’ loop containing two
nested ‘for’ loops, translated using the fold operation of finite sets. Again, termination is not
structural and imposes us to use well-founded recursion with a lexicographic order.

9

! a : label

! i : state

! p,q,pt ,pf : fset state

! P : fset (fset state)

! L : fset (label * fset state)

❱❛r✐❛❜❧❡s states , finaux: fset state.

❱❛r✐❛❜❧❡ labels: fset label.

❱❛r✐❛❜❧❡ delta: state → label → fset state.

❉❡❢✐♥✐t✐♦♥ splittable p a q :=

❧❡t (pt ,pf) :=

partition (fun i ⇒ (delta i a) ∈ q) p

✐♥ ✐❢ is_empty pt || is_empty pf

t❤❡♥ None

❡❧s❡ Some (pt,pf).

❉❡❢✐♥✐t✐♦♥ update_splitters p pf pt L :=

fold (fun a L ⇒ ✐❢ (a,p) ∈ L

t❤❡♥ {(a,pf),(a,pt)} ∪ L\(a,p)

❡❧s❡ ✐❢ cardinal pf < cardinal pt

t❤❡♥ {(a,pf)} ∪ L

❡❧s❡ {(a,pt)} ∪ L

) labels L.

❉❡❢✐♥✐t✐♦♥ split P L (a,q) :=

fold (fun p acc ⇒

♠❛t❝❤ splittable p a q ✇✐t❤

| None ⇒ acc

| Some (pf ,pt) ⇒

❧❡t (P,L) := acc ✐♥

({pf, pt} ∪ P\p,

update_splitters p pf pt L))

❡♥❞

) P (P,L).

❋✉♥❝t✐♦♥ loop P L {✇❢ RPL (P,L)} :=

♠❛t❝❤ choose L ✇✐t❤

| None ⇒ P

| Some x ⇒ loop (split P (L\x) x)

❡♥❞.

❉❡❢✐♥✐t✐♦♥ partition :=

loop

{finals , states\finals}

(labels × {finals }).

Figure 5: Coq code for minimisation.

The idea of the algorithm is to start from an initial partition of states (final and non final
states), and to refine this partition whenever a state is splittable: i.e., when a move from a
set of state can lead to two different sets by a transition with a given label a. Hopcroft uses
a set L of splitters, i.e., pairs (label, state set) w.r.t. which one must attempt to split classes
of the partition. The crux of the algorithm is to keep from adding too much redundancy in L:
if a pair (a,q) is not in this set, then either every class of the partition is already split w.r.t.
(a,q), or L contains enough pairs to subsume (a,q). Surprisingly, we did not find any precise
account of this subsumption relation in the literature, although it seems to be at the heart of
the correctness proof: it is part of the invariant for the ‘while’ loop.

Treading through L in the main loop function, we dismiss the pairs (a,q) that do not split
equivalence classes, and we update our partition P and the set L when (a,q) splits an equivalence
class p into pf and pt. The update of potential splitters in L is based on the following remark:
when p is split into pf, pt, then, for any label a, it suffices to split every other class q w.r.t.
any two of (a,p), (a,pf), and (a,pt). If (a,p)∈ L, we must add both sub-splitters; if (p,a) /∈ L,
then L subsumes (p,a) and it suffices to add the smallest of (a,pf) and (a,pt) to L. At the end
of the algorithm, since L is empty, we know that the equivalence classes of P cannot be split
anymore: P is the Myhill-Nerode equivalence relation.

Avoiding automata isomorphism. The languages denoted by two regular expressions are
equal if and only if their respective minimised automata are equal up-to isomorphism. By
exploring all state permutations, this is sufficient to obtain decidability of regular languages
equality. One can do a little better, however: it is not necessary to look for such a permutation.
Suppose that languages α and β are represented by two DFAs; minimise the automaton whose
set of states is the union of the states of the DFAs (i.e., the sum automaton), and test if the
initial states of the two original DFAs are merged: these states are equivalent if and only if the
DFAs recognise the same language, i.e., α = β. This ends our description of the algorithm.

