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We apply the techniques of control theory and of sub-Riemannian geometry to
laser-induced population transfer in two- and three-level quantum systems. The aim
is to induce complete population transfer by one or two laser pulses minimizing the
pulse fluences. Sub-Riemannian geometry and singular-Riemannian geometry pro-
vide a natural framework for this minimization, where the optimal control is ex-
pressed in terms of geodesics. We first show that in two-level systems the well-
known technique of ‘r-pulse transfer” in the rotating wave approximation
emerges naturally from this minimization. In three-level systems driven by two
resonant fields, we also find the counterpart of thegulse transfer.” This geo-
metrical picture also allows one to analyze the population transfer by adiabatic
passage. €2002 American Institute of Physic§DOI: 10.1063/1.1465516

I. INTRODUCTION: PHYSICAL CONTEXT
A. Generalities

Design of external laser field@mplitudes and frequencieto reach a selected state of a
quantum system is of primary importance for the control of quantum dynamics. The techniques for
this state-selectivity that have been developed are essentially bagedadmabatic passagsee,

e.g., the recent works?¥, (i) multiphoton quasiresonant pumptby “generalizedm-pulses,”®
and (iii) optimal control theory(see, e.g., Refs. 7 and.8

Adiabatic passage has the advantage of robustness in the sense that significant deviations of
the fields do not significantly modify the final result. On the other hand, optimal control is a
systematic framework to design the field parameterscontrol variablesto reach selectivity in
maximizing or minimizing a quantitythe cost depending functionally on the state and control
variables. This design is in general not robust, in contrast with standard adiabatic passage. Since
the robustness is difficult to quantify as a cost, we do not expect in general the adiabatic passage
to emerge from an optimal control solution. This has been discussed for specific simple
systems:? However optimality for adiabatic passages has been characterized in Ref. 11.
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The success of these coherent laser-induced processes requires, in general, use of as short as
possible external pulses, to minimize incoherent effects of relaxétiwough spontaneous emis-
sion, collisions, etg. It is essential that the total time of the pulse is shorter than the characteristic
times of the incoherent losses. Coherent transfers also need as low as possible pulse intensities in
order to(i) minimize incoherent phenomena induced by strong fields such as ionization for atoms
or molecules, andii) avoid involving other energy levels, that are not included in the models.
Otherwise the population is spread among these levels and the transfer becomes inefficient.

Depending on the concrete physical setting there are several possible choices of the cost
functional. One choice, which has been studied in Ref. 12, is to minimize the total time of the
control process. However, the total time minimization presented in Ref. 12 assumes that arbitrarily
large laser intensities can be used. The relations between our results and the results of Ref. 12 will
be made clear in Sec. Il C.

In this paper we address the two- and three-level problem from the geometric control theory
point of view. We consider several functionals to be minimized, which are geometrically very
natural, and that physically reflect the practical constraints mentioned previdlsyce, see
formula (5) for the two-level case and formul&@) for the three-level case, or transfer time with
bounded controls, eft.The choice of these costs will be discussed in Sec. Il C. We will also use
the classical tracking technique, often used in in geometric control tHeegeyRef. 18 that will
allow in particular achievement of adiabatic transfer.

Remark 1:n the choice of the cost to be minimized, it is useful to consider optimal problems
that are independent of time reparametrization. Indeed, in that case, very slowly varying solutions,
comparable with the ones used in experiments, can be obtained just by time reparametrization.
This point will be taken into account in the following, in particular see Sec. Il C. But we will also
consider problems that do not have this feature.

B. Content of the paper

In this work we apply geometric control theory in two- and three-level systems, which we
briefly describe in the following. Moreover we make the connection with the adiabatic passage.

1. The two-level case

We first study the population transfer in a two-level quantum systdrenergiesE; andE,)
driven by an external field of arbitrary time-dependent shape, startifygeatd ending at,. The
dynamics is governed by the time-dependent Sdingrer equatioriin a system of units such that

h=1):
dis(t
Y ), (1)
#(.):R—C", n=2, where
E, Q)
HZ(Q*(t) Ez)' @

is the Hamiltonian of the systeifive have assumed no diagonal coupling/e choose the most
general situation where the off-diagonal element is comdgft): R— C.

In the two-level systeni2), complete controllabilityon sphereksis obvious(see the following
for the precise definition of controllabilityWe show that the natural optimal control problem of
minimizing the integral of the laser amplitude:

ty
/= f Q| d 3
to

has the following features.
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(a) After some transformations the problem can be formulated as a problem of Sub-
Riemannian geometrgsee Remark 3
(b) The optimal control solution has the expected resonance property) ioan be written as

Q(t)=b(t)e'l(Fa"E)t+al (4)

wherea is an arbitrary constanh(.):R—R™ is a real function with compact suppdtt,t;].
(c) The optimal amplitudéo(t) satisfies

ty
b(t)= /2.

to

Remark 2We thus recover the well-known strategy of-pulse transfer” of a resonant pulse
in the rotating wave approximatidfi,which gives complete transfer witf (t) = uF(t)e'?V/2,
d(t)=E,—E,, and/=|u|f:;.7-"(t)dt/2= /2. Hereu is the intrinsic coupling between the two

levels andF(t) the external pulsed field. This shows in particular that an additional controllable
time-dependent frequencichirping,” see, e.g., Ref. 1bdoes not improve the minimization with
respect to this cost. We thus show that in the model of the rotating wave approximation, the
“ mr-pulse transfer” corresponding to the minimum pulse area to achieve the complete transfer is a
consequence of purely geometric considerations.

(d) The solution is independent of time reparametrization, i.e., derivatives of controls can be
made as small as required simply by choosing an appropriate time parametrization. Moreover,
with an adequate choice of the parametrization it minimizesfltrencefor fixed transfer time
t,—to:

_ ("2 _ ("2
£= J;O|Q| (t)dt—ftob (t)dt, (5)

or equivalently the transfer time, with the constraint on the amplitix{€)|<1. More details
about the relations between these costs are given in Sec. Il C.

Remark 3:A control problem is calledlistributional if the set of admissible velocities is a
distribution, i.e., a nonintegrable field of planes. It is calleohtactif the distribution is acontact
distribution, i.e., if the field of planes is defined as the kernel of the one-farnhen dv is
nondegenerate when restricted to &gr A control problem is said to bsub-Riemanniarif
additionally one gives a Riemannian metric on the distribution, and one minimizes the Riemannian
length. For sub-Riemannian geometry we refer to Refs. 16-18.

