N

HAL

open science

The Logic WT__mu
Omer Landry Nguena Timo

» To cite this version:

‘ Omer Landry Nguena Timo. The Logic WT _mu. 2009. hal-00383062

HAL Id: hal-00383062
https://hal.science/hal-00383062

Preprint submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00383062
https://hal.archives-ouvertes.fr

The Logic WT,,

Omer-Landry Nguena-Timo
Université Bordeaux 1, LaBRI, CNRS
351 cours de la Libération, 33400 Talence-FRANCE
omer-landry.nguena-timo@Ilabri.fr

Abstract

The power of Model-checking depends on the expressive power of models of systems
and models of specifications. The paper introduces WTp, a real-time logic with the least
and the greatest fixpoint operators. WT,, is a weak timed extension of the u-calculus; it
is closed to L,. As Event-recording logic, WT,, describes properties on Event-recording
automata.

We show that WT, is more expressive than Eevent-recording logic. In particular, with
WTp formulas, one can require occurrences of an event at all the time instants that
satisfies a timing constraint. We provide an exponential-time decision procedure for the
model-checking of WT,,.

1 Introduction

The power of Model-checking depends on the expressive power of models of systems and
models of specifications. Our goal is to present a new expressive fixpoint logic for describing
properties on a class of real-time systems. A significant property that our logic is able to
describe the requirement of the occurrence an event in all the time satisfying a timing
constraint (necessity modal operator). We argue that such a kind of property can not be
described with Event-recording logic (ERL) [Sor02] that has been introduced by Sorea for
describing property the same class of real-time systems.

Real-time systems are modeled with timed processes. Timed processes are nothing else
but event-recording automata [AFH99] without an acceptance condition. Timed processes
have local clocks each associated to an event and such a clock gathers the time elapsed
since the last occurrence of the corresponding event. A timed process is a finite state
labelled transition system whose transitions (p 24, p’) are labelled with constraints on
clocks and events. A constraint on clocks is just a conjunction of comparisons of values
of a clock with an integer constant.Clock are interpreted over real numbers. The value of
each clock grows continuously and with the same rate as the time unless it is reset. When
the process is in some state, the time elapses continuously (the values of the clocks too)
until an event occurs. Then, the process instantaneously selects a transition labelled with
that event and checks whether the constraint (g) on the chosen transition is satisfied by
the values of clocks before it resets the clock associated to the event and moves to the
target state of the transition. If the constraint is not satisfied, the process does not change
the state.

The logic that we introduce in this paper is called WT,,. The logic WT,, is a weak
timed extension of the standard p-calculus. Formulas of WT, are interpreted over timed
processes. Timed processes are nothing else but event-recording automata without an

acceptance condition. The modalities of the logic are either indexed with constraints or
events, while modalities of ERL are indexed with pairs made of a constraint and an event.
They are of WT,, are of the form (g) and [g] in addition to the classical modalities of
the p-calculus indexed with event ({a) and [a]). Intuitively, a state of a timed process
p satisfies (g)p from a given time-context described by a valuation v if by letting time
elapse in it, it is possible to reach a moment when the values of the clocks satisfy g and
in that moment, the formula ¢ is satisfied. A state p of a timed process satisfies [g]p from
a time-context v if whenever starting from v we let the time pass and reach a moment
when ¢ is satisfied then ¢ is satisfied in that moment. We consider the model-checking
problem for WT,,; that is: Does a timed process satisfy a WT,, formula. We provide an
exponential-time decision procedure for that problem.

We compare WT,, with ERL. ERL is also presented [Sor02] as a timed extension of
the p-calculus; and models of ERL formulas are timed processes. In ERL, modalities are
indexed both with an event and a constraint ([g, a], (g,a)). A state of a timed process p
satisfies (g, a)p from a given time-context described by a valuation v if by letting time
elapse in it, it is possible that the event a occurs in a moment when the values of the clocks
satisfy g and after the occurrence of a, the process goes to a state that satisfies . A state
of a timed process p satisfies [g, a]¢ from a given time-context described by a valuation v
if after the occurrence of a in a moment when the values of the clocks (obtained by letting
time elapses in v) satisfy g the process always goes to a state that satisfies p. We will
show that WT, is more expressive than ERL as every formula of ERL can be translated
into an equivalent WT,, formula; and there are some formulas of WT,, that can not be
translated into formulas of ERL. In particular with WTpu, it is possible to require the
occurrence an event in all the time satisfying a timing constraint; but it is not with ERL.

Related results: Logics (TML [HLY91|, L}, [SS95] L, [LLW95]) that enable to de-
scribe the the necessity modal operator has been considered for describing properties on
timed automata but the decidability of the satisfiability problem has not been established.
Laroussinie et al. [LLW95] have introduced the logic L, as a more powerful logic than the
one in [HLY91, SS95] but its satisfiability problem is still open and no disjunctive normal
form has been provided [BCLO05|. The logics L, and WT,, are incomparable as they are
not interpreted over the same model and L, does not allow the least fixpoint operator.
But, if we restrict the interpretation of L, on timed processes, we claim that (g)¢ will
have the same meaning as the L, formula (§)(g A ¢) and [g] will have the same meaning
as the L, formula [§](g — ¢).

This paper is organised as follows: We present results for the model-checking of the
p-calculus in the next section. We present time processes in Section 3. In that section
we also present well known concepts and results concerning region, constraint, and timed
abstract bisimulation. In Section 4 we present WT,, and its semantics. We consider the
model-checking problem for WT, in Section 5. In Section 6, we present ERL and we show
that WT, is more expressive than ERL. We conclude the paper with future works on
WT,.

2 Two Player Parity Game and p-calculus Results

2.1 Two Player Parity Games and Multi-Parity Games

We present a complexity result for checking a winning strategy in a two player games
with parity condition. We also present the notion of two multi-parity game.

Definition 1 A two player parity game(see [Zie98]) is a tuple G = (Ng,Na,T C
N2, Accg) where (N, T) is a graph with the nodes (or positions) N = N4 U Ng par-
titioned into Ng and N 4. Ng denotes the set of nodes of the player Fve and N4 denotes

the set of nodes of the player Adam. The winning condition Accg C N¢, is a parity
condition on the nodes. The game is finite if NV is finite.

A play between Eve and Adam from some node n € N proceeds as follows: if n € Ng
then Eve makes a choice of a successor otherwise Adam chooses a successor; from this
successor the same rule applies and the play goes on forever unless one of the parties
cannot make a move. A play is finite if a player cannot make a move and then he loose the
play. In the case that the play is an infinite path 7 = ngning--- , Eve wins if 7 € Accg.
Otherwise Adam is the winner. Among winning conditions introduced in the literature,
we consider the parity condition. A strategy o for Fve is a function assigning to every
sequence of nodes 7 ending in a node n from Ng a vertex o(7) which is a successor of n.

A play from n consistent with o is a finite or infinite sequence ngning--- such that
ni+1 = o(n;) for all ¢ with n; € Ng. The strategy o is winning for Eve from the node n
if and only if all the plays starting in n and consistent with o are winning. The strategies
for Adam is are defined similarly. A node is winning if there exists a strategy winning
from it. A game is determined if every node is winning for one of the player. A strategy
is positional if it does not depend on the sequences of nodes that were played till now,
but only on the present node. So such a strategy for Eve can be represented as a function
0 : Ng — N and identified with a choice of edges in the graph of the game.

Now we state the following results on two player games (see [GH82, EJ91, Jur00,
VJoo)).

Theorem 2 FEvery parity game is determined. In a two player parity game a player has
a winning positional strategy from each of his nodes. There is an effective procedure that
decides who is a winner from a given node in a finite game, and that procedure works in

time /2]
2x |N
o(m-()")

where, d is the maximal parity indez.

2.2 The p-Calculus

The p-calculus introduced by Kozen [Koz82] (see also [ANO1]) is an expressive temporal
logic that extends modal logic with the greatest (v) and least (u) fixpoint operators. We
present the syntax and the semantics of the p-calculus. Then we state some well known
results that include the complexity of the model-checking problem, the complexity of the
satisfiability problem and a disjunctive normal form theorem. The complexity result for
the model-checking is obtained by reduction to checking if there is a winning strategy in
a two player parity game.

2.2.1 Definitions and Semantics

Definition 3 The syntax of the p-calculus is defined over a set Var = {X,Y,...} of
variables, a set X of events. It is given by the following grammar:

pu=tt|fIXoveleAp]({a)e]lae|pX.o(X)[vX.o(X)

In the above, X € Var, a € X; and tt and ff denote the formula that are always “true”
and “false” respectively; (a) and [a] denote the existential and the universal modalities
indexed with the event a; they represent “exists a-successor and “all a-successor” modalities
respectively. The formulas 4 X.p(X) and v X.¢(X) represent respectively the least and the
greatest fixpoint formula.

