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The Logi
 WTµOmer-Landry Nguena-TimoUniversité Bordeaux 1, LaBRI, CNRS351 
ours de la Libération, 33400 Talen
e-FRANCEomer-landry.nguena-timo�labri.frAbstra
tThe power of Model-
he
king depends on the expressive power of models of systemsand models of spe
i�
ations. The paper introdu
es WTµ, a real-time logi
 with the leastand the greatest �xpoint operators. WTµ is a weak timed extension of the µ-
al
ulus; itis 
losed to Lν . As Event-re
ording logi
, WTµ des
ribes properties on Event-re
ordingautomata.We show that WTµ is more expressive than Eevent-re
ording logi
. In parti
ular, withWTµ formulas, one 
an require o

urren
es of an event at all the time instants thatsatis�es a timing 
onstraint. We provide an exponential-time de
ision pro
edure for themodel-
he
king of WTµ.1 Introdu
tionThe power of Model-
he
king depends on the expressive power of models of systems andmodels of spe
i�
ations. Our goal is to present a new expressive �xpoint logi
 for des
ribingproperties on a 
lass of real-time systems. A signi�
ant property that our logi
 is able todes
ribe the requirement of the o

urren
e an event in all the time satisfying a timing
onstraint (ne
essity modal operator). We argue that su
h a kind of property 
an not bedes
ribed with Event-re
ording logi
 (ERL) [Sor02℄ that has been introdu
ed by Sorea fordes
ribing property the same 
lass of real-time systems.Real-time systems are modeled with timed pro
esses. Timed pro
esses are nothing elsebut event-re
ording automata [AFH99℄ without an a

eptan
e 
ondition. Timed pro
esseshave lo
al 
lo
ks ea
h asso
iated to an event and su
h a 
lo
k gathers the time elapsedsin
e the last o

urren
e of the 
orresponding event. A timed pro
ess is a �nite statelabelled transition system whose transitions (p g,a
−→ p′) are labelled with 
onstraints on
lo
ks and events. A 
onstraint on 
lo
ks is just a 
onjun
tion of 
omparisons of valuesof a 
lo
k with an integer 
onstant.Clo
k are interpreted over real numbers. The value ofea
h 
lo
k grows 
ontinuously and with the same rate as the time unless it is reset. Whenthe pro
ess is in some state, the time elapses 
ontinuously (the values of the 
lo
ks too)until an event o

urs. Then, the pro
ess instantaneously sele
ts a transition labelled withthat event and 
he
ks whether the 
onstraint (g) on the 
hosen transition is satis�ed bythe values of 
lo
ks before it resets the 
lo
k asso
iated to the event and moves to thetarget state of the transition. If the 
onstraint is not satis�ed, the pro
ess does not 
hangethe state.The logi
 that we introdu
e in this paper is 
alled WTµ. The logi
 WTµ is a weaktimed extension of the standard µ-
al
ulus. Formulas of WTµ are interpreted over timedpro
esses. Timed pro
esses are nothing else but event-re
ording automata without an1



a

eptan
e 
ondition. The modalities of the logi
 are either indexed with 
onstraints orevents, while modalities of ERL are indexed with pairs made of a 
onstraint and an event.They are of WTµ are of the form 〈g〉 and [g] in addition to the 
lassi
al modalities ofthe µ-
al
ulus indexed with event (〈a〉 and [a]). Intuitively, a state of a timed pro
ess
p satis�es 〈g〉ϕ from a given time-
ontext des
ribed by a valuation v if by letting timeelapse in it, it is possible to rea
h a moment when the values of the 
lo
ks satisfy g andin that moment, the formula ϕ is satis�ed. A state p of a timed pro
ess satis�es [g]ϕ froma time-
ontext v if whenever starting from v we let the time pass and rea
h a momentwhen g is satis�ed then ϕ is satis�ed in that moment. We 
onsider the model-
he
kingproblem for WTµ; that is: Does a timed pro
ess satisfy a WTµ formula. We provide anexponential-time de
ision pro
edure for that problem.We 
ompare WTµ with ERL. ERL is also presented [Sor02℄ as a timed extension ofthe µ-
al
ulus; and models of ERL formulas are timed pro
esses. In ERL, modalities areindexed both with an event and a 
onstraint ([g, a], 〈g, a〉). A state of a timed pro
ess psatis�es 〈g, a〉ϕ from a given time-
ontext des
ribed by a valuation v if by letting timeelapse in it, it is possible that the event a o

urs in a moment when the values of the 
lo
kssatisfy g and after the o

urren
e of a, the pro
ess goes to a state that satis�es ϕ. A stateof a timed pro
ess p satis�es [g, a]ϕ from a given time-
ontext des
ribed by a valuation vif after the o

urren
e of a in a moment when the values of the 
lo
ks (obtained by lettingtime elapses in v) satisfy g the pro
ess always goes to a state that satis�es ϕ. We willshow that WTµ is more expressive than ERL as every formula of ERL 
an be translatedinto an equivalent WTµ formula; and there are some formulas of WTµ that 
an not betranslated into formulas of ERL. In parti
ular with WTµ, it is possible to require theo

urren
e an event in all the time satisfying a timing 
onstraint; but it is not with ERL.Related results: Logi
s (TML [HLY91℄, Lt

µ [SS95℄ Lν [LLW95℄) that enable to de-s
ribe the the ne
essity modal operator has been 
onsidered for des
ribing properties ontimed automata but the de
idability of the satis�ability problem has not been established.Laroussinie et al. [LLW95℄ have introdu
ed the logi
 Lν as a more powerful logi
 than theone in [HLY91, SS95℄ but its satis�ability problem is still open and no disjun
tive normalform has been provided [BCL05℄. The logi
s Lν and WTµ are in
omparable as they arenot interpreted over the same model and Lν does not allow the least �xpoint operator.But, if we restri
t the interpretation of Lν on timed pro
esses, we 
laim that 〈g〉ϕ willhave the same meaning as the Lν formula 〈δ〉(g ∧ϕ) and [g]ϕ will have the same meaningas the Lν formula [δ](g → ϕ).This paper is organised as follows: We present results for the model-
he
king of the
µ-
al
ulus in the next se
tion. We present time pro
esses in Se
tion 3. In that se
tionwe also present well known 
on
epts and results 
on
erning region, 
onstraint, and timedabstra
t bisimulation. In Se
tion 4 we present WTµ and its semanti
s. We 
onsider themodel-
he
king problem for WTµ in Se
tion 5. In Se
tion 6, we present ERL and we showthat WTµ is more expressive than ERL. We 
on
lude the paper with future works onWTµ.2 Two Player Parity Game and µ-
al
ulus Results2.1 Two Player Parity Games and Multi-Parity GamesWe present a 
omplexity result for 
he
king a winning strategy in a two player gameswith parity 
ondition. We also present the notion of two multi-parity game.De�nition 1 A two player parity game(see [Zie98℄) is a tuple G = 〈NE , NA, T ⊆
N2,AccG〉 where 〈N,T 〉 is a graph with the nodes (or positions) N = NA ∪ NE par-titioned into NE and NA. NE denotes the set of nodes of the player Eve and NA denotes2



the set of nodes of the player Adam. The winning 
ondition AccG ⊆ Nω, is a parity
ondition on the nodes. The game is �nite if N is �nite.A play between Eve and Adam from some node n ∈ N pro
eeds as follows: if n ∈ NEthen Eve makes a 
hoi
e of a su

essor otherwise Adam 
hooses a su

essor; from thissu

essor the same rule applies and the play goes on forever unless one of the parties
annot make a move. A play is �nite if a player 
annot make a move and then he loose theplay. In the 
ase that the play is an in�nite path π = n0n1n2 · · · , Eve wins if π ∈ AccG .Otherwise Adam is the winner. Among winning 
onditions introdu
ed in the literature,we 
onsider the parity 
ondition. A strategy σ for Eve is a fun
tion assigning to everysequen
e of nodes ~n ending in a node n from NE a vertex σ(~n) whi
h is a su

essor of n.A play from n 
onsistent with σ is a �nite or in�nite sequen
e n0n1n2 · · · su
h that
ni+1 = σ(ni) for all i with ni ∈ NE . The strategy σ is winning for Eve from the node nif and only if all the plays starting in n and 
onsistent with σ are winning. The strategiesfor Adam is are de�ned similarly. A node is winning if there exists a strategy winningfrom it. A game is determined if every node is winning for one of the player. A strategyis positional if it does not depend on the sequen
es of nodes that were played till now,but only on the present node. So su
h a strategy for Eve 
an be represented as a fun
tion
σ : NE → N and identi�ed with a 
hoi
e of edges in the graph of the game.Now we state the following results on two player games (see [GH82, EJ91, Jur00,VJ00℄).Theorem 2 Every parity game is determined. In a two player parity game a player hasa winning positional strategy from ea
h of his nodes. There is an e�e
tive pro
edure thatde
ides who is a winner from a given node in a �nite game, and that pro
edure works intime

O

(

|T | ×

(

2 × |N |

d

)⌈d/2⌉
)where, d is the maximal parity index.2.2 The µ-Cal
ulusThe µ-
al
ulus introdu
ed by Kozen [Koz82℄ (see also [AN01℄) is an expressive temporallogi
 that extends modal logi
 with the greatest (ν) and least (µ) �xpoint operators. Wepresent the syntax and the semanti
s of the µ-
al
ulus. Then we state some well knownresults that in
lude the 
omplexity of the model-
he
king problem, the 
omplexity of thesatis�ability problem and a disjun
tive normal form theorem. The 
omplexity result forthe model-
he
king is obtained by redu
tion to 
he
king if there is a winning strategy ina two player parity game.2.2.1 De�nitions and Semanti
sDe�nition 3 The syntax of the µ-
al
ulus is de�ned over a set Var = {X,Y, . . .} ofvariables, a set Σ of events. It is given by the following grammar:

ϕ ::= tt |� |X |ϕ ∨ ψ |ϕ ∧ ψ | 〈a〉ϕ | [a]ϕ |µX.ϕ(X) | νX.ϕ(X)In the above, X ∈ Var , a ∈ Σ; and tt and � denote the formula that are always �true�and �false� respe
tively; 〈a〉 and [a] denote the existential and the universal modalitiesindexed with the event a; they represent �exists a-su

essor and �all a-su

essor� modalitiesrespe
tively. The formulas µX.ϕ(X) and νX.ϕ(X) represent respe
tively the least and thegreatest �xpoint formula.For a formula ϕ, the 
losure [Koz82℄ of ϕ, sub(ϕ) is de�ned as follows:3