In fact, as we shall see, the two-level problem reduces to a three-dimensional contact sub-
Riemannian problem, with a special feature: it has a symmetry, transverse to the distribution. It is
a standard fact that such a sub-Riemannian problem is in fact an isoperimetric pi@blére
sense of the calculus of variationsn the quotient by the symmetry. Such isoperimetric contact
three-dimensional sub-Riemannian problems have been studied in detail at the local level in Ref.
19, for instance. In fact, the above-given statement is nothing bufttivéal) solution of the
classical isoperimetric problefor Dido problem on the Riemannian sphere.

The study of this two-level case is described in Sec. Ill.

2. The three-level case

For three-level systems, labeled 1, 2, and 3, of respective en&gjds,, andEz, driven by
two resonant monochromatic fields of respective enveldiéy, j=1,2 and of frequencies,
and w,, the Hamiltonian, in the rotating wave approximati@®WA), reads

Downloaded 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



2110 J. Math. Phys., Vol. 43, No. 5, May 2002 Boscain et al.

E, uy(t)e'ert 0
H=| uy(tye 'er E> uy(t)e'“z' || (6)
0 Uy(t)e @2t Es

where
(1)1:=E2_E1, ul(.):RﬁR,
(.L)2=:E3_E2, Uz(.):R%R.

The controlau;(t), j=1,2 are connected to the physical parameters;bt) = u; 7;(t)/2, with the
couplingsp; , intrinsic to the quantum system, that we have restricted to couple only Ipeeld
j+1 by pairs. We allow the control variables, starting@tnd ending at;, to have any shape.

Controllability. For a control system, thaccessibility sebf a pointx, in the configuration
space is the set of points that can be joined fegnby a trajectory of the system. A control system
is said to becontrollableif the accessible set of every is the whole configuration space. For an
analytic distributional system, it is known that the configuration space is foliated by accessible
sets, calledorbits in that case. These orbits are exactly the Hermann—Nagano ¢skitsthe
Hermann—Nagano Theorem in the following and Ref. 22 for details

In the following we first prove that this three-level system reduces to a distributional problem
which is not controllable, since the orbits under consideration are two-dimensional spheres. Then
we show that on each of these spheres the control problem reduces to a singular-Riemannian
problem. The “relevant locus,” which is the union of all the orbigpherespassing through state
number 1, has an interesting nontrivial geometric description. It is the only nonorientable sphere-
bundle overS! (see Sec. IV A

Optimal solutions In this case we first consider the problem of minimizing the fluence for
fixed transfer timd,—ty (which is a parametrization-dependent ¢ost

t
£= f (R4 ud)dt. (7)
to

Again let us notice that minimization of the functional:

t
/= 1\/u§+ usdt, (8)
to

leads to the same motion in the space state, parametrized in any way. Moreover, minimizing the
functional £ is equivalent to minimizing the transfer-time for controls bounded in the following
way:

w2+us<1. 9

This will be explained in detail in Sec. Il C.
For the three-level systef®), the main known ways to completely populate state 3 from the
initial condition in state 1 are the following:

(i) application of two successive-pulses(without overlap, giving /= 7 in the systen{6);

(i)  interaction with two completely overlapping control variables(t)=u,(t) (with two
different pulses assuming that the couplings between 1 and 2 and between 2 and 3 are
different, giving also/ = ;%

(i) adiabatic passage by delayed pulggsthe same shapeuch thatu,(t) starts beforeu,(t)
(known as “counterintuitive” pulse sequenceThis way of transferring the population is

energetically expensive since it requirés .
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For this three-level system, we show that the ¢6stan be significantly reduced, finding its
minimum value

V3
/= ?71'%0.86677,

corresponding to the singular-Riemannian geodesic. This is also the minimum transfer time under
the constraint9).
The minimum value for the functional is

o3, 1
“27 -1,

[where ¢;—tp) is the fixed interaction time These results are described by Theorem 4 of Sec. IV.

We show that the associated pulse sequence is suchfftatstarts beforau,(t) (“intuitive”
sequenceand we construct symmetric smooth pulses of the same shape giving this minimum. We
compute the geodesic joining the initial state to the final state, and we give some examples of time
reparametrized optimal controls. The results thus show very natural control strategies that do not
look like the standard strategy in this type of problem. This study is the content of Sec. IV.

Tracking In Sec. V we construct for the three-level problem a geometric representation of
adiabatic passage and compare it with the strategies of optimal control. This allows one to refor-
mulate the adiabatic passage as explicitly fixing the trajectory leading from state 1 to state 3 and
in controlling the rate of transient population in the intermediate state 2. This procedure improves
on the standard adiabatic passage in that it exactly reaches the target state. This tracking technique
is standard in control theory. A solution of this type is generated by a counterintuitive sequence of
controls, in the adiabatic approximation.

II. PRELIMINARIES, ELIMINATION OF THE DRIFT, AND CHOICE OF THE COST

A. Preliminaries

We start with a quantum system with finite number(diltinct levels in interaction with a
time-dependent external field such that the Hamiltonian reads:

Q7 (1) E,  Qu(1) :
hel o aoxn - 0
: e . En-1 Qnoa(t)
o - 0 0, E

0 Qq(t) 0 0
Q) 0 Qub) :
=D+ 0 Q3 - 0 , (10)
: - - 0 Qn_q(1)
0 0 Q1) 0
with D:=diagE;, ... E,) and the energies of the system states appearing on the diagonal. Time-
dependent elemen@;(.):R—C, j=1,... n—1 are different from zero only between timgs

andt,. They couple the states by pairs. The tdbnis calleddrift. Section 11 B is devoted to the
elimination of D via a unitary transformation.
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The state-vectois(t), solution of the time-dependent ScHioger equatior(1), can be ex-
panded in the canonical basis of", formed by elements¢;=(1,0,...,0), ¢,
=(0,1,...,0),... ¢,=(0,,0,...,1): ¥(t)=cy(t) e+ Co(t) @+ - +cn(t) ey, With |ci(t)|?
+[cy()]?+ -+ +]c,(1)]2=1. Fort<ty andt>t,, |c;(t)|? is the probability of measuring energy
E;. Notice that

d
a|ci(t)|2:o for t<t, and t>t;.

Our problem can be stated in the following way: Assumiogt)|>=1 for t<t,, we want to
determine suitable interaction functiofk(.), i=1,...,n—1, such thatjc,-(t)|2=1 for time t
>t, and some chosepe {2, ... n}, requiring that they minimize the co&3).

Remark 4:This problem is a control problem on the real-2 dimensional sphere iR?" (or
on the complex sphere ii"). Standard considerations from control theory allow one to conclude
on the controllability on the sphefeven with arbitrarily small bounds on the contrélg(.)], i.e.,
it is possible to drive the system from any initial condition to any terminal condition on the sphere.
Also, control problems of this type have finite dimensional Lie-algebra: the reductive Lie algebra
su(n) X R. They can be lifted to left-invariant control problems on the compact Lie group
SU(n) xSt (S, the circle, and the controllability of the lifted control system also holds.

