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Département de Mathe´matiques, Analyse Applique´e et Optimisation, Universite´ de
Bourgogne, 9, Avenue Alain Savary, B.P. 47870-21078 Dijon Cedex, France
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Département de Mathe´matiques, Analyse Applique´e et Optimisation, Universite´ de
Bourgogne, 9, Avenue Alain Savary, B.P. 47870-21078 Dijon Cedex, France
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We apply the techniques of control theory and of sub-Riemannian geometry to
laser-induced population transfer in two- and three-level quantum systems. The aim
is to induce complete population transfer by one or two laser pulses minimizing the
pulse fluences. Sub-Riemannian geometry and singular-Riemannian geometry pro-
vide a natural framework for this minimization, where the optimal control is ex-
pressed in terms of geodesics. We first show that in two-level systems the well-
known technique of ‘‘p-pulse transfer’’ in the rotating wave approximation
emerges naturally from this minimization. In three-level systems driven by two
resonant fields, we also find the counterpart of the ‘‘p-pulse transfer.’’ This geo-
metrical picture also allows one to analyze the population transfer by adiabatic
passage. ©2002 American Institute of Physics.@DOI: 10.1063/1.1465516#

I. INTRODUCTION: PHYSICAL CONTEXT

A. Generalities

Design of external laser fields~amplitudes and frequencies! to reach a selected state of
quantum system is of primary importance for the control of quantum dynamics. The techniqu
this state-selectivity that have been developed are essentially based on~i! adiabatic passage~see,
e.g., the recent works1–4!, ~ii ! multiphoton quasiresonant pumping5 by ‘‘generalizedp-pulses,’’6

and ~iii ! optimal control theory~see, e.g., Refs. 7 and 8!.
Adiabatic passage has the advantage of robustness in the sense that significant devia

the fields do not significantly modify the final result. On the other hand, optimal control
systematic framework to design the field parameters~or control variables! to reach selectivity in
maximizing or minimizing a quantity~the cost! depending functionally on the state and cont
variables. This design is in general not robust, in contrast with standard adiabatic passage
the robustness is difficult to quantify as a cost, we do not expect in general the adiabatic p
to emerge from an optimal control solution. This has been discussed for specific s
systems.9,10 However optimality for adiabatic passages has been characterized in Ref. 11.

a!Electronic mail: uboscain@u-bourgogne.fr
b!Electronic mail: charlot@math.univ-montp2.fr
c!Electronic mail: gauthier@u-bourgogne.fr
d!Electronic mail: Stephane.Guerin@u-bourgogne.fr
e!Electronic mail: jauslin@u-bourgogne.fr
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The success of these coherent laser-induced processes requires, in general, use of as
possible external pulses, to minimize incoherent effects of relaxation~through spontaneous emis
sion, collisions, etc.!. It is essential that the total time of the pulse is shorter than the characte
times of the incoherent losses. Coherent transfers also need as low as possible pulse inten
order to~i! minimize incoherent phenomena induced by strong fields such as ionization for a
or molecules, and~ii ! avoid involving other energy levels, that are not included in the mod
Otherwise the population is spread among these levels and the transfer becomes inefficie

Depending on the concrete physical setting there are several possible choices of th
functional. One choice, which has been studied in Ref. 12, is to minimize the total time o
control process. However, the total time minimization presented in Ref. 12 assumes that arb
large laser intensities can be used. The relations between our results and the results of Ref.
be made clear in Sec. II C.

In this paper we address the two- and three-level problem from the geometric control t
point of view. We consider several functionals to be minimized, which are geometrically
natural, and that physically reflect the practical constraints mentioned previously@fluence, see
formula ~5! for the two-level case and formula~7! for the three-level case, or transfer time wi
bounded controls, etc.#. The choice of these costs will be discussed in Sec. II C. We will also
the classical tracking technique, often used in in geometric control theory~see Ref. 13!, that will
allow in particular achievement of adiabatic transfer.

Remark 1:In the choice of the cost to be minimized, it is useful to consider optimal probl
that are independent of time reparametrization. Indeed, in that case, very slowly varying sol
comparable with the ones used in experiments, can be obtained just by time reparametr
This point will be taken into account in the following, in particular see Sec. II C. But we will a
consider problems that do not have this feature.

B. Content of the paper

In this work we apply geometric control theory in two- and three-level systems, which
briefly describe in the following. Moreover we make the connection with the adiabatic pass

1. The two-level case

We first study the population transfer in a two-level quantum system~of energiesE1 andE2!
driven by an external field of arbitrary time-dependent shape, starting att0 and ending att1 . The
dynamics is governed by the time-dependent Schro¨dinger equation~in a system of units such tha
\51!:

i
dc~ t !

dt
5Hc~ t !, ~1!

c(.):R→Cn, n52, where

H5S E1 V~ t !

V* ~ t ! E2
D . ~2!

is the Hamiltonian of the system~we have assumed no diagonal coupling!. We choose the mos
general situation where the off-diagonal element is complex:V(t):R→C.

In the two-level system~2!, complete controllability~on spheres! is obvious~see the following
for the precise definition of controllability!. We show that the natural optimal control problem
minimizing the integral of the laser amplitude:

l 5E
t0

t1
uVu dt ~3!

has the following features.
d 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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~a! After some transformations the problem can be formulated as a problem of
Riemannian geometry~see Remark 3!.

~b! The optimal control solution has the expected resonance property, i.e.,V can be written as

V~ t !5b~ t !ei [(E22E1)t1a] , ~4!

wherea is an arbitrary constant,b(.):R→R1 is a real function with compact support@ t0 ,t1#.
~c! The optimal amplitudeb(t) satisfies

E
t0

t1
b~ t !5p/2.

Remark 2:We thus recover the well-known strategy of ‘‘p-pulse transfer’’ of a resonant puls
in the rotating wave approximation,14 which gives complete transfer withV(t)5mF(t)eif(t)/2,
ḟ(t)5E22E1 , and l 5umu* t0

t1F(t)dt/25p/2. Herem is the intrinsic coupling between the tw

levels andF(t) the external pulsed field. This shows in particular that an additional controll
time-dependent frequency~‘‘chirping,’’ see, e.g., Ref. 15! does not improve the minimization with
respect to this cost. We thus show that in the model of the rotating wave approximatio
‘‘ p-pulse transfer’’ corresponding to the minimum pulse area to achieve the complete transf
consequence of purely geometric considerations.

~d! The solution is independent of time reparametrization, i.e., derivatives of controls c
made as small as required simply by choosing an appropriate time parametrization. Mor
with an adequate choice of the parametrization it minimizes thefluencefor fixed transfer time
t12t0 :

E5E
t0

t1
uVu2~ t !dt5E

t0

t1
b2~ t !dt, ~5!

or equivalently the transfer time, with the constraint on the amplitudeub(t)u<1. More details
about the relations between these costs are given in Sec. II C.

Remark 3:A control problem is calleddistributional if the set of admissible velocities is
distribution, i.e., a nonintegrable field of planes. It is calledcontactif the distribution is acontact
distribution, i.e., if the field of planes is defined as the kernel of the one-formv, then dv is
nondegenerate when restricted to Ker~v!. A control problem is said to besub-Riemannianif
additionally one gives a Riemannian metric on the distribution, and one minimizes the Riema
length. For sub-Riemannian geometry we refer to Refs. 16–18.