De�nition 4 The 
losure sub(ϕ) of ϕ is the smallest set of formulas su
h that:
• ϕ ∈ sub(ϕ)

• if ψ1 ∨ ψ2 ∈ sub(ϕ) the both ψ1, ψ2 ∈ sub(ϕ)

• if ψ1 ∧ ψ2 ∈ sub(ϕ) the both ψ1, ψ2 ∈ sub(ϕ)

• if 〈a〉ψ ∈ sub(ϕ) then ψ ∈ sub(ϕ)

• if [a]ψ ∈ sub(ϕ) then ψ ∈ sub(ϕ)

• if σX.ψ(X) ∈ sub(ϕ) then ψ(X) ∈ sub(ϕ), where σ ∈ {ν, µ}The formulas in sub(ϕ) are 
alled the subformulas of ϕ. For a formula ϕ, sub(ϕ) is�nite and, by de�nition, it is not larger that the number of symbols used in ϕ.De�nition 5 The set free(ϕ) of free variable of a µ-
al
ulus formula ϕ is de�ned indu
-tively as follows:
• free(tt) = free(�) = ∅

• free(X) = {X}

• free(ϕ ∨ ψ) = free(ϕ) ∪ free(ψ)

• free([a]ϕ) = free(〈a〉ϕ) = free(ϕ)

• free(µX.ϕ(X)) = free(νX.ϕ(X)) = free(ϕ) \ {X}A variable X is free in a formula ϕ if X ∈ free(ϕ).De�nition 6 A variable X is bound in a formula ϕ if there is a subformula σX.ψ(X) of
ϕ with σ ∈ {µ, ν}.De�nition 7 (Well named) We 
all a formula well named if the expression µX.ϕ(X)(or νX.ϕ(X)) o

urs at most on
e for ea
h variable X .By renaming variables if ne
essary, every formula 
an be translated into an equivalentwell named formula. In what follows, without loss of generality, we assume that formulasare well named.De�nition 8 (Binding) The binding de�nition of a bound variable X in a well namedformula ϕ, Dϕ(X) is the unique subformula of ϕ of the form σX.ψ(X). We will omitsubs
ript ϕ when it 
auses no ambiguity. We 
all X a µ-variable when σ = µ, otherwisewe 
all X a ν-variable. The fun
tion Dϕ assigning to every bound variable its bindingde�nition in ϕ will be 
alled the binding fun
tion asso
iated with ϕ.De�nition 9 A senten
e is a well named formula without free variables.De�nition 10 The dependen
y order ≤ϕ over the bound variables of a formula ϕ, is theleast partial order su
h that if X o

urs in Dϕ(Y ) (and Dϕ(Y ) is a sub formula of Dϕ(X))then X ≤ϕ Y . When X ≤ϕ Y , it is also said that Y depends on X or X is older than Y .De�nition 11 Variable X in µX.ϕ(X) is guarded if every o

urren
e of X in ϕ(X) is inthe s
ope of some modality operator 〈〉 or []. We say that a formula is guarded if everybound variable in the formula is guarded.Alternation depth des
ribes the number of alternations between least and greatest�xpoint operators.De�nition 12 The alternation depth of a formula denoted by alt(ϕ) is the number ofnesting between µ and ν in ϕ; it is re
ursively de�ned as follows:4



• alt(tt) = alt(�) = alt(X) = 0

• alt(ϕ ∧ ψ) = alt(ϕ ∨ ψ) = max(alt(ϕ), alt(ψ))

• alt(〈a〉ϕ) = alt([a]ϕ) = alt(ϕ)

• alt(µX.ϕ(X)) = max({1, alt(ϕ(X)} ∪ {1 + alt(νY.ψ(Y )) | νY.ψ(Y ) ∈ sub(ϕ);X ≤ϕ

Y })

• alt(νX.ϕ(X)) = max({1, alt(ϕ(X)} ∪ {1 + alt(µY.ψ(Y )) |µY.ψ(Y ) ∈ sub(ϕ);X ≤ϕ

Y })Formulas of the µ-
al
ulus are interpreted over Σ-labelled transition systems. Thesemanti
s of a µ-
al
ulus formula ϕ is a set of states of a Σ-labelled transition system
S = 〈S,Σ, s0,∆S〉 where the formula holds under a given valuation of variables Val :

Var → 2S , and it is denoted by [[ϕ]]
S
Val

. Given a valuation of variables Val and a set ofstates T ⊆ S, the valuation Val [X/T ] is the valuation Val with the substitution thatasso
iates the states of T with the variable X . Formally, for Y ∈ Var , Val [X/T ](Y ) = Tif Y = X and Val(Y ) otherwise. We de�ne the relation � between a state s of a transitionsystem S, a valuation Val and a formula ϕ. We write S, s,Val � ϕ when the formula ϕholds in s or equivalently s satis�es ϕ. The relation � is de�ned as follows:
• S, s,Val � X if s ∈ Val(X)

• S, s,Val � ϕ1 ∨ ϕ2 if S, s,Val � ϕ1 or S, s,Val � ϕ2

• S, s,Val � ϕ1 ∧ ϕ2 if S, s,Val � ϕ1 and S, s,Val � ϕ2

• S, s,Val � 〈a〉ϕ if there is s a
−→ s′ su
h that S, s′,Val � ϕ

• S, s,Val � [a]ϕ if for all s a
−→ s′ we have S, s′,Val � ϕ

• S, s,Val � µX.ϕ(X) if s ∈ ∩{T ⊆ S | [[ϕ(X)]]
S
Val[X/T ] ⊆ T }.

• S, s,Val � νX.ϕ(X) if s,∈ ∪{T ⊆ S |T ⊆ [[ϕ(X)]]
S
Val[X/T ]}Then we de�ne [[ϕ]]

S
Val

= {s ∈ S | S, s,Val � ϕ}. It is said that a Σ-labelled transitionsystem S is a model of a formula ϕ when s0 ∈ [[ϕ]]S
Val

; in this 
ase we write S,Val � ϕ.The valuation Val is omitted if the formula does not 
ontains free variables.It is known (see [Eme90℄ for a survey) that properties expressed in temporal logi
sLTL, CTL, and CTL∗ 
an be en
oded as µ-
al
ulus formulas and that there are formulasof the µ-
al
ulus (for instan
e νX.〈a〉〈a〉X) that 
an not be written in CTL∗.Given two formulas ϕ1 and ϕ2, we often use the notation ϕ1 ≡ ϕ2 to say that ϕ1 isequivalent to ϕ2, meaning that for every labelled transition system S and valuation Val ,
[[ϕ1]]

S
Val

= [[ϕ2]]
S
Val

.It is standard to 
onsider the negation operator (¬) on µ-
al
ulus senten
es. Thisoperator is de�ned as follows:
• ¬tt ≡ �
• ¬� ≡ tt

• ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2

• ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2

• ¬〈a〉ϕ ≡ [a]¬ϕ

• ¬[a]ϕ ≡ 〈a〉¬ϕ

• ¬µX.ϕ(X) ≡ νX.¬ϕ(¬X)

• ¬νX.ϕ(X) ≡ µX.¬ϕ(¬X)The following proposition is standard. 5



Proposition 13 Given a senten
e ϕ, a Σ-labelled transition system S and a valuation
Val , [[¬ϕ]]

S
Val

= S \ [[ϕ]]
S
ValThanks to the proposition just above, we 
an use the negation operator 
an appear in

µ-
al
ulus senten
es.Let us present some results on the µ-
al
ulus.Proposition 14 ([Koz82℄) Every formula is equivalent to some guarded formula.2.2.2 Model-Che
king ResultsInformally, the task of 
he
king whether a �nite state transition system, S = 〈S,Σ, s0,∆S〉is a model of a senten
e ϕ 
an be seen as two player parity game whose nodes are set oftuples of the form (s, ψ) where s ∈ S and ψ is a subformula of ϕ. Positions of the player
Eve 
onstain subformulas of one of the forms tt , ϕ1∨ϕ2, 〈a〉ψ. The other positions belongto the player Adam. The initial position of the game is (s0, ϕ). The set of moves of thegames are su
h that:

• There is no move from either (s, tt) or (s,�).
• From (s, ϕ ∧ ψ) as well as from (s, ϕ ∨ ψ) there are moves to (s, ϕ) and to (s, ψ).
• From (s, [a]ϕ) and from (s, 〈a〉ϕ) there are moves to (s′, ϕ, for every s′ su
h that
s

a
−→ s′.

• There is a move from (s, σX.ϕ(X)) to (s, ϕ(X))

• There is a move from X to (s, ϕ(X)) where D(X) = σX.ϕ(X)The a

eptan
e 
ondition is given by the parity fun
tion rank : Q→ N de�ned by:
rank(ψ) =







0 if ψ is not a variable
2 × alt(D(X)) where ϕ = X and X is a ν-variable
2 × alt(D(X)) + 1 where ϕ = X and X is a µ-variableOne 
an show that S is a model of a formula if player Eve has a winning strategy inthe the game. This gives an intuitive idea behind the following results.Theorem 15 ([EJ91, Tho97, Jur00℄) Let S = 〈S,Σ, s0,∆S〉 be a Σ-labelled transitionsystem and let ϕ be a µ-
al
ulus formula. The model-
he
king problem for ϕ and S issolvable in time

O

(

|∆S | × |sub(ϕ)| ×

(

|S| × |sub(ϕ)|

⌊alt(ϕ)/2⌋

⌈alt(ϕ)/2⌉
))3 Timed Pro
essesWe present timed pro
esses as event-re
ording automata without a

eptan
e [AFH99℄.We �rstly present the notions of region [ACD+92, LY97, AFH99, AD94℄ and its property.All the results presented in this se
tion are well-known.3.1 Clo
ks and ValuationsClo
ks are variables evaluated over real numbers. There are two operations on time, thetime elapse operation that gives the value of the 
lo
k after a delay and the reset operationthat sets the value of a 
lo
ks to 0.Let R+ be the set of non negative real numbers. We 
onsider H = {h1, h2, . . . } a setof 
lo
ks variables (or 
lo
ks for simpli
ity).6



De�nition 16 A valuation on a set of 
lo
k H is a total fun
tion v : H → R+.The symbol V represents the set of valuations. Given a valuation v ∈ V , and a 
lo
k
h ∈ H, the valuation v + t is de�ned by [v + t](h) = v(h) + t and, the valuation v[h := 0]is de�ned by v[h := 0](h′) = 0 if h = h′ else v[h := 0](h′) = v(h′). We say that a valuation
v is a su

essor of a valuation v′ if v = v′ + t for some t ∈ R+.Example: Let H = {h1, h2} be a set of two 
lo
ks. In Table 1, we present some valuationson h are some valuation on H.