We will also consider the “real resonant case” in which the contfojscorrespond to lasers
that are in resonance:

QM =ue", o=E.—E,
i=1,...n—-1, Ui(.)ZR—>R. (11)

Notice that in this case we consider real controls which always leads to lack of controllability.

In the following we treat thenv=2 andn=3 cases. Than=2 case is treated in the most
general setting, in the sense that we control both the amplitude and the phase of the laser pulses.
We obtain that the optimal strategy is realized with an external pulse in resonance in the rotating
wave form. Then=3 case is treated directly with pulses in resonance in the rotating wave
approximation.

In the n=3 case, it is an open question if it is possible to reduce the value of th€8)pst
when controlling both amplitude and phase of the lasers.

In the following, to compute the orbits of the control systems under consideration, we will
make use of the standard Hermann—Nagano theorem. Moreover to compute optimal trajectories
we will use the well-known Pontryagin Maximum PrincigfeFor convenience we recall these
two theorems in the following. Proofs can be found for instance in Ref. 22.

Theorem (Hermann—Nagano: Let M be an analytic manifold and a family of analytic
vector fields on M Then:

(1) each orbit of 7 is an analytic submanifold of M,
(2) if O(xp) is an orbit containing the point,, then the tangent space 6f(x,) at x is given by
Liey(F). In particular the dimension ofie,(F) is constant ax varies overO(Xo).

Theorem (Pontryagin Maximum Principle): Consider a control system of the form x
=f(x,u) with a cost of the formfgfo(x,u)dt, where x belongs to a manifold M and u
e UCR™. Assume moreover that N, f° are smooth. If the coupléu(.),x(.)):[0,T]CR—U
XM is optimal, then there exists a never vanishing field of covectors algng that is an
absolutely continuous functio(p(.),po):te[O,T]Hp(t)eTj(t)M XR (where p=<0 is a con-
stant) such that:

(i) x(t)= gHlap (x(t),p(t),u(t)),

(ii) p(t)=— dHIx (x(t),p(t),u(t)),
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where by definition
H(X,p,u):=<p,f(X,u)>+pofo(x,u). (12

Moreover:

(i) H(x(t),p(t),u(t)) =Hm(x(t),p(t)), for a.e. te[0,T],

whereHy (X(t),p(t)) :=max, . H(x(t),p(t),v).

The real-valued map of*M XU, defined in(12), is called Hamiltonian. The couples
(u(.),x(.)) satisfying conditiongi)—(iii ) with p,=0 are calledabnormal extremals

B. Elimination of the drift term

In both caseq2) and (6) we show how to eliminate the drift terfi.e., diagg;,E,) and
diag(E; ,E,,E3) respectively from the Hamiltonian. In caséb) this elimination will be made just
by a unitary change of coordinates that at the same time eliminates the explicit dependence on the
time. In casg2) it will moreover require a unitary change of controls. This difference is simply a
consequence of the fact that in the three-level case we start with “real controls in resonance,”
while in the two-level case we use general complex controls.

Assume thai/(t) satisfies the Schoinger equatioril). Let U(t) be a unitary time-dependent
matrix and sety(t)=U(t) ¢’ (t) (interaction representatipnTheny’ (t) satisfies the Schdinger
equation:

AT,
|~ =H (0w,

with the new Hamiltonian:

r—p11-1 g —1d_U
H'=U"'HU-iU (13)

Here we consider the Hamiltonigd0), and we choose

U=diage 'Eit,e B2t e 'Ent),

We get:
0 Q,(t)e (B2 EDt 0 0
Qa{(t)ei(Ez—Eln 0 Qz(t)e—i(E3—Ez)t
H' = 0 Q% (t)el (s~ Bt : 0
: 0 Q,_;(t)e (En=En-1t
0 0 Q;:l(t)ei(En—En,l)x 0

(19

As a consequence, if we writg(t) =cq(t) o1+ Co(t) @+ - +cn(t)@n, and ¢’ (t)=ci(t) o1
+chy(t) ot -+ +ch(t) en, then|ci(t)|2=|c/ ()| i=1,2,...,n, thatisH andH’ have the same
population distribution.

For the three-level systeli®), this leads tadropping the primg

0 uy(t) 0
H=| ui(t) 0 uxt)]. (19
0 U,(t) 0

For the two-level systen2), redefining

u(t):==e (E27EJt (1), (16)
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we get(dropping the primg

_( 0 u(t))
H= u*(t) 0 J’ (17)

In the following we seu(t) =u,(t) +iu,(t), whereu,(.) andu,(.) are two real functions.

Remark 5:Notice that the unitary transformations on the states and on the controls preserve
the cost and the probabilities. As a consequence they preserve the initial and final conditions
|ci(to)[?=1, [cj(ty)|>=1.

Remark 6:This reduction procedure can be easily extended to the case where the drift term in
(10) is time-dependent:

D=diag E;(1), ... E.(1)). (19

The key point is that the couplings have to be only between successive levels. For the two-level
case, this requirement is obviously met. The elimination of the ¢i® in (10) requires the

matrix
U=diat{ exr{ =i J;El(s)ds) ,exp( =i ft;Ez(s)ds),...,exp< —i ft;En(s)ds) )

In this case the new Hamiltonian has the fofb4) with i(E; . ;—E;)t replaced by f{O(EiH(s)
—E;(s))ds and the resonance conditiohl) becomes

t
Qi(t)=ui(t)exp(if (Ei+1(s)_Ei(S))dS)a i=1,...n—1, u():R—=R.
to
C. Choice of different costs and relation between them

1. Minimizing length and energy

As we will show, both then=2 andn=3 problems can be stated as control problems that are
linear with respect to the contro(se., “distributional control problems):

5(=U1F1+ UZFz, (19)

wherex e S% for n=2 andx e S° for n=3, with F; andF, two vector fields on the-dimensional
sphereS®. It is thus natural to treat this problem as a sub-Riemannian probitethe three-level
case it is in fact singular-Riemannian problem 87 see Sec. I, to which is associated the
length

t
/’=f 1\/uzﬁ—u;‘;dt. (20
to

This length represents the cost, i.e., the quantity that has to be minimized in our problem. This cost
is time-reparametrization invariant. Thus, with such a cost one can always reparametrize the time
of the optimal solution in order to obtain controls with slow variatioa., with u; andu, smal),
that are closer to realistic pulses in practice.