In fact, as we shall see, the two-level problem reduces to a three-dimensional contac
Riemannian problem, with a special feature: it has a symmetry, transverse to the distributio
a standard fact that such a sub-Riemannian problem is in fact an isoperimetric problem~in the
sense of the calculus of variations! on the quotient by the symmetry. Such isoperimetric con
three-dimensional sub-Riemannian problems have been studied in detail at the local level
19, for instance. In fact, the above-given statement is nothing but the~trivial! solution of the
classical isoperimetric problem~or Dido problem! on the Riemannian sphere.

The study of this two-level case is described in Sec. III.

2. The three-level case

For three-level systems, labeled 1, 2, and 3, of respective energiesE1 , E2 , andE3 , driven by
two resonant monochromatic fields of respective envelopesFj (t), j 51,2 and of frequenciesv1

andv2 , the Hamiltonian, in the rotating wave approximation~RWA!, reads
d 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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H5S E1 u1~ t !eiv1t 0

u1~ t !e2 iv1t E2 u2~ t !eiv2t

0 u2~ t !e2 iv2t E3

D , ~6!

where

v1ªE22E1 , u1~ .!:R→R,

v2ªE32E2 , u2~ .!:R→R.

The controlsuj (t), j 51,2 are connected to the physical parameters byuj (t)5m jFj (t)/2, with the
couplingsm j , intrinsic to the quantum system, that we have restricted to couple only levelsj and
j 11 by pairs. We allow the control variables, starting att0 and ending att1 , to have any shape

Controllability. For a control system, theaccessibility setof a point x0 in the configuration
space is the set of points that can be joined fromx0 by a trajectory of the system. A control syste
is said to becontrollable if the accessible set of everyx0 is the whole configuration space. For a
analytic distributional system, it is known that the configuration space is foliated by acce
sets, calledorbits in that case. These orbits are exactly the Hermann–Nagano orbits~see the
Hermann–Nagano Theorem in the following and Ref. 22 for details!.

In the following we first prove that this three-level system reduces to a distributional pro
which is not controllable, since the orbits under consideration are two-dimensional spheres
we show that on each of these spheres the control problem reduces to a singular-Riem
problem. The ‘‘relevant locus,’’ which is the union of all the orbits~spheres! passing through state
number 1, has an interesting nontrivial geometric description. It is the only nonorientable sp
bundle overS1 ~see Sec. IV A!.

Optimal solutions. In this case we first consider the problem of minimizing the fluence
fixed transfer timet12t0 ~which is a parametrization-dependent cost!:

E5E
t0

t1
~u1

21u2
2!dt. ~7!

Again let us notice that minimization of the functional:

l 5E
t0

t1Au1
21u2

2dt, ~8!

leads to the same motion in the space state, parametrized in any way. Moreover, minimiz
functionalE is equivalent to minimizing the transfer-time for controls bounded in the follow
way:

u1
21u2

2<1. ~9!

This will be explained in detail in Sec. II C.
For the three-level system~6!, the main known ways to completely populate state 3 from

initial condition in state 1 are the following:

~i! application of two successivep-pulses~without overlap!, giving l 5p in the system~6!;
~ii ! interaction with two completely overlapping control variables:u1(t)5u2(t) ~with two

different pulses assuming that the couplings between 1 and 2 and between 2 and
different!, giving alsol 5p;20

~iii ! adiabatic passage by delayed pulses~of the same shape! such thatu2(t) starts beforeu1(t)
~known as ‘‘counterintuitive’’ pulse sequence!.1 This way of transferring the population i
energetically expensive since it requiresl @p.
d 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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For this three-level system, we show that the costl can be significantly reduced, finding it
minimum value

l 5
)

2
p'0.866p,

corresponding to the singular-Riemannian geodesic. This is also the minimum transfer time
the constraint~9!.

The minimum value for the functionalE is

E5
3

4
p2

1

t12t0

@where (t12t0) is the fixed interaction time#. These results are described by Theorem 4 of Sec
We show that the associated pulse sequence is such thatu1(t) starts beforeu2(t) ~‘‘intuitive’’

sequence! and we construct symmetric smooth pulses of the same shape giving this minimum
compute the geodesic joining the initial state to the final state, and we give some examples
reparametrized optimal controls. The results thus show very natural control strategies that
look like the standard strategy in this type of problem. This study is the content of Sec. IV.

Tracking. In Sec. V we construct for the three-level problem a geometric representatio
adiabatic passage and compare it with the strategies of optimal control. This allows one to
mulate the adiabatic passage as explicitly fixing the trajectory leading from state 1 to state
in controlling the rate of transient population in the intermediate state 2. This procedure imp
on the standard adiabatic passage in that it exactly reaches the target state. This tracking te
is standard in control theory. A solution of this type is generated by a counterintuitive seque
controls, in the adiabatic approximation.1

II. PRELIMINARIES, ELIMINATION OF THE DRIFT, AND CHOICE OF THE COST

A. Preliminaries

We start with a quantum system with finite number of~distinct! levels in interaction with a
time-dependent external field such that the Hamiltonian reads:

H5S E1 V1~ t ! 0 ¯ 0

V1* ~ t ! E2 V2~ t ! � ]

0 V2* ~ t ! � � 0

] � � En21 Vn21~ t !

0 ¯ 0 Vn21* ~ t ! En

D
5D1S 0 V1~ t ! 0 ¯ 0

V1* ~ t ! 0 V2~ t ! � ]

0 V2* ~ t ! � � 0

] � � 0 Vn21~ t !

0 ¯ 0 Vn21* ~ t ! 0

D , ~10!

with Dªdiag(E1, . . . ,En) and the energies of the system states appearing on the diagonal.
dependent elementsV j (.):R→C, j 51, . . . ,n21 are different from zero only between timest0

and t1 . They couple the states by pairs. The termD is calleddrift. Section II B is devoted to the
elimination ofD via a unitary transformation.
d 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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The state-vectorc(t), solution of the time-dependent Schro¨dinger equation~1!, can be ex-
panded in the canonical basis ofCn, formed by elements w15(1,0,. . . ,0), w2

5(0,1,. . . ,0), . . . wn5(0,,0,. . . ,1): c(t)5c1(t)w11c2(t)w21 ¯ 1cn(t)wn , with uc1(t)u2

1uc2(t)u21 ¯ 1ucn(t)u251. Fort,t0 andt.t1 , uci(t)u2 is the probability of measuring energ
Ei . Notice that

d

dt
uci~ t !u250 for t,t0 and t.t1 .

Our problem can be stated in the following way: Assuminguc1(t)u251 for t,t0 , we want to
determine suitable interaction functionsV i(.), i 51, . . . ,n21, such thatucj (t)u251 for time t
.t1 and some chosenj P$2, . . . ,n%, requiring that they minimize the cost~8!.