{

v0(h1) = 0
v0(h2) = 0

{

v1(h1) = 0.35
v1(h2) = 0.35

{

v2(h1) = 0.35
v2(h2) = 0

{

v3(h1) = 0.85
v3(h2) = 0.50

{

v4(h1) = 0
v4(h2) = 0.50

{

v5(h1) = 0.35
v5(h2) = 0.85Table 1: Examples of valuations.These valuations are su
h that v1 = v0 + 0.35, v2 = v1[h2 := 0], v3 = v2 + 0.50,

v4 = v3[h1 := 0], v5 = v4 + 0.35 and v2 = v5[h2 := 0]. In Figure 1 we give anotherrepresentations of these valuations in Cartesian referen
e.

0

1

0 1
h1

h2

v0

v4

v3

v2

v1

v5

Figure 1: Representation of valuations in Cartesian referen
e.
�3.2 ConstraintsConstraints are 
onjun
tions of simple 
onstraints; and a simple 
onstraint is a 
ompar-ison of a 
lo
k with an integer (diagonal free simple 
onstraint) or a 
omparison of thedi�eren
e between two 
lo
ks with and integer. Diagonal free 
onstraints use only diagonalfree simple 
onstraints. Constraints are interpreted over valuations. The semanti
s of a
onstraint is the set of valuations satisfying it. We will also 
onsider two types of atomi

onstraints : re
tangular 
onstraints and triangular 
onstraints.7



De�nition 17 A simple 
onstraint de�ned on a set of 
lo
ks H is an equation of theform h− h′ ⊲⊳ n or h ⊲⊳ n where n ∈ N, ⊲⊳ is one of {<,≤,≥, >} and h, h′ ∈ H.A diagonal free simple 
onstraint is a simple 
onstraint of the form h ⊲⊳ n.De�nition 18 A 
lo
k 
onstraint over a set of 
lo
ks H is a 
onjun
tion of simple 
on-straints. ΦH , denotes the set of 
lo
k 
onstraints over H. A diagonal-free 
lo
k 
onstraintis a 
lo
k 
onstraint that uses only diagonal free simple 
onstraints. GdsH denotes the setof diagonal-free 
lo
k 
onstraints over H.We will often write h = n or h− h′ = n as an abbreviation of h ≤ n ∧ h ≥ n. We alsowrite h− h′ = n to represent the 
onstraint h− h′ ≤ n ∧ h− h′ ≥ n.Later we 
onsider two spe
ial 
lo
k 
onstraints tt and � de�ned by: tt =
∧

h∈H h ≥ 0and � =
∧

h∈H h < 0.The notion of a 
onstraint satis�ed in a given valuation denoted v � g is de�nedindu
tively as follows:
• v � h ⊲⊳ n if and only if v(h) ⊲⊳ n
• v � h− h′ ⊲⊳ n if and only if v(h) − v(h′) ⊲⊳ n

• v � g1 ∧ g2 if and only if v � g1 and v � g2The meaning of a 
onstraint g, denoted [[g]], is the set of valuations in whi
h it issatis�ed. Clearly, [[g]] = {v : v � g}. It be
omes obvious that [[tt ]] = H → R+ and [[�]] = ∅.De�nition 19 A 
onstraint g is in
onsistent if [[g]] = ∅.De�nition 20 The bound of a 
onstraint g, denoted by Mg, is the maximal 
onstantthat appears in it. The bound of a set of 
onstraints is the maximal value among thebounds of 
onstraint it 
ontains. A set of 
onstraints is M -bounded if every 
onstant init is smaller than M .Now we 
onsider atomi
 
onstraints and we show how to de
ompose a 
onstraint intoan �equivalent� set of atomi
 
onstraints.De�nition 21 For a integer M ∈ N, a M -re
tangular 
onstraint is a 
onjun
tion of theform ∧

h∈H gh where gh is a 
onstraint of the form c < h < c+ 1 or h = c or h > M with
c ∈ N ∩ [0..M [.The set of allM -re
tangular 
onstraints is denoted by AgdsH(M). The symbol AgdsHwill denote the set ⋃M∈N

AgdsH(M)De�nition 22 AM -triangular 
onstraint is a 
onjun
tion of the form∧h∈H gh∧
∧

(h,h′)∈H2 gh,h′where gh,h′ is a 
onstraint of the forms c < h − h′ < c + 1 or h − h′ = c or h − h′ > Mand gh is of the form c < h < c+ 1 or h = c or h > M with c ∈ N ∩ [0..M [.The symbol TgdsH(M) denotes the set of all ofM -triangular 
onstraints. The symbol
TgdsH denotes the set ⋃M∈N

TgdsH(M).Notation:We often use the symbol ĝ to denote a 
onstraint inAgdsH(M) or TgdsH(M)for some M . Later the terms atomi
 
onstraints will often be used in pla
e of re
tangular
onstraints or triangular 
onstraints.Let us �rst re
all the following fa
t resulting from de�nitions of atomi
 
onstraints.Fa
t 23 (atomi
ity) Let M ∈ N be a 
onstant.
• ∀ĝ, ĝ′ ∈ TgdsH(M), if [[ĝ]] 6= [[ĝ′]] then [[ĝ]] ∩ [[ĝ′]] = ∅

• ∀ĝ, ĝ′ ∈ AgdsH(M), if [[ĝ]] 6= [[ĝ′]] then [[ĝ]] ∩ [[ĝ′]] = ∅8



• ∀(ĝ, ĝ′) ∈ AgdsH(M) × TgdsH(M), either [[ĝ′]] ∩ [[ĝ]] = ∅ or [[ĝ′]] ⊆ [[ĝ]]The �rst two items state that either the semanti
s of two atomi
 
onstraints of thesame nature are equal, or they are disjoint. The last item of the above fa
t states that thesemanti
s of a triangular 
onstraint is either in
luded in the semanti
s of a re
tangular
onstraints, or the two semanti
s are disjoint.Example: In Figure 2,we illustrate the 
on
epts of 
onstraints and diagonal free 
on-straints. The 
onstraints g1 and g3 are general 
onstraints while the 
onstraint g2 isdiagonal free. Moreover [[g3]] = [[g1]] ∧ [[g2]]. The 
onstraint g2 is a re
tangular 
onstraint
0

1

2

0 1 2
ha

hb
g1 = 0 ≤ ha ≤ 3 ∧ 0 ≤ hb ≤ 2 ∧−1 ≤ ha − hb ≤ 1

g2 = 1 < ha < 2 ∧ 0 < hb < 1

g3 = 1 < ha < 2 ∧ 0 < hb ≤ 1 ∧−1 ≤ ha − hb ≤ 1

Figure 2: Illustration of 
onstraints and diagonal free 
onstraints.in AgdsH(2) and the 
onstraint g3 is a triangular 
onstraint. �Normalization and Re
tangularisation Until the end of this subse
tion we 
on-sider the de
omposition of diagonal free 
onstraint into set of re
tangular 
onstraints. Wewill need to 
onsider 
onstraints that do not involve 
onstants greater than a �xed bound.For that purpose, we present the normalisation operation normN that we use later tode
ompose 
onstraints.De�nition 24 TheN -normalization of a simple 
onstraintC is the 
onstraint normN (C)de�ned by :
• normN (h ⊲⊳ n) = tt if ⊲⊳∈ {<,≤} and n > N .
• normN (h− h′ ⊲⊳ n) = tt if ⊲⊳∈ {<,≤} and n > N .
• normN (h ⊲⊳ n) = h > N if ⊲⊳∈ {>,≥} and n > N .
• normN (h− h′ ⊲⊳ n) = h− h′ > N if ⊲⊳∈ {>,≥} and n > N .
• In the other 
ases normN does not modify the 
onstraint.Given a 
onstraint g and an integerN , the N -normalization of g, normN (g) is obtainedby normalizing ea
h simple 
onstraint o

urring in g.Lemma 25 Let C, a diagonal-free simple 
onstraint, there is a 
onstant M su
h that:
• for every N ≥M , [[normM (C)]] = [[normN (C)]] = [[C]]

• for every N < M , [[normM (C)]] ( [[normN (C)]]Proof1. When C has the form h ⊲⊳ n with ⊲⊳∈ {<,≤} and 
onsider M = n,9



(a) Let N ≥ M , normN (h ⊲⊳ n) is equal to normM (h ⊲⊳ n) and they are equal to
h ⊲⊳ n and we get the result that [[normM (C)]] = [[normN (C)]] = [[C]].(b) Let N < M , normN (h ⊲⊳ n) = h ≥ 0. Clearly [[normM (C)]] ( [[normN (C)]].2. When C has the form h ⊲⊳ n with ⊲⊳∈ {>,≥} and 
onsider M = n,(a) Let N ≥ M , normN (h ⊲⊳ n) is equal to normM (h ⊲⊳ n) and they are equal to
h ⊲⊳ n and we get the result that [[normM (C)]] = [[normN (C)]] = [[C]].(b) Let N < M , then normN (h ⊲⊳ n) = h ⊲⊳ N and [[normM (C)]] = h ⊲⊳ M .Clearly, [[normM (C)]] ( [[normN (C)]].