For a formula ¢, the closure [Koz82] of ¢, sub(i) is defined as follows:

Definition 4 The closure sub(p) of ¢ is the smallest set of formulas such that:

p € sub(p)

if 11 V 2 € sub(y) the both 11,19 € sub(p)

if 1 A 1o € sub(yp) the both 1,19 € sub(p)

if (a)y) € sub(yp) then ¢ € sub(yp)

if [a]y € sub(p) then ¢ € sub(y)

if o X.4(X) € sub(p) then ¥(X) € sub(p), where o € {v, u}

The formulas in sub(p) are called the subformulas of p. For a formula ¢, sub(y) is
finite and, by definition, it is not larger that the number of symbols used in ¢.

Definition 5 The set free(y) of free variable of a p-calculus formula ¢ is defined induc-
tively as follows:

o free(tt) = free(ff) =0
o free(X)={X}

o free(pVy) = free(p) U free(y)
o free(lalp) = free((a)p) = free(p)

o free(uX.p(X)) = free(vX.p(X)) = free(p) \ {X}

A variable X is free in a formula ¢ if X € free(y).

Definition 6 A variable X is bound in a formula ¢ if there is a subformula ¢ X.1(X) of
¢ with o € {p,v}.

Definition 7 (Well named) We call a formula well named if the expression uX.p(X)
(or vX.p(X)) occurs at most once for each variable X.

By renaming variables if necessary, every formula can be translated into an equivalent
well named formula. In what follows, without loss of generality, we assume that formulas
are well named.

Definition 8 (Binding) The binding definition of a bound variable X in a well named
formula ¢, D,(X) is the unique subformula of ¢ of the form oX.4(X). We will omit
subscript ¢ when it causes no ambiguity. We call X a p-variable when o = p, otherwise
we call X a v-variable. The function D, assigning to every bound variable its binding
definition in ¢ will be called the binding function associated with .

Definition 9 A sentence is a well named formula without free variables.

Definition 10 The dependency order <, over the bound variables of a formula ¢, is the
least partial order such that if X occurs in D, (Y") (and D,(Y") is a sub formula of D, (X))
then X <, Y. When X <, Y, it is also said that Y depends on X or X is older than Y.

Definition 11 Variable X in puX.o(X) is guarded if every occurrence of X in ¢(X) is in
the scope of some modality operator () or []. We say that a formula is guarded if every
bound variable in the formula is guarded.

Alternation depth describes the number of alternations between least and greatest
fixpoint operators.

Definition 12 The alternation depth of a formula denoted by alt(p) is the number of
nesting between p and v in ¢; it is recursively defined as follows:

o alt(tt) = alt(ff) = alt(X) =0

Formulas of the p-calculus are interpreted over X-labelled transition systems. The
semantics of a p-calculus formula ¢ is a set of states of a X-labelled transition system
S = (9,%,5% As) where the formula holds under a given valuation of variables Val :

Var — 2% and it is denoted by [[@]]“s/al. Given a valuation of variables Val and a set of
states T C S, the valuation Val[X/T] is the valuation Val with the substitution that
associates the states of 7" with the variable X. Formally, for Y € Var, Val[X/T)(Y) =T
if Y = X and Val(Y') otherwise. We define the relation = between a state s of a transition
system S, a valuation Val and a formula ¢. We write S, s, Val E ¢ when the formula ¢
holds in s or equivalently s satisfies ¢. The relation F is defined as follows:

o S5, ValE X if s € Val(X)

o S5 5, ValE o1 Vo if S;s, Val E ¢ or S, s, Val E ¢y

S,s, ValE o1 AN if S,s, Val E 1 and S, s, Val E ¢

S, s, Val E (a)y if there is s - s’ such that S, s’, Val E ¢
S, s, Val E [a]y if for all s %~ s’ we have S, s', Val F ¢

o S5, ValF pX.p(X)if sen{T' C S| [[cp(X)]]f/al[X/T] CT}.
o S5, ValEvX.o(X)if s,e W{T CS|TC [[ga(X)]]‘?,al[X/T]}

Then we define [[Sﬁ]ﬁ/az ={se€S|S,s, Val E p}. It is said that a X-labelled transition
system S is a model of a formula ¢ when s° € [[ga]]‘?,al; in this case we write S, Val F ¢.
The valuation Val is omitted if the formula does not contains free variables.

It is known (see [Eme90] for a survey) that properties expressed in temporal logics
LTL, CTL, and CTL* can be encoded as u-calculus formulas and that there are formulas
of the p-calculus (for instance vX.(a){(a)X) that can not be written in CTL*.

Given two formulas 7 and @9, we often use the notation @1 = o to say that ¢ is
equivalent to @9, meaning that for every labelled transition system S and valuation Val,
[[(pl]]f/al = [[502]]‘\5/al‘

It is standard to consider the negation operator (—) on p-calculus sentences. This
operator is defined as follows:

o it =ff

o —ff=1tt

o (p1 Ap2) = 791 Vs
o (g1 Vp2) = o1 A s
e ~(a)yp = [a]-p

o —falp = {a)-e
o uX.o(X)=vX.-p(—X)
o vX.o(X)=pX.—p(—-X)

The following proposition is standard.

Proposition 13 Given a sentence @, a >-labelled transition system S and a valuation
S s
Val, [=¢] Ve = S\ [¢] v

Thanks to the proposition just above, we can use the negation operator can appear in
p-calculus sentences.
Let us present some results on the p-calculus.

Proposition 14 ([Koz82]) Every formula is equivalent to some guarded formula.

2.2.2 Model-Checking Results

Informally, the task of checking whether a finite state transition system, S = (S, %, 5%, Ag)
is a model of a sentence ¢ can be seen as two player parity game whose nodes are set of
tuples of the form (s,v) where s € S and 1 is a subformula of ¢. Positions of the player
Eve constain subformulas of one of the forms &, 1 V ¢a, (a)1. The other positions belong
to the player Adam. The initial position of the game is (s°,¢). The set of moves of the
games are such that:

e There is no move from either (s, tt) or (s, ff).

o From (s, A) as well as from (s, ¢ V 9) there are moves to (s,) and to (s,v).

e From (s,[a]y) and from (s, (a)p) there are moves to (s',p, for every s’ such that
s 58

e There is a move from (s,0X.0(X)) to (s, (X))

e There is a move from X to (s, (X)) where D(X) = 0 X.0o(X)

The acceptance condition is given by the parity function rank : @ — N defined by:

0 if ¢ is not a variable
rank(y) =< 2 x alt(D(X)) where ¢ = X and X is a v-variable
2xalt(D(X))+1 where p = X and X is a u-variable

One can show that S is a model of a formula if player Fve has a winning strategy in
the the game. This gives an intuitive idea behind the following results.

Theorem 15 ([EJ91, Tho97, Jur00]) LetS = (5, %, 5", Ags) be a B-labelled transition
system and let ¢ be a p-calculus formula. The model-checking problem for ¢ and S is

solvable in time
S| x |sub(e)| f“““””))

o) <|As| X |sub(p)] x < lalt(p)/2]

3 Timed Processes

We present timed processes as event-recording automata without acceptance [AFH99].
We firstly present the notions of region [ACD 92, LY97, AFH99, AD94] and its property.
All the results presented in this section are well-known.

3.1 Clocks and Valuations

Clocks are variables evaluated over real numbers. There are two operations on time, the
time elapse operation that gives the value of the clock after a delay and the reset operation
that sets the value of a clocks to 0.

Let RT be the set of non negative real numbers. We consider H = {h1, ha,...} a set
of clocks variables (or clocks for simplicity).

Definition 16 A waluation on a set of clock H is a total function v : H — R™T.

The symbol V represents the set of valuations. Given a valuation v € V, and a clock
h € 'H, the valuation v + ¢ is defined by [v + ¢](h) = v(h) + t and, the valuation v[h := 0]
is defined by v[h := 0](h') = 0 if h = A/ else v[h := 0](R") = v(h'). We say that a valuation
v is a successor of a valuation v’ if v = v’ + ¢ for some ¢t € RT.

Example: Let H = {h1, ha} be a set of two clocks. In Table 1, we present some valuations

on h are some valuation on H.

