
HAL Id: hal-00383007
https://hal.science/hal-00383007

Submitted on 28 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Zeeman line formation in solar magnetic fields. Studies
with empirical probability distribution functions

M. Sampoorna, K.N. Nagendra, H. Frisch, J.O. Stenflo

To cite this version:
M. Sampoorna, K.N. Nagendra, H. Frisch, J.O. Stenflo. Zeeman line formation in solar magnetic
fields. Studies with empirical probability distribution functions. Astronomy and Astrophysics - A&A,
2008, 485, pp.275-287. �10.1051/0004-6361:20079160�. �hal-00383007�

https://hal.science/hal-00383007
https://hal.archives-ouvertes.fr


A&A 485, 275–287 (2008)
DOI: 10.1051/0004-6361:20079160
c© ESO 2008

Astronomy
&

Astrophysics

Zeeman line formation in solar magnetic fields

Studies with empirical probability distribution functions

M. Sampoorna1,2 ,�, K. N. Nagendra1,2, H. Frisch2, and J. O. Stenflo3

1 Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India
e-mail: sampoorna@iiap.res.in

2 Laboratoire Cassiopée, CNRS, Université de Nice, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France
3 Institute of Astronomy, ETH Zürich, 8092 Zürich, Switzerland

Received 28 November 2007 / Accepted 11 April 2008

ABSTRACT

Context. Numerical simulations of magneto-convection and analysis of solar magnetograms provide probability distribution functions
(PDFs) for the magnetic field strength.
Aims. In the paper, we explore the effects of these PDFs on Zeeman line formation.
Methods. We calculate the mean Stokes parameters for a Milne-Eddington atmosphere in the limit of optically thin (micro-turbulent)
and thick (macro-turbulent) magnetic structures and also the dispersion around the mean profiles in the optically thick limit. Several
types of PDFs are considered: (a) Voigt function and stretched exponential type PDFs for fields with fixed direction but fluctuating
strength; (b) a cylindrically symmetrical power law for the angular distribution of magnetic fields with given field strength; (c) compos-
ite PDFs accounting for randomness in both strength and direction obtained by combining a Voigt function or a stretched exponential
with an angular power law. For optically thin structures, explicit expressions are given for the mean values of the Zeeman absorption
matrix elements. We also describe how the averaging technique for a normal Zeeman triplet may be generalized to the more common
case of anomalous Zeeman splitting patterns.
Results. We show that, for magnetic field rms fluctuations of the order of 6 G, consistent with observational data, Stokes I is essen-
tially independent of the shapes of the PDFs but Stokes Q, U, and V and also the dispersion around the mean values are quite sensitive
to the tail behavior of the PDF. We confirm a previous result that Stokes V is less sensitive to the scale of the magnetic structures than
Stokes Q and U. The composite PDF proposed for the fluctuations of the magnetic field vector has an angular distribution peaked
about the vertical direction for strong fields, and is isotropically distributed for weak fields; it can be used to mimic solar surface
random fields.
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1. Introduction

Magneto-convection on the Sun has a size spectrum that spans
several orders of magnitudes and hence develops turbulent ele-
ments or eddies the sizes of which are much smaller than the spa-
tial resolution of current spectro-polarimeters (about 0.2 arcsec
or 150 km at the photospheric level). Thus the Stokes profiles
that we observe are always averages, the averaging being over
space, time, and along the line of sight. This suggests that it may
be sufficient to characterize the magnetic field responsible for
spectral line polarization by a probability distribution function
(PDF). Attempts have been made to deduce such PDFs from ob-
servational data by inversion methods (cf. Domínguez Cerdeña
et al. 2006). Here we consider the forward method, namely the
calculation of the mean Stokes parameters for a given PDF. Our
primary goal is to compare Stokes profiles calculated with dif-
ferent types of PDFs. We have used PDFs determined from ob-
servations (Stenflo & Holzreuter 2002, 2003a,b) and from nu-
merical simulations of magneto-convection (Stein & Nordlund
2006; Vögler et al. 2005, and the papers cited therein). The ob-
servational PDFs have been deduced from magnetograms and
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describe the vertical magnetic field in the solar photosphere. For
simplicity we neglect any depth-dependence of the PDFs inside
the atmosphere.

In the solar photosphere the mean free path of optical pho-
tons is in the range 50−100 km, corresponding approximately
to the middle part of the turbulent spectrum. The calculation
of mean Stokes parameters for this spatial range, sometimes re-
ferred to as meso-turbulence, has been considered by a few au-
thors (Landi Degl’Innocenti 1994; Frisch et al. 2006a,b; Carroll
& Staude 2003, 2005a,b, 2006; Carroll & Kopf 2007). The mean
Stokes parameters for meso-turbulence are always bounded by
the micro and macro-turbulent limits. The concept of micro-
turbulence is associated to optically thin magnetic eddies while
macro-turbulence corresponds to optically thick ones. In the fol-
lowing we use the much more general terms optically thin and
thick limits, since they can also be applied to magnetic fields that
are not “turbulent” in the sense of having a nearly isotropic an-
gular distribution but can even be unidirectional. We emphasize
that the terminology of “optically thin/ thick” applies to the scale
of magnetic field fluctuations and not to the spectral line itself.

In the optically thin limit the Zeeman absorption matrix
(containing both absorptive and magneto-optical effects) can be
averaged over the PDF and the line transfer equation solved with
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the averaged absorption matrix. Distributions of optically thin el-
ements and transfer equations with mean coefficients were first
considered by Stenflo (1971, and references cited therein). One
of the effects of optically thin magnetic eddies is to produce
line broadening. The earliest observational attempt to search for
magnetic fields by this broadening mechanism dates back to
Unno (1959). Stenflo & Lindegren (1977) performed a statis-
tical analysis of 402 unblended Fe i lines in the optical region
and found an upper limit of 100 G for the rms magnetic field
fluctuations responsible for the line broadening. Along the same
lines, Sánchez Almeida et al. (1996) introduced the MISMA
model (MIcro Structured Magnetic Atmospheres) consisting of
spatially intermittent optically thin structures.

In the optically thick limit, the emergent spectrum may be
formed within a single magnetic structure. The averaging over
different realizations of the vector magnetic field is now per-
formed on the emergent solution of the transfer equation. Multi-
component models representing optically thick unresolved struc-
tures were introduced by Stenflo (1971, 1973, 1994) and Stenflo
et al. (1984). The special case of a two-component model forms
the basis of the line ratio technique (Stenflo 1973).