�Let us re
all that for a 
onstraint g, Mg denotes the maximal 
onstant o

urring in g.We use the lemma above to show that the M -normalisation of a 
onstraint does modifyits semanti
s when M is greater or equal to Mg.Proposition 26 Let g ∈ GdsH,
• for every M ≥Mg, [[normM (g)]] = [[normN (g)]] = [[g]]

• for every M < Mg, [[normM (g)]] ( [[normN (g)]]ProofBy de�nitions g =
∧

i=1..n Ci and, [[normM (g)]] =
⋂

i=1..n [[NormM (Ci)]]. AsMg is greaterthat the 
onstant used in every Ci, we get, using 25 that for M ≥ Mg, [[normM (g)]] =
[[normN (g)]] = [[g]]and for M <Mg, [[normM (g)]] ( [[normN (g)]] �Example: Considering the 
onstraint g = 0 ≤ ha ≤ 3∧0 ≤ hb ≤ 2 , we present in Table 2the results of M -normalisation operations depending on the value of M . It is easy to seeM normM(g)0 tt1 tt2 0 ≤ hb ≤ 23 0 ≤ ha ≤ 3 ∧ 0 ≤ hb ≤ 2Table 2: Illustration of the normalisation operation.that for every M < 2, [[g]] ⊆ [[normM (g)]] and for every M ≥ 2, [[g]] = [[normM (g)]] �To obtain the de
omposition of diagonal 
onstraints, we �rstly de
ompose diagonalfree 
onstraints into a set (possibly in�nite) of unbounded re
tangular 
onstraints. Then,we use the normalisation pro
edure above on ea
h atomi
 
onstraint in that set to havea �nite set of bounded re
tangular 
onstraints. The de
omposition of diagonal free 
on-straints into a set of unbounded re
tangular 
onstraints is performed in two steps: inLemma 27 we de
ompose simple diagonal free 
onstraints and we use that de
ompositionin Proposition 28 to de
ompose diagonal free 
onstraints.Lemma 27 For every diagonal free simple 
onstraint C, there is a set Rect(C) of atomi
diagonal free simple 
onstraints su
h that [[C]] =

⋃

C′∈Rect(C) [[C′]].ProofLet C be a diagonal free 
onstraint C. We 
onstru
t a set Rect(C) depending on the formof C; and we show that for every v ∈ V , v � C if and only if there is C′ ∈ Rect(C) su
hthat v � C′.1. if C is of the form h < n then set Rect(C) = {i < h < i+ 1, h = i | i = 0..n− 1}10



2. if C is of the form h ≤ n then set Rect(C) = {i < h < i+1, h = i | i = 0..n−1}∪{h=
n}3. if C is of the form h > n then set Rect(C) = {i < h < i+ 1, h = i+ 1 | i = n..∞}4. if C is of the form h ≥ n then set Rect(C) = {i < h < i + 1, h = i + 1 | i =
n..∞} ∪ {h = n}The proof that in ea
h 
ase, [[C]] = ∪C′∈Rect(C)[[C

′]], is obvious. �We observe that simple 
onstraints of the form h > n to h ≥ n are de
omposed intoin�nite set of 
onstraints.Proposition 28 For every diagonal-free 
onstraint g, there is a set Rect(g) of re
tangular
onstraints su
h that [[g]] =
⋃

ĝ∈Rect(g) [[ĝ]].ProofThe result is a 
onsequen
e of the Lemma 27 above as a 
onstraints is a 
onjun
tion ofsimple 
onstraints. �We say that Rect(g) is the unbounded re
tangular de
omposition of g.Now that we have de
omposed diagonal free 
onstraints into sets (possibly in�nite)of unbounded re
tangular 
onstraints, we will apply the normalisation operation on ea
hre
tangular 
onstraint in these sets; the result of the appli
ation of the normalisationoperation with respe
t to a 
onstantM will be �nite set ofM -re
tangular 
onstraints. Butwe need to show that the semanti
s of the 
onstraint resulting from the appli
ation of the
M -normalisation operation on a simple diagonal free 
onstraint is the same as the unionof the semanti
s of re
tangular 
onstraints in its unbounded re
tangular de
omposition.Lemma 29 For every diagonal free simple 
onstraint C of the form h ≤ n or h ≥ n, forevery M ∈ N, [[normM (C)]] = ∪C′∈Rect(C)[[normM (C′)]].ProofIf C is of the form:

• h ≤ n,� If M ≥ n then normM (C) = C and for every C′ ∈ Rect(C), normM (C′) = C′.Then we get the result.� IfM < n then normM (C) = tt . Let C′h = n. From Lemma 27 C′ ∈ Rect(C)and
normM (C′) = tt then ∪C′∈Rect(C)[[normM (C′)]] = tt and [[normM (C)]] =
∪C′∈Rect(C)[[normM (C′)]].

• h ≥ n,� The 
ase when M ≥ n is obvious be
ause every 
onstraint in Rect(C) ∪ {C} isnot modi�ed by normM .� The 
ase when M < n is also obvious be
ause norm(C) = h > M and
normM (C′) = h > M for every C′ ∈ Rect(C)

�Now we 
an easily extend results in the lemma above to diagonal free 
onstraints.Proposition 30 For every diagonal-free 
onstraint g, for every M ∈ N, [[normM (g)]] =
⋃

ĝ∈Rect(g) [[normM (ĝ)]].ProofIt is a 
onsequen
e of Lemma 29 above and Proposition 28 �11



De�nition 31 Given a g ∈ Gds, and and integer M ∈ N we de�ne the set
RectM (g) = {normM (ĝ) | ĝ ∈ Rect(g)}. From Proposition 26, we get that every diagonal-free 
onstraint using 
onstant smallerthan an integer M 
an be de
omposed into a �nite set of M -re
tangular 
onstraints.Proposition 32 For every 
onstraint g ∈ Gds, for everyM ≥Mg, [[g]] =

⋃

ĝ∈RectM (g) [[ĝ]].ProofFrom Proposition 30 [[normM (g)]] =
⋃

ĝ∈Rect(g) [[normM (ĝ)]] or equivalently [[normM (g)]] =
⋃

ĝ∈RectM (g) [[ĝ]]. From Proposition 26 for M ≥ Mg, [[g]] = [[normM (g)]] and we get theresult. �Remark: The same kind of property 
an be established for general 
onstraints and tri-angular 
onstraints. As re
tangular 
onstraints 
ontain triangular 
onstraints every M -bounded diagonal free atomi
 
onstraint 
an be de
omposed into a �nite union of M -bounded triangular 
onstraints.From the remark above we have the following 
orollary.Corollary 33 Every 
onstraint or diagonal free 
onstraint 
an be de
omposed into a�nite equivalent set of triangular 
onstraints.3.3 RegionsWe present a partitioning of the valuations into a �nite number of equivalen
e 
lasses
alled regions . Valuations in the same region must satisfy the same 
lo
k 
onstraints,their time su

essors must also satisfy the same 
lo
k 
onstraints, and they must satisfythe same 
lo
k 
onstraints after a 
lo
k is reset.The de�nition of a region we present here has been introdu
ed by Alur and Dill [AD94℄for analysing timed automata using only diagonal -free 
onstraints. The equivalen
e re-lation between valuations is de�ned with respe
t to some integer M representing themaximal value used in 
onstraints. The de�nition of that relation is somehow related tothe de�nition of atomi
 
onstraints as atomi
 
onstraints 
an not be de
omposed intosmaller 
onstraints. Thus, two equivalent valuations agree on the integral part of ea
h
lo
k whose values are smaller than M and they also agree on the order on the fra
tionalpart of the values of the 
lo
ks.For a real number n let ⌊n⌋ denote the integral part of n and {n} denote the fra
tionalpart of n.LetM be a natural number. Consider the parametrised binary relation ∼M⊆ VH×VHover valuations de�ned by, v ∼M v′ if:1. v(h) > M if and only if v′(h) > M for ea
h h ∈ H;2. if v(h) ≤M , then ⌊v(h)⌋ = ⌊v′(h)⌋ for every h ∈ H;3. if v(h) ≤M , then {v(h)} = 0 if and only if {v′(h)} = 0 for every h ∈ H, and;4. if v(h) ≤M and v(h′) ≤M , then {v(h)} ≤ {v(h′)} if and only if {v′(h)} ≤ {v′(h′)}for every h, h′ ∈ H.Proposition 34 ([AD94℄) The relation ∼M is an equivalen
e relation over the set ofvaluations with at most 23|H|−1 × |H|! × (M + 1)|H| equivalen
e 
lasses.12



ProofThe relation ∼M is de�ned as a 
onjun
tion of four properties. Ea
h property de�nes anequivalen
e relation; let us denote them by ∼M
1 , . . . ,∼M

4 , respe
tively. For ea
h of thesefour relations we will give an upper bound on the number of its equivalen
e 
lasses. Theprodu
t of these bounds will give an upper bound on ∼M as the later is the interse
tionof the four equivalen
e relations.The relation de�ned by the �rst 
ondition has 2|H| equivalen
e 
lasses, as the onlything that 
ounts is whether the value of a 
lo
k is bigger than M or not. Similarly thethird relation has 2|H| equivalen
e 
lasses. The number of 
lasses of the se
ond relationis (M + 1)|H| as there are M + 1 possible integer values of interest. Finally, the numberof 
lasses of the fourth relation is bounded by the number of permutations of the set of
lo
ks multiplied by 2|H|−1 as for every two 
lo
ks 
onse
utive in a permutation we needto de
ide if they are equal or if the se
ond is stri
tly bigger than the �rst.Summarizing, we get 23|H|−1|H!|(M + 1)|H|.
�We use Reg(M) (or Reg for short) to represent the set of equivalen
e 
lasses of therelation ∼M .De�nition 35 A region [AD94℄ is an equivalen
e 
lass of the relation ∼M⊆ VH × VHde�ned above.In Figure 3 we illustrate region for diagonal free 
onstraints for the maximal 
onstant

M = 2. In Figure 3 valuations earlier presented in Table 1 are not equivalent. A region inthe �gure is either a 
orner point (for example (0, 2)), an open line segment (for example
0 < h1 = h2 < 1) or an open box (for example 0 < h1 < h2 < 1).