{ Uo(hl) =0 { Ul(hl) = 0.35 { ’Ug(hl) = 0.35 { ’Ug(hl) =
Uo(hg) = 0 Ul(hg) = 0.35 Ug(hg) = 0 Ug(hg) =
U4(h1) = 0 ’U5(h1) 0.35
U4(h2) = 0.50 U5(h2) 0.85
Table 1: Examples of valuations.
These valuations are such that v; = vg + 0.35, va = vi[he = 0], v3 = v2 + 0.50,
vg = v3[hy := 0], v5 = vq + 0.35 and vy = vs[he := 0]. In Figure 1 we give another

representations of these valuations in Cartesian reference.

0.85
0.50

ha

hq

Figure 1: Representation of valuations in Cartesian reference.

O

3.2 Constraints

Constraints are conjunctions of simple constraints; and a simple constraint is a compar-
ison of a clock with an integer (diagonal free simple constraint) or a comparison of the
difference between two clocks with and integer. Diagonal free constraints use only diagonal
free simple constraints. Constraints are interpreted over valuations. The semantics of a
constraint is the set of valuations satisfying it. We will also consider two types of atomic

constraints :

rectangular constraints and triangular constraints.

Definition 17 A simple constraint defined on a set of clocks H is an equation of the
form h — b/ <in or h<in where n € N, a1 is one of {<,<,> >} and h, b/ € H.
A diagonal free simple constraint is a simple constraint of the form h < n.

Definition 18 A clock constraint over a set of clocks H is a conjunction of simple con-
straints. @4, , denotes the set of clock constraints over H. A diagonal-free clock constraint
is a clock constraint that uses only diagonal free simple constraints. Gdsy denotes the set
of diagonal-free clock constraints over H.

We will often write h = n or h — h' = n as an abbreviation of h < n A h > n. We also
write h — h’ = n to represent the constraint h — h' <nAh—h' > n.

Later we consider two special clock constraints ¢¢ and ff defined by: tt = A, h >0
and ff= Apcy b <O.

The notion of a constraint satisfied in a given valuation denoted v F g is defined
inductively as follows:

e v E han if and only if v(h) xin
e vEh— W >anif and only if v(h) — v(h') xn
e vE g1 Agoif and only if v F gy and v F g

The meaning of a constraint g, denoted [g], is the set of valuations in which it is
satisfied. Clearly, [g] = {v: v F g}. It becomes obvious that [tt] = H — R™ and [ff] = 0.

Definition 19 A constraint g is inconsistent if [g] = 0.

Definition 20 The bound of a constraint g, denoted by My, is the maximal constant
that appears in it. The bound of a set of constraints is the maximal value among the
bounds of constraint it contains. A set of constraints is M-bounded if every constant in
it is smaller than M.

Now we consider atomic constraints and we show how to decompose a constraint into
an “equivalent” set of atomic constraints.

Definition 21 For a integer M € N, a M -rectangular constraint is a conjunction of the
form A, .5 gn where g is a constraint of the form ¢ < h < c+41or h = cor h > M with
ce NNJ[0..M].

The set of all M-rectangular constraints is denoted by Agdsy (M). The symbol Agdsy
will denote the set | J,;cn Agdsy (M)

Definition 22 A M -triangular constraint is a conjunction of the form /\hEH gh/\/\(h.h/)eH2 Gh,h'
where gp, p is a constraint of the forms c < h—h' <c¢+lorh—h =corh—h' > M
and gy, is of the form e < h<c¢+1lorh=cor h> M with c€ NN [0..M].

The symbol T'gds;, (M) denotes the set of all of M-triangular constraints. The symbol
T'gds,, denotes the set |,y T'gdsy (M).

Notation: We often use the symbol g to denote a constraint in Agds,, (M) or T'gds; (M)
for some M. Later the terms atomic constraints will often be used in place of rectangular
constraints or triangular constraints.

Let us first recall the following fact resulting from definitions of atomic constraints.

Fact 23 (atomicity) Let M € N be a constant.

o V§,¢' € Tgdsy (M), if [g] # [§'] then [g] N [§’

=0
* V9,9 € Agdsy (M), if [g] # [9'] then [g] N [§'] =0

 V(9,9') € Agdsy (M) x Tgdsy (M), either [§'T N [g] = 0 or [¢'T < [9]

The first two items state that either the semantics of two atomic constraints of the
same nature are equal, or they are disjoint. The last item of the above fact states that the
semantics of a triangular constraint is either included in the semantics of a rectangular
constraints, or the two semantics are disjoint.

Example: In Figure 2,we illustrate the concepts of constraints and diagonal free con-
straints. The constraints g; and g3 are general constraints while the constraint g is
diagonal free. Moreover [gs] = [g1] A [g2]. The constraint g is a rectangular constraint

N1 =0<he <3N0<hy <2AN—-1<he—hy<1

\\> -
\ 7/

0 1 2

g3=1<hy <2N0<hy <1A-1<h,—hy <1

Figure 2: Illustration of constraints and diagonal free constraints.

in Agdsy(2) and the constraint g is a triangular constraint. O

Normalization and Rectangularisation Until the end of this subsection we con-
sider the decomposition of diagonal free constraint into set of rectangular constraints. We
will need to consider constraints that do not involve constants greater than a fixed bound.
For that purpose, we present the normalisation operation normy that we use later to
decompose constraints.

Definition 24 The N-normalization of a simple constraint C is the constraint normy (C)
defined by :

e normy(h<n) = ttif e {<,<} and n > N.

e normpy(h —h' >an) =t if e {<, <} andn > N.

e normy(h><in)=h> N if <€ {>,>} and n > N.

e normy(h—h'><an)=h—h" > N if <€ {>,>} and n > N.

e In the other cases normy does not modify the constraint.

Given a constraint g and an integer N, the N -normalization of g, normy(g) is obtained
by normalizing each simple constraint occurring in g.

Lemma 25 Let C, a diagonal-free simple constraint, there is a constant M such that:
e for every N > M, [normp (C)] = [normy(C)] = [C]
o for every N < M, [normp (C)] € [normn(C)]

Proof

1. When C has the form h < n with e {<, <} and consider M = n,

(a) Let N > M, normy(h < n) is equal to normps(h <t n) and they are equal to
h>an and we get the result that [normp (C)] = [normy (C)] = [C].

(b) Let N < M, normy(hxxn) =h > 0. Clearly [norma (C)] € [normn(C)].
2. When C has the form h <1 n with <€ {>, >} and consider M = n,

(a) Let N > M, normy(h < n) is equal to normps(h <t n) and they are equal to
hxin and we get the result that [normas (C)] = [normn (C)] = [C].

(b) Let N < M, then normy(h >t n) = h <t N and [normp (C)] = h < M.
Clearly, [normas (C)] € [normy(C)].

O

Let us recall that for a constraint g, M, denotes the maximal constant occurring in g.
We use the lemma above to show that the M-normalisation of a constraint does modify
its semantics when M is greater or equal to M,.

Proposition 26 Let g € Gdsyy,
o for every M > M, [norma(g)] = [normn(g)] = [9]
e for every M < My, [normar(g)] S [normn(g)]
Proof
By definitions g = A\,_; ,, Ci and, [normar(g9)] = i~y ,, [Normar(C;)]. As M, is greater

that the constant used in every Cj, we get, using 25 that for M > Mg, [norma(g)] =
[normy (g)] = [g]and for M < My, [norma(g)] S [normn(g)] O

Example: Considering the constraint g = 0 < h, < 3A0 < hy <2, we present in Table 2
the results of M-normalisation operations depending on the value of M. It is easy to see

M | normas(g)
0 |t
1|t
2 [0< Ty <2
3 0<hy<3A0<hy<2

Table 2: Illustration of the normalisation operation.

that for every M < 2, [¢] C [normas(g)] and for every M > 2, [g] = [norma(g)] O

To obtain the decomposition of diagonal constraints, we firstly decompose diagonal
free constraints into a set (possibly infinite) of unbounded rectangular constraints. Then,
we use the normalisation procedure above on each atomic constraint in that set to have
a finite set of bounded rectangular constraints. The decomposition of diagonal free con-
straints into a set of unbounded rectangular constraints is performed in two steps: in
Lemma 27 we decompose simple diagonal free constraints and we use that decomposition
in Proposition 28 to decompose diagonal free constraints.

Lemma 27 For every diagonal free simple constraint C, there is a set Rect(C') of atomic
diagonal free simple constraints such that [C] = Ucre geci(c) [C']-

Proof

Let C be a diagonal free constraint C. We construct a set Rect(C) depending on the form
of C; and we show that for every v € V, v E C if and only if there is C’ € Rect(C) such
that v E C.