10

5 Conclusions and directions for future work

We presented a reflexive tactic for deciding Kleene algebra equalities. This tactic belongs to a
broader project whose aim is to provide algebraic tools for working with binary relations in Coq.
Although we still have to finish some proofs (essentially in the analysis of the determinisation and
minimisation algorithms), this tactic and the related tools can already be used; the development
can be downloaded from [6]. To our knowledge, this is the first efficient implementation of
these algorithms in Coq, and their integration into a generic tactic. At the time we started
this project, Briais formalised decidability of regular languages equalities [7] (but not Kozen’s
initiality theorem), without taking care about efficiency: determinisation is always exponential;
instead of minimising automata, he relies on the ‘pumping lemma’ to enumerate the finite set
of accepted ‘small enough’ words. As a consequence, even straightforward identities cannot be
checked by letting Coq compute. These preliminary results lead us to restart from scratch and
to look for a better strategy.

We conclude this paper with directions for future work.

Optimisations. Even if this tactic works almost instantaneously on simple examples, such
as the ones appearing in typical algebraic proofs, there is room for optimisation.

• We use unary integers to represent states; this is a drawback when we memoise matrices
or make comparisons of state sets. A first step would be to move to Coq’s binary nat-
ural numbers (N); we plan to resort eventually to either n-ary integers [13], or machine
integers [25].

• Although the algorithms we implemented for determinisation and minimisation are opti-
mal, this is not the case for Thomson’s construction: we could use other algorithms [3, 8],
that produce smaller automata. The complexity of these algorithms is slightly greater
(typically O(n2) while Thomson’s construction works in O(n)), but this has to be ne-
glected w.r.t. the cost of determinisation, which is potentially exponential in the size
of the starting NFA. Therefore, being able to produce smaller automata should improve
the overall complexity. These algorithms are more involved than Thomson’s one, so that
formalising their correctness should not be straightforward.

Richer algebras. Kleene algebras lack several important operations from binary relations:
intersection, converse, complement, residuals. . . We would like to develop tools for the corre-
sponding algebras:

• Kleene algebras with converse should be decidable: since the converse operation commutes
with all operations, we can imagine to push converses to the leafs of the terms, before
applying our tactic for Kleene algebras.

• Residuated semirings [16], i.e., semirings with residual operations are decidable thanks to
a Gentzen proof system having the sub-formula property. We plan to implement proof
search for this proof system, either directly in Ltac, or using an external program to
produce a trace that would then be reinterpreted as a Coq proof.

• Allegories [10] or relation algebras have an undecidable equational theory; they however
provide means of encoding properties like well-foundedness [9], so that it would be inter-
esting to provide tools for these structures (e.g., for solving decidable fragments).

11

Rewriting modulo A/AC. As explained in the introduction, some technology is required
in order to work implicitly modulo associativity (A) and/or commutativity (C). For example,
in the contexts below, we would like to rewrite the goal using hypothesis H without having to
manually rearrange the goal first.

R,S,U,V: X

H: U · V = R

===========

(U · U) · V = S

R,S,U,V: X

H: U+V = R

==========

V+S+U = S

R,S,U,V: X

H: ∀ T, T · (T+U+V) = T

=====================

(U · R) · (V+R+U) = S

For this development, we wrote ad-hoc tactics ac rewrite and monoid rewrite that work in
simple cases like the first two examples. However, a more systematic approach is required in
order to handle situations like the third one. We plan to pursue Beauquier’s work on this
topic [2]: we would like to implement algorithms for matching modulo A and AC [5], and to
integrate the resulting (external) program with Coq, in order to obtain more satisfying tools
for rewriting modulo A and AC.