Standard considerations show that it is equivalent to minimize the fluence for fixed transfer
timet;—ty:

Moo, 5
=1 (uij+uj)dt, (21
to
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instead of the length’” (20). Indeed a curve minimizes the catamong all curves joining the
pointsq, andq; in time t; —tq if:

(@ it minimizes the lengthy” among all curves joiningj, to q;, and
(b) itis a curve parametrized by a multiple of the arclength.

Once we have a curve minimiziry we can then change the parametrization to have deriva-
tives of controls as small as required.

Remark 7:Notice that, if we do not fix the time, the minimum of the césis zero and it is
not attained.

2. Minimizing the time

Reparametrizing the geodesics of the control syste®h (20) by the arclength, i.e., setting

ds= \uf+usdt,
we get the control problem:
X=U;F +UsF,,  ui+us=1, (22)

and the question is to minimize the transfer time, from the initial to the terminal condition.
Taking into account the homogeneity of the probl&t), it is clear that it is the same as to
minimize the transfer time for the systexsu,F;+ u,F,, with the constraint

2 2
ujt+uss<1.

It follows that, for the control systenil9), the problem of minimizing the cogR0), using a
parametrization with arclengtlthat is using the cosR1), with t; —ty equal to the total lengihis
equivalent to minimizing the time under the constraint on the contrpsu3<1.

Remark 8:Notice that the transformation on the controls necessary to eliminate the drift does
not affect the conditions?+u3=<1, u?+u3=1.

Remark 9:The problem of minimizing the transfer time for the systélf) under the con-
straintu?+u5<1, makes sense by itself. However, notice that if we drop the condifenu’
<1, then by the Hermann—Nagano theorem, the minimizing time between any two initial and
terminal conditions is zero.

In a recent articl¥ some related questions in the control of spin systems were discussed. The
problem is, however, distinctly different from the ones considered here. The authors also consider
a quantum system with a drift:

p
X= xo(x>+21 uXi(x),

left invariant on some compact gro@. But, in their case, all vector fields;(x) belong tok, a
Lie subalgebra of the Lie algebgof G. They consider a Cartan decompositiga k@ p, with
the standard Cartan’s commutation relations, and hence, the Lie algebra generatedXpg,the
i>1, is not equal ta (it is only k). Therefore in their case, to move from a point in a cdset
-Xp to another point in a cosét- x, requires the use of the drik, and hence requires a bounded
speed.

This implies that, in their case, even for unbounded controls there is a minimum time,
which is strictly larger than zeréand not attained in genejalAs mentioned previously, if we
relax the constrainu?+u3=<1, in our case, the minimum time is zefalso not attained in

general.
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3. Conclusions on the choice of the costs
There are three costs under consideration:

(@ The length(20). In the two—level case it is the sub-Riemannian length and coincides with the
integral of the absolute value of the amplitude. In the three-level case it is a singular-
Riemannian length.

(b) The fluence(21), for fixed transfer time;—tg.

(c) The time under the constrainf+u5<1.

Only the first of these costs is parametrization invariant, but all dae®), (c) lead to the same
trajectories in the phase space.

lll. THE TWO-LEVEL SYSTEM

In this section, we study a two-level quantum system in interaction with a laser for which we
control both the amplitude and the phase. The Hamiltonian becomes after elimination of the drift

0 u(t)
H= u* (t) L (23
Our aim is to transfer all the population from levE| to level E, minimizing (here we set,
ty ty
f |Q(t)|dt=f [u(t)|dt. (24
0 0

Writing ¢(t) =c4(t) o1+ C5(t) @2, Wherep;=(1,0), ¢,=(0,1), we start from any point satisfy-
ing |c1(0)|2=1, and our target is defined Bg,(t;)|>=1.

Remark 10This new Hamiltonian clearly gives rise to a driftlgss “distributional”) control
system, while the original Hamiltoniaf2) had a drift term. Notice that since we have assumed
Q e C, this simplification works without any additional hypothesis(®nThe fact that the optimal
strategy has the laser in resonaffice., Q(t)=b(t)e'l“'* ] w=E,—E;, aeR, b(.) real func-
tion] will be obtained as a consequence.

The Schrdinger equation corresponding to the Hamiltonian given by forni2®xis equiva-
lent to the system of ordinary differential equatiqQ@DE) for thec;’s:

C1=—iu(t)c,,
by iu*((t))czl. 29
Settingc, =X, +1iX,, Co=X3+iX4, U=U;+iU,, EQ. (25 becomes
X=UuiF{+UuyF,,
where
X1 Xa X3
o o BT VA S B (26
Xa —Xq - Xz

and the functiona(24) to be minimized is now

t
f Uz Ut (27)
0
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In these new variables the conditifmy (t)|?+ |c,(t)|?=1 is 2}, x3(t)=1, so in factxe S°. The
initial condition is now one point on the circlg,:={xe S*: x{+x3=1} and the target is the
circle S,:={xe S%: x5+ x5=1}. These targets are preserved by the transformations eliminating
the drift. The problem of minimizing27) is a classical sub-Riemannian problem®% which is
contact, as we shall see immediately.

The Lie algebra of the distributiorLet us compute the Lie algebra of the distribution. By
settingF;=[F,F,], we have

X
_)2( [F1,F2]=F3,
Fa=2 Y| and{[F2,Fs]=4F;, so LigF) =su2)~so3). (29)
X4
X3 [F3,F1]=4F,,

A. Controllability and minimizers

Let 7:={F,,F,}. SinceF is an analytic family of vector fields on an analytic manifold, we
can use the Hermann—Nagano theor@®e Sec.)l In this case, Ligo(f) is the vector space
having F,(x), F,(x), andF3(x) as base vectors. The Hermann—Nagano theorem says that the
orbit is an analytic submanifold & of dimension given by Lig ), wherex is any point of the
orbit. Letn(x),xe S® be the rank of the distribution. We have:

X4 X3 2X5

—X3 X4 —2X1
n(x):=rank(F,F,,F3)=rank Xp  —Xp —2X%4 -3

—X1 —Xo  2X3

It follows:

Proposition 1: The control system (26) is completely controllable

Remark 11:This controllability property, using only the first bracket, is equivalent, in the
three-dimensional case, to the fact that the distribution is contact.

Remark 12:The sub-Riemannian problem is not generic at all: first as we shall see, it is
isoperimetrig(it has a symmetry Second, even among isoperimetric sub-Riemannian problems, it
is non generic in the sense that the main basic sub-Riemannian invariant vasshddefs. 19,

23, and 24.
Remark 13:The control systeni26) is invariant under the following transformation:

coda) sin(a) 0 0

Xl Xl
X5 —sin(a) coga) 0 0 X5
X3 | 0 0 coga) sin(a) Xz |~ 29
X4 0 0 —sin(a) coda)/ ‘X4

This means that all the initial conditiong e S;, are equivalent. Notice that transformati(@9) is
generated by the Lie brackgf,,F,]=F3.