Remark 4:This problem is a control problem on the real 2n-1 dimensional sphere inR2n ~or
on the complex sphere inCn!. Standard considerations from control theory allow one to concl
on the controllability on the sphere@even with arbitrarily small bounds on the controlsV i(.)#, i.e.,
it is possible to drive the system from any initial condition to any terminal condition on the sp
Also, control problems of this type have finite dimensional Lie-algebra: the reductive Lie alg
su(n)3R. They can be lifted to left-invariant control problems on the compact Lie gr
SU(n)3S1 (S1, the circle!, and the controllability of the lifted control system also holds.

We will also consider the ‘‘real resonant case’’ in which the controlsV i correspond to lasers
that are in resonance:

V i~ t !5ui~ t !eiv i t, v i5Ei 112Ei ,

i 51, . . . ,n21, ui~ .!:R→R. ~11!

Notice that in this case we consider real controls which always leads to lack of controllabi
In the following we treat then52 and n53 cases. Then52 case is treated in the mos

general setting, in the sense that we control both the amplitude and the phase of the laser
We obtain that the optimal strategy is realized with an external pulse in resonance in the ro
wave form. Then53 case is treated directly with pulses in resonance in the rotating w
approximation.

In the n53 case, it is an open question if it is possible to reduce the value of the cos~8!,
when controlling both amplitude and phase of the lasers.

In the following, to compute the orbits of the control systems under consideration, we
make use of the standard Hermann–Nagano theorem. Moreover to compute optimal traje
we will use the well-known Pontryagin Maximum Principle.21 For convenience we recall thes
two theorems in the following. Proofs can be found for instance in Ref. 22.

Theorem „Hermann–Nagano…: Let M be an analytic manifold andF a family of analytic
vector fields on M. Then:

(1) each orbit ofF is an analytic submanifold of M,
(2) if O(x0) is an orbit containing the pointx0 , then the tangent space ofO(x0) at x is given by

Liex(F). In particular the dimension ofLiex(F) is constant asx varies overO(x0).

Theorem „Pontryagin Maximum Principle …: Consider a control system of the forṁ
5 f (x,u) with a cost of the form*0

Tf 0(x,u)dt, where x belongs to a manifold M and
PU,Rm. Assume moreover that M, f , f 0 are smooth. If the couple(u(.),x(.)):@0,T#,R→U
3M is optimal, then there exists a never vanishing field of covectors along x(.), that is an
absolutely continuous function(p(.),p0):tP@0,T#°p(t)PTx(t)* M3R (where p0<0 is a con-
stant) such that:

(i) ẋ(t)5 ]H/]p (x(t),p(t),u(t)),
(ii) ṗ (t)52 ]H/]x (x(t),p(t),u(t)),
d 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



s

on the
ly a
nce,’’

t

2113J. Math. Phys., Vol. 43, No. 5, May 2002 Optimal control in laser-induced population

Downloade
where by definition

H~x,p,u!ª,p, f ~x,u!.1p0f 0~x,u!. ~12!

Moreover:
(iii) H(x(t),p(t),u(t))5HM(x(t),p(t)), for a.e. tP@0,T#,
whereHM(x(t),p(t))ªmaxvPUH(x(t),p(t),v).
The real-valued map onT* M3U, defined in ~12!, is called Hamiltonian. The couple

(u(.),x(.)) satisfying conditions~i!–~iii ! with p050 are calledabnormal extremals.

B. Elimination of the drift term

In both cases~2! and ~6! we show how to eliminate the drift term@i.e., diag(E1,E2) and
diag(E1,E2,E3) respectively# from the Hamiltonian. In case~6! this elimination will be made just
by a unitary change of coordinates that at the same time eliminates the explicit dependence
time. In case~2! it will moreover require a unitary change of controls. This difference is simp
consequence of the fact that in the three-level case we start with ‘‘real controls in resona
while in the two-level case we use general complex controls.

Assume thatc(t) satisfies the Schro¨dinger equation~1!. Let U(t) be a unitary time-dependen
matrix and setc(t)5U(t)c8(t) ~interaction representation!. Thenc8(t) satisfies the Schro¨dinger
equation:

i
dc8~ t !

dt
5H8~ t !c8~ t !,

with the new Hamiltonian:

H85U21HU2 iU 21
dU

dt
. ~13!

Here we consider the Hamiltonian~10!, and we choose

U5diag~e2 iE1t,e2 iE2t,...,e2 iEnt!.

We get:

H85S 0 V1~ t !e2 i (E22E1)t 0 ¯ 0

V1* ~ t !ei (E22E1)t 0 V2~ t !e2 i (E32E2)t
� ]

0 V2* ~ t !ei (E32E2)t
� � 0

] � � 0 Vn21~ t !e2 i (En2En21)t

0 ¯ 0 Vn21* ~ t !ei (En2En21)t 0

D .

~14!

As a consequence, if we writec(t)5c1(t)w11c2(t)w21 ¯ 1cn(t)wn , and c8(t)5c18(t)w1

1c28(t)w21 ¯ 1cn8(t)wn , thenuci(t)u25uci8(t)u
2, i 51,2,. . . ,n, that isH andH8 have the same

population distribution.
For the three-level system~6!, this leads to~dropping the prime!

H5S 0 u1~ t ! 0

u1~ t ! 0 u2~ t !

0 u2~ t ! 0
D . ~15!

For the two-level system~2!, redefining

u~ t !ªe2 i (E22E1)t V~ t !, ~16!
d 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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we get~dropping the prime!

H5S 0 u~ t !

u* ~ t ! 0 D , ~17!

In the following we setu(t)5u1(t)1 iu2(t), whereu1(.) andu2(.) are two real functions.
Remark 5:Notice that the unitary transformations on the states and on the controls pre

the cost and the probabilities. As a consequence they preserve the initial and final con
uc1(t0)u251, ucj (t1)u251.

Remark 6:This reduction procedure can be easily extended to the case where the drift te
~10! is time-dependent:

D5diag~E1~ t !, . . . ,En~ t !!. ~18!

The key point is that the couplings have to be only between successive levels. For the tw
case, this requirement is obviously met. The elimination of the drift~18! in ~10! requires the
matrix

U5diagS expS 2 i E
t0

t

E1(s)dsD ,expS 2 i E
t0

t

E2(s)dsD ,...,expS 2 i E
t0

t

En(s)dsD D .

In this case the new Hamiltonian has the form~14! with i (Ei 112Ei)t replaced byi * t0
t (Ei 11(s)

2Ei(s))ds and the resonance condition~11! becomes

V i~ t !5ui~ t !expS i E
t0

t

(Ei 11(s)2Ei(s))dsD , i 51, . . . ,n21, ui~ .!:R→R.

C. Choice of different costs and relation between them

1. Minimizing length and energy

As we will show, both then52 andn53 problems can be stated as control problems that
linear with respect to the controls~i.e., ‘‘distributional control problems’’!:

ẋ5u1F11u2F2 , ~19!

wherexPS3 for n52 andxPS5 for n53, with F1 andF2 two vector fields on thed-dimensional
sphereSd. It is thus natural to treat this problem as a sub-Riemannian problem~in the three-level
case it is in fact singular-Riemannian problem onS2, see Sec. IV!, to which is associated the
length

l 5E
t0

t1Au1
21u2

2dt. ~20!