For our present investigation of the effects of various types
of PDF we consider both the optically thin and thick limits.
The case of Gaussian PDFs was studied by Dolginov & Pavlov
(1972); Domke & Pavlov (1979); Frisch et al. (2005, 2006a,b,
2007); Sampoorna et al. (2008). Here we use more realistic types
of PDFs, namely Voigt type and stretched exponential type dis-
tributions for the strength of a magnetic field with a fixed direc-
tion. We also consider axially symmetric magnetic fields of con-
stant strength but with random directions distributed according
to a power law. Finally we introduce a heuristic PDF, which com-
bines distributions in strength and direction. The angular distri-
bution is described by a power law and the strength distribution
by either a Voigt function or a stretched exponential.

The PDFs that we are adopting can be used in any numerical
solution of the polarized line transfer equations. Here we use
the Unno-Rachkovsky solution (see Unno 1956; Rachkovsky
1962a,b). We believe that the approximation of a Milne-
Eddington (ME) atmosphere is adequate for exploratory work
of the sensitivity of Stokes profiles to different magnetic field
PDFs. In the optically thin limit we average the Zeeman absorp-
tion matrix over the PDF before applying the Unno-Rachkovsky
solution. In the optically thick limit we average the Unno-
Rachkovsky solution over the magnetic field PDF. In these two
limits, it is possible within the framework of the ME model to
introduce fluctuations of the atmospheric parameters (velocity,
temperature, density) and correlations between them and with
the magnetic field. Adequate joint PDFs would have to be intro-
duced. Correlations between velocity fields and magnetic fields
will produce asymmetric profiles (see e.g. Landi Degl’Innocenti
& Landolfi 2004, Figs. 9.19 and 9.20). Here we analyze only
pure magnetic fields effects.

In Sects. 2−5 we present mean Stokes profiles for a Zeeman
triplet computed with different kinds of PDFs, for optically thin
and optically thick eddies. We also consider the dispersion of the
Stokes profiles around their mean values. In Sect. 6 we general-
ize our averaging procedures to a anomalous Zeeman pattern.
Conclusions are presented in Sect. 7.

2. Magnetic field strength distribution: Voigt
type PDF

Recently Stenflo & Holzreuter (2002, 2003a,b) have found
from an analysis of high resolution La Palma and MDI solar

magnetograms that the PDF for the line of sight (LOS) com-
ponent of the magnetic field is nearly independent of the spatial
scale and can be well represented by a simple function which has
a Gaussian core and Lorentzian type wings. The Gaussian core is
centered around zero field. The PDF wings are generally signif-
icantly different for the positive and negative polarities. Stenflo
& Holzreuter (2002, 2003a) have proposed a PDF for the LOS
field strength that can be represented by a Voigt function de-
pending on a magnetic damping parameter aB and a magnetic
width ΔB. The parameter ΔB is a measure of the rms fluctuations
of the LOS component of the field. It represents the width of the
Gaussian core, while the parameter aB describes the damping of
the Lorentzian wings. These two parameters are not based on
any theory but only define a convenient and compact analytical
fit function.

If one chooses ΔB = 6 G and aB = 1.5, it surprisingly well
describes the empirical PDF for the LOS magnetic field strength
derived from magnetograms. A symmetric Voigt function how-
ever has zero net flux, whereas in real magnetograms the mag-
netic flux is generally unbalanced locally (although the global
ensembles should in general be balanced). Such situations can be
well represented by a Voigt PDF that has a symmetric Gaussian
core, but with different damping parameters aB for the positive
and negative polarities.

We examine in Sect. 2.1 the effects of a symmetric Voigt PDF
on the mean Stokes profiles. Because of the symmetry around
zero, the mean magnetic field is zero. In Sect. 2.2 we consider
asymmetric PDFs with Gaussian core and Lorentzian wings. The
corresponding mean fields and mean Stokes V parameters are
now different from zero.

2.1. Symmetric Voigt type PDF

In terms of the parameters aB and ΔB, the Voigt PDFs considered
in this section have the functional form

PV

(
B
ΔB
, aB

)
=

aB

π3/2

∫ +∞

−∞
e−(B1/ΔB)2

[(B − B1)/ΔB]2 + a2
B

dB1

ΔB
· (1)

Here B is the magnetic field component along a given direction.
We introduce the non-dimensional parameters

y =
B
ΔB
, u =

B1

ΔB
, γB =

ΔB

BD
, (2)

where the quantity BD is

1
BD
= g

e
4πmc

1
ΔνD
· (3)

Here g is the Landé factor, c the speed of light, m and e the
mass and charge of the electron, and ΔνD the frequency Doppler
width. Thus γB represents the rms fluctuations ΔB converted to
Zeeman shift in Doppler width units. Equation (1) then takes the
form

PV(y, aB) =
aB

π3/2

∫ +∞

−∞
e−u2

(y − u)2 + a2
B

du. (4)

For a magnetic damping parameter aB = 0, this Voigt PDF re-
duces to a 1D Gaussian distribution with zero mean field as con-
sidered in Frisch et al. (2005).

The average Zeeman absorption matrix 〈Φ̂〉 is given by

〈Φ̂〉 =
∫ +∞

−∞
Φ̂(B) PV

(
B
ΔB
, aB

)
dB
ΔB
· (5)
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This integral can be calculated analytically because it involves
the convolution of Voigt or Faraday-Voigt functions with a Voigt
PDF. Explicit expressions for these convolutions are given in
Eq. (5.65) of Landi Degl’Innocenti & Landolfi (2004, p. 171).
For the average absorption coefficients, they yield

〈ϕI〉 = Ā0 − 1
3

Ā2(3 cos2 γ − 1),

〈ϕV 〉 = Ā1 cosγ,

〈ϕQ〉 = Ā2 sin2 γ cos 2χ,

〈ϕU〉 = 〈ϕQ〉 tan 2χ, (6)

where

Ā0 =
1
3

q=+1∑
q=−1

1
γq

H(x̄q, āq), q = 0,±1,

Ā1 =
1
2

∑
q=±1

q
1
γq

H(x̄q, āq),

Ā2 =
1
4

q=+1∑
q=−1

(2 − 3q2)
1
γq

H(x̄q, āq), q = 0,±1. (7)

The non-dimensional quantities γq, x̄q, and āq in Eqs. (7) are

γq =

√
1 + q2γ2

B, q = 0,±1, (8)

and

x̄q =
x
γq
, āq =

(a + q2γBaB)
γq

· (9)

In Eq. (9), x = (ν − ν0)/ΔνD is the frequency measured from
the line center in units of the Doppler width ΔνD, while a is
the damping parameter. In the set of Eqs. (6) and (7), (γ, χ) de-
fine the orientation of the random magnetic field with respect to
the LOS and H(x̄q, āq) is the Voigt function. Because x̄q and āq

only depend on q2, we have Ā1 = 0 and hence 〈ϕV 〉 = 0. For
the magneto-optical coefficients 〈χQ,U,V 〉, one has similar expres-
sions, but with Faraday-Voigt functions F(x̄q, āq).