Minimizing geodesicsWe will be able to find optimal trajectories joining our boundary
conditions without making any computation. In f&&t andF, are two orthogonal vectors for the
standard metric o83

4
F1-Fo=2, (F1)i(F2);=0.

Hence, the length of an admissible curve is just its standard Riemannian length herefore,
if we find an admissible trajectory going from state 1 to state 2, which is a minimizing geodesic
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FIG. 1. The spher&® and the geodesics from =1 in the space,=0.

for the Riemannian metric 08°, then it is also a minimizer for our sub-Riemannian problem.
Now, each integral curve of the vector fiddcos@)F,+sin(a)F,) (beR,a€[0,27]) are such
admissible trajectories. It follows that:

Theorem 1: Every constant control of the form:

u;=bcoga)

u,=bsin(a)’ beR, ae[0,27] (30

is optimal and the target is reached at timg=t(7/2)(1h). Moreover ifxge S;, is defined by
X1=c0s(B), X,=sin(B), then the equations of the geodesics corresponding to the controls (30) are:

X1 =cog )cogbt),
Xp=sin(B)cog bt),
X3= —sin(a— B)sin(bt),
X,=—cog a— B)sin(bt).

(31

The second part of Theorem 1 is easily checked.
Now since the functional27) is invariant under time reparametrizations, one can kat@®be
a function of the time so that every optimal control has the form given by

Q(t) — b(t)ei[(Ez—El)H a],

wherea is an arbitrary constanh(.):R—R" is a real function with compact suppé@,t;] and
satisfyingfglb(t)=7r/2. In Fig. 1 are shown the geodesics issued from the pqiatl in the
spacex,=0.

B. Another interpretation: The Hopf fibration and the Isoarea problem

The Hopf fibration(see, e.g., Ref. 187:S*— S? is defined by the following map. L& be
described by the variablesc{,x,X3,Xs), =x*=1 and S$? by the variables %;,2,,23), >z
=1/4. We have:

2 2 2 2
(21,25,23) = 7(X1,X2,X3,X4) ::(%(x1+x2—x3—x4),x1x3—x2x4,x2x3+x1x4). (32
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FIG. 2. Schematic representation of the Hopf fibratiers®— S?. The geodesics given by Theorem 1 are also drawn.

The Hopf fibration gives tc8® the structure of a principal bundle with baS2 and fiber St
~U(1). Thefollowing proposition (that one easily checkshows why the Hopf fibration is
connected to our problem:

Proposition 2: Let R:=[F4,F5] [see formula (28)], andr the Hopf fibration defined above.
Then ;e Ker(d).

Notice thatF; is the generator of the symmetry that “transports” alo8g and Sy, (cf.
Remark 13 that means the following. Ky e S, (respectivelyx, € Sy;,,) then the orbitO(x,) of F3
coincides withS,, (respectively,S;,). From Proposition 2 it follows tha$, and S, shrink into
two points throughs. In particular these points are, respectively, the opposite pomtz,z3)
=(=*31,0,0). The situation is illustrated by Fig. 2. Notice that we have a one parameter family of
geodesics connecting, andS;,, since their images under are opposite points 08

In fact, the sub-Riemannian problem we have, is as follows: The distrib(tiansversal to
the fibers of the Hopf fibratiordefines a connection over tHisircle) principal bundle. It is easily
seen that the curvature form of this connection is just the pull lfgkhe bundle projectionof
the volume form of the Euclidean metric &3.

As a consequencésee Ref. 19 our sub-Riemannian problem corresponds to the “isoarea
problem” on the Riemannian spheg: given two points(antipodal onS? in our casg and any
fixed curvex(.) joining these two points, find another curyg), joining also the two points, such
that the length of/(.) is minimal, and the area encircled by the cur¥€9,y(.) has a given value.

Corollary: There is no other minimizing curvéhan the circlg(31)] joining S;, and Sy, .

Proof: Assume thaty:[0t;]— S® is such a minimizing curve. Then it has lengt2, and its
projection onS? is one of the circles in Fig. 2. Now each of these circles is lifted in a unique way,
via the connection, in one of the curv&l), once the initial point is chosen B),. Hencey is one
of the circles(31). [ |

Our (very special solutions exhibited previously are in fact geodesics of the Euclidean metric
on S?: they correspond to the choice of geodesics for the cu(ve and to thezero value of the
area.

IV. THE THREE-LEVEL RESONANT PROBLEM

Statement of the Problenn this section, we study a three-level quantum system, with only
neighboring levels coupled, controlled by two laser pulses in resonance, i.e., with frequencies
w1=E,—E;, w,=E3—E,; E{,E,,E; being the three energy levels.
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The aim is to transfer all the population from the state with en&rgio the state with energy
E; minimizing (again we sety=0)

t
f U+ Ut (33
0

Writing ¢(t) = cq(t) @1+ Co(t) @2+ C3(t) @3, Where;=(1,0,0), ¢,=(0,1,0), ¢3=(0,0,1), we
start from one point satisfyinge,(0)|2=1, and our target is defined Bgs(t;)|>=1.

Remark 14As in Sec. lll, this new Hamiltonian gives rise to a driftless autonomous control
system, while the control system corresponding to the old Hamiltofiamas time dependent
and with drift. But in this caséi.e., with real controls to obtain this strong simplification it is
essential to use lasers in resonance.

The Control SysteniThe Schrdinger equation corresponding to the Hamiltonian given by
formula (15) is equivalent to the system of ODE for tleg:

Clz - iul(t)CZ!
Co= —i(Uy(t)cy+uy(t)cy), (34)
C3: - iuZ(t)Cz.

Settingc, =X, +1iX5, C,=X4—iX3, C3=X5+iXg, EQ. (34) becomes

X: U1F1+ U2F2

where
Xl - X3 0
X2 - X4 0
X3 X1 X5
X= X4 | Fi= X, , Fo= Xg . (39
X5 0 —X3
X6 0 - X4

Here, the notations are such that the real paespectively, imaginary pajtof c,,c,,c5 are
X1,Xa,Xs5 (respectivelyx,, —X3,Xg). This convention will be very convenient later on.

In these new variables the conditiooy (t) |2+ |c,(t)|2+]|ca(t)|?=1 is =2_, x*(t)=1, so in
factxe S°. The initial condition is now one point on the circ,:={xe S*:x?+ x5=1} and the
target isSh:={xe S®:x&+x3=1}. With the choice(33) of the functional to be minimized, our
problem looks like a classical sub-Riemannian problemSdnbut, as we shall see, it is very
degenerate.