This length represents the cost, i.e., the quantity that has to be minimized in our problem. Th
is time-reparametrization invariant. Thus, with such a cost one can always reparametrize th
of the optimal solution in order to obtain controls with slow variation~i.e., with u̇1 andu̇2 small!,
that are closer to realistic pulses in practice.

Standard considerations show that it is equivalent to minimize the fluence for fixed tra
time t12t0 :

E5E
t0

t1
~u1

21u2
2!dt, ~21!
d 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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instead of the lengthl ~20!. Indeed a curve minimizes the costE among all curves joining the
pointsq0 andq1 in time t12t0 if:

~a! it minimizes the lengthl among all curves joiningq0 to q1 , and
~b! it is a curve parametrized by a multiple of the arclength.

Once we have a curve minimizingE, we can then change the parametrization to have der
tives of controls as small as required.

Remark 7:Notice that, if we do not fix the time, the minimum of the costE is zero and it is
not attained.

2. Minimizing the time

Reparametrizing the geodesics of the control system~19!, ~20! by the arclength, i.e., setting

ds5Au1
21u2

2dt,

we get the control problem:

ẋ5u1F11u2F2 , u1
21u2

251, ~22!

and the question is to minimize the transfer time, from the initial to the terminal condition.
Taking into account the homogeneity of the problem~22!, it is clear that it is the same as t

minimize the transfer time for the systemẋ5u1F11u2F2 , with the constraint

u1
21u2

2<1.

It follows that, for the control system~19!, the problem of minimizing the cost~20!, using a
parametrization with arclength@that is using the cost~21!, with t12t0 equal to the total length#, is
equivalent to minimizing the time under the constraint on the controlsu1

21u2
2<1.

Remark 8:Notice that the transformation on the controls necessary to eliminate the drift
not affect the conditionsu1

21u2
2<1, u1

21u2
251.

Remark 9:The problem of minimizing the transfer time for the system~19! under the con-
straint u1

21u2
2<1, makes sense by itself. However, notice that if we drop the conditionu1

21u2
2

<1, then by the Hermann–Nagano theorem, the minimizing time between any two initia
terminal conditions is zero.

In a recent article12 some related questions in the control of spin systems were discussed
problem is, however, distinctly different from the ones considered here. The authors also co
a quantum system with a drift:

ẋ5X0~x!1(
i 51

p

uiXi~x!,

left invariant on some compact groupG. But, in their case, all vector fieldsXi(x) belong tok, a
Lie subalgebra of the Lie algebrag of G. They consider a Cartan decompositiong5k % p, with
the standard Cartan’s commutation relations, and hence, the Lie algebra generated by thXi ’s,
i .1, is not equal tog ~it is only k!. Therefore in their case, to move from a point in a coseK
•x0 to another point in a cosetK•x1 requires the use of the driftX0 and hence requires a bounde
speed.

This implies that, in their case, even for unbounded controls there is a minimum
which is strictly larger than zero~and not attained in general!. As mentioned previously, if we
relax the constraintu1

21u2
2<1, in our case, the minimum time is zero~also not attained in

general!.
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3. Conclusions on the choice of the costs

There are three costs under consideration:

~a! The length~20!. In the two–level case it is the sub-Riemannian length and coincides with
integral of the absolute value of the amplitude. In the three-level case it is a sing
Riemannian length.

~b! The fluence~21!, for fixed transfer timet12t0 .
~c! The time under the constraintu1

21u2
2<1.

Only the first of these costs is parametrization invariant, but all cases~a!, ~b!, ~c! lead to the same
trajectories in the phase space.

III. THE TWO-LEVEL SYSTEM

In this section, we study a two-level quantum system in interaction with a laser for whic
control both the amplitude and the phase. The Hamiltonian becomes after elimination of th

H5S 0 u~ t !

u* ~ t ! 0 D . ~23!

Our aim is to transfer all the population from levelE1 to level E2 minimizing ~here we sett0

50!

E
0

t1
uV~ t !udt5E

0

t1
uu~ t !udt. ~24!

Writing c(t)5c1(t)w11c2(t)w2 , wherew15(1,0), w25(0,1), we start from any point satisfy
ing uc1(0)u251, and our target is defined byuc2(t1)u251.

Remark 10:This new Hamiltonian clearly gives rise to a driftless~or ‘‘distributional’’ ! control
system, while the original Hamiltonian~2! had a drift term. Notice that since we have assum
VPC, this simplification works without any additional hypothesis onV. The fact that the optima
strategy has the laser in resonance@i.e., V(t)5b(t)ei [vt1a] , v5E22E1 , aPR, b(.) real func-
tion# will be obtained as a consequence.

The Schro¨dinger equation corresponding to the Hamiltonian given by formula~23! is equiva-
lent to the system of ordinary differential equations~ODE! for the ci ’s:

H ċ152 iu~ t !c2 ,
ċ252 iu* ~ t !c1 . ~25!

Settingc15x11 ix2 , c25x31 ix4 , u5u11 iu2 , Eq. ~25! becomes

ẋ5u1F11u2F2 ,

where

x5S x1

x2

x3

x4

D , F15S x4

2x3

x2

2x1

D , F25S x3

x4

2x1

2x2

D . ~26!

and the functional~24! to be minimized is now

E
0

t1Au1
21u2

2dt. ~27!
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In these new variables the conditionuc1(t)u21uc2(t)u251 is ( i 51
4 xi

2(t)51, so in factxPS3. The
initial condition is now one point on the circleSin

1
ª$xPS3: x1

21x2
251% and the target is the

circle Sfin
1
ª$xPS3: x3

21x4
251%. These targets are preserved by the transformations elimina

the drift. The problem of minimizing~27! is a classical sub-Riemannian problem onS3, which is
contact, as we shall see immediately.

The Lie algebra of the distribution. Let us compute the Lie algebra of the distribution. B
settingF35@F1 ,F2#, we have

F352S x2

2x1

2x4

x3

D and H @F1 ,F2#5F3 ,
@F2 ,F3#54F1 ,
@F3 ,F1#54F2 ,

so Lie~F!5su~2!;so~3!. ~28!

A. Controllability and minimizers

Let Fª$F1 ,F2%. SinceF is an analytic family of vector fields on an analytic manifold, w
can use the Hermann–Nagano theorem~see Sec. I!. In this case, Liex0

(F) is the vector space
having F1(x), F2(x), andF3(x) as base vectors. The Hermann–Nagano theorem says tha
orbit is an analytic submanifold ofS3 of dimension given by Liex(F), wherex is any point of the
orbit. Let n(x),xPS3 be the rank of the distribution. We have:

n~x!ªrankx~F1 ,F2 ,F3!5rankxS x4 x3 2x2

2x3 x4 22x1

x2 2x1 22x4

2x1 2x2 2x3

D 53.

It follows:
Proposition 1: The control system (26) is completely controllable.
Remark 11:This controllability property, using only the first bracket, is equivalent, in

three-dimensional case, to the fact that the distribution is contact.
Remark 12:The sub-Riemannian problem is not generic at all: first as we shall see,

isoperimetric~it has a symmetry!. Second, even among isoperimetric sub-Riemannian problem
is non generic in the sense that the main basic sub-Riemannian invariant vanishes~see Refs. 19,
23, and 24!.