It is important to note that in practical computations
with Eq. (5) one should restrict the integration to the range
[−Bmax,+Bmax], where Bmax is approximately 1500 G. Small-
scale photospheric fields with strengths larger than about 1500 G
would not be expected to occur, since stronger fields cannot be
contained by the ambient gas pressure that prevails in the photo-
sphere. As mentioned above, high resolution La Palma magne-
togram data can be represented well with a Voigt like PDF with
a magnetic width ΔB = 6 G. Using this as the standard mag-
netic width, the limits of integration in non-dimensional units
are [−ymax,+ymax] = [−250,+250]. We have verified that for
such a large value of the cut-off, the average absorption matrix
(obtained by numerical averaging) does not differ significantly
from the corresponding analytical result (see Eq. (6)) derived
with [−ymax,+ymax] = [−∞,+∞]. We have also verified numer-
ically that the part of the PDF that affects the mean absorption
coefficient is from y ≈ −50 to y ≈ +50. Thus Eq. (6) may in-
deed be used to analyze the numerical results, to a good approx-
imation. To perform the y integral numerically we use a Gauss-
Legendre quadrature with approximately 300 quadrature points,
otherwise one would get oscillations in the wings of the emer-
gent solutions. It has been shown that the maximum frequency
band width should be chosen for consistency to satisfy the con-
dition xmax = 4γBymax (Frisch et al. 2005).

Fig. 1. Effect of the magnetic damping parameter aB on the mean resid-
ual Stokes parameters 〈rI,Q,U 〉. The average is taken over the Voigt type
PDF with zero mean field defined in Eq. (1), assuming optically thin ed-
dies. Different line types correspond to different values of the magnetic
damping parameter: aB = 0 (solid), 0.1 (dotted), 1.5 (dashed), and 2
(dash-dotted). Notice the increase of polarization throughout the line
profile, with an increase in aB.

We have calculated the averaged emergent residual Stokes
parameters 〈rI,Q,U〉 for the Voigt type PDF defined in Eq. (1), in
the optically thin and optically thick limits. The random field has
a fixed orientation with respect to the LOS defined by the polar
angles γ = 60◦ and χ = 30◦. The emergent residual Stokes pa-
rameters are defined by rI = [Ic − I]/C1 and rX = −X/C1, with
the symbol X denoting Q, U or V . The constant C1 is the slope
of the continuum source function S (τc) = C0 + C1τc, with τc
the continuum optical depth. The continuum intensity at the sur-
face is Ic = C0 + C1. The model used has damping parameter
a = 0, line strength parameter β = k0/kc = 10 (ratio of line
to the continuous absorption coefficient). We also assume that
the spectral line has a wavelength around 5000 Å, a Landé fac-
tor of 2 and a Doppler width of 1.5 km s−1. For this typical line,
BD = 1.07 × 103 G. Hence the value of γB corresponding to rms
magnetic field fluctuations ΔB = 6 G is γB = 0.0056. This means
that we will be dealing here with very small Zeeman shifts. As
a result the 〈rI〉 profiles in all the figures in this paper remain
insensitive to the parameters of the PDFs.

The results presented in Fig. 1 correspond to the optically
thin limit. They are calculated with γB = 0.0056 and a = 0. The
magnetic damping parameter aB is taken as a free parameter.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079160&pdf_id=1
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Fig. 2. Comparison of lines formed for optically thin (solid line) and
optically thick (dotted line) magnetic eddies. The model parameters are
the same as in Fig. 1, but with aB = 1.5.

Because of the symmetry of the PDF 〈ϕV〉 = 0 and hence 〈rV 〉 =
0. The 〈rI〉 profile is insensitive to the value of aB for the reason
given above. The 〈rQ,U〉 can be understood from Eqs. (6)−(9).
Since γB � 1, we have γq 	 1, xq 	 x and ā1 	 γBaB � 1
(aB is zero or of the order of unity). For aB � 0, we can ex-
pand H(xq, ā1) in powers of ā1 (see Mihalas 1978, p. 280). We
find Ā2 	 −(1/π)γBaB[2xD(x) − 1], where D(x) is the Dawson
function of real argument. This expression explains the order of
magnitude of 〈rQ,U〉 and the increase with aB, i.e. with the broad-
ening of the magnetic field PDF. For aB = 0, an expansion of Ā2
for small γB yields Ā2 	 (1/4

√
π)γ2

B(1 − 2x2) exp (−x2). The
〈rQ,U〉 are thus of the order of 10−6.

In Fig. 2 we compare the mean residual Stokes vector cor-
responding to the optically thin (solid line), and optically thick
(dotted line) limits. The model is the same as in Fig. 1, but with
a fixed magnetic damping parameter aB = 1.5. As the value of
γB is very small, the 〈rI〉 profile for both the cases are nearly
identical. Significant differences are observed in the wing peaks
of 〈rQ,U〉, the polarization being much larger for optically thin
eddies than for optically thick ones.

2.2. Asymmetric Voigt type PDF

Asymmetric Voigt PDFs can be constructed by choosing differ-
ent values of the magnetic damping parameter aB for different
parts of the PDF while the Gaussian core is kept symmetrical.

Figure 3a shows examples of asymmetric PDFs. The three
curves are constructed as follows:

solid line: for y < −1, aB = 0.5; for y ≥ −1, aB = 2.5;
dotted line: for y < −1, aB = 0.5; for −1 ≤ y ≤ +1,

aB = 1.5; for y > 1, aB = 2.5;
dashed line: for y < −1, aB = 0.1; for −1 ≤ y ≤ +1,

aB = 1.5; for y > 1, aB = 2.9.

All of them have been normalized to unity and more or less
resemble the PDF for the La Palma magnetogram in Fig. 2 of
Stenflo & Holzreuter (2002).