1. if C is of the form h < n then set Rect(C)={i<h<i+1,h=1i]li=0..n—1}

10

2. if C'is of the form h < n then set Rect(C) ={i < h<i+1,h=1i]i=0.n—1}U{h =
n}
3. if C is of the form h > n then set Rect(C)={i<h<i+1,h=i4+1|i=n.o0}
4. if C is of the form h > n then set Rect(C) = {i < h < i+ 1,h =i+ 1]|i =
n.ooyU{h=n}
The proof that in each case, [C] = Ucrcrect(c)[C'], is obvious. O

We observe that simple constraints of the form h > n to h > n are decomposed into
infinite set of constraints.

Proposition 28 For every diagonal-free constraint g, there is a set Rect(g) of rectangular
constraints such that [g] = U;c reer(y) [9]-

Proof
The result is a consequence of the Lemma 27 above as a constraints is a conjunction of
simple constraints. O

We say that Rect(g) is the unbounded rectangular decomposition of g.

Now that we have decomposed diagonal free constraints into sets (possibly infinite)
of unbounded rectangular constraints, we will apply the normalisation operation on each
rectangular constraint in these sets; the result of the application of the normalisation
operation with respect to a constant M will be finite set of M-rectangular constraints. But
we need to show that the semantics of the constraint resulting from the application of the
M-normalisation operation on a simple diagonal free constraint is the same as the union
of the semantics of rectangular constraints in its unbounded rectangular decomposition.

Lemma 29 For every diagonal free simple constraint C' of the form h < n or h > n, for
every M € N, [normp(C)] = Ugregect(c)[normar (C')].

Proof
If C is of the form:
o h <mn,

— If M > n then normy;(C) = C and for every C’ € Rect(C), normp (C") = C".
Then we get the result.

— If M < nthen normys(C) = tt. Let C’h = n. From Lemma 27 C’ € Rect(C)and
normp (C') = tt then Ugrcpeer(c)[norma (C')] = tt and [normp (C)] =
Ucrerect(cy [normar (CV)].

e h>n,

— The case when M > n is obvious because every constraint in Rect(C) U {C} is
not modified by norm;.

— The case when M < n is also obvious because norm(C) = h > M and
norm (C') = h > M for every C’ € Rect(C)

O

Now we can easily extend results in the lemma above to diagonal free constraints.

Proposition 30 For every diagonal-free constraint g, for every M € N, [normas(g)] =
UgeRect(g) IInOT'mM (g)]]

Proof
It is a consequence of Lemma 29 above and Proposition 28]

11

Definition 31 Given a g € Gds, and and integer M € N we define the set

Rectpr(g) = {normp(§) | § € Rect(g)}

From Proposition 26, we get that every diagonal-free constraint using constant smaller
than an integer M can be decomposed into a finite set of M-rectangular constraints.

Proposition 32 For every constraint g € Gds, for every M > My, [¢] = UgeRectM(g) [a]-

Proof

From Proposition 30 [norma (9)] = Uge pect(q) [normar ()] or equivalently [normay ()] =
Ugerectar (o) [9]- From Proposition 26 for M > My, [g] = [normas(g)] and we get the
result. g

Remark: The same kind of property can be established for general constraints and tri-
angular constraints. As rectangular constraints contain triangular constraints every M-
bounded diagonal free atomic constraint can be decomposed into a finite union of M-
bounded triangular constraints.

From the remark above we have the following corollary.

Corollary 33 Every constraint or diagonal free constraint can be decomposed into a
finite equivalent set of triangular constraints.

3.3 Regions

We present a partitioning of the valuations into a finite number of equivalence classes
called regions. Valuations in the same region must satisfy the same clock constraints,
their time successors must also satisfy the same clock constraints, and they must satisfy
the same clock constraints after a clock is reset.

The definition of a region we present here has been introduced by Alur and Dill [AD94]
for analysing timed automata using only diagonal -free constraints. The equivalence re-
lation between valuations is defined with respect to some integer M representing the
maximal value used in constraints. The definition of that relation is somehow related to
the definition of atomic constraints as atomic constraints can not be decomposed into
smaller constraints. Thus, two equivalent valuations agree on the integral part of each
clock whose values are smaller than M and they also agree on the order on the fractional
part of the values of the clocks.

For a real number n let |n] denote the integral part of n and {n} denote the fractional
part of n.

Let M be a natural number. Consider the parametrised binary relation ~™ C V3, x Vi
over valuations defined by, v ~M v if:

1. v(h) > M if and only if v'(h) > M for each h € H;

2. if w(h) < M, then |v(h)] = |v'(h)] for every h € H;

3. if v(h) < M, then {v(h)} = 0 if and only if {v'(h)} = 0 for every h € H, and,;
4

. if v(h) < M and v(h') < M, then {v(h)} < {v(h')} if and only if {v'(h)} < {v'(R)}
for every h,h' € H.

Proposition 34 (JAD94]) The relation ~™ is an equivalence relation over the set of
valuations with at most 23/%1=1 x |H|! x (M + 1)/"| equivalence classes.

12

Proof

The relation ~™ is defined as a conjunction of four properties. Each property defines an
equivalence relation; let us denote them by ~3 ... ~3 respectively. For each of these
four relations we will give an upper bound on the number of its equivalence classes. The
product of these bounds will give an upper bound on ~* as the later is the intersection
of the four equivalence relations.

The relation defined by the first condition has 2!l equivalence classes, as the only
thing that counts is whether the value of a clock is bigger than M or not. Similarly the
third relation has 2! equivalence classes. The number of classes of the second relation
is (M + 1)I"l as there are M + 1 possible integer values of interest. Finally, the number
of classes of the fourth relation is bounded by the number of permutations of the set of
clocks multiplied by 2/~ as for every two clocks consecutive in a permutation we need
to decide if they are equal or if the second is strictly bigger than the first.

Summarizing, we get 23— H!|(M + 1)

O

We use Reg(M) (or Reg for short) to represent the set of equivalence classes of the
relation ~ .

Definition 35 A region [AD94] is an equivalence class of the relation ~*C Vi x Vi
defined above.

In Figure 3 we illustrate region for diagonal free constraints for the maximal constant
M = 2. In Figure 3 valuations earlier presented in Table 1 are not equivalent. A region in
the figure is either a corner point (for example (0,2)), an open line segment (for example
0 < hy = he < 1) or an open box (for example 0 < hy < ho < 1).

ho
2
(O} Vs
N ’
N ’
N ’
Yo N /U1
N N
N
N N U3
N N -
N —
N Vo
N ‘-
N ~
0 1
hy
0 1 2

Figure 3: Region illustration.

From the definition of ~™, it comes that an equivalence class can be represented using
a triangular constraint in g. According to the definition of ~* | two valuations that belong
to the same equivalence class satisfy constraint of the form:

13

o h=ipori,<h<ip+1foreach h € H where i, € {0,1,..., M} and we assume

M + 1 = oco. This is a consequence of ~ ~3 ~ A

o h—h = ipp or dpp < h—h' < ipp + 1 for each couple (h,h') € H? such that
h< M and h' >1 M with <€ {=, <}. This is a consequence of ~}7.
Given a valuation v, [v] denotes the equivalence class (region) of v. We also use the

letter r to represent a region. Given a region r, we define r +¢t = {[v + t]|v € r},
rI={r+t|t€Rxo}, and r[h := 0] = {v[h:=0] : v € r}. We write r C g for r C [g].

Proposition 36 Let G be a set of M-bounded constraints then Reg(M) satisfies:
P1 Vg € G,r € Reg, either r C [g] or [g] N7 = 0.
P2 Vr,r" € Reg, if there exists some v € r and ¢ € R> such that v+ ¢ € 7/, then for
every v’ € r there is some ¢ € R>¢ such that v’ +t" € 7’
P3 Vr,r' € Reg,Yh € H, if r[h := 0] N ¢’/ #£ (), then r[h :=0] C r’.

Proof
We show P1 in the first item, P2 in the second item and P3 in the last item.

1. Let g € G, from Proposition 32 let [g] = U, crect,, () [9i]- Each g; is a rectangular
constraint. [g] N7 = Uy, cgeety (o) [9:] N7)- From Fact 23 there is at most one i such
that r intersects g;. It follows that r intersects a constraint §; of Rectps(g) if and
only if §; contains r. We have that if v F r then v F g.

2. Let v,v" € r, adding ¢ to v may modify the integer part of the value (with respect to
v) of some clocks or may modify the order on the fractional part of the value (with
respect to v) of clocks. We aim at find a time ¢’ such that:

- The integer part of the value of each clock with respect to v’ + t’ is equal to the
integer part of the value of each clock with respect to v + ¢

- The order of the fractional parts of clocks in v’ + ' is the same in v + ¢.