Remark 13:The control system~26! is invariant under the following transformation:

S x1

x2

x3

x4

D →S cos~a! sin~a! 0 0

2sin~a! cos~a! 0 0

0 0 cos~a! sin~a!

0 0 2sin~a! cos~a!

D S x1

x2

x3

x4

D . ~29!

This means that all the initial conditionsx0PSin are equivalent. Notice that transformation~29! is
generated by the Lie bracket@F1 ,F2#5F3 .

Minimizing geodesics. We will be able to find optimal trajectories joining our bounda
conditions without making any computation. In factF1 andF2 are two orthogonal vectors for th
standard metric ofS3:

F1•F25(
i 51

4

~F1! i~F2! i50.

Hence, the length of an admissible curve is just its standard Riemannian length onS3. Therefore,
if we find an admissible trajectory going from state 1 to state 2, which is a minimizing geo
d 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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for the Riemannian metric onS3, then it is also a minimizer for our sub-Riemannian proble
Now, each integral curve of the vector fieldb(cos(a)F11sin(a)F2) (bPR,aP@0,2p#) are such
admissible trajectories. It follows that:

Theorem 1: Every constant control of the form:

Hu15b cos~a!

u25b sin~a!
, bPR, aP@0,2p# ~30!

is optimal and the target is reached at time t15(p/2)(1/b). Moreover if x0PSin is defined by
x15cos(b), x25sin(b), then the equations of the geodesics corresponding to the controls (30)

H x15cos~b!cos~bt!,
x25sin~b!cos~bt!,
x352sin~a2b!sin~bt!,
x452cos~a2b!sin~bt!.

~31!

The second part of Theorem 1 is easily checked.
Now since the functional~27! is invariant under time reparametrizations, one can takeb to be

a function of the time so that every optimal control has the form given by

V~ t !5b~ t !ei [(E22E1)t1a] ,

wherea is an arbitrary constant,b(.):R→R1 is a real function with compact support@0,t1# and
satisfying*0

t1 b(t)5p/2. In Fig. 1 are shown the geodesics issued from the pointx151 in the
spacex250.

B. Another interpretation: The Hopf fibration and the Isoarea problem

The Hopf fibration~see, e.g., Ref. 18!, p:S3→S2 is defined by the following map. LetS3 be
described by the variables (x1 ,x2 ,x3 ,x4), ( xi

251 and S2 by the variables (z1 ,z2 ,z3), (zi
2

51/4. We have:

~z1 ,z2 ,z3!5p~x1 ,x2 ,x3 ,x4!ª~ 1
2 ~x1

21x2
22x3

22x4
2!,x1x32x2x4 ,x2x31x1x4!. ~32!

FIG. 1. The sphereS3 and the geodesics fromx151 in the spacex250.
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The Hopf fibration gives toS3 the structure of a principal bundle with baseS2 and fiberS1

;U(1). The following proposition ~that one easily checks! shows why the Hopf fibration is
connected to our problem:

Proposition 2: Let F3ª@F1 ,F2# [see formula (28)], andp the Hopf fibration defined above
Then F3PKer(dp).

Notice thatF3 is the generator of the symmetry that ‘‘transports’’ alongSin and Sfin ~cf.
Remark 13! that means the following. Ifx0PSin ~respectively,x0PSfin! then the orbitO(x0) of F3

coincides withSin ~respectively,Sfin!. From Proposition 2 it follows thatSin andSfin shrink into
two points throughp. In particular these points are, respectively, the opposite points (z1 ,z2 ,z3)
5(6 1

2,0,0). The situation is illustrated by Fig. 2. Notice that we have a one parameter fam
geodesics connectingSin andSfin , since their images underp are opposite points onS2.

In fact, the sub-Riemannian problem we have, is as follows: The distribution~transversal to
the fibers of the Hopf fibration! defines a connection over this~circle! principal bundle. It is easily
seen that the curvature form of this connection is just the pull back~by the bundle projection! of
the volume form of the Euclidean metric onS2.

As a consequence~see Ref. 19!, our sub-Riemannian problem corresponds to the ‘‘isoa
problem’’ on the Riemannian sphereS2: given two points~antipodal onS2 in our case!, and any
fixed curvex(.) joining these two points, find another curvey(.), joining also the two points, such
that the length ofy(.) is minimal, and the area encircled by the curvesx(.),y(.) has a given value

Corollary: There is no other minimizing curve@than the circle~31!# joining Sin andSfin .
Proof: Assume thatg:@0,t1#→S3 is such a minimizing curve. Then it has lengthp/2, and its

projection onS2 is one of the circles in Fig. 2. Now each of these circles is lifted in a unique w
via the connection, in one of the curves~31!, once the initial point is chosen inSin . Henceg is one
of the circles~31!. j

Our ~very special! solutions exhibited previously are in fact geodesics of the Euclidean m
on S2: they correspond to the choice of geodesics for the curvex(.), and to thezero value of the
area.

IV. THE THREE-LEVEL RESONANT PROBLEM

Statement of the Problem. In this section, we study a three-level quantum system, with o
neighboring levels coupled, controlled by two laser pulses in resonance, i.e., with frequ
v15E22E1 , v25E32E2 ; E1 ,E2 ,E3 being the three energy levels.

FIG. 2. Schematic representation of the Hopf fibrationp:S3→S2. The geodesics given by Theorem 1 are also draw
d 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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The aim is to transfer all the population from the state with energyE1 to the state with energy
E3 minimizing ~again we sett050)

E
0

t1Au1
21u2

2dt. ~33!

Writing c(t)5c1(t)w11c2(t)w21c3(t)w3 , wherew15(1,0,0), w25(0,1,0), w35(0,0,1), we
start from one point satisfyinguc1(0)u251, and our target is defined byuc3(t1)u251.

Remark 14:As in Sec. III, this new Hamiltonian gives rise to a driftless autonomous con
system, while the control system corresponding to the old Hamiltonian~6! was time dependen
and with drift. But in this case~i.e., with real controls!, to obtain this strong simplification it is
essential to use lasers in resonance.

The Control System. The Schro¨dinger equation corresponding to the Hamiltonian given
formula ~15! is equivalent to the system of ODE for theci :

H ċ152 iu1~ t !c2 ,
ċ252 i ~u1~ t !c11u2~ t !c3!,
ċ352 iu2~ t !c2 .

~34!

Settingc15x11 ix2 , c25x42 ix3 , c35x51 ix6 , Eq. ~34! becomes

ẋ5u1F11u2F2

where

x5S x1

x2

x3

x4

x5

x6

D , F15S 2x3

2x4

x1

x2

0
0

D , F25S 0
0
x5

x6

2x3

2x4

D . ~35!

Here, the notations are such that the real parts~respectively, imaginary parts! of c1 ,c2 ,c3 are
x1 ,x4 ,x5 ~respectivelyx2 ,2x3 ,x6!. This convention will be very convenient later on.