The asymmetry in PV(y, aB) can be measured by the differ-
ence δ(y) = PV(y > 0) − PV(y < 0) shown in Fig. 3b. The mean
magnetic field is the average of y over δ(y). Here we denote
it by y0. The values corresponding to the examples in Fig. 3a
are: (solid line) y0 = 3.4; (dotted line) y0 = 2.9; (dashed line)
y0 = 4.5.

Figure 4 shows the mean residual emergent solutions for the
3 PDFs in Fig. 3a in the optically thin limit. The other model
parameters are the same as in Figs. 1 and 2. The 〈rQ,U〉 profiles
show a very small sensitivity to the asymmetry of the PDFs and
the 〈rI〉 profiles remain insensitive to the PDF asymmetry for
the reason given above. For all three PDFs, 〈rV 〉 peaks around
x ≈ 1.5. The amplitude of the peaks increases with the mean
field. For the two first cases of asymmetry (solid and dotted lines
in Fig. 3), the values of 〈rV〉 do not differ significantly as the y0
have similar values.

We have computed also the mean Stokes profiles for the op-
tically thick limit using the same three asymmetric PDFs. For
〈rI,Q,U〉, the differences between the optically thin and thick limit
solutions are essentially similar to those shown in Fig. 2. For
〈rV 〉 the differences are minimal. An explanation is provided at
the end of Sect. 3.

In a random magnetic field, the Stokes profiles fluctuate
around their mean values. The order of magnitude of the fluc-
tuations is given by the dispersion (square root of the variance)
σX , (X = I, Q, U, V). For the reduced Stokes profiles,

σ2
X = 〈r2

X〉 − 〈rX〉2, (10)

where the average 〈 〉 is over all the realizations of the random
field. In the optically thin limit, σX is zero since rX is equal to its
mean value. The dispersion has its maximum value in the opti-
cally thick limit. Then 〈 〉 stands for the average over the Unno-
Rachkovsky solution. Examples of the variation of σX with the
characteristic scale of the magnetic field can be found in Frisch
et al. (2006a). Details on the numerical work required to calcu-
late the dispersion in the optically thick limit can be found also
in this reference.

It is interesting to consider the dispersion σX for a given
value of the mean field y0, and to compare it with the spread
introduced in 〈rX〉 by varying y0 (see Fig. 4). In Fig. 5 we show
〈rX〉 ± σX , with X = I, Q, U, V for y0 = 3.4. The other values
of y0 (2.9 and 4.5) yield very similar results. The dispersion is
very small for 〈rI〉 but for 〈rQ,U,V 〉 much larger than the spread
introduced by different choice of y0. One should not forget that
the values shown in Fig. 5 are upper bounds.

3. Magnetic field strength distribution: stretched
exponential type PDF

Numerical simulations of magneto-convection near the solar sur-
face by Stein & Nordlund (2006) show that the magnetic field is

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079160&pdf_id=2
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Fig. 3. a) Asymmetric Voigt PDFs defined
in Sect. 2.2. A multiplication of the non-
dimensional unit y by ΔB yields the magnetic
field strength in Gauss. According to Stenflo &
Holzreuter (2002) ΔB = 6 G in the solar atmo-
sphere. The PDFs are shown in log-scale to re-
solve the wing region and in linear scale to re-
solve the core region. b) The asymmetry δ(y)
for the PDFs shown in panel a). In both pan-
els, solid line: y0 = 3.4; dotted line: y0 = 2.9;
dashed line: y0 = 4.5.

Fig. 4. 〈rI,Q,U,V 〉 computed with the asymmetric Voigt PDFs in Fig. 3.
The relation between line type and PDF is the same as in Fig. 3, namely,
solid line: y0 = 3.4; dotted line: y0 = 2.9; dashed line: y0 = 4.5.

intermittent with a stretched exponential distribution. We will
now consider the effect of such a distribution function on the
emergent mean residual Stokes profiles. The functional form of
a stretched exponential (abbreviated “se”) may be written as1

Pse(y)dy = C e−|y|
k
dy. (11)

Here y is the magnetic field strength, in non-dimensional units,
defined as in Eq. (2). We let y vary from −ymax to +ymax. The
frequency shifts due to the Zeeman effect (measured in Doppler
width units) are ±yγB where γB is defined in Eq. (2). As in the
case of Voigt PDFs, we choose ymax = 250, ΔB = 6 G and
γB = 0.0056. The quantity k is a parameter that can range be-
tween 0 and 1 and is referred to as the stretching parameter.
C is the normalization constant that is determined numerically

1 http://en.wikipedia.org/wiki/Stretched_exponential

Fig. 5. Dispersion around the mean 〈rI,Q,U,V 〉 in the optically thick limit.
The calculations have been performed with the asymmetric Voigt PDF
corresponding to the mean field y0 = 3.4 (see Fig. 3). Notice the fairly
large dispersion for 〈rQ,U,V 〉.

by normalization. For ymax = ∞, C = k/(2Γ(1/k)), where Γ(1/k)
is the Gamma function. We find numerically that for ymax = 250,
we have C ≈ k/(2Γ(1/k)). The part of the PDF that affects the
mean absorption coefficient is from y ≈ −50 to y ≈ +50, as
above. For accurate evaluation of the y integral we use Gauss-
Legendre quadrature with approximately 300 points.

In Fig. 6 we show stretched exponentials and a Voigt PDF
with a damping parameter aB = 1.5 as suggested by the solar
data. The stretched exponentials for k ≤ 0.5 decrease slower
than the Voigt PDF, while for k > 0.5 they decrease faster. It is
clear that the transition at kcrit = 0.5 depends on the value aB.
Stenflo & Holzreuter (2002) mention that Voigt PDFs cannot fit
the PDFs derived by magneto-convection simulations. The main
problem is the core region, which is much more peaked with
stretched exponentials than a Gaussian.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079160&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079160&pdf_id=4
http://en.wikipedia.org/wiki/Stretched_exponential
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079160&pdf_id=5
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Fig. 6. Stretched exponentials and Voigt PDFs. The non-dimensional
y-scale is related to the B-scale through a multiplying factor ΔB equal
to 6 G according to Stenflo & Holzreuter (2002). The solid line corre-
sponds to f (y) = PV(y, aB = 1.5), while the dotted, dashed and dash-
dotted lines correspond respectively to stretched exponentials f (y) =
Pse(y) with the stretching parameter k = 0.5, 0.6, and 0.8, respectively.
The inset figure shows a magnified view of the core region in linear
scale.