0

1

2

0 1 2
h1

h2

v0

v4

v3

v2

v1

v5

Figure 3: Region illustration.From the de�nition of ∼M , it 
omes that an equivalen
e 
lass 
an be represented usinga triangular 
onstraint in g. A

ording to the de�nition of ∼M , two valuations that belongto the same equivalen
e 
lass satisfy 
onstraint of the form:13



• h = ih or ih < h < ih + 1 for ea
h h ∈ H where ih ∈ {0, 1, . . . ,M} and we assume
M + 1 = ∞. This is a 
onsequen
e of ∼M

1 , ∼M
2 , ∼M

3 .
• h − h′ = ihh′ or ihh′ < h − h′ < ihh′ + 1 for ea
h 
ouple (h, h′) ∈ H2 su
h that
h ⊲⊳ M and h′ ⊲⊳ M with ⊲⊳∈ {=, <}. This is a 
onsequen
e of ∼M

4 .Given a valuation v, [v] denotes the equivalen
e 
lass (region) of v. We also use theletter r to represent a region. Given a region r, we de�ne r + t = {[v + t] | v ∈ r},
r↑= {r + t | t ∈ R≥0}, and r[h := 0] = {v[h := 0] : v ∈ r}. We write r ⊆ g for r ⊆ [[g]].Proposition 36 Let G be a set of M -bounded 
onstraints then Reg(M) satis�es:P1 ∀g ∈ G, r ∈ Reg, either r ⊆ [[g]] or [[g]] ∩ r = ∅.P2 ∀r, r′ ∈ Reg, if there exists some v ∈ r and t ∈ R≥0 su
h that v + t ∈ r′, then forevery v′ ∈ r there is some t′ ∈ R≥0 su
h that v′ + t′ ∈ r′.P3 ∀r, r′ ∈ Reg, ∀h ∈ H, if r[h := 0] ∩ r′ 6= ∅, then r[h := 0] ⊆ r′.ProofWe show P1 in the �rst item, P2 in the se
ond item and P3 in the last item.1. Let g ∈ G, from Proposition 32 let [[g]] =

⋃

gi∈RectM (g) [[ĝi]]. Ea
h ĝi is a re
tangular
onstraint. [[g]]∩ r =
⋃

gi∈RectM (g) [[ĝi]]∩ r). From Fa
t 23 there is at most one i su
hthat r interse
ts ĝi. It follows that r interse
ts a 
onstraint ĝi of RectM (g) if andonly if ĝi 
ontains r. We have that if v � r then v � g.2. Let v, v′ ∈ r, adding t to v may modify the integer part of the value (with respe
t to
v) of some 
lo
ks or may modify the order on the fra
tional part of the value (withrespe
t to v) of 
lo
ks. We aim at �nd a time t′ su
h that:- The integer part of the value of ea
h 
lo
k with respe
t to v′ + t′ is equal to theinteger part of the value of ea
h 
lo
k with respe
t to v + t- The order of the fra
tional parts of 
lo
ks in v′ + t′ is the same in v + t.- The set of 
lo
ks with zero fra
tional part in v + t is the same in v′ + t′.Let |H| = n and assume a permutation π of {1, . . . , n} su
h that

{v(hπ1
)} ⊲⊳1 {v(hπ2

)} ⊲⊳2, . . . , ⊲⊳n−1 {v(hπn
)}(∗)with ⊲⊳i∈ {<,=}.Let t ∈ R≥0. It is 
lear that {v(h) + t} = {v(h) + {t}}. Only the fra
tional part of

t may a�e
t the order in (∗).There may be a largest index j su
h that
{v(hπj

) + {t}} = {v(hπj
)} + {t}. In 
ase, no su
h j exists, take j = n.Clearly, {v(hπj

) + {t}} ≥ {v(hπj
)} and; ∀k > j we have:

{v(hπk
) + {t}} < {v(hπk

)} and {v(hπk
) + {t}} < {v(hπj

) + {t}}.We get that:
{v(hπj+1

) + {t}} ⊲⊳j . . . . . . ⊲⊳n−1 {v(hπn
) + {t}} < {v(hπj

) + {t}}Similarly, we establish that
{v(hπj

) + {t}} < {v(hπj−1
) + {t}}⊲⊳j−2 . . . ⊲⊳1{v(hπ1

) + {t}}where ⊲⊳k => if ⊲⊳j∈ {<} otherwise ⊲⊳j∈ {=}, ∀k ≤ j14



• If {v′(hπj+1
) + {t′}} 6= 0, in order to have

{v′(hπj+1
{t′}} ⊲⊳j . . . ⊲⊳n−1< {v′(hπn

{t′}} < {v′(hπj
) + {t′}} and

{v′(hπj+1
) + {t′}} ⊲⊳j< {v′(hπj−1

) + {t′}}⊲⊳j−2 . . . ⊲⊳1{v
′(hπ1

) + {t′}}We take {t′} ∈ [0, 1 − {v′(hπj
)}[∩[1 − {v′(hπj+1

)}, 1[.
• If {v′(hπj+1

) + {t′}} = 0 then {t} = 1 − {v(hπj+1
)}; and we take {t′} = 1 −

{v′(hπj+1
)}.It 
omes that ⌊{v′(hπi

)} + {t′}⌋ = ⌊{v(hπi
)} + {t}⌋.To ensure that ⌊{v′(hπi

)} + t′⌋ = ⌊{v(hπi
)} + t⌋ we must take ⌊t⌋ = ⌊t′⌋.3. Let v1, v2 ∈ r, then v1 and v2 satisfy all the 
onditions in the de�nition of anequivalen
e 
lass. Its obvious that v1[h := 0] and v2[h := 0] also satisfy those three
onditions and then v1[h := 0] and v2[h := 0] belong to r[h := 0].If v ∈ r[h := 0] ∩ r′ then every v′ ∈ r′ is equivalent to v whi
h is also equivalent toevery v′′ ∈ r[h := 0]. Thus v ∈ r[h := 0] if and only if v ∈ r[h := 0].

�3.4 Timed Pro
esses3.4.1 De�nitionsLet Σ = {a1, a2 . . . } be a set of events . We 
onsider HΣ = {h1, h2, . . . } the set of 
lo
ks.The 
lo
k hi is the unique 
lo
k asso
iated to the event ai. When there is no 
onfusion,
a will denote an event and ha will denote the unique 
lo
k asso
iated to a. There are asmany 
lo
ks as events. The symbol GdsΣ will denote the set of 
onstraints de�ned over
HΣ, the symbol AgdsΣ will denote the set of re
tangular 
onstraints over HΣ, and thesymbol VΣ will denote the set of valuations over HΣ.De�nition 37 A timed pro
ess , or pro
ess for short, is a tuple

P = 〈P ,Σ ×GdsΣ, p
0,∆P 〉where,

• P is a �nite set of states,
• p0 ∈ P is the initial state,
• ∆P ⊆ P ×GdsΣ × Σ × P is a transition relation.Sometimes, we shortly write p

g,a
−→ p′ for a transition (p, g, a, p′) in ∆P . The bound of atimed pro
ess is the maximal 
onstant that o

urs in its guards. For a timed pro
ess P ,

MP denotes its bound. Given a 
onstant M , we say a timed pro
ess is M -bounded if itsbound is smaller that M .De�nition 38 A timed pro
ess is deterministi
 if whenever there are two transitions
p

g1,a
−→ p1 and p

g2,a
−→ p2 with p1 6= p2, the 
onstraint g1 ∧ g2 is in
onsistent.In the �gures 4, 5, 6, we illustrate, three timed pro
esses. The timed pro
ess in Figure 5and Figure 6 are deterministi
 and timed pro
ess in Figure 4 is not deterministi
.The timed pro
ess in Figure 4 is not deterministi
 as the 
onjun
tion of the guardsin the two transitions outgoing from p0 is 
onsistent while their events are the same. InFigure 5, the 
onjun
tion of the guards is in
onsistent and, in Figure 6 the transitionsoutgoing from p0 are not labelled with the same event.15



p3 p1 p0 p2

0 < ha < 2, a

0 < hb < 2, b

0 < ha < 2, a

0 < hb < 2, b

tt , cFigure 4: A non deterministi
 timed pro
ess:P0.
p3 p1 p0 p2

0 < ha < 1, a

0 < hb < 2, b

1 ≤ ha < 2, a

0 < hb < 2, b

tt , cFigure 5: A deterministi
 timed pro
ess:P1.3.4.2 Semanti
sThe semanti
s of a timed pro
ess is a transition system that represents all possible be-haviours of the timed pro
ess. The idea is that ea
h 
lo
k ha re
ords the amount of timeelapsed sin
e the last o

urren
e of the 
orresponding event a. The time elapses 
ontin-uously at a state. Whenever an a
tion a is exe
uted, the 
lo
k ha is automati
ally reset.No other 
lo
k assignments are permitted.De�nition 39 The semanti
s of a timed pro
ess P as above is the transition system
[[P ]] = 〈P × VΣ,Σ ∪ VΣ, (s

0, v0),→〉where →⊆ (P × VΣ) × (Σ ∪ VΣ) × (P × VΣ) is de�ned by:- (p, v)
v+t
−→ (p, v + t) for every t ≥ 0.- (p, v)

a
−→ (p′, v[ha := 0]) if there is (p, g, a, p′) ∈ ∆P su
h that v ∈ [[g]].Delay transitions are transitions labelled with valuations and dis
rete transitions aretransitions labelled with events.Remark: When presenting the semanti
s of timed automata [AD94, DM02, BCL05℄and event-re
ording automata [AD94℄, it is usual to label delay transitions with nonnegative real numbers. In the semanti
s presented above, delay transition are labelledwith valuations. We remark that these two presentations are equivalent. The 
hoi
e of thepresentation above will be justi�ed in the next 
hapters when the semanti
s of formulaswill be de�ned.Notation: Later we use the notation s

v,a
−→ s′ if there exists s′′ su
h that s v

−→ s′′and s′′ a
−→ s′.Let us use the following example to illustrate the notion of semanti
s of timed pro-
esses. We 
onsider pro
ess in Figure 4 and Figure 5 and transitions from p0 to p1 and

p2. In Figure 7, we present the beginning of the semanti
s of the pro
ess in Figure 4. Asthat pro
ess is not deterministi
, at the same time ( for example t = 0.4), it is possible to16



p3 p1 p0 p2

0 < ha < 2, a

0 < hb < 2, b

0 < hb < 2, b

0 < ha < 2, a

tt , cFigure 6: A deterministi
 timed pro
ess:P2.trigger the event a and either move to p1 or p2. From p1 it is possible to do immediately
c while it is not the 
ase from p2.