- The set of clocks with zero fractional part in v + ¢ is the same in v' + ¢'.

Let |H| = n and assume a permutation 7 of {1,...,n} such that

{v(hm,)} o<1 {v(Pr,)} D2, oDy {0(P,) } ()

with b€ {<,=}.
Let t € R>q. It is clear that {v(h) +t} = {v(h) + {t}}. Only the fractional part of
t may affect the order in (x).

There may be a largest index j such that

{v(hr,) +{t}} = {v(hx;)} + {t}. In case, no such j exists, take j = n.
Clearly, {v(hx;) 4+ {t}} > {v(hx;)} and; VE > j we have:

{v(hm) +{t}} <{v(hx)} and {o(hr,) + {t}} < {o(ha,) + {t}}.

We get that:
{v(hﬂj+1) + {t}} Py -1 {U(hﬂ'n) + {t}} < {v(hﬂj) + {t}}
Similarly, we establish that

{v(hﬂj) + {t}} < {v(hﬂj—l) + {t}}mj*Q e ~m1{v(hﬂ'1) + {t}}

where B3, => if pq;€ {<} otherwise ;e {=}, Vb < j

14

o If {v'(hx,.,) + {t'}} #0, in order to have
{0 (hy {3 <5 <y < {0V (B, '} < {0 (Br,) + {t'}} and

{0/ (hryn) + {8} oy < {0 () + {3592 B {0 () + {2}
We take {t'} € [0,1 — {v'(hx,;)}N[1 = {v'(hr,,,)}, 1]
o If {v/(hr,) +{t'}} = 0 then {t} = 1— {v(hg,,,)}; and we take {t'} =1 —
{0/ (1) }-
It comes that |{v'(hr)} +{t'}] = [{v(hx,)} + {t}].
To ensure that [{v'(hr,)} + | = [{v(hr,)} +t] we must take |t] = |¢].

3. Let v1,v2 € r, then v; and v satisfy all the conditions in the definition of an
equivalence class. Its obvious that v1[h := 0] and wvz[h := 0] also satisfy those three
conditions and then v1[h := 0] and ve[h := 0] belong to r[h := 0].

If v € r[h := 0] N+’ then every v’ € 7’ is equivalent to v which is also equivalent to
every v" € r[h := 0]. Thus v € r[h := 0] if and only if v € r[h := 0].
(]

3.4 Timed Processes

3.4.1 Definitions

Let ¥ = {a1,az...} be a set of events . We consider Hy. = {hq, ha, ...} the set of clocks.
The clock h; is the unique clock associated to the event a;. When there is no confusion,
a will denote an event and h, will denote the unique clock associated to a. There are as
many clocks as events. The symbol Gdsy, will denote the set of constraints defined over
‘Hyx, the symbol Agdss, will denote the set of rectangular constraints over Hy, and the
symbol Vs, will denote the set of valuations over Hy.

Definition 37 A timed process , or process for short, is a tuple
P =(P,¥ x Gdsx, p°, Ap)

where,
e P is a finite set of states,
e pY € P is the initial state,

e Ap C P x Gdsy x X x P is a transition relation.

Sometimes, we shortly write p 2% p’ for a transition (p,g,a,p’) in Ap. The bound of a
timed process is the maximal constant that occurs in its guards. For a timed process P,
Mp denotes its bound. Given a constant M, we say a timed process is M-bounded if its
bound is smaller that M.

Definition 38 A timed process is deterministic if whenever there are two transitions
p 2% py and p 22 py with py = ps, the constraint g; A go is inconsistent.

In the figures 4, 5, 6, we illustrate, three timed processes. The timed process in Figure 5
and Figure 6 are deterministic and timed process in Figure 4 is not deterministic.

The timed process in Figure 4 is not deterministic as the conjunction of the guards
in the two transitions outgoing from pq is consistent while their events are the same. In
Figure 5, the conjunction of the guards is inconsistent and, in Figure 6 the transitions
outgoing from py are not labelled with the same event.

15

Figure 4: A non deterministic timed process:Pg.

0<hg<l,a 1<h, <20
tt, c
® el @
0<hy<2,b 0<hy<2,0

Figure 5: A deterministic timed process:P;.

3.4.2 Semantics

The semantics of a timed process is a transition system that represents all possible be-
haviours of the timed process. The idea is that each clock h, records the amount of time
elapsed since the last occurrence of the corresponding event a. The time elapses contin-
uously at a state. Whenever an action a is executed, the clock h, is automatically reset.
No other clock assignments are permitted.

Definition 39 The semantics of a timed process P as above is the transition system
[P] = (P x Vs, 2 U Vs, (s2,2°), =)

where —C (P x V5) X (XU Vx) x (P x Vs) is defined by:

- (p,v) Khsd (p,v+1t) for every t > 0.

- (p,v) =% (p',v]hg := 0]) if there is (p, g,a,p’) € Ap such that v € [g].

Delay transitions are transitions labelled with valuations and discrete transitions are
transitions labelled with events.
Remark: When presenting the semantics of timed automata [AD94, DM02, BCL05]
and event-recording automata [AD94], it is usual to label delay transitions with non
negative real numbers. In the semantics presented above, delay transition are labelled
with valuations. We remark that these two presentations are equivalent. The choice of the
presentation above will be justified in the next chapters when the semantics of formulas
will be defined.

Notation: Later we use the notation s —— s’ if there exists s” such that s — s
and s % s’

Let us use the following example to illustrate the notion of semantics of timed pro-
cesses. We consider process in Figure 4 and Figure 5 and transitions from py to p; and
p2. In Figure 7, we present the beginning of the semantics of the process in Figure 4. As
that process is not deterministic, at the same time (for example ¢ = 0.4), it is possible to

16

Figure 6: A deterministic timed process:Ps.

trigger the event a and either move to p; or ps. From p; it is possible to do immediately
¢ while it is not the case from ps.

vo(hq)
vo(hp)
vo(he)

p1; vi(ha) =0
’Ul(hb) =04
V1 (hc) =04

{vi +t:v+tEtt} c

Figure 7: A part of the semantics of Py.

3.4.3 Representations for Timed Processes

The above semantics is not very convenient as both the set of states and the set of labels
occurring in transitions are uncountable. We will consider two more abstract semantics of
processes. The first will abstract from valuations in the labels of transitions. The second
will replace valuations in states by regions. In order for the abstractions to be finite, they
will be parametrized by a bound M on the clock values.

Definition 40 The M -action abstraction of a timed process P is the (X U Agdsy,(M))-
labeled transition system

<[P]>M = <P X VE; % AgdSE(M)a (807U0)7A1)>a

17

where A, C (P x Vs) X (XU Agdss,(M)) x (P x Vx) is defined by:

- (p,v) 9, (p,v +1) for any t € Rt such that v + ¢ F § and
- (p,v) == (p',v[ha = 0]) if there is (p, g,a,p’) € Ap with v & g.

We observe that the M-action representation is obtained from the semantics by re-
placing valuations on delay-transitions with M-rectangular constraints they satisfy. Then
for every timed process P and every natural constant M, there is an isomorphism between

[P] and (P)™.

Definition 41 The M -region abstraction of a timed process P is the (X U Agdsy,(M))-
labeled transition system

(PIM = (P x Reg(M), S U Agds(M), (p°,r°), A),

reg
where v0 € 70, A, C (P x Reg(M)) x (XU Agdss,(M)) x (P x Reg(M)) is defined by:

- (p,7) 4, (p,r") with ' Crfand v C g.

a

- (p,7) — (p',r[he :=0]) if there is (p, g,a,p’) € Ap with r C g.

Proposition 42 For every timed process P, and every M > Mp: ([P]}M is bisimilar to
M
(P)

reg’

Proof
We consider a relation ~C (P x Vg) X (P X Regs(M)) defined by (p,v) ~ (p,[v]) for
every p € P,v € Vx. We show that it is a bisimulation.

e First, we consider delay transitions. Assume that (p,v) ~ (p, [v]). If (p, v) 4, (p,v'),
then there is ¢t € Rt such that v + ¢ € [g]. According to Proposition 36, [v +] C g

and obviously [v+t] C [v]]. Then, we get that (p, [v]) == (p, [v+1]) and (p,v+1) ~
(p, [v + t]). Reciprocally, if (p,7) -2 (p,r’), then ' C § and 7' C r]. Let v € r
according to Proposition 36, there is t € R™ such that v + ¢ € r’. Since 7’ C g, we
get v+t € [§] and then (p,v) - (p,v').

e Next, we consider discrete transitions. Assume that (p,v) ~ (p,[v]). If (p,v) —=
(p',v"), then v = v[hy := 0] and there is p £% p’ such that v € [g]. Let § €
Agds(M) be an atomic guard such that v € [§]. Then we get (p, [v]) —— (p’,[v'])
and (p,v') ~ (p, [v']). Reciprocally, if (p,7) = (p’,7’), then ' = r[h, := 0] and
there is p 2% p’ such that r € [g]. Let v € r, obviously v € [g], and v[h, := 0] € .
It follows that (p,v) —= (p,v[ha := 0]) and (p,v[ha := 0]) ~ (p, 7).