In Fig. 7 we compare the mean residual Stokes vector for
the optically thin limit computed with the stretched exponential
PDFs and the Voigt PDF shown in Fig. 6. The Voigt PDF pro-
duces the largest degree of linear polarization (cf. 〈rQ〉 and 〈rU〉).
As the stretching parameter k increases, the profiles 〈rQ,U〉 de-
crease at all frequencies because of the disappearance of the
strong field tails of Pse(y) (see Fig. 6). The 〈rI〉 profile as before
remains insensitive to the different PDFs.

We find that for a stretched exponential the dispersion and
the differences between the optically thin and thick limit so-
lutions are small, much smaller than for the Voigt PDF case,
unless the stretching parameter k is chosen to be small (<0.5).
Dispersion and differences between the optically thin and thick
limits are zero when the magnetic field has a fixed value and ori-
entation. They will remain small as long as the magnetic field
PDF shows no extended tails. They will appear with Voigt PDFs
or when k is small.

Asymmetric PDFs with non-zero mean field can be con-
structed with stretched exponentials. It suffices to choose
different k values for positive and negative polarities. Figure 8a
shows three examples constructed as follows:

solid line: for y < −1, k = 0.8; for −1 ≤ y ≤ +1,
k = 0.7; for y > 1, k = 0.6;

dotted line: for y < −1, k = 0.9; for −1 ≤ y ≤ +1,
k = 0.7; for y > 1, k = 0.5;

dashed line: for y < −1, k = 0.8; for −1 ≤ y ≤ +1,
k = 0.6; for y > 1, k = 0.4.

All these profiles have been normalized to unity. The asymme-
tries δ(y) = Pse(y > 0) − Pse(y < 0) are shown in Fig. 8b. The
values of the mean field y0 are: solid line: y0 = 1, dotted line:
y0 = 3.2, dashed line: y0 = 11.6.

We have calculated the mean residual Stokes profiles for
these three PDFs in the regime of optically thin and optically

Fig. 7. Mean Stokes profiles 〈rI,Q,U〉 for optically thin structures com-
puted using three stretched exponential PDFs with different values of k
and one Voigt PDF. The model parameters are the same as in Fig. 2.
Line types: solid (Voigt with aB = 1.5), dotted (k = 0.5), dashed
(k = 0.6), and dash-dotted (k = 0.8).

thick magnetic structures. Now 〈rV〉 is not zero. Figure 9 shows
the results of our calculations for the optically thin limit and one
case of optically thick limit corresponding to y0 = 11.6. When
y0 = 1 and y0 = 3.2 there are no significant differences between
the optically thin and thick solutions because of the rapid drop
of the PDF tails.

In the optically thin limit, we observe a clear increase in the
peak amplitudes of 〈rQ,U,V 〉 when the mean field y0 increases.
The positions of the peaks are however essentially insensitive to
the mean field value. The 〈rI〉 profiles show no splitting and re-
main insensitive to the changes in the asymmetries. Differences
between the optically thin and thick limits appear for Stokes Q
and U when y0 = 11.6 and are due to the extended tail of the
PDF for positive polarities. For Stokes V , the differences remain
small even for y0 = 11.6. The relative insensitivity of Stokes
V to the scale of the magnetic field fluctuations has been ob-
served for Voigt type PDFs (see Sect. 2.2) and also for symmetric
Gaussian PDFs with non-zero mean field (Frisch et al. 2006a).
It is due to the fact that the function δ(y) which measures the
imbalance between positive and negative polarities (see Figs. 3b
and 8b) is sharply peaked around the mean magnetic field value.
In the limit of a Dirac distribution, there would be no difference
between the optically thin and thick limits since the magnetic
field would be deterministic. It thus appears that the mean value
of Stokes V can be calculated with reasonable confidence us-
ing the optically thin limit, a remark that was already made in
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Fig. 8. a) Asymmetric stretched exponential
PDFs defined in Sect. 3. b) The asymmetry δ(y)
of Pse(y) for the PDFs shown in panel a). In
panels a) and b) the line types are solid line:
y0 = 1, dotted line: y0 = 3.2, dashed line:
y0 = 11.6. To convert to the field strength scale,
multiply y by ΔB = 6 G.

Fig. 9. Mean Stokes profiles 〈rI,Q,U,V 〉 computed using asymmetric
stretched exponential PDFs. The solid, dotted and dashed lines are opti-
cally thin limit calculations, the line types referring to the corresponding
PDFs in Fig. 8a. The heavy dot-dashed line is an optically thick limit
calculation for y0 = 11.6.

Frisch et al. (2006a). Finally we recall that differences between
the optically thin and thick limits can occur only for reasonably
strong lines (β 1) for which transfer effects are significant.

We have calculated the dispersion around the mean Stokes
parameters (for the optically thick limit). In Fig. 10, we show the
dependence of σV on the value of y0. For y0 = 11.6, it can be-
come as large as the dispersion for a Voigt PDF shown in Fig. 5.
The dependence of σI,Q,U on y0 is similar to that of σV , and
hence we do not present them here.

Fig. 10. Dispersion σV in the optically thick limit for the model of
Fig. 9. Different line types are solid line: y0 = 1, dotted line: y0 = 3.2,
dashed line: y0 = 11.6.

4. Magnetic field angular distribution: power law
type PDF

A large fraction of the solar atmosphere is filled with mixed po-
larity fields, and the inter-granular lanes contain fields directed
upward or downward. To represent this scenario, we consider
magnetic fields that have a fixed value of the strength B but ran-
dom orientations. For such a random field, the following angular
distribution has been suggested by Stenflo (1987):

Ppl(μB) =
(p + 1)

4π
|μB|p, −1 ≤ μB ≤ +1. (12)

Here, μB = cos θB, with θB the field orientation with respect to
the vertical direction, chosen as the normal to the atmosphere.
The abbreviation “pl” stands for “power law”. In Stenflo (1987)
the same expression as above is given without modulus on μB,
but it is actually Eq. (12) which is meant.