References

[1] S. F. Allen, R. L. Constable, D. J. Howe, and W. E. Aitken. The semantics of reflected proof. In Proc. LICS ’90,
pages 95–105. IEEE Computer Society, 1990.
[2] M. Beauquier. Application du filtrage modulo associativité et commutativité (AC) à la réécriture de sous-termes
modulo AC dans Coq. Master’s thesis, Master Parisien de Recherche en Informatique, 2008.
[3] G. Berry and R. Sethi. From regular expressions to deterministic automata. Theoretical Computer Science, 48(3):117–
126, 1986.
[4] F. Blanqui, S. Coupet-Grimal, W. Delobel, and A. Koprowski. CoLoR: a Coq library on rewriting and termination,
2006.
[5] A. Boudet, E. Contejean, and H. Devie. A new AC unification algorithm with an algorithm for solving systems of
diophantine equation. In Proc. LICS ’90, pages 289–299. IEEE Computer Society Press, 1990.
[6] T. Braibant and D. Pous. Coq development: Algebraic tactics for working with binary relations. Avalaible from
http://sardes.inrialpes.fr/~braibant/atwbr/, May 2009.
[7] S. Briais. Coq development: Finite automata theory. Available from http://www.prism.uvsq.fr/~bris/tools/

Automata_080708.tar.gz, July 2008.
[8] J.-M. Champarnaud and D. Ziadi. Computing the equation automaton of a regular expression in space and time. In
Proc. CPM, pages 157–168, 2001.
[9] H. Doornbos, R. Backhouse, and J. van der Woude. A calculational approach to mathematical induction. Theoretical
Computer Science, 179(1-2):103–135, 1997. Fundamental Study.
[10] P. Freyd and A. Scedrov. Categories, Allegories. North Holland, 1990.
[11] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging mathematical structures. In Proc. TPHOL ’09 (to
appear), 2009. Available as a report from http://hal.inria.fr/inria-00368403/.
[12] B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring done right in Coq. In Proc. TPHOL ’05,
LNCS, pages 98–113. Springer Verlag, 2005.
[13] B. Grégoire and L. Théry. A purely functional library for modular arithmetic and its application for certifying large
prime numbers. In Proc. IJCAR ’06, volume 4130 of LNAI, pages 423–437. Springer Verlag, 2006.
[14] D. Gries. Describing an algorithm by Hopcroft. Acta Informatica, 2:97–109, 1973.
[15] J. E. Hopcroft. An nlog n algorithm for minimizing states in a finite automaton. Technical report, Stanford University,
1971.
[16] P. Jipsen. From semirings to residuated Kleene lattices. Studia Logica, 76(2):291–303, 2004.
[17] S. C. Kleene. Representation of events in nerve nets and finite automata. In Automata Studies, pages 3–41. Princeton
University Press, 1956.
[18] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Information and Compu-
tation, 110(2):366–390, 1994.
[19] D. Kozen. Typed Kleene algebra. Technical Report TR98-1669, Computer Science Department, Cornell University,
March 1998.
[20] A.R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential
space. In Proc. SWAT ’72, pages 125–129. IEEE Computer Society, 1972.
[21] A.R. Meyer and L. J. Stockmeyer. Word problems requiring exponential time. In Proc. STOC ’73, pages 1–9. ACM,
1973.
[22] A. Nerode. Linear automaton transformations. In Proc. of the AMS, volume 9, pages 541–544, 1958.
[23] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research and Development,
3(2):114–125, 1959.
[24] M. Sozeau and N. Oury. First-class type classes. In TPHOLs, pages 278–293, 2008.
[25] A. Spiwack. Ajouter des entiers machine à Coq. http://arnaud.spiwack.free.fr/papers/nativint.pdf, 2006.
[26] K. Thompson. Regular expression search algorithm. Comm. of the ACM, 11:419–422, 1968.
[27] B. W. Watson. A taxonomy of finite automata construction algorithms. Technical report, Computing Science, 1993.

12

http://sardes.inrialpes.fr/~braibant/atwbr/
http://www.prism.uvsq.fr/~bris/tools/Automata_080708.tar.gz
http://www.prism.uvsq.fr/~bris/tools/Automata_080708.tar.gz
http://hal.inria.fr/inria-00368403/
http://arnaud.spiwack.free.fr/papers/nativint.pdf

	Deciding equalities in Kleene algebras
	Underlying design choices
	Algebraic hierarchy
	Matrices
	Typed algebras, typed reification

	Kozen's proof
	Implementing the decision procedure
	Conclusions and directions for future work