In these new variables the conditionuc1(t)u21uc2(t)u21uc3(t)u251 is ( i 51
6 xi

2(t)51, so in
fact xPS5. The initial condition is now one point on the circleSin

1
ª$xPS5:x1

21x2
251% and the

target isSfin
1
ª$xPS5:x5

21x6
251%. With the choice~33! of the functional to be minimized, ou

problem looks like a classical sub-Riemannian problem onS5, but, as we shall see, it is ver
degenerate.

The Lie algebra of the distribution. Let us compute the Lie algebra of the distribution. B
settingF35@F1 ,F2#, we have

F35S x5

x6

0
0

2x1

2x2

D , H @F1 ,F2#5F3 ,
@F2 ,F3#5F1 ,
@F3 ,F1#5F2 ,

so Lie(F)5su(2);so(3).
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A. General properties of the orbit

Let n(x), xPS5 be the rank of the distribution. We have

n~x!ªrankx~F1 ,F2 ,F3!5rankxS 2x3 0 x5

2x4 0 x6

x1 x5 0

x2 x6 0

0 2x3 2x1

0 2x4 2x2

D 5H 2 if xPQ

3 if xPS5\Q,
~36!

whereQ is the subset ofS5 defined by

x3x62x4x550, ~37!

x1x62x2x550, ~38!

x3x22x4x150. ~39!

Notice that ifx1 ,x3 ,x5 are all different from zero, Eqs.~37!, ~38!, and~39! are equivalent to

x2

x1
5

x4

x3
5

x6

x5
. ~40!

Now since every initial condition lies inQ ~i.e., Sin
1 PQ!, from the Hermann–Nagano theorem

follows:
Proposition 3: For eachx0PSin

1 , the orbitO(x0) is an analytic two-dimensional submanifo
of S5.

More precisely definingx0(a) as the initial condition corresponding to

H x1~0!5cos~a!,
x2~0!5sin~a!, ~41!

whereaP@0,2p@ , we get the following:
Theorem 2: The orbit O(x0(a)), aP@0,2p@ is the two-dimensional sphere of equation x8

1
2

1x8
3
21x8

5
251 where

S x18

x28

x38

x48

x58

x68

D 5S cos~a! sin~a! 0 0 0 0

2sin~a! cos~a! 0 0 0 0

0 0 cos~a! sin~a! 0 0

0 0 2sin~a! cos~a! 0 0

0 0 0 0 cos~a! sin~a!

0 0 0 0 2sin~a! cos~a!

D S x1

x2

x3

x4

x5

x6

D . ~42!

Proof: Assume firsta50. This means that the initial condition is defined byx1(0)51 and the
variables with the prime coincide with those without the prime.

In Eq. ~35! the variablesx1 ,x3 ,x5 are decoupled from the other~in fact, we have a produc
system, of two subsystems onR3!. It follows O(x0(a)),$xPS5:x1

21x3
21x5

251%. But all the
points of this sphere belong to the orbit since they can be reached by using a control of the

~u1~ t !,u2~ t !!5 H ~1,0! for tP@0,ta#

~0,1! for tP@ ta ,tb#
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for someta ,tb.0. In fact, in the (x1 ,x3 ,x5) space, each integral curve ofF1 ~respectively,F2! is
a circle that lies in the planex55const~respectively,x15const! and the center of which belong
to thex5 ~respectively,x1! axis, see Fig. 3. At timeta one reaches the point:

H x1~ ta!5cos~ ta!,
x3~ ta!5sin~ ta!,
x5~ ta!50.

.

At time tb one reaches the point:

H x1~ tb!5cos~ ta!,
x3~ tb!5sin~ ta!cos~ tb!,
x5~ tb!52sin~ tb!.

So all the points of the spherex1
21x3

21x5
251 can be reached for suitableta andtb . The Theorem

is proved fora50.
Assume now that we start from the pointx0(a) for an arbitrarya. Making the change of

coordinates given by formula~42!, one is back to the situationa50 for the variables with the
prime. This concludes the proof. j

Notice that, for fixedx0(a), one can reach only two points of the final target. For instanc
a50, i.e.,x1(0)51, we can reachSfin

1 only in the two pointsx5561. The situation is illustrated
by Fig. 4.

More precisely as a consequence of the symmetry given by formula~42! we have the
following:

FIG. 3. The vector fieldsF1 andF2 on the sphere.
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Corollary of Theorem 2: FixaP@0,2p#, let x5(x1 , . . . ,x6)PO(x0(a)), and definea12(x),
a34(x), a56(x) to be the angles (illustrated in Fig. 5) such that

H x15Ax1
21x2

2 cos~a12~x!!,

x25Ax1
21x2

2 sin~a12~x!!,

H x35Ax3
21x4

2 cos~a34~x!!,

x45Ax3
21x4

2 sin~a34~x!!,

H x55Ax5
21x6

2 cos~a56~x!!,

x65Ax5
21x6

2sin~a56~x!!.

Then, for each suchx, there exist n12(x),n34(x),n56(x)P$0,61% such that

a12~x!5a6n12p i f a12 is defined~ i .e., x1 ,x2 not both vanishing!, ~43!

a34~x!5a6n34p i f a34 is defined~ i .e., x3 ,x4 not both vanishing!, ~44!

a56~x!5a6n56p i f a56 is defined~ i .e., x5 ,x6 not both vanishing!. ~45!

Moreover at least one of the three anglesa12,a34,a56 is defined.
The Structure of Q. Let us now study the structure ofQ. From the Hermann–Nagano theore

we have

Q$ ø
x0PSin

1

Ox0

but in fact this equation holds with equality as a consequence of the fact that relations~37!, ~38!,
and~39! definingQ are equivalent to Eqs.~43!, ~44!, ~45!, that hold on the orbit. More precisel
let x̄5( x̄1 , . . . ,x̄6) be a point ofQ and ā the angle betweenx̄1 and x̄2 measured counterclock
wise, if defined. If notā will be the angle between the variablesx̄3 and x̄4 , or between the

FIG. 4. The foliation ofQ.

FIG. 5. The definition of the anglesa12(x), a34(x), a56(x).
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variablesx̄5 and x̄6 ~in the spirit of the Corollary of Theorem 2!. Because of~40!, ā can be
actually defined in this way. One clearly hasx̄PO(x0(ā)). Hence we have proved the following

Proposition 4: We have Q5øx0PS
in
1 Ox0

.

Let s be the antipodal involution ofS13S2, that is,s(a,p)5(a1p,2p). The involutions
has no fixed point, and is orientation reversing. Also, clearly, by Theorem 2, our orbits as
stable. Hence:Q5(S13S2)/; wherex;x8 if s(x)5s(x8). Therefore, it is not hard to see tha

Theorem 3: Q is the (only) nonorientable sphere-bundle over S1.

B. Geodesic equations on the sphere

Due to the invariance under the transformation~42! all the points ofSin can be considered
equivalently. In the following we will study the optimal control problem on the orbitO(x0), where
x0 is defined byx151. ThenO(x0) is the sphere of equationx1

21x3
21x5

251. In what follows, we
will keep the notationF1 andF2 for the restrictions ofF1 andF2 to this sphere.

In order to get labels for coordinates corresponding to quantum states, and in order to hF2

pointing in the positive direction from the pointx351, we definey15x1 , y25x3 , y352x5 . The
control system under consideration is then

S ẏ1

ẏ2

ẏ3

D 5u1F11u2F2 ,

where

F15S 2y2

y1

0
D , F25S 0

2y3

y2

D .