The power law index p can take any value. The p = 0 case
corresponds to an isotropic distribution. As p increases the dis-
tribution becomes more and more peaked in the vertical direc-
tion (see Fig. 11). One can verify that the power law Ppl(μB) is
normalized to unity i.e.,

∫ 2π

0

∫ +1

−1
Ppl(μB) dμB dφB = 1, (13)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079160&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079160&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079160&pdf_id=10


282 M. Sampoorna et al.: Magnetic field probability distribution functions

where φB is the azimuth of the random field. In Eq. (12)
Ppl(μB) is expressed in the atmospheric reference frame (ARF).
Therefore the Zeeman absorption matrix usually formulated in
the LOS frame needs to be transformed to the ARF. The required
transformation is given by (cf. Varshalovich et al. 1988; Frisch
et al. 2007):
⎛⎜⎜⎜⎜⎜⎜⎝

sin γ cosχ
sin γ sin χ

cosγ

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝

cos θ cosφ cos θ sin φ − sin θ
− sinφ cosφ 0

sin θ cosφ sin θ sin φ cos θ

⎞⎟⎟⎟⎟⎟⎟⎠

×
⎛⎜⎜⎜⎜⎜⎜⎝

sin θB cosφB

sin θB sin φB
cos θB

⎞⎟⎟⎟⎟⎟⎟⎠ , (14)

where (θ, φ) defines the orientation of the LOS with respect to
the ARF, (γ, χ) the field orientation with respect to the LOS,
and (θB, φB) the field orientation with respect to the ARF.

The average Zeeman absorption matrix 〈Φ̂〉 is given by

〈Φ̂〉 =
∫ 2π

0
dφB

∫ 1

−1
Φ̂(B) Ppl(μB) dμB. (15)

Using the transformation formula of Eq. (14), it can be shown
that

〈ϕI〉 = A0 − 1
3

A2
p

p + 3
(3μ2 − 1), (16)

〈ϕQ〉 = A2
p

p + 3
(1 − μ2), (17)

where μ = cos θ. The coefficients A0,2 are given by

A0 =
1
3

q=+1∑
q=−1

H(xq, a), q = 0,±1

A2 =
1
4

q=+1∑
q=−1

(2 − 3q2)H(xq, a), q = 0,±1, (18)

where xq = x − qB/BD. We note that 〈ϕI,Q〉 depend on the ori-
entation θ of the LOS but are independent of azimuth φ. When
we use the transformation formula (14), we obtain terms propor-
tional to cos(φ− φB), sin(φ− φB), cos 2(φ− φB), or sin 2(φ− φB),
which vanish when averaged over φB. As a result 〈ϕU〉 = 0.
Further, 〈ϕV〉 = 0 for symmetry reasons. As for the anomalous
dispersion coefficients, the only non-zero coefficient is 〈χQ〉. It
has the same expression as 〈ϕQ〉with the Voigt function replaced
by the Faraday-Voigt function. From Eqs. (16) and (17) we see
that when p = 0 (isotropic turbulence case), or when μ = 1 (disk
center observation), 〈ϕQ〉 = 0.

The mean profiles 〈rI,Q〉 have been calculated in the optically
thin and thick limits. The average absorption matrix elements
given by Eqs. (16) and (17) have been used for the optically thin
limit. The model parameters are magnetic field strength B/BD =
0.1, line strength β = 10, damping parameter a = 0. The index p
of the power law PDF is taken as a free parameter.

Figure 12 shows 〈rI,Q〉 for the optically thin limit, at the limb
(μ = 0.1). The results are fairly simple to explain. Since the
magnetic field is weak (B/BD = 0.1), xq 	 x. As a consequence
A2 is very small. This implies 〈ϕI〉 ≈ H(x, a) (see Eq. (16)).
Hence 〈ϕI〉 is independent of p. The small value of A2 also im-
plies 〈ϕQ〉 � 〈ϕI〉 and thus 〈rQ〉 � 〈rI〉. As already mentioned,
〈ϕQ〉 = 0 when p = 0, hence 〈rQ〉 is also zero. As p gets larger,
the factor p/(p + 3) in Eq. (17) tends to unity. Therefore 〈ϕQ〉

Fig. 11. Power law PDFs as a function of the cosine of the random field
orientation θB (defined with respect to the vertical). The line types corre-
spond to p = 0 (solid), 2 (dotted), 4 (dashed), 6 (dash-dotted), 8 (dash-
triple-dotted), and 10 (long-dashed). As p increases the PDF becomes
more and more peaked in the forward and backward directions.

Fig. 12. Residual mean Stokes profiles 〈rI,Q〉 at μ = 0.1 (limb observa-
tion) for the optically thin limit and the angular power law PDF defined
in Eq. (12). Line types: p = 0 (solid), 5 (dotted), 10 (dashed), 100 (dot-
dashed), 500 (dash-triple-dotted), and 1000 (long dashed). In this case
〈rU,V 〉 = 0.
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first increases with p and then saturates. A similar behavior is
exhibited by 〈rQ〉. The saturation is reached for p 	 100 as can
be observed in Fig. 12.

The mean profiles 〈rI,Q〉 for the optically thick limit do not
differ significantly from the optically thin limit solutions be-
cause the absolute value of the magnetic field along the LOS
is bounded by the condition B/BD = 0.1. The dispersion around
the mean value (for the optically thick limit) decreases with an
increase in the value of p. This was expected because as p in-
creases the field becomes more and more uni-directional and
confined to the two values ±0.1BD.

5. Vector magnetic field distributions

For a complete description of turbulent vector magnetic fields
one needs a PDF that combines the strength and angular dis-
tributions. The strength distributions have been determined
empirically (Stenflo & Holzreuter 2002, 2003a,b) and by sim-
ulation (Stein & Nordlund 2006). Little is known from obser-
vations about the angular distribution. A very recent analysis of
Hinode data suggests a predominance of very inclined hG fields
in the internetwork (Orozco Suárez et al. 2007; Lites et al. 2007,
2008). From physical considerations one can argue that the an-
gular distribution should be strongly field-strength dependent.
For the strongest fields the distribution should be peaked around
the vertical direction, as the strong fields would tend to have an
intermittent flux tube morphology, and the powerful buoyancy
forces would push the flux tubes to stand upright (like the stems
of lotus flowers that are anchored to the bottom of the lake but
float on top). The weakest fields on the other hand would be pas-
sively moved and bent by the turbulent fluid motions and get so
tangled up that their distribution would be nearly isotropic. The
transition between the isotropic and peaked distributions would
probably be gradual (possibly around 50 G).

Based on this scenario we propose here PDFs, that are com-
binations of two PDFs, one for the angular distribution and one
for the field strength distribution. For the angular part we use the
power law distribution introduced in Sect. 4, while for the field
strength part we consider either a Voigt function (see Sect. 2) or
a stretched exponential (see Sect. 3).