p0; v0(ha) = 0
v0(hb) = 0
v0(hc) = 0

{v0 + t : v0 + t � 0 < ha < 2}

p1; v1(ha) = 0
v1(hb) = 0.4
v1(hc) = 0.4

p2; v1(ha) = 0
v1(hb) = 0.4
v1(hc) = 0.4

t = 0.4

a a

{v1 + t : v0 + t � tt}

p3; v2(ha) = 2
v2(hb) = 2.4
v2(hc) = 0

c

t = 2

Figure 7: A part of the semanti
s of P0.3.4.3 Representations for Timed Pro
essesThe above semanti
s is not very 
onvenient as both the set of states and the set of labelso

urring in transitions are un
ountable. We will 
onsider two more abstra
t semanti
s ofpro
esses. The �rst will abstra
t from valuations in the labels of transitions. The se
ondwill repla
e valuations in states by regions. In order for the abstra
tions to be �nite, theywill be parametrized by a bound M on the 
lo
k values.De�nition 40 The M -a
tion abstra
tion of a timed pro
ess P is the (Σ ∪ AgdsΣ(M))-labeled transition system
〈[P ]〉M = 〈P × VΣ,Σ ∪AgdsΣ(M), (s0, v0),∆v〉,17



where ∆v ⊆ (P × VΣ) × (Σ ∪AgdsΣ(M)) × (P × VΣ) is de�ned by:- (p, v)
ĝ

−→ (p, v + t) for any t ∈ R+ su
h that v + t � ĝ and- (p, v)
a

−→ (p′, v[ha := 0]) if there is (p, g, a, p′) ∈ ∆P with v � g.We observe that the M -a
tion representation is obtained from the semanti
s by re-pla
ing valuations on delay-transitions with M -re
tangular 
onstraints they satisfy. Thenfor every timed pro
ess P and every natural 
onstantM , there is an isomorphism between
[[P ]] and 〈[P ]〉M .De�nition 41 The M -region abstra
tion of a timed pro
ess P is the (Σ ∪ AgdsΣ(M))-labeled transition system

〈[P ]〉Mreg = 〈P ×Reg(M),Σ ∪Agds(M), (p0, r0),∆r〉,where v0 ∈ r0, ∆r ⊆ (P ×Reg(M)) × (Σ ∪AgdsΣ(M)) × (P ×Reg(M)) is de�ned by:- (p, r)
ĝ

−→ (p, r′) with r′ ⊆ r↑ and r′ ⊆ ĝ.- (p, r)
a

−→ (p′, r[ha := 0]) if there is (p, g, a, p′) ∈ ∆P with r ⊆ g.Proposition 42 For every timed pro
ess P , and every M ≥ MP : 〈[P ]〉M is bisimilar to
〈[P ]〉Mreg.ProofWe 
onsider a relation ∼⊆ (P × VΣ) × (P × RegΣ(M)) de�ned by (p, v) ∼ (p, [v]) forevery p ∈ P , v ∈ VΣ. We show that it is a bisimulation.

• First, we 
onsider delay transitions. Assume that (p, v) ∼ (p, [v]). If (p, v) ĝ
−→ (p, v′),then there is t ∈ R+ su
h that v + t ∈ [[ĝ]]. A

ording to Proposition 36, [v + t] ⊆ ĝand obviously [v+ t] ⊆ [v]↑. Then, we get that (p, [v])

ĝ
−→ (p, [v+ t]) and (p, v+ t) ∼

(p, [v + t]). Re
ipro
ally, if (p, r)
ĝ

−→ (p, r′), then r′ ⊆ ĝ and r′ ⊆ r↑. Let v ∈ ra

ording to Proposition 36, there is t ∈ R+ su
h that v + t ∈ r′. Sin
e r′ ⊆ ĝ, weget v + t ∈ [[ĝ]] and then (p, v)
ĝ

−→ (p, v′).
• Next, we 
onsider dis
rete transitions. Assume that (p, v) ∼ (p, [v]). If (p, v)

a
−→

(p′, v′), then v′ = v[ha := 0] and there is p
g,a
−→ p′ su
h that v ∈ [[g]]. Let ĝ ∈

Agds(M) be an atomi
 guard su
h that v ∈ [[ĝ]]. Then we get (p, [v])
a

−→ (p′, [v′])and (p, v′) ∼ (p, [v′]). Re
ipro
ally, if (p, r)
a

−→ (p′, r′), then r′ = r[ha := 0] andthere is p
g,a
−→ p′ su
h that r ∈ [[g]]. Let v ∈ r, obviously v ∈ [[g]], and v[ha := 0] ∈ r′.It follows that (p, v)

a
−→ (p′, v[ha := 0]) and (p, v[ha := 0]) ∼ (p, r′).

�Notation: Later we use the notation s
g,a
−→ s′ if there exists s′′ su
h that s g

−→ s′′and s′′ a
−→ s′.4 The Logi
 WTµWe de�ne the syntax of WTµ formulas. WTµ formulas have modalities indexed with
onstraints and modalities indexed with events. We de�ne re
tangular formulas that useonly re
tangular 
onstraints and we show that every formula 
an be transformed into an

M -equivalent re
tangular formula. 18



4.1 De�nitionsThe logi
 WTµ is an adaptation of the µ-
al
ulus and ERL. Apart from the usual eventsmodalities, it has also modalities indexed by 
onstraints. The formulas of WTµ des
ribeproperties on timed pro
esses.De�nition 43 Let X,Y range over the set of variables denoted Var . A formula ϕ ofWTµ is generated using the following grammar:
ϕ ::= tt | � | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉ϕ | 〈g〉ϕ | [a]ϕ | [g]ϕ | µX.ϕ | νX.ϕwhere a ∈ Σ is an event and g ∈ GdsΣ is a 
onstraint.The bound of a formula is the maximal 
onstant that o

urs in its 
onstraints. Fora formula ϕ, Mϕ denotes its bound. Given a 
onstant M , we say that a formula is M -bounded if its bound is smaller that M .Notion of bound variables, senten
es, subformulas, well named formula, ν-variables, µ-variable, dependen
y order, alternation depth, guarded formulas, expansion, and de�nitionlist are obvious from the de�nitions of similar notions for the setting of the µ-
al
ulus inSe
tion 2.4.2 Semanti
s of WTµA formula is interpreted over timed pro
esses, or rather its semanti
s. Intuitively, we saythat a state (p, v) satis�es a formula [g]ϕ, if whenever starting from v we let the timepass and rea
h a valuation v′ � g then (p, v′) �t ϕ. Similarly, a formula 〈g〉ϕ is satis�edif by letting the time pass it is possible to go from valuation v to a valuation v′ � g with

(p, v′) �t ϕ. The meaning for the modalities [a] and 〈a〉 is 
lassi
al.We will be mainly interested in des
ribing timed pro
esses, but a
tually the formulasof WTµ 
an be evaluated in any (VΣ ∪ Σ)- labelled transition system. Let us �x su
h asystem S = 〈S,Σ ∪ VΣ, s
0,∆S〉. The semanti
s of a formula ϕ, denoted [[ϕ]]

S
Val

, de�nedwith respe
t to an assignment Val : Var → 2S is the set of states of S whi
h satisfy ϕ.We write S, s,Val �t ϕ to say that the state s satis�es ϕ with respe
t to the valuation
Val .De�nition 44 For a given (VΣ ∪Σ)-labelled transition system S, a given formula ϕ andan assignment Val : Var → P(S), we de�ne the satisfa
tion relation �t indu
tively asfollows:

• S, s,Val �t tt .
• S, s,Val �t X if s ∈ Val(X).
• S, s,Val �t ϕ1 ∨ ϕ2 if S, s,Val �t ϕ1 or S, s,Val �t ϕ2.
• S, s,Val �t ϕ1 ∧ ϕ2 if S, s,Val �t ϕ1 and S, s,Val �t ϕ2.
• S, s,Val �t 〈a〉ϕ if there is s a

−→ s′ su
h that S, s′,Val �t ϕ.
• S, s,Val �t 〈g〉ψ if there is s v

−→ s′ su
h that v ∈ [[g]] and S, s′,Val �t ψ.
• S, s,Val �t [a]ϕ if for all s a

−→ s′ we have S, s′,Val �t ϕ.
• S, s,Val �t [g]ψ if for all s v

−→ s′ with v ∈ [[g]], we have S, s′,Val �t ψ.
• S, s,Val �t µX.ϕ(X) if s ∈ ∩{T ⊆ S | [[ϕ(X)]]

S
Val [X/T ] ⊆ T }.

• S, s,Val �t νX.ϕ(X) if s,∈ ∪{T ⊆ S |T ⊆ [[ϕ(X)]]
S
Val [X/T ]}.19



The meaning of a formula is formally de�ned as follows:
[[ϕ]]

S
Val

= {s | S, s,Val �t ϕ}.We will write S �t ϕ for S, s0 �t ϕ to say that S is a model of the senten
e ϕ.To ensure the existen
e of �xpoints, we need to show that modal operators indexedwith 
onstraints and modal operators indexed with events are monotone.Proposition 45 The operators 〈α〉 and [α] are monotone for every α ∈ GdsΣ ∪ Σ.ProofThe 
ases for operators other than 〈g〉 and [g] are standard. We show that modal operatorsindexed with 
onstraints are monotoni
. Assume that there is ϕ1 and ϕ2 and a transitionsystem S su
h that [[ϕ1]]
S
Val

⊆ [[ϕ2]]
S
Val

• If s ∈ [[〈g〉ϕ1]]
S
Val

then there is s v
−→ s′ with v ∈ [[g]] su
h that s′ ∈ [[ϕ1]]

S
Val

and then
s ∈ [[ϕ2]]

S
Val

as [[ϕ1]]
S
Val

⊆ [[ϕ2]]
S
Val

. Then, there is there is s v
−→ s′ with v ∈ [[g]] su
hthat s′ ∈ [[ϕ2]]

S
Val

meaning that s ∈ [[〈g〉ϕ2]]
S
Val

• If s ∈ [[[g]ϕ1]]
S
Val

and s 6∈ [[[g]ϕ2]]
S
Val

then there is s v
−→ s′ with v ∈ [[g]] su
h that

s′ 6∈ [[ϕ2]]
S
Val

. As s ∈ [[ϕ2]]
S
Val

as [[ϕ1]]
S
Val

⊆ [[ϕ2]]
S
Val

we get that s′ 6∈ [[ϕ1]]
S
Val

. Thenthere is s v
−→ s′ with v ∈ [[g]] su
h that s′ 6∈ [[ϕ1]]

S
Val

and we get a 
ontradi
tion.
�We introdu
e the negation operator ¬. Given a senten
e ϕ, a (V×Σ)-labelled transitionsystem S, and a Valuation Val , we de�ne [[¬ϕ]]

S
Val

= S \ [[ϕ]]
S
ValProposition 46 We have the following equivalen
es.1. ¬tt ≡ �2. ¬� ≡ tt3. ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ24. ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ25. ¬〈α〉ϕ ≡ [α]¬ϕ with α ∈ Σ ∪Gds6. ¬[α]ϕ ≡ 〈α〉¬ϕ7. ¬µX.ϕ(X) ≡ νX.¬ϕ(¬X)8. ¬νX.ϕ(X) ≡ µX.¬ϕ(¬X)ProofLet S be a (Σ ∪ VΣ)-labelled transition system and let s be a state of S. As the 
ases foroperators other than 〈g〉 and [g] are standard, we 
onsider the following 
ases:

• If s ∈ [[¬〈g〉ϕ]] then s 6∈ [[〈g〉ϕ]]. It is equivalent to say that for every v ∈ [[g]], forevery s v
−→ s′, we have that s′ 6∈ [[ϕ]] meaning by de�nition that s′ 6∈ [[[g]¬ϕ]].