The vector fields are plotted in Fig. 3. The initial condition is the pointy151. The state numbe
1 ~respectively, 2, 3! correspond to the pointsy1561 ~respectively,y2561, y3561!. State 2
can be reached from state 1 using onlyF1 and state 3 can be reached from state 2 using onlyF2

~dotted lines!. However, state 3 cannot be reached from state 1 using a trajectory contained
circle of equation:

y250 ~ i.e., y1
21y3

251!, ~46!

since no piece of this circle is an admissible trajectory. This is due to the fact thatF1 is collinear
to F2 on the circle~46!, and not tangent to this circle.

A new orthogonal frame. Let us describe the orbit in spherical coordinates~see Fig. 6!:

FIG. 6. The anglesu andf.
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H y15cos~u!cos~f!,
y25sin~u!,
y35cos~u!sin~f!.

~47!

We have

S F1

F2
D5RS G1

G2
D ,

where

RªS cos~f! sin~f!

2sin~f! cos~f!
D , HG15]u

G25tan~u!]f .

SinceRPSO(2), thecouple (G1 ,G2) is a new orthonormal frame for the singular-Riemann
length. For this new frame the control system is then

S u̇

ḟ
D 5v1G11v2G2 , ~48!

and the functional to be minimized is*0
t1Av1

21v2
2dt. The relation betweenu1 ,u2 and v1 ,v2 is

obtained fromu1F11u2F2[v1G11v2G2 :

S u1

u2
D5RS v1

v2
D . ~49!

The metric defined by the frame (G1 ,G2) is a singular metric. Indeed whenu50 we haveG2

50, that is exactly on the circle~46!. Notice that the singularity of the metric foru5p/2 is only
due to the choice of the coordinates system.

The Hamiltonian. Let us compute the geodesics using the Maximum Principle. Here
standard reasons, we use as cost the fluence~21!. The final time is fixed by requiring the param
etrization by arclength that isv1

21v2
251 ~this means to normalizeHM51/2, see the Pontryagin

Maximum Principle in Sec. I for the definition ofHM!. Notice that from formula~49! we have

v1
21v2

25u1
21u2

2 .

As explained in Sec. II C 2 this corresponds to minimizing the time under the constraiu1
2

1u2
2<1. Let P5(Pu ,Pf)PTu,f* M . By definition the Hamiltonian is

H~u,f,Pu ,Pf ,v1 ,v2!5^P,v1G11v2G2&1p0~v1
21v2

2!

5v1Pu1v2Pf tan~u!1p0~v1
21v2

2!. ~50!

It is easily checked that, as for the Riemannian case, we can always assumep0Þ0 ~there are
no abnormal extremals! and we can normalizep052 1

2. Extremal controls are computed from th
maximum condition:

]H
]v1

50,
]H
]v2

50, ⇒v15Pu , v25Pf tan~u!. ~51!

Hence, we obtain that the extremals are projections on the~u,f! space of integral curves of th
Hamiltonian vector field corresponding to the following Hamiltonian:

HM5 1
2 ~Pu

21~ tan~u!Pf!2!. ~52!

The Hamiltonian equations are
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u̇5
]HM

]Pu
5Pu ,

ḟ5
]HM

]Pf
5Pf tan2~u!,

Ṗu52
]HM

]u
52Pf

2 tan~u!~11tan2~u!!,

Ṗf52
]HM

]f
50.

SettingaªPf finally we have

u̇5Pu , ḟ5a tan2~u!, Ṗu52a2 tan~u!~11tan2~u!!. ~53!

This Hamiltonian system is Liouville integrable since we have two independent and comm
constants of the motionHM andPf5a.

1. Minimizing the length
Let us find the geodesic without the parametrization, i.e., a relation betweenu andf. We have

df

du
5

ḟ

u̇
5

ḟ

Pu

56
a tan2~u!

A12a2 tan2~u!
, ~54!

where we have expressedPu using relation~52! and normalizedHM51/2. So we have the two
families of solutions parametrized by the value ofa:

fa
6~u!56E

0

u a tan2~s!

A12a2 tan2~s!
ds

56FarctanS a

J~u,a!
sin~u! D2

a

A11a2
arctanS A11a2

J~u,a!
sin~u! D G , ~55!

whereJ(u,a)ªA 1
2(12a21(11a2)cos(2u)).

To fix the ideas, let us consider only the familyfa
1 with a.0 and supposeu>0, the other

cases being symmetric. Let us call this familyfa(u). Expression~55! definesfa(u) in the
interval @0,ūa@ whereūa is the value ofu at which the denominator of formula~54! vanishes:

ūaªarctanS 1

aD . ~56!

Notice that limu→ ūa
J@u,a#50 so

lim
u→ ūa

fa~u!5
p

2 S 12
a

A11a2D . ~57!

In the following we considerfa(u) defined in@0,ūa# where by definitionfa( ūa) is the value
given by formula~57!. Indeed, from the symmetries of the system, we have to consider
branches~illustred in Fig. 7! to describe the whole relation betweenu andf:

fa
1~u!5fa~u!,
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fa
2~u!52fa~ ūa!2fa~u!.

The geodesic reaching the target is the one satisfyingfa( ūa)5p/4. From Eq. ~57! we get
aª1/).

Remark 15:By considering both signs in formula~55! ~or equivalentlya positive and nega-
tive! anduP@2p,p# one gets four equivalent optimal trajectories reaching the state 3~see Fig. 8!.
Moreover the set of geodesics parametrized bya allows one to easily compute an optimal sy
thesis for the problem.

A smooth parametrization of the geodesic. To get an explicit expression of the controls~as
function of the time! reaching the final pointu50, f5p/2, one should first fix a parametrizatio
u(t) in such a way that:

~1! u(0)5u(t1)50,
~2! for some t̄ P]0,t1@ it holds:

H u~ t̄ !5 ū1/)5p/3,

u~ t ! is increasing fortP@0,t̄ #,

u~ t ! is decreasing fortP@ t̄ ,t1#.

FIG. 7. The geodesic curve as a relation betweenu andf.

FIG. 8. The four geodesics reaching the state 3. Two are on the other side and reach the pointy3521.
d 02 May 2002 to 147.122.4.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



ave

equa-

2128 J. Math. Phys., Vol. 43, No. 5, May 2002 Boscain et al.

Downloade
The best choice is of course a sufficiently regular symmetric function. In this case we ht̄
5t1/2 and

f~ t !5 Hf1/)~u~ t !! if tP@0,t1/2@ ,
2f1/)~u~ t1/2!!2f1/)~u~ t12t !! if tP@ t1/2,t1#. ~58!

The controlsv1(t) and v2(t) can be obtained from the relationu̇(t)]u1ḟ(t)]f5v1(t)]u

1v2(t)tan(u(t))]f from which we have

v1~ t !5 u̇~ t !, v2~ t !5
ḟ~ t !

tan~u~ t !!
. ~59!