5.1. Stretched exponential ∗ power law PDF

The functional form of the vector magnetic PDF when we com-
bine a stretched exponential with a power law distribution may
be written as

P(y, μB, φB) dμB dφB dy = Pse(y)Ppl(μB) dμB dφB dy, (19)

where the power law is given by Eq. (12), but now used only for
the range [0 ≤ μB ≤ 1]. If we choose the symmetric stretched
exponential introduced in Eq. (11) we can write

P(y, μB, φB) dμB dφB dy =
k

2Γ(1/k)
(p + 1)

2π
e−|y|

k
μ

p
B dy dμB dφB. (20)

Here y varies in the range [−ymax,+ymax], μB in the range [0, 1],
and φB in the range [0, 2π]. The angular and strength distribu-
tions are coupled by letting the power law index p depend on y.
We have chosen p = |y|/yt with yt = Bt/ΔB, where Bt represents
the field strength around which the transition between isotropic
and peaked distribution occurs. We refer to yt as the transition
field strength. We note that yt = ∞ corresponds to fully isotropic
distribution for all field strengths. Gauss-Legendre quadrature is

used to perform the integration over y, θB and φB. For the y in-
tegration we use 300 quadrature points, and for the θB and φB
integrations we use 30 and 10 points, respectively.

The average Zeeman absorption matrix 〈Φ̂〉 is obtained by
averaging Φ̂(B) over the PDF defined in Eq. (20). The integra-
tion over μB and φB can be performed analytically to obtain

〈ϕI〉 = 〈A0〉 − 1
3
〈A2〉 (3μ2 − 1), (21)

〈ϕQ〉 = 〈A2〉 (1 − μ2). (22)

After averaging, 〈ϕU〉 = 0 and 〈ϕV 〉 = 0. The mean coefficients
in the above equations are given by

〈A0〉 = k
2Γ(1/k)

∫ +ymax

−ymax

A0(y) e−|y|
k
dy, (23)

〈A2〉 = k
2Γ(1/k)

∫ +ymax

−ymax

|y|
|y| + 3yt

A2(y) e−|y|
k
dy, (24)

where A0(y) and A2(y) are given by Eq. (18) with xq = x − qγBy
and γBy = B/BD (see in Eq. (3) the definition of BD). Notice that
〈A2〉 = 0 and hence 〈ϕQ〉 = 0, for yt = ∞.

We can also use in Eq. (19) asymmetric stretched exponen-
tials. In that case 〈ϕV 〉 is not zero nor is 〈rV〉. We have calcu-
lated the mean profiles in the optically thin and thick limits for
the distributions shown in Fig. 8a. The model parameters are
(a, β, γB) = (0, 10, 0.0056), LOS perpendicular to the atmo-
sphere (μ = 1). For this LOS, 〈rQ,U〉 = 0 due to symmetry.
Figure 13 shows 〈rI〉 and 〈rV 〉 in the optically thin limit. As al-
ready observed (see Fig. 9), 〈rI〉 is insensitive to the asymmetry
of Pse(y) because of the very weak value of γB. Figures 13b−d
show that the magnitude of 〈rV 〉 increases with the value of the
mean field y0 as in Fig. 9. As yt increases, 〈rV〉 profiles approach
the isotropic case (solid lines in Figs. 13b−d). As the asymme-
try increases we need larger and larger values of yt to uniformly
approach the isotropic limit.

The 〈rV 〉 profiles for the optically thick limit differ from op-
tically thin limit solutions for y0 = 11.6 only, and the differences
remain small (as between the thin dashed and thick dot-dashed
lines in Fig. 9).

We have calculated the dispersionσV around 〈rV〉 for several
values of the mean field y0 and of the transition field strength
yt. For a given value of yt, the dispersion increases in magnitude
with y0 as shown in Fig. 10. For a given value of y0, there is an in-
crease in σV as the angular distribution becomes more and more
anisotropic (decreasing yt). Actually the increase of σV follows
that of 〈rV 〉 (see Fig. 13d) and the ratio σV/|〈rV〉| remains essen-
tially independent of yt. We stress again that the amplitude of σV
will decrease with decreasing sizes of the magnetic structures.

5.2. Voigt ∗ power law PDF

Next we consider a composite PDF constructed with a Voigt
PDF instead of an stretched exponential. We can use symmet-
ric or asymmetric PDFs. With the symmetric PDF defined in
Eq. (1), we have

P(y, μB, φB) dy dμB dφB =

(p + 1)
2π

PV(y, aB) μp
B dy dμB dφB. (25)

The power law index is chosen as p = |y|/yt as in Sect. 5.1. The
range of variations of y, μB, and φB and the numerical integration
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Fig. 13. 〈rI,V 〉 in the optically thin limit computed using the compos-
ite PDF given in Eq. (19) with asymmetric stretched exponential PDFs
shown in Fig. 8a. Disk center observation (μ = 1). Line types refer to
yt = ∞ (solid), yt = 50 (dotted), yt = 10 (dashed), and yt = 5 (dash-
dotted). Panels a) and b) correspond to a mean field y0 = 1, panel c) to
y0 = 3.2 and panel d) to y0 = 11.6.

scheme are also the same as in Sect. 5.1. The mean coefficients
are also given by Eqs. (21)−(24), but with [k/2Γ(1/k)]e−|y|k re-
placed by PV(y, aB).

We have calculated the mean residual Stokes parameters for
the asymmetric PDF with mean field y0 = 4.5 (dashed line in
Fig. 3a) for the optically thin and thick limits. The model pa-
rameters are (a, β, γB) = (0, 10, 0.0056), the LOS nearly parallel
to the limb (μ = 0.1). Figure 14 shows the solutions for optically
thin eddies. The different line types correspond to different val-
ues of the transition field strength yt. As discussed earlier 〈rI〉 is
essentially insensitive to the asymmetry of the Voigt PDF and to
the variation of yt. When yt → ∞, the mean coefficient 〈ϕQ〉 → 0
since 〈A2〉 → 0 (see Eq. (24)), and hence 〈rQ〉 → 0. As yt de-
creases, the PDF becomes more and more peaked and hence 〈rQ〉
as well as 〈rV 〉 increase in magnitude. For symmetry reason, as
in Sect. 5.1, 〈ϕU〉 = 0. However some amount of 〈rU〉 is created
due to the presence of magneto-optical effects. Therefore 〈rU〉 is
very small with a behavior similar to 〈rQ〉. The differences be-
tween the optically thin and thick limit solutions are similar to
the one noted in Fig. 2 for 〈rI,Q,U〉 and in Fig. 9 for 〈rV〉.