• The 
ase of ¬[g]ϕ ≡ ¬〈g〉¬ϕ is obvious from the previous 
ase.
�We write ϕ1 ≡ ϕ2 when the formulas ϕ1 and ϕ2 are equivalent.Proposition 47 Let g, g1, g2, . . . , gn su
h that [[g]] =

⋃

i=1..n [[gi]] then,1. 〈g〉ϕ ≡
∨

i=1..n〈gi〉ϕ2. [g]ϕ ≡
∧

i=1..n[gi]ϕ 20



ProofWe will 
onsider the �rst 
ase sin
e the proof of the se
ond 
ase is easy by using Propo-sition 46. Let S be a (Σ ∪ VΣ)-labelled transition system and s be a state of S(=⇒) If S, s �t 〈g〉ϕ then there is s v
−→ s′ with v ∈ [[g]] su
h that S, s′ �t ϕ. As [[g]] =

⋃

i=1..n [[gi]], there is i ∈ [1..n] su
h that v ∈ [[gi]]. Then, s v
−→ s′ with v ∈ [[gi]] and

S, s′ �t ϕ, meaning that S, s �t 〈gi〉ϕ or equivalently S, s �t

∨

i=1..n〈gi〉ϕ.(⇐=) If S, s �t

∨

i=1..n〈gi〉ϕ then S, s �t 〈gi〉ϕ for some i ∈ [1..n] meaning that, thereis s v
−→ s′ with v ∈ [[gi]] su
h that S, s′ �t ϕ. But v ∈ [[gi]] implies v ∈ [[g]] as

[[g]] =
⋃

i=1..n [[gi]]. Then we get that S, s �t 〈g〉ϕ.
�Meaning of a formula over a timed pro
ess Consider ϕ a formula, P atimed pro
ess. We say that ϕ is satis�ed in a state p, a valuation v and a valuation

Val : Var → P(P × VΣ) of propositional variables and we write P , (p, v),Val � ϕ when
[[P ]], (p, v),Val �t ϕ.The meaning [[ϕ]]

P
Val

⊆ P × VΣ of a formula over a timed pro
ess P is de�ned by
[[ϕ]]

P
Val

= [[ϕ]]
[[P]]
ValWe will write P � ϕ if [[P ]] is a model of ϕ and we say that P is a model of ϕ.4.3 Re
tangular FormulasWe introdu
e re
tangular form for WTµ formulas and we show the equivalen
e betweena formula and its re
tangular forms.De�nition 48 A re
tangular formula is a formula de�ned using re
tangular 
onstraints.Re
all that RectM (g) was presented in De�nition 31. The M -re
tangular formulaasso
iated to the formula ϕ is the formula RectM (ϕ) indu
tively de�ned by:

• RectM (�) = �
• RectM (tt) = tt

• RectM (X) = X

• RectM (ϕ1 ∧ ϕ2) = RectM (ϕ1) ∧RectM (ϕ2)

• RectM (ϕ1 ∨ ϕ2) = RectM (ϕ1) ∨RectM (ϕ2)

• RectM (〈g〉ϕ) =
∨

ĝ∈RectM (g)〈ĝ〉ϕ

• RectM ([g]ϕ) =
∧

ĝ∈RectM (g)[ĝ]ϕ

• RectM (〈a〉ϕ) = 〈a〉RectM (ϕ)

• RectM ([a]ϕ) = [a]RectM (ϕ)

• RectM (σX.ϕ(X)) = σX.RectM (ϕ(X)) where σ is one of {µ, ν}We 
an state the following proposition.Proposition 49 For every M ≥Mϕ, S, s,Val �t ϕ if and only if S, s,Val �t RectM (ϕ)ProofThe proof uses stru
tural indu
tion.
• The 
ases of �, tt , X are standard. 21



• The 
ases of formulas of the form ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 are also standard.
• If S, s,Val �t 〈a〉ϕ, then there is s a

−→ s′ ∈→ with v′ = v[ha := 0] su
h that
S, s′ �t ϕ. By indu
tion hypothesis, S, s′ �t RectM (ϕ). It follows that S, s,Val �t

RectM (〈a〉ϕ). The other way of the proof use similar argumentation.
• The 
ase of [a]ϕ uses dual argumentation.
• The 
ase when ϕ = 〈g〉ϕ. RectM (ϕ) =

∨

ĝ∈RectM (g)〈ĝ〉ϕ. From Proposition 32,
[[g]] =

⋃

ĝ∈RectM (g) [[ĝ]]. We use Proposition 47 to 
on
lude.
• Argumentation for the 
ase when ϕ = [g]ϕ is similar to the 
ase when ϕ = 〈g〉ϕ.
• The 
ases of �xpoint formulas are standard.

�5 Model-Che
king of WTµWe 
onsider the model-
he
king of WTµ. We de�ne the abstra
t semanti
s of formulas inwhi
h formulas are interpreted over (GdsΣ∪Σ)-labelled transition systems. In that seman-ti
s 
onstraints in transitions are dire
tly 
ompared (identity test) with the 
onstraints informulas. Then we use that semanti
s for the model-
he
king by showing that 
he
king ifa timed pro
ess is a model of a formula is the same as 
he
king if the M -region semanti
sof that timed pro
ess is an abstra
t model (with respe
t to the abstra
t semanti
s) of the
M -re
tangular formula of the formula for M su�
iently big.5.1 Abstra
t Semanti
s for FormulasWe would also like to evaluate our formulas in models of the form 〈[P ]〉 or 〈[P ]〉Mreg. Moregenerally, we 
an de�ne a semanti
s of WTµ in any (GdsΣ ∪Σ)-labelled transition system
S = 〈S,GdsΣ ∪ Σ, s0,→〉 as follows:De�nition 50 The symboli
 relation of satisfa
tion is de�ned between a symboli
 rep-resentation S, a valuation of variables Val and a formula ϕ as follows:

• S, s,Val �g tt

• S, s,Val �g X when s ∈ Val(X)

• S, s,Val �g ϕ1 ∨ ϕ2 when S, s,Val �g ϕ1 or S, s,Val �g ϕ2.
• S, s,Val �g ϕ1 ∧ ϕ2 when S, s,Val �g ϕ1 and S, s,Val �g ϕ2.
• S, s,Val �g 〈a〉ψ if there is s a

−→ s′ su
h that S, s′,Val �g ψ

• S, s,Val �g 〈g〉ψ if there is s g
−→ s′ su
h that S, s′,Val �g ψ

• S, s,Val �g [a]ψ if for all s a
−→ s′ we have S, s′,Val �g ψ

• S, s,Val �g [g]ψ if for all s g
−→ s′ we have S, s′,Val �g ψ

• S, s,Val �g µX.ϕ(X) if s ∈ ∩{T ⊆ S | [[ϕ(X)]]
S
Val [X/T ] ⊆ T }

• S, s,Val �g νX.ϕ(X) if s ∈ ∪{T ⊆ S |T ⊆ [[ϕ(X)]]
S
Val [X/T ]}The abstra
t meaning of a formula is formally de�ned as follows:

〈[ϕ]〉S
Val

= {s | S, s,Val �g ϕ}.We will write S �g ϕ for S, s0 �g ϕ to say that S is an abstra
t model of the senten
e ϕ.Observe that this is nothing but the standard semanti
s of the mu-
al
ulus. We usethis observation in the next subse
tion for the model-
he
king de
ision pro
edure. Resultswe present in that subse
tion use the framework of Subse
tion ??22



5.2 Model-Che
king ResultsLet us now 
onsider the model-
he
hing of WTµ. From Proposition 49, we 
an 
onsiderre
tangular formula as �good� abstra
tion of formula and for su�
ienty big M , we willuse the M -region representation of timed pro
ess P , to 
he
k whether it is a model of agiven formulas.Proposition 51 For every pro
ess P , for every Mϕ-re
tangular formula ϕ, for every
M ≥Mϕ: [[P ]], (p, v),Val �t ϕ if and only if 〈[P ]〉M , (p, v),Val �g ϕ.ProofThe proof is by indu
tion on the stru
ture of the formula. The 
ases of �, tt , ϕ∨ϕ, ϕ∧ϕand σX.ϕ(X) are immediate. We 
onsider the 
ases of 〈g〉ϕ, [g]ϕ, 〈a〉ϕ and [a]ϕ.

• Assume that the formula has the form 〈g〉ϕ where, g ∈ Agds(M).
⇒ if [[P ]], (p, v),Val �t 〈g〉ϕ, then there is (p, v)

v′

−→ (p, v′) su
h that v′ ∈ [[g]] and
[[P ]], (p, v′),Val �t ϕ. By the indu
tion hypothesis, 〈[P ]〉M , (p, v′),Val �g ϕ. But,
(p, v)

v′

−→ (p, v′), v′ ∈ [[g]] and g ∈ Agds(M) involve that (p, v)
g

−→ (p, v′) is atransition in 〈[P ]〉M . It follows that 〈[P ]〉M , (p, v),Val �g 〈g〉ϕ.
⇐ 〈[P ]〉M , (p, v),Val �g 〈g〉ϕ, then there is (p, v)

g
−→ (p, v′) su
h that [[P ]], (p, v′),Val �g

ϕ. By the indu
tion hypothesis, [[P ]], (p, v′),Val �t ϕ. But if (p, v)
g

−→ (p, v′)is a transition in 〈[P ]〉M then v′ ∈ [[g]] and there is t ∈ R+ su
h that v′ =

v + t. It follows that, the transition (p, v)
v′

−→ (p, v′) belongs to [[P ]] and then
[[P ]], (p, v),Val �t 〈g〉ϕ.