U

Notation: Later we use the notation s 2% s’ if there exists s” such that s —— s”

a
and s” — s'.

4 The Logic WT,

We define the syntax of WT, formulas. WT,, formulas have modalities indexed with
constraints and modalities indexed with events. We define rectangular formulas that use
only rectangular constraints and we show that every formula can be transformed into an
M -equivalent rectangular formula.

18

4.1 Definitions

The logic WT,, is an adaptation of the p-calculus and ERL. Apart from the usual events
modalities, it has also modalities indexed by constraints. The formulas of WT,, describe
properties on timed processes.

Definition 43 Let X,Y range over the set of variables denoted Var. A formula ¢ of
WT,, is generated using the following grammar:

pu=tt |l X |eAplovellae]| (gellde]lde | nX.e|vXe
where a € X is an event and g € Gdsy, is a constraint.

The bound of a formula is the maximal constant that occurs in its constraints. For
a formula ¢, M, denotes its bound. Given a constant M, we say that a formula is M-
bounded if its bound is smaller that M.

Notion of bound variables, sentences, subformulas, well named formula, v-variables, -
variable, dependency order, alternation depth, guarded formulas, expansion, and definition
list are obvious from the definitions of similar notions for the setting of the p-calculus in
Section 2.

4.2 Semantics of WT,

A formula is interpreted over timed processes, or rather its semantics. Intuitively, we say
that a state (p,v) satisfies a formula [g]p, if whenever starting from v we let the time
pass and reach a valuation v’ £ g then (p,v’) F; . Similarly, a formula (g)¢p is satisfied
if by letting the time pass it is possible to go from valuation v to a valuation v’ F g with
(p,v") Et . The meaning for the modalities [a] and (a) is classical.

We will be mainly interested in describing timed processes, but actually the formulas
of WT,, can be evaluated in any (Vs U X)- labelled transition system. Let us fix such a

system S = (S, X U Vs, s°, As). The semantics of a formula ¢, denoted [[ap]]‘?,al, defined
with respect to an assignment Val : Var — 2° is the set of states of S which satisfy ¢.

We write S, s, Val F; ¢ to say that the state s satisfies ¢ with respect to the valuation
Val.

Definition 44 For a given (Vs UX)-labelled transition system S, a given formula ¢ and
an assignment Val : Var — P(S), we define the satisfaction relation F; inductively as
follows:

e S5, Val Fy tt.

o S,s, Valky X if s € Val(X).

o S5, ValEy o1 Vo if S;s, Val Ey o1 or S, s, Val Fy o.

o S,s, ValEy o1 Ao if S, s, Val Fy 1 and S, s, Val Fy ps.

e S, s, Val F; (a)p if there is s - s’ such that S, s’, Val F; .

e S, s, Val F; (g)v if there is s —— s’ such that v € [¢] and S, s’, Val F; 1.
e S, s, Val Fy [a]yp if for all s - 5" we have S, s', Val F; .

e S, s, Val F; [g]9 if for all s — 5" with v € [g], we have S, s', Val F; 1.

o S5, Val by pX.o(X) if s € N{T € S| [o(X)]Vx/z € T}-

L Sa S, Val ':t VXSD(X) if s, € U{T - S | TC IIQP(X)]]?/M[X/T]}

19

The meaning of a formula is formally defined as follows:

H@Hf/al = {S | Sa S, Val = (P}

We will write S F; ¢ for S,s° F; ¢ to say that S is a model of the sentence .
To ensure the existence of fixpoints, we need to show that modal operators indexed
with constraints and modal operators indexed with events are monotone.

Proposition 45 The operators () and [a] are monotone for every o € Gdsy U X.

Proof
The cases for operators other than (g) and [g] are standard. We show that modal operators
indexed with constraints are monotonic. Assume that there is ¢; and 2 and a transition
system S such that [[(pl]]“s/al C [[(pg]]f,al
o Ifse [[(g)gol]]‘?,al then there is s — s’ with v € [g] such that s’ € [[gol]]‘?,al and then
s € [[gag]]f/al as [[301]]?/&[- [[gag]]f/al. Then, there is there is s — s’ with v € [g] such
that s’ € [[gog]]‘f,al meaning that s € [[<g><p2]]“s/al

o If s € [[[g](pl]]‘?,al and s ¢ [[[g](pg]]“s/al then there is s — s’ with v € [g] such that

S s s s s
s' & [palVar- As s € [p2] v as 1] Ve € [p2]v we get that s" & [@1]7,,- Then
there is s — s’ with v € [g] such that s’ ¢ [[(pl]]‘?,al and we get a contradiction.

O

We introduce the negation operator —. Given a sentence ¢, a (V x ¥)-labelled transition
system S, and a Valuation Val, we define [-¢]5,, = 5\ [¢] 54,

Proposition 46 We have the following equivalences.

1 ~tt=ff

2. ~ff=tt

3. (1 A p2) = —p1 V o

4. (1 Vp2) = —p1 A s

5. ~{a)p = [a]-p with a € X U Gds

6. —[a]p = ()~

7. 2uX.o(X) =vX.—p(—-X)

8. wX.p(X) = uX.—p(—X)
Proof

Let S be a (X U Vy)-labelled transition system and let s be a state of S. As the cases for
operators other than (g) and [g] are standard, we consider the following cases:

o If s € [(g)¢] then s & [{g)¢]. It is equivalent to say that for every v € [g], for
every s — s', we have that s’ ¢ [¢] meaning by definition that s’ & [[g]—¢].

e The case of =[g]e = —(g)—y is obvious from the previous case.

We write ¢1 = 2 when the formulas ¢ and @, are equivalent.

Proposition 47 Let g, 91,92, .., 9, such that [¢g] = U,_; ,, [9:] then,

L (9)¢ =Vic1.n9i)¢
2. [gle= /\¢:1..n[gi]<ﬁ

20

Proof
We will consider the first case since the proof of the second case is easy by using Propo-
sition 46. Let S be a (£ U Vx)-labelled transition system and s be a state of S

(=) If S,s k; {g)¢ then there is s — s’ with v € [g] such that S,s' F; . As [g] =
U, ., [gil, there is i € [1..n] such that v € [g;]. Then, s — s’ with v € [g;] and
S, s’ E ¢, meaning that S, s F; (g;)¢ or equivalently S, s F¢ \/._; . (gi)ep.

(=) It S,s F V.,

1=1..n

(gi) then S,s Fy (gi)p for some i € [1..n] meaning that, there

is s — s’ with v € [g;] such that S,s’ F; ¢. But v € [g;] implies v € [g] as
l9] =U;—; ,, [9i]. Then we get that S, s E; (g)e.

O

Meaning of a formula over a timed process Consider ¢ a formula, P a
timed process. We say that ¢ is satisfied in a state p, a valuation v and a valuation
Val : Var — P(P x Vx) of propositional variables and we write P, (p,v), Val E ¢ when

[P1, (p,v), Val F¢ o.
The meaning [[ga]]r";al C P x Vs, of a formula over a timed process P is defined by

[l e = [l Vol

We will write P E ¢ if [P] is a model of ¢ and we say that P is a model of ¢.

4.3 Rectangular Formulas

We introduce rectangular form for WT,, formulas and we show the equivalence between
a formula and its rectangular forms.

Definition 48 A rectangular formula is a formula defined using rectangular constraints.

Recall that Rectpr(g) was presented in Definition 31. The M-rectangular formula
associated to the formula ¢ is the formula Rectps () inductively defined by:

e Recty(ff) = ff

o Rectp(tt) = it

X) =

e Rectp(p1 /\<p2) Rectpr (1) N Rectpr(92)

(
(
(
(
(
(
(
(

e Rectys
)

e Rectp(p1V ga) = Rectpr(v1) V Rectpr(v2)

(9)0) = VgeRectr (9)(9)¥

o Rectu([g]p) = /\geRectM(g) (9]¢

e Rectp({a)p) = (a)Rectp ()

o Rectp([a]e) = [a]Rectrr(¥)

o Recty(0X.p(X)) = oX.Rectpy(p(X)) where o is one of {u, v}

We can state the following proposition.

o Rectys

Proposition 49 For every M > M, S, s, Val F; ¢ if and only if S, s, Val F; Recta ()

Proof
The proof uses structural induction.

e The cases of ff, tt, X are standard.