The Lie algebra of the distributiorLet us compute the Lie algebra of the distribution. By
settingF;=[F4,F,], we have

X5
T [F1,Fo]=Fs,
Fs= o |- [F2,F3]=F1,
Fa,F,]=F
—X [ 3 l] 2
—%,

so Lie(F)=su(2)~so(3).
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A. General properties of the orbit
Let n(x), xe S° be the rank of the distribution. We have

—X3 0 X5

—X4 O X

X1 X5 0 2 if xeQ
n(x) _ranK((FlvFZ!F3)_ranK( X2 Xe 0 - 3 if XES5\Q, (36)
0 —X3 —Xg
0 —X4 —X
whereQ is the subset 08° defined by
XgXe— X4X5=0, (37)
X1Xg— XoXg= 0, (38)
X3X2_ X4X1: 0 (39)

Notice that ifx;,X5,X5 are all different from zero, Eq$37), (38), and(39) are equivalent to

X, X4 Xg
—=—=— 40
X1 X3 Xg 40

Now since every initial condition lies i@ (i.e., Sllne Q), from the Hermann—Nagano theorem it
follows:

Proposition 3: For eachxy e Slln, the orbit O(xg) is an analytic two-dimensional submanifold

of .

More precisely definingy(«) as the initial condition corresponding to
X1(0)=coq a),
X(0)=sin(a),

wherea e[ 0,27[, we get the following:

Theorem 2: The orbit Q(Xg(@)), ae[0,27[ is the two-dimensional sphere of equatio'ri X
+x 2+x'2=1 where

(41)

/ cofa) sin(a) 0 0 0 0
X1 . X1
X} —sin(a) coga) 0 0 0 0 %
X3 0 0 coga) sin(a) 0 0 X3
X, | 0 0 —sina) coda) 0 0 X4 “42
X5 0 0 0 0  cosa) sin(a)| | %
! X
X6 0 0 0 0 —sinla) coga) 6

Proof: Assume firsta=0. This means that the initial condition is definedX3y0)=1 and the
variables with the prime coincide with those without the prime.

In Eq. (35 the variablesx,,X3,x5 are decoupled from the othén fact, we have a product
system, of two subsystems dtf). It follows O(xo(@))C{xe S*:x3+x5+x3=1}. But all the
points of this sphere belong to the orbit since they can be reached by using a control of the form:

_[(1,0  for te[Ot,]
(U U= 0 1) for teft, ty]
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y1 =X

State 2

3 /

State 1

Integral Curves of FI Integral Curves of F 5

& =

FIG. 3. The vector field§, andF, on the sphere.

for somet,,t,>0. In fact, in the &;,X3,X5) space, each integral curve Bf (respectivelyF,) is
a circle that lies in the plane;= const(respectivelyx,; = cons} and the center of which belongs
to thexs (respectivelyx,) axis, see Fig. 3. At tim¢, one reaches the point:

X1(ta) =cogt,),
XS(ta) = Sin(ta)v .
Xs5(ta) =0.

At time t, one reaches the point:

X1(tp) =cogty),
X3(tp) =sin(t)cogty),
X5(tp) = —sin(ty).

So all the points of the spher§+x3+x2=1 can be reached for suitatiigandt, . The Theorem
is proved fora=0.

Assume now that we start from the poixg(«) for an arbitrarya. Making the change of
coordinates given by formuléd2), one is back to the situatioa=0 for the variables with the
prime. This concludes the proof. |

Notice that, for fixedky(«), one can reach only two points of the final target. For instance if
a=0, i.e.,x,(0)=1, we can reacl$}, only in the two pointsts= =+ 1. The situation is illustrated
by Fig. 4.

More precisely as a consequence of the symmetry given by forrfdda we have the
following:
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Q
(Orbit)

FIG. 4. The foliation ofQ.

Corollary of Theorem 2: Fixxe[0,27], let x=(X, . . . Xg) € O(Xo(@)), and definea;x(x),
az4(X), ase(X) to be the angles (illustrated in Fig. 5) such that

[)(1: X3+ X5 cog agX)),
Xo= X]+ X5 Sin(a12(X)),

X3= X5+ Xj COL azy(X)),
X4= X5+ Xg Sin(as4(X)),

X5 = X5+ X COS asq(X)),
Xe= \X&+ X5Sin( asg(X)).

Then, for each suck, there exist Ry(X),N34(X),Nse(X) € {0, 1} such that

ap(X)=axnym if aq,isdefinedi.e., x;,X, not both vanishing (43
az(X)=axngm if azisdefinedi.e., x3,x, not both vanishing (44)
asg(X)=a*tnggm if aggisdefinedi.e., xs,Xg not both vanishing (45

Moreover at least one of the three angles,, a3, asg is defined

The Structure of QLet us now study the structure @. From the Hermann—Nagano theorem
we have

Q2 U o,

Xoe Sy,

but in fact this equation holds with equality as a consequence of the fact that rel@mon&8),
and(39) definingQ are equivalent to Eq$43), (44), (45), that hold on the orbit. More precisely
let x=(Xq, ... ,Xg) be a point ofQ and « the angle betweer; andx, measured counterclock-
wise, if defined. If nota will be the angle between the variablgeg andx,, or between the

FIG. 5. The definition of the angle®;(x), azi(X), ase(X).
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<

FIG. 6. The angle® and ¢.

variablesxs andXg (in the spirit of the Corollary of Theorem)2Because 0f40), a can be
actually defined in this way. One clearly has O(xy(«)). Hence we have proved the following:

Proposition 4: We have @ Uxgest Ox,:

Let o be the antipodal involution ' x S?, that is,o(a,p) = (a+ 7,— p). The involutiono
has no fixed point, and is orientation reversing. Also, clearly, by Theorem 2, our orbiis are
stable. HenceQ=(S*x S?)/~ wherex~x’ if o(x)=o(x"). Therefore, it is not hard to see that:

Theorem 3: Q is the (only) nonorientable sphere-bundle ovér S

B. Geodesic equations on the sphere

Due to the invariance under the transformatid®) all the points ofS;, can be considered
equivalently. In the following we will study the optimal control problem on the afiix,), where
Xq is defined byx;=1. ThenO(x,) is the sphere of equatiotf + x5+ x2=1. In what follows, we
will keep the notatior-; andF, for the restrictions of; andF, to this sphere.