• In the 
ase of [g]ϕ, we use a dual argumentation.
• Assume that the formula has the form 〈a〉ϕ,

⇒ if [[P ]], (p, v),Val �t 〈a〉ϕ, then there is (p, v)
a

−→ (p′, v′) su
h that [[P ]], (p, v′),Val �t

ϕ with v′ = v[ha := 0]. By the indu
tion hypothesis, 〈[P ]〉M , (p′, v′),Val �g ϕ.But if (p, v)
a

−→ (p′, v′) is a transition of [[P ]] then, there is a transition p
g,a
−→ p′in P for whi
h v ∈ [[g]]. A

ording to the de�nition of 〈[P ]〉M , there is also thetransition (p, v)

a
−→ (p′, v′) in 〈[P ]〉M . It follows that 〈[P ]〉M , (p, v),Val �g 〈a〉ϕ.

⇐ if 〈[P ]〉M , (p, v),Val �g 〈a〉ϕ then there is (p, v)
a

−→ (p′, v′) su
h that [[P ]], (p, v′),Val �g

ϕ with v′ = v[ha := 0]. By the indu
tion hypothesis, [[P ]], (p′, v′),Val �t ϕ. Be-
ause (p, v)
a

−→ (p′, v′) belong to [[P ]], we get that [[P ]], (p, v),Val �t 〈g〉ϕ.
• A dual argumentation holds in the 
ase of [a]ϕ.

�Using bisimilarity between 〈[P ]〉Mreg and 〈[P ]〉M , for su�
iently big M , and that ev-ery formula are equivalent to some re
tangular formula (see Proposition 49) we get thefollowing lemma.Lemma 52 For every pro
ess P , for every formula ϕ, for every M ≥ max(Mϕ,MP):
[[P ]], (p, v),Val �t ϕ if and only if 〈[P ]〉Mreg, (p, [v]M ),Val �g RectM (ϕ).Theorem 53 is nothing else but a 
onsequen
e of Lemma 52 and Theorem 15 as ourmodel-
he
king pro
edure is similar to the one of the µ-
al
ulus over (AgdsΣ(M) ∪ Σ)-labelled transition systems.Theorem 53 There is an exponential time pro
edure that 
he
ks whether a pro
ess is amodel of a formula. 23



6 Comparison with Event-Re
ording Logi
Event-Re
ording Logi
 [Sor02℄ is an extension of the µ-
al
ulus that has been introdu
edto des
ribe properties on timed pro
ess. The extension is made on modal operators by
onsidering modal operators of the form 〈g, a〉 and [g, a].6.1 Syntax and Semanti
s of ERLDe�nition 54 Let Σ be a set of events, Var a set of variables. The set of formulasof Event-Re
ording Logi
 denoted by Ferl is the set of formulas given by the followinggrammar:
ϕ ::= tt | � | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈g, a〉ϕ | [g, a]ϕ | µX.ϕ | νX.ϕwhere,

• a is an event from Σ

• g is a 
onstraint from GdsΣ

• X is a variable from VarERL formulas are interpreted over timed pro
esses. Be
ause, the meaning of a timedpro
ess is a (VΣ × Σ)-labelled transition system, we give the interpretation of a formulaover su
h type of transition systems. As a formula may 
ontain free variables we will needa valuation of su
h variables. Given a valuation of variables Val : Var → P(S) and a setof states T ⊆ S, the valuation Val [X/T ] is the valuation Val with the substitution thatasso
iates the set of states T with the variable X . Formally, for Y ∈ Var , Val [X/T ](Y ) =
T if Y = X and Val(Y ) otherwise. We write S, s,Val �t ϕ when the formula ϕ holds in sor equivalenty s satis�es ϕ.De�nition 55 (Meaning of a formula over (VΣ × Σ)-labelled transition systems) Fora given (VΣ × Σ)-labelled transition system S, a given formula ϕ and an assignment
Val : Var → P(S), we de�ne the satisfa
tion relation �t indu
tively as follows:

• S, s,Val �t tt .
• S, s,Val �t X if s ∈ Val(X).
• S, s,Val �t ϕ1 ∨ ϕ2 if S, s,Val �t ϕ1 or S, s,Val �t ϕ2.
• S, s,Val �t ϕ1 ∧ ϕ2 if S, s,Val �t ϕ1 and S, s,Val �t ϕ2.
• S, s,Val �t [g, a]ψ if for every s v,a

−→ s′ ∈ ∆S su
h that v ∈ [[g]] we have S, s′,Val �t

ψ.
• S, s,Val �t 〈g, a〉ψ if there exists s v,a

−→ s′ ∈ ∆S su
h that v ∈ [[g]] and S, s′,Val �t ψ.
• S, s,Val �t µX.ϕ(X) if s ∈ ∩{T ⊆ S | [[ϕ(X)]]

S
Val [X/T ] ⊆ T }.

• S, s,Val �t νX.ϕ(X) if s,∈ ∪{T ⊆ S |T ⊆ [[ϕ(X)]]S
Val [X/T ]}.The meaning [[ϕ]]

S
Val

of a formula over S is a subset of S de�ned by
[[ϕ]]S

Val
= {s | S, s,Val �t ϕ}.We will sometimes write s ∈ [[ϕ]]
S
Val

instead of S, s,Val �t ϕ. If ϕ is a senten
e, i.e.,does not have free variables, then its meaning does not depend on a valuation and we 
anwrite just S, s �t ϕ. Finally, we will write S �t ϕ for S, s0 �t ϕ to say that S is a modelof ϕ. 24



Remark: The presentation of the semanti
s above is di�erent (but it is equivalent) fromthe one in [Sor02℄. In parti
ular, the presentation of the semanti
s of modal operatorsindexed with a 
onstraint and an event seems simpler and it bene�ts from that delaytransitions in the semanti
s of timed pro
esses (see De�nition 39) are labelled with valu-ations.Let us 
onsider ϕ a formula and P a timed pro
ess. We say that ϕ is satis�ed in astate p, a valuation v and a valuation Val : Var → P(P × VΣ) of propositional variablesand we write P , (p, v),Val � ϕ when [[P ]], (p, v),Val �t ϕ.6.2 WTµ is more expressive that ERLWe show that ERL is a fragment of WTµ. With an example, we show that modal operatorswe have introdu
ed are useful for des
ribing some relevant real-time properties on timedpro
esses in parti
ular the ne
essity modal property on time delay; that is, to requirethe existen
e of a dis
rete transition for all the time su

essors satisfying some timing
onstraints.Proposition 56 Consider a property that 
an be written using a WTµ formula ϕ or anERL formula ψ, then for every timed pro
ess P , state p of P and valuation v ∈ VΣ,
• P , (p, v),Val �t 〈g〉〈a〉ϕ if and only if P , (p, v),Val �t 〈g, a〉ψ.
• P , (p, v),Val �t [g][a]ϕ if and only if P , (p, v),Val �t [g, a]ψ.Lemma 57 There is a property that 
an be des
ribed with a WTµ formula and that 
annot be des
ribed with an ERL formula.ProofConsider the property �in the time interval (0, 1) there is a time instan
e when no a
tion

a is possible.. This property 
an be expressed by WTµ formula:
ϕ = 〈0 ≤ ha < 1〉[a]ffObserve that we use the 
lo
k asso
iated to a
tion a, but we 
ould use any other 
lo
k aswe assume that initial valuation of all 
lo
ks is 0. Of 
ourse ϕ is satisi�able, moreover itis 
onsistent with the formula
ϕ′ = 〈0 ≤ ha < 1〉〈a〉ttsaying that there is a time instan
e when a is possible. We show that ϕ is not equivalentto a ERL formula. We 
laim that any ERL formula 
onsistent with ϕ′ is not equivalent to

ϕ. Indeed, every ERL formula 
an be transformed into a boolean 
ombination of formulasstarting with modalities 〈g, b〉 or [g, b]. It is easy to verify that every su
h formula that is
onsistent with ϕ′ has a model where a
tion a is possible at every time instan
e between
0 and 1. �In 
onsequen
e of Lemma 57 and Proposition 56 we get the following.Theorem 58 WTµ is stri
tly more expressive than ERLExample: Assume that we aim at 
he
king the following property of timed pro
ess inFigure 8.The system operates at any time within the 10 time units after the �rst d signal bysending a s signal or by re
eiving a b signal.This property is des
ribed with the following WTµ formula:

ϕ ::= [tt ][d][hd ≤ 10]〈d〉(〈hb ≤ 10〉〈b〉tt ∨ 〈hd > 10〉〈s〉)25



p2 p3

p0 p1

p7 p6

tt , d

hd ≤ 5, d

hb ≤ 10, b

hb > 10, s

7 < hd ≤ 10, d hb ≤ 10, b

hb > 10, sFigure 8: A toy-
ar model.The system modeled in Figure 8 is not a model of ϕ. For example, if the se
ond �dangersignal� o

urs 6 time units after the �rst �danger signal� the system will never 
omputethe following �brake signal� unless another �danger signal� o

urs 2 time units after these
ond. So there is a risk that the 
ar goes into 
ollision. �The formula ϕ in the example above 
an not be des
ribed with an ERL formula.Indeed, WTµ formulas and ERL formulas are 
losed under the negation operator. If ϕis an ERL formula, then ¬(ϕ) should also be an ERL formula. But ¬(ϕ) 
ontains theformula 〈hd ≤ 10〉[d] that is not and ERL formula (see Lemma 57 above).7 Con
lusionThe paper has introdu
ed the logi
 WTµ as a real-time �xpoint logi
 for des
ribing prop-erties on real-time systems modeled with timed pro
esses (timed pro
esses are event-re
ording automata without a

eptan
e 
ondition). We have 
onsider the model-
he
kingproblem for WTµ. We have used the notions of region and bisimilarity between represen-tations of semanti
s of timed pro
ess for redu
ing the model-
he
king problem of WTµ tothe model-
he
king problem of the standard µ-
al
ulus. In 
onsequen
e we have got anexponential time algorithm for the model-
he
king problem of WTµ.We 
omparedWTµ with Event-re
ording logi
 when both logi
s are interpreted over timedpro
esses. WTµ is stri
tly more expressive than Event-re
ording logi
. In parti
ular, WTµenables to require an o

urren
e of an event at all the times at whi
h a 
onstraint is sat-is�ed.Our 
urrent work in progress with WTµ in
ludes: the logi
al 
hara
terization of event-re
ording automata and the satis�ability 
he
king.8 A
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