21

e The cases of formulas of the form ¢1 A @2 or @1 V @2 are also standard.

e If S,s,Val & (a)p, then there is s — s’ €— with v/ = v[h, := 0] such that
S, s’ B¢ ¢. By induction hypothesis, S, s’ E; Rectp(p). It follows that S, s, Val F;
Rectpr({a)p). The other way of the proof use similar argumentation.

e The case of [a]y uses dual argumentation.

e The case when ¢ = (g)¢. Rectrm(p) = Vicpeet) (). From Proposition 32,
[9] = Ujerecta () [9]- We use Proposition 47 to conclude.

e Argumentation for the case when ¢ = [g]p is similar to the case when ¢ = (g)p.

e The cases of fixpoint formulas are standard.

5 Model-Checking of WT,

We consider the model-checking of WT,,. We define the abstract semantics of formulas in
which formulas are interpreted over (Gdsy UX.)-labelled transition systems. In that seman-
tics constraints in transitions are directly compared (identity test) with the constraints in
formulas. Then we use that semantics for the model-checking by showing that checking if
a timed process is a model of a formula is the same as checking if the M-region semantics
of that timed process is an abstract model (with respect to the abstract semantics) of the
M -rectangular formula of the formula for M sufficiently big.

5.1 Abstract Semantics for Formulas

We would also like to evaluate our formulas in models of the form (P) or {[’P]}i\gg. More

generally, we can define a semantics of WT,, in any (Gdss UX)-labelled transition system
S = (5,Gdsx U, Y, —) as follows:

Definition 50 The symbolic relation of satisfaction is defined between a symbolic rep-
resentation S, a valuation of variables Val and a formula ¢ as follows:

o S5, ValkEy tt

o S5, ValFy X when s € Val(X)

o S,5, ValkEy 1 Vg when S, s, Val Ey @1 or S, s, Val Fy4 po.
o 5,5, ValEy o1 Apa when S, s, Val Fy 1 and S, s, Val Fg @o.
e S,s, Val F, (a)y if there is s — s’ such that S, s’, Val F, ¢
o S,s, Val E, (g)i if there is s —2 &' such that S, s, Val F, ¢
e S, s, ValF, [a]y if for all s - s' we have S, s/, Val F, 1

e S,s, Val Egy [g]t if for all s -2, &' we have S, s', Val Fg

o S.s, Val by pX.o(X) if s € N{T C S| [o(X)]Vux/m ST}
o S.s, Val Fg vX.p(X) if s € U{T € S|T C [o(X)] T/}

The abstract meaning of a formula is formally defined as follows:

()5 = {51 8,5, Val Fy o},

We will write S F, ¢ for S, s E, ¢ to say that S is an abstract model of the sentence ¢.

Observe that this is nothing but the standard semantics of the mu-calculus. We use
this observation in the next subsection for the model-checking decision procedure. Results
we present in that subsection use the framework of Subsection 77

22

5.2 Model-Checking Results

Let us now consider the model-cheching of WT,,. From Proposition 49, we can consider
rectangular formula as “good” abstraction of formula and for sufficienty big M, we will
use the M-region representation of timed process P, to check whether it is a model of a
given formulas.

Proposition 51 For every process P, for every M,-rectangular formula ¢, for every
M > My: [P], (p,v), Val E; ¢ if and only if ([P]}M, (p,v), Val E4 .

Proof
The proof is by induction on the structure of the formula. The cases of ff, tt, oV, p Ay
and 0 X.¢o(X) are immediate. We consider the cases of (g)¢, [g]p, (a)¢ and [a]e.

o Assume that the formula has the form (g)¢ where, g € Agds(M).

= if [P], (p,v), Val E; {g)p, then there is (p,v) 2, (p,v’) such that v' € [g] and
[P, (p,v'), Val E; . By the induction hypothesis, (P)™, (p,v’), Val Fqy . But,
(p,v) AN (p,v'), v' € [g] and g € Agds(M) involve that (p,v) - (p,v') is a
transition in (P)™. It follows that (P)™, (p,v), Val E, (g)e.

<= (PYM, (p,v), Val 4 (9)¢, then there s (p,v) -2 (p,v’) such that [P], (p,v’), Val &,
¢. By the induction hypothesis, [P], (p,v"), Val E; ¢. But if (p,v) - (p,v’)
is a transition in (P)"™ then v/ € [g] and there is ¢ € R such that v/ =
v + t. Tt follows that, the transition (p,v) — (p,v’) belongs to [P] and then

[[P]]v (pvv)v Val ':t <g>90
e In the case of [g]p, we use a dual argumentation.

e Assume that the formula has the form (a)¢,

= if [P], (p,v), Val E; {(a)p, then thereis (p,v) —— (p’,v’) such that [P], (p,v"), Val F;
¢ with v = v[h, := 0]. By the induction hypothesis, ([77]>M, (p',v"), Val Eg o.
But if (p,v) —% (p’,v’) is a transition of [P] then, there is a transition p 28
in P for which v € [g]. According to the definition of {[P]}M, there is also the
transition (p,v) —= (p/, ') in (P)™. It follows that (P)™, (p,v), Val E, (a)ep.
< if (P)M, (p,v), Val k, (a)p then thereis (p,v) —— (p',v') such that [P], (p, '), Val k,
¢ with v' = v[h, := 0]. By the induction hypothesis, [P], (p’,v’), Val F¢ ¢. Be-
cause (p,v) — (p’,v’) belong to [P], we get that [P], (p,v), Val E; {g)e.
e A dual argumentation holds in the case of [a]ep.
U
Using bisimilarity between ([P]}ive[g and (P)", for sufficiently big M, and that ev-

ery formula are equivalent to some rectangular formula (see Proposition 49) we get the
following lemma.

Lemma 52 For every process P, for every formula ¢, for every M > max(M,, Mp):
[P], (p,v), Val Fy ¢ if and only if ([P]}M (p, [v]ar), Val B4 Rectar ().

reg’

Theorem 53 is nothing else but a consequence of Lemma 52 and Theorem 15 as our
model-checking procedure is similar to the one of the p-calculus over (Agdss;,(M) U X)-
labelled transition systems.

Theorem 53 There is an exponential time procedure that checks whether a process is a
model of a formula.

23

6 Comparison with Event-Recording Logic

Event-Recording Logic [Sor02] is an extension of the p-calculus that has been introduced
to describe properties on timed process. The extension is made on modal operators by
considering modal operators of the form (g,a) and [g, a.

6.1 Syntax and Semantics of ERL

Definition 54 Let X be a set of events, Var a set of variables. The set of formulas
of Event-Recording Logic denoted by F.,; is the set of formulas given by the following
grammar:

pu=tt|ffI X |[onelpVellg,ay]|lgap|pXe|vX.e

where,

e ¢ is an event from ¥

e ¢ is a constraint from Gdsy

e X is a variable from Var

ERL formulas are interpreted over timed processes. Because, the meaning of a timed
process is a (Vs x X)-labelled transition system, we give the interpretation of a formula
over such type of transition systems. As a formula may contain free variables we will need
a valuation of such variables. Given a valuation of variables Val : Var — P(S) and a set
of states T C S, the valuation Val[X/T] is the valuation Val with the substitution that
associates the set of states 7' with the variable X . Formally, for Y € Var, Val[X/T](Y) =

Tif Y = X and Val(Y) otherwise. We write S, s, Val F; ¢ when the formula ¢ holds in s
or equivalenty s satisfies ¢.

Definition 55 (Meaning of a formula over (Vs x X)-labelled transition systems) For
a given (Vs x X)-labelled transition system S, a given formula ¢ and an assignment
Val : Var — P(S5), we define the satisfaction relation F, inductively as follows:

e S, s, Val Ey tt.

e S,s5, Valky X if s € Val(X).

o S;s, ValEy o1 Vo if S, s, Val Ey 1 or S, s, Val Fy po.

o S5, ValEy o1 Ao if S;s, Val Fy o1 and S, s, Val Fy ps.

o S,s, Val Ey [g,alip if for every s =% s' € Ag such that v € [g] we have S, s, Val k,
.

o S,s, Val E; (g, a)t if there exists s 2% ¢ € Ag such that v € [g] and S, s, Val k¢ 4.

o S5, Val by pX.o(X) if s € N{T € S| [o(X)]Vx/z € T}-

o S5, Val by vX.p(X) if 5,€ U{T C S|T C [p(X)]Vx/71}-
The meaning [[(p]]f,al of a formula over S is a subset of S defined by

H(pﬂf/al = {S | Sa S, Val ':t SD}

We will sometimes write s € [[w]]“s/al instead of S, s, Val Fy . If ¢ is a sentence, i.e.,
does not have free variables, then its meaning does not depend on a valuation and we can
write just S, s F; ¢. Finally, we will write S F; ¢ for S, s” F; ¢ to say that S is a model
of .