In order to get labels for coordinates corresponding to quantum states, and in order Eghave
pointing in the positive direction from the poirg= 1, we definey,=X;, Yo=X3, Y3=—Xz5. The
control system under consideration is then

Y1
y2 :U1F1+U2F2,
Y3
where
Y2 0
Fi=| Y1 |, Fo=| —VY3
0 Y2

The vector fields are plotted in Fig. 3. The initial condition is the pgipt 1. The state number

1 (respectively, 2, Bcorrespond to the pointg, = =1 (respectivelyy,= *+1, y3=*1). State 2

can be reached from state 1 using oRlyand state 3 can be reached from state 2 using Baly
(dotted line$. However, state 3 cannot be reached from state 1 using a trajectory contained in the
circle of equation:

y.=0 (ie., yi+y3=1), (46)

since no piece of this circle is an admissible trajectory. This is due to the fadt fHatcollinear
to F, on the circle(46), and not tangent to this circle.
A new orthogonal framelLet us describe the orbit in spherical coordinatese Fig. &
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y1=cog #)cog ¢),
yo=sin(6), (47)
y3=Cog 6)sin(¢).

=Rl

._( cog ¢) sin((ﬁ)) [Glzag
T\ —sin(¢) coge))’ |Ga=tan(6)d,.

SinceRe SO(2), thecouple G;,G,) is a new orthonormal frame for the singular-Riemannian
length. For this new frame the control system is then

We have

where

0
<¢)ZU1G1+02G21 (48)

and the functional to be minimized y%l\/vzﬁ vzzdt. The relation betweenq,u, andvq,v, is
obtained fromu,F;+U,Fo=0v,G;+0v,G,:

up U1
(Uz)_R(W)' 49
The metric defined by the framés(,G,) is a singular metric. Indeed whef=0 we haveG,
=0, that is exactly on the circlel6). Notice that the singularity of the metric fer= 7/2 is only
due to the choice of the coordinates system.

The Hamiltonian Let us compute the geodesics using the Maximum Principle. Here, for
standard reasons, we use as cost the fluéibe The final time is fixed by requiring the param-
etrization by arclength that i@si+v§= 1 (this means to normalizef,,= 1/2, see the Pontryagin
Maximum Principle in Sec. | for the definition ¢f,). Notice that from formula49) we have

vit+vi=ui+us.

As explained in Sec. Il C 2 this corresponds to minimizing the time under the consuﬁaint
+u§$ 1. LetP=(Py,P,) ET;(,)M. By definition the Hamiltonian is

H(0,¢,Py,Py.v1,02)=(P,01G1+0v,G,) +po(vi+v3)
=v1Pytv,oPy tan( ) + po(vi+v3). (50)

It is easily checked that, as for the Riemannian case, we can always aggér@gthere are
no abnormal extremalsnd we can normalizp,= — 3. Extremal controls are computed from the
maximum condition:

oM oM

vy E:O’ =v1=Py, va=Pytan(0). (5D)

Hence, we obtain that the extremals are projections or(@fi#® space of integral curves of the
Hamiltonian vector field corresponding to the following Hamiltonian:

Hu=3(P5+(tan(0)P,)?). (52

The Hamiltonian equations are
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. IHpy
~ap, o
IHy
b= ap¢—P¢tar12(0),
. dHwm
P,=— 70 =—Pjtan(6)(1+tarf(6)),
. IHy
Py=- Py
Settinga:=P finally we have
6=P,, ¢=atarf(6), P,=—a’tan6)(1+tari(6)). (53)

This Hamiltonian system is Liouville integrable since we have two independent and commuting
constants of the motioty, andP ,=a.

1. Minimizing the length
Let us find the geodesic without the parametrization, i.e., a relation betvaed$. We have

dp _¢ ¢ atar(e)
J1-a’tarf(6)

o 5 Py
where we have expressél, using relation(52) and normalizedHy, = 1/2. So we have the two
families of solutions parametrized by the valueaof

(59

- (g)= 0 atarf(s) a
a(6)=2 0 \1—aZtarf(s)
a2

: (59

a a Vita?
arctar(m sin( 0)) - \/ﬁ arctar(m sin( 6))

whereE (6,a) :=/%(1— a2+ (1+a?)cos(%)).
To fix the ideas, let us consider only the famify, with a>0 and suppos@=0, the other
cases being symmetric. Let us call this famibs(6). Expression(55) defines¢,(6) in the

interval [ 0,6, wWhere 6, is the value ofé at which the denominator of formul®4) vanishes:

— 1
0a:=arcta76 "L (56)

Notice that lim, .5 E[6,a]=0 so

(57)

lim ¢a(6) 71 2
im == -
vy a 2 1+a
—Va

In the following we considekp,(6) defined in[OFa] where by definitionq&a(?a) is the value
given by formula(57). Indeed, from the symmetries of the system, we have to consider two
branchedillustred in Fig. 7 to describe the whole relation betweérand ¢:

H(0)=ba(0),
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¢

FIG. 7. The geodesic curve as a relation betwéemd ¢.

GA(0)=2¢4(0,)— ha( 6).

The geodesic reaching the target is the one satisfybgg@l)zwm. From Eq.(57) we get
a:=1n3.

Remark 15:By considering both signs in formul®5) (or equivalentlya positive and nega-
tive) and f<[ —r,7r] one gets four equivalent optimal trajectories reaching the stétee3Fig. 3.

Moreover the set of geodesics parametrizedabgilows one to easily compute an optimal syn-
thesis for the problem.

A smooth parametrization of the geodesio get an explicit expression of the contrgés

function of the timeé reaching the final poind=0, ¢=7/2, one should first fix a parametrization
6(t) in such a way that:

(1) 6(0)=6(t2) =0,
(2) for somet €]0,t4[ it holds:

0(t) = 0= /3,
6(t) isincreasing fote[0,t],
6(t) is decreasing fote[t,t,].

State 1

State 2 State 2

State 1

FIG. 8. The four geodesics reaching the state 3. Two are on the other side and reach tlgg=poiit
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2.5 u, u,
2
1.5
1
u, Uy
0.5
1 2 3 4

FIG. 9. Example 1C” optimal controls.

The best choice is of course a sufficiently regular symmetric function. In this case wet have
=1t,/2 and

_| dws(0(t)) if te[0t,/2,

PO=] 2015(0(12/2) — bapa(O(ts—1) i te[ty/2t]. (58)

The controlsuv,(t) and v,(t) can be obtained from the relatiof(t)d,+ ¢(t)d,=v1(t)dy
+v,(t)tan(@(t))d, from which we have

b(1)
tan 6(t))

Remark 16:Notice that relation$59) coincide with relationg51) only in the case in which
the curve @(t),¢(t)) is parametrized with constant velocity.