Remark 16:Notice that relations~59! coincide with relations~51! only in the case in which
the curve (u(t),f(t)) is parametrized with constant velocity.

Finally the amplitudes of the lasers are obtained with formula~49!.
Example 1:Consider theC ` function:

u~ t !5H 0 if t,0 or t.t1

p

3
e1/(t12t)(2t) otherwise.

~60!

The corresponding laser amplitudesu1(t) andu2(t) ~for t154! are shown in Fig. 9.
Example 2:Consider the function:

u~ t !5H 0 if t,0 or t.t1

~211e236t(t2t1)/t1
2
!p

3~211e9!
otherwise.

~61!

The corresponding laser amplitudesu1(t) andu2(t) ~for t154! are shown in Fig. 10.

2. Minimizing either the fluence or the time for constrained controls

To minimize the fluence, one should also get the parametrization from the Hamiltonian
tions. From the equation~after fixing a51/)):

u̇5Pu5A12a2 tan2~u!,

we have

FIG. 9. Example 1:C` optimal controls.
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t~u!5

arctanS 2 sin~u!

A112 cos~2 u!
DA112 cos~2 u!sec~u!

2 A12tan~u!2/3
.

Using the inverse function theorem, this formula permits one to describeu(t) in the interval@0,t̄ #
where

t̄ª lim
u→ ūa

t~u!5
)

4
p.

By symmetry this is exactly half of the final time. Finallyḟ(t) can be obtained integrating th
equationḟ(t)5a tan2(u(t)). Controlsu1(t) andu2(t) can be obtained with formulas~59! and~49!
and they are shown in Fig. 11.

Remark 17:Notice that these controls are not smooth att50 and at the final time 2t̄
5 ()/2) p.
From this analysis we get the values of the costs for the optimal trajectory:

Theorem 4: For the three costs described in Sec. II C, the following relations hold.
(a) Length:

MinS E
0

t1Au1
21u2

2 dt D 5
)

2
p.

FIG. 10. Example 2: a possible choice of optimal controls.

FIG. 11. Optimal controls minimizing fluence or time.
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(b) Fluence, with fixed transfer time T:

MinS E
0

T

~u1
21u2

2! dt D 5
3

4
p2

1

T
. ~62!

(c) Time under the constraint u1
21u2

2<1,

Tmin5
)

2
p. ~63!

V. THE TRACKING COUNTERINTUITIVE SOLUTIONS

For practical applications, trajectories joining state 1 to state 3, that take as small as pos
the population of state 2@i.e., with u(t) closed to zero#, are also interesting. We recall that the
nonadmissible trajectory is contained in the circle~46!. In this section we study a trajectory in
which f(t) is monotonously increasing between 0 andp/2, and

u~ t !<«, for every tP@0,t1#, ~64!

for some small«.0 fixed. This means that the population in state 2@0,t1# is always small, less or
equal than sin2(«)5«21O(«4) @see formula~47!#.

It is well known1,25 that the nonadmissible trajectory can be approximated using contro
u1(t) andu2(t) in the so-called ‘‘counterintuitive’’ sequence:~see Fig. 12 for such a sequence!. In
the following we show how to build a trajectory satisfying condition~64! and connecting exactly
the pointsP1 defined by~f,u!5~0,0! andP2 defined by~f,u!5~p/2,0!.

The idea is to track a trajectory connecting these two points taking care of the constraints
we have on the derivatives atP1 andP2 . More precisely we should find a functionu~f! such that
the following holds. Letf1(u) ~respectively,f2(u)) be the inverse function ofu(f) in a neigh-
borhood ofP1 ~respectively,P2!. SinceF1 andF2 vanish, respectively, at pointsP1 andP2 , we
must have

df1

du U
u50

50, ~65!

FIG. 12. Usual-adiabatic and tracking solutions.
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df2

du U
u50

50. ~66!

A possible choice is the symmetric function is

u~f!5«
4

p
AfS p

2
2f D , ~67!

which reaches the value« only at the pointf5 p/4, as shown in Fig. 12.
Now we have to choose a parametrization (u(t),f(t)). To have continuous controls satisfyin

u1(0)50, u2(0)50, u1(t1)50, u2(t1)50 we must have

u̇1~ t !u050,

u̇2~ t !u t1
50.

From Eqs.~65!, ~66! we get

f̈1~ t !u050,

f̈2~ t !u t1
50.

To get controls having zero derivative at the initial and final points, we can use the follo
function:

f~ t !5
6006p

t1
13 S t13

13
2

t12t1

2
1

15t11t1
2

11
22 t10t1

31
5t9t1

4

3
2

3t8t1
5

4
1

t7t1
6

7 D . ~68!

Notice that this function satisfiesf1( t̄ )5f2( t̄ )5f3( t̄ )5f4( t̄ )5f5( t̄ )5f6( t̄ )50 for t̄
50,t1 . The corresponding controls are computed with relations~59! and ~49!.

Remark 18:Let us use a parametrizationf(t) with f ( i )(t)u t5050, f ( i )(t)u t5t1
50), i

51, . . . ,n, n>2, then the following holds:
~1! if n52 thenu1(0)5u2(0)50, limt→t1

u̇1(t)52`, limt→0 u̇2(t)5`,
~2! if n53 thenu1(0)5u2(0)50, 0.u̇1(t1).2`, 0,u̇2(0),`,
~3! if n>4 thenu1(0)5u2(0)50,
u1

( i )(0)5u2
( i )50 for i 51, . . . ,n23. So if f is C n, in ]2d,t11d@ (d.0, f(t)50 in

] 2d,0]ø@ t1 ,t11d@) thenu1 andu2 areC n23 in ] 2d,t11d@ .

Notice that for very small values of« one gets very big values of the controls. We would like
stress the fact that the trajectory obtained with this tracking reaches exactly the final target f
fixed value of«. While in the ‘‘counterintuitive’’ strategies used in literature, if«c is the maximum
value reached byu, then the final target is reached with an error smaller than«c but different from
zero.

In the last picture the tracking solution corresponding to the expression of~68!, for «
52/19, andt154 and a typical strategy used in literature:

5 u1~ t !5
25

e16 1
13

e(2411.5 t)2 ,

u2~ t !5
25

e9 1
13

e(22.711.5 t)2

~69!
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are compared. Notice that the pulses have similar area. Moreover, notice that the trajecto
responding to the controls~69! ~obtained integrating numerically the Schro¨dinger equation!
reaches negative values ofu.

VI. CONCLUSION

In summary, we have shown how optimal controls for two- and three-level models ca
constructed on the basis of geometric arguments. For the two-level modes we recover th
known ‘‘p-pulse’’ strategy, and obtain the corresponding generalization for the resonant
level model. The optimal trajectories appear as geodesics~Riemannian or singular-Riemannian! on
two-dimensional spheres. Furthermore, besides the optimal control strategies, the standar
ing technique from geometric control theory allows us to analyze a method of adiabatic c
used in recent experiments. It leads to an improvement that allows one to reach the targ
precisely. The extension of these results to the treatment of more generalN-level systems will be
presented in forthcoming work.
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