24

Remark: The presentation of the semantics above is different (but it is equivalent) from
the one in [Sor02]. In particular, the presentation of the semantics of modal operators
indexed with a constraint and an event seems simpler and it benefits from that delay
transitions in the semantics of timed processes (see Definition 39) are labelled with valu-
ations.

Let us consider ¢ a formula and P a timed process. We say that ¢ is satisfied in a
state p, a valuation v and a valuation Val : Var — P(P x Vyx) of propositional variables
and we write P, (p,v), Val F ¢ when [P], (p,v), Val E; .

6.2 WT, is more expressive that ERL

We show that ERL is a fragment of WT,,. With an example, we show that modal operators
we have introduced are useful for describing some relevant real-time properties on timed
processes in particular the necessity modal property on time delay; that is, to require
the existence of a discrete transition for all the time successors satisfying some timing
constraints.

Proposition 56 Consider a property that can be written using a WT,, formula ¢ or an
ERL formula v, then for every timed process P, state p of P and valuation v € Vx,

e P, (p,v), Val B {g)(a)p if and only if P, (p,v), Val E; (g, a).
e P (p,v), Val & [g][a)e if and only if P, (p,v), Val E; [g, a]t.

Lemma 57 There is a property that can be described with a WT, formula and that can
not be described with an ERL formula.

Proof
Consider the property “in the time interval (0,1) there is a time instance when no action
a is possible.. This property can be expressed by WT, formula:

¢ = (0 < ha <D[alff

Observe that we use the clock associated to action a, but we could use any other clock as
we assume that initial valuation of all clocks is 0. Of course ¢ is satisifiable, moreover it
is consistent with the formula

¢ =(0 < hy < 1){a)tt

saying that there is a time instance when a is possible. We show that ¢ is not equivalent
to a ERL formula. We claim that any ERL formula consistent with ¢’ is not equivalent to
©. Indeed, every ERL formula can be transformed into a boolean combination of formulas
starting with modalities (g, b) or [g, b]. It is easy to verify that every such formula that is
consistent with ¢’ has a model where action a is possible at every time instance between
0 and 1.]

In consequence of Lemma 57 and Proposition 56 we get the following.

Theorem 58 WT, is strictly more expressive than ERL

Example: Assume that we aim at checking the following property of timed process in
Figure 8.

The system operates at any time within the 10 time units after the first d signal by
sending a s signal or by receiving a b signal.
This property is described with the following W'T,, formula:

o = [tt][d][ha < 10(d) (ke < 10)(B)EEV (hg > 10)(s))

25

hy < 10,b

tt,d
D, n

7T < hg <10,d hy <10,b

Figure 8: A toy-car model.

The system modeled in Figure 8 is not a model of ¢. For example, if the second “danger
signal” occurs 6 time units after the first “danger signal” the system will never compute
the following “brake signal” unless another “danger signal” occurs 2 time units after the
second. So there is a risk that the car goes into collision. [

The formula ¢ in the example above can not be described with an ERL formula.
Indeed, WT,, formulas and ERL formulas are closed under the negation operator. If ¢
is an ERL formula, then —(p) should also be an ERL formula. But —(y¢) contains the
formula (hg < 10)[d] that is not and ERL formula (see Lemma 57 above).

7 Conclusion

The paper has introduced the logic WT,, as a real-time fixpoint logic for describing prop-
erties on real-time systems modeled with timed processes (timed processes are event-
recording automata without acceptance condition). We have consider the model-checking
problem for WT,,. We have used the notions of region and bisimilarity between represen-
tations of semantics of timed process for reducing the model-checking problem of WT, to
the model-checking problem of the standard p-calculus. In consequence we have got an
exponential time algorithm for the model-checking problem of WT,,.

We compared WT,, with Event-recording logic when both logics are interpreted over timed
processes. WT, is strictly more expressive than Event-recording logic. In particular, WT,
enables to require an occurrence of an event at all the times at which a constraint is sat-
isfied.

Our current work in progress with WT, includes: the logical characterization of event-
recording automata and the satisfiability checking.

8 Acknowledgement

The author wishes to thank Igor Walukiewicz for having directed this work and for its
fruitful comments.

References

[ACD'92| Rajeev Alur, Costas Courcoubetis, David L. Dill, Nicolas Halbwachs, and
Howard Wong-Toi. An implementation of three algorithms for timing verifica-

26

[ADO4|

[AFH99)

[ANO1]

[BCLO5|

[DM02]

[EJ91]

[Eme90]

|GHS2]

[HLY91]

[Jur00]

[Koz82]

[LLW95]

[LY97]

[Sor02]

[$595]

tion based on automata emptiness. In Proceedings of the 13th Symposium on
Real-Time Systems(RTS’92:), pages 157-166. IEEE Computer Society Press,
december 1992.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183-235, 1994.

Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata:
A determinizable class of timed automata. Theoretical Computer Science,
211(1-2):253-273, 1999.

André Arnold and Damian Niwinski. Rudiments of p-calculus, volume 146 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 2001.

Patricia Bouyer, Franck Cassez, and Frangois Laroussinie. Modal logics for
timed control. In Proceedings of the 16th International Conference on Con-
currency Theory (CONCUR’05), volume 3653 of Lecture Notes in Computer
Science, pages 81-94, San Francisco, CA, USA, august 2005. Springer.

Deepak D’Souza and P. Madhusudan. Timed control synthesis for external
specifications. In Proceedings of the 19th Annual Symposium on Theoretical
Aspects of Computer Science (STACS ’02), pages 571-582, London, UK, 2002.
Springer-Verlag.

E. Allen Emerson and Charanjit S. Jutla. Tree automata, p-calculus and
determinacy. In Proceedings of the 32nd annual symposium on Foundations
of computer science (SFCS ’91), pages 368-377, Washington, DC, USA, 1991.
IEEE Computer Society.

E. Allen Emerson. Temporal and modal logic, volume B: formal models and
semantics, pages 995-1072. MIT Press, Cambridge, MA, USA, 1990.

Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Pro-
ceedings of the fourteenth annual ACM symposium on Theory of computing
(STOC ’82), pages 60-65, New York, NY, USA, 1982. ACM.

Uno Holmer, Kim Larsen, and Wang Yi. Deciding properties of regular real
timed processes. In Proceedings of the 3th International Conference on Com-
puter Aided Verification (CAV ’91), volume 575 of Lecture Notes in Computer
Science, pages 432—442. Springer-Verlag, 1991.

Marcin Jurdzinski. Small progress measures for solving parity games. In
Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer
Science(STACS ’00), pages 290-301, London, UK, 2000. Springer-Verlag.

Dexter Kozen. Results on the propositional p-calculus. In Proceedings of
the 9th International Colloquium on Automata, Languages and Programming
(ICALP’82), pages 348-359, 1982.

Francois Laroussinie, Kim G. Larsen, and Carsten Weise. From timed au-
tomata to logic - and back. In Proceedings of the 20th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS ’95), pages
529-539, London, UK, 1995. Springer-Verlag.

Kim G. Larsen and Wang Yi. Time abstracted bisimulation: Implicit specifi-
cation and decidability. Information and Computation, 134:75-103, 1997.

Maria Sorea. A decidable fixpoint logic for time-outs. In Proceedings of the
13th International Conference on Concurrency Theory (CONCUR ’02), pages
255-271, London, UK, 2002. Springer-Verlag.

Oleg Sokolsky and Scott A. Smolka. Local model checking for real-time systems
(extended abstract). In Proceedings of the Tth International Conference on
Computer Aided Verification (CAV’95), pages 211-224, London, UK, 1995.
Springer-Verlag.

27

[Tho97]

[VJ00]

[Zie98]

Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3. Springer-
Verlag, 1997.

Jens Voge and Marcin Jurdziniski. A discrete strategy improvement algorithm
for solving parity games. In Proceedings of the 12th International Conference
on Computer Aided Verification(CAV ’00), pages 202215, London, UK, 2000.
Springer-Verlag.

Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theoretical Computer Science, 200(1-2):135-183,
1998.

28