Finally the amplitudes of the lasers are obtained with forniat.

Example 1:Consider theC” function:

va(D)=06(t), vo(t)= (59

0 if t<0 or t>t,

o(t)= gel’“l*t)(*t) otherwise. (60)
The corresponding laser amplitudegt) andu,(t) (for t;=4) are shown in Fig. 9.
Example 2:Consider the function:
0 if t<0 or t>t,
B(t)=1 (—1+e %001t (61)

otherwise.

3(—1+¢°

The corresponding laser amplitudegt) andu,(t) (for t;=4) are shown in Fig. 10.

2. Minimizing either the fluence or the time for constrained controls

To minimize the fluence, one should also get the parametrization from the Hamiltonian equa-
tions. From the equatiotafter fixing a=1#/3):

6=P,=\1—a%tarf(6),

we have
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1 2 3 4

FIG. 10. Example 2: a possible choice of optimal controls.

arctar( \/%0?20) V1+2 cog2 0)sec 0)

2 J1—tan(6)%/3

Using the inverse function theorem, this formula permits one to desé(i)en the intervaI[Oﬁ
where

t(0)=

te= i v
= Iﬁlt(ﬁ)—z’ﬂ.
0— 04

By symmetry this is exactly half of the final time. Finali§(t) can be obtained integrating the
equationg(t) = a tarf(6(t)). Controlsu,(t) andu,(t) can be obtained with formuld59) and(49)
and they are shown in Fig. 11.

Remark 17:Notice that these controls are not smoothtatO0 and at the final time 2
= (V3/2) .
From this analysis we get the values of the costs for the optimal trajectory:

Theorem 4: For the three costs described in Sec. Il C, the following relations.hold
(a) Length:

t V3
Min( J' l\/u21+ u22 dt) =5
0

0
2t—71r

FIG. 11. Optimal controls minimizing fluence or time.
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Tracking solution

FIG. 12. Usual-adiabatic and tracking solutions.

(b) Fluence, with fixed transfer time T:
) T 3 .1
M.n(fo(uimg) dt>=zw2?. (62
(c) Time under the constraintit- us<1,
Tmin=—" - (63)

V. THE TRACKING COUNTERINTUITIVE SOLUTIONS

For practical applications, trajectories joining state 1 to state 3, that take as small as possible
the population of state H.e., with 6(t) closed to zerh are also interesting. We recall that the
nonadmissible trajectory is contained in the cir¢i®). In this section we study a trajectory in
which ¢(t) is monotonously increasing between 0 an@, and

o(t)<e, for everyte[0t,], (64)

for some smalk>0 fixed. This means that the population in stafed2,] is always small, less or
equal than sif(e)=¢+0(c*) [see formula47)].

It is well known'?® that the nonadmissible trajectory can be approximated using controls
u4(t) andu,(t) in the so-called “counterintuitive” sequencgsee Fig. 12 for such a sequehda
the following we show how to build a trajectory satisfying conditi&4) and connecting exactly
the pointsP, defined by(¢,0)=(0,0) and P, defined by(¢,6)=(/2,0).

The idea is to track a trajectory connecting these two points taking care of the constraints that
we have on the derivatives By andP,. More precisely we should find a functi@ii¢) such that
the following holds. Letp(6) (respectively,¢?(6)) be the inverse function of(¢) in a neigh-
borhood ofP; (respectivelyP,). SinceF; andF, vanish, respectively, at poin®; andP,, we
must have

det
—| =0, (65)
e |,_,

Downloaded 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 43, No. 5, May 2002 Optimal control in laser-induced population 2131

d¢?

a0 =0. (66)

=0

A possible choice is the symmetric function is

4
0B =e— \/¢(g—¢), (67)

which reaches the valueonly at the point$p= 7/4, as shown in Fig. 12.
Now we have to choose a parametrizatiéty, ¢(t)). To have continuous controls satisfying
u1(0)=0, uy(0)=0, u;(t;)=0, uy(t;)=0 we must have

6% (1)]o=0,

6%(1)];,=0.
From Egs.(65), (66) we get

¢'(1)]o=0,

¢*(t);,=0.

To get controls having zero derivative at the initial and final points, we can use the following
function:

60067 (¥ t4, 15™f o 5t%7 3ttt}
(ﬁ(t):—tig— 1—3—T+ 11 —2t0t1+ 3 - 4 +7. (68)

Notice that this function satisfiesp(t)=@2(t)=¢3(t)=p*(t)=°(t)=¢°(t)=0 for t
=0,,. The corresponding controls are computed with relati@® and (49).

Remark 18:Let us use a parametrizatiop(t) with ¢0(t)[—o=0, ¢"(t)];=,=0), i
=1,...,n, n=2, then the following holds:

(1) if n=2 thenuy(0)=u,(0)=0, lim,_, y(t)=—ce, lim,_oUy(t) =22,

(2) if n=3 thenu(0)=u5,(0)=0, 0>U;(t;)>—c, 0<U,(0)<oo,

(3) if n=4 thenu4(0)=u,(0)=0,

u)(0)=uP=0 for i=1,...n—3. So if ¢ is C", in |=8,t;+8] (6>0, ¢(t)=0 in

]1—8,0]U[ty,t;+ 8]) thenu, andu, areC" 3 in]—6,t,+ .

Notice that for very small values af one gets very big values of the controls. We would like to
stress the fact that the trajectory obtained with this tracking reaches exactly the final target for any
fixed value ofe. While in the “counterintuitive” strategies used in literaturegif is the maximum
value reached by, then the final target is reached with an error smaller thabut different from
Zero.

In the last picture the tracking solution corresponding to the expressiof®8)f for e
=2/19, andt;=4 and a typical strategy used in literature:

- 13
ui(t)= o + NS

-5 13 €9
Up(t)=—g +

e e(—2.7+ 1.5t)2
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are compared. Notice that the pulses have similar area. Moreover, notice that the trajectory cor-
responding to the control§69) (obtained integrating numerically the ScHimger equation
reaches negative values 6f

VI. CONCLUSION

In summary, we have shown how optimal controls for two- and three-level models can be
constructed on the basis of geometric arguments. For the two-level modes we recover the well-
known “m-pulse” strategy, and obtain the corresponding generalization for the resonant three-
level model. The optimal trajectories appear as geodéRiesnannian or singular-Riemannjaon
two-dimensional spheres. Furthermore, besides the optimal control strategies, the standard track-
ing technique from geometric control theory allows us to analyze a method of adiabatic control
used in recent experiments. It leads to an improvement that allows one to reach the target state
precisely. The extension of these results to the treatment of more géhérael systems will be
presented in forthcoming work.
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