Fig. 14. 〈rI,Q,U,V 〉 profiles for optically thin limit and for limb observa-
tion (μ = 0.1). Composite PDF with asymmetric Voigt function corre-
sponding to a mean field y0 = 4.5 (dashed line of Fig. 3). The line types
correspond to yt = ∞ (solid), yt = 50 (dotted), yt = 10 (dashed), and
yt = 5 (dash-dotted).

6. Turbulent line formation for anomalous Zeeman
splitting

For a general Zeeman pattern, the elements of the absorption
matrix have contributions from each individual Zeeman compo-
nent. The relative strengths of these various components is thus
needed to calculate the absorption matrix. Under local thermo-
dynamic equilibrium (LTE) the line strengths are proportional
to the matrix elements |〈 l s j m |D| l′ s′ j′ m′〉|2, where D is the
dipole operator, and are given by the quantities (see Stenflo
1994, p. 107−111)

S q(Ml,Mu) ≡ S̃ q(Ml,Mu)∑
Ml ,Mu

S̃ q(Ml,Mu)
, q = 0, ±1, (26)

where Ml,u are the magnetic quantum numbers of the lower and
upper levels respectively, and q = Ml − Mu. The unnormalized
strengths S̃ q(Ml,Mu) are listed in Table 6.1 of Stenflo (1994).

The Zeeman splitting of the individual components can be
written in compact form as

xq = x − [qgu − Ml(gu − gl)]
B

B′D
,

where gu,l are the Landé factors of the upper and lower level
respectively, and 1/B′D = e/(4πmcΔνD). The elements of the
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Fig. 15. Effect of turbulence on a Zeeman mul-
tiplet. Two types of PDFs are used. Solid lines:
asymmetric Voigt with mean field y0 = 3.4 pre-
sented as solid line in Fig. 3a. Dotted lines:
asymmetric stretched exponential with mean
field y0 = 3.2 presented as dotted line in
Fig. 8a.

Zeeman absorption matrix formally remain the same, but the
normalized profiles ϕq and fq are now given by

ϕq =
∑
Mu

S q(Ml,Mu) H(xq, a), (27)

and

fq =
∑
Mu

S q(Ml,Mu) F(xq, a), (28)

respectively, subject to the constraint Ml = Mu + q. The equa-
tions required for computing transition strengths for Zeeman
multiplets and their absorption coefficients are also presented in
del Toro Iniesta (2003, p. 136−145). The shapes of the Zeeman
absorption matrix elements for the multiplet case are also shown
in this reference.

Equations (27) and (28) are valid for a deterministic mag-
netic field. To use the same equations for a random field, we just
need to replace B/B′D by γ′By, where y is defined in Eq. (2), and
γ′B = ΔB/B′D.

Figure 15 shows 〈rI,Q,U,V 〉 for a 4P1/2 – 4F3/2 transition.
For this particular transition there are two π components and
four σ components. Keeping the same kind of spectral line as
in the preceding sections (wavelength 5000 Å, Doppler width
1.5 km s−1), we find γ′B = γB/2 = 0.0028. Our model param-
eters are now: (a, β, γ′B) = (0, 10, 0.0028). For the magnetic
field, we assume a fixed orientation (γ, χ) = (60◦, 30◦) and ran-
dom strength. We use an asymmetric Voigt PDF and an asym-
metric stretched exponential. They yield mean profiles 〈rQ,U,V 〉
with similar shapes. As always 〈rI〉 remains insensitive to the
choice of the PDF. 〈rQ,U〉 are larger for the asymmetric Voigt
PDF (solid lines), than for the asymmetric stretched exponential

(dotted lines) for nearly the same values of the mean magnetic
fields (3.4 and 3.2, respectively). This is because 〈rQ,U〉 are sen-
sitive to the type of PDF used, as already shown in Fig. 7 (for
symmetric PDFs). 〈rV 〉 is generated purely by the asymmetry in
the PDF, and hence it is more sensitive to the value of the mean
field y0 than to the exact shape of the PDF. For this figure we
have chosen nearly the same mean value y0 for both PDFs, with
the consequence that the solid and dotted curves for 〈rV〉 do not
differ.

We also have calculated mean Stokes profiles for optically
thick eddies. The only difference appears to be that the optically
thin eddies produce 〈rQ,U〉 of slightly larger magnitude than the
optically thick ones.

7. Conclusions

We have presented mean Stokes profiles formed in media with
spatially unresolved magnetic structures. We have considered
the cases of optically thin and optically thick structures which
involve the computation of mean absorption matrices or mean
emergent Stokes profiles, respectively. We have also calculated
the dispersion around the mean Stokes profiles in the optically
thick limit (it is zero in the optically thin limit). The disper-
sion provides an upper bound for the order of magnitude of
the fluctuations of the Stokes profiles around their mean val-
ues. To perform such averaging we use a probability distribu-
tion function (PDF) that describes the fluctuations of the ambient
field. A Gaussian PDF with isotropic or anisotropic fluctuations
has been considered in detail in Frisch et al. (2005). Here we
have experimented with other types of PDFs and show the dif-
ference between the emergent mean Stokes profiles computed
from them. We consider very weak fluctuations of the magnetic
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field: The Zeeman shift from the magnetic field rms fluctuations
in Doppler width units, denoted here by γB, equals 0.0056. As
a consequence the 〈rI〉 profiles are insensitive to the shape of
the magnetic field PDF. In contrast, the other mean Stokes pro-
files and the dispersion are quite sensitive to the PDF shapes.
For stronger fluctuations (say γB = 1), 〈rI〉 would also get sig-
nificantly modified.

In Sect. 2 we consider a Voigt type PDF for the magnetic
field strength derived from observations by Stenflo & Holzreuter
(2002, 2003a,b). The Voigt PDF is characterized by two parame-
ters, the magnetic width ΔB and the magnetic damping parameter
aB. For aB = 0, we recover the results of the 1D Gaussian distri-
bution considered in Frisch et al. (2005). The effect of a non-zero
aB on the average Stokes profiles 〈rQ,U〉 is to enhance core and
wing polarization. We have introduced asymmetric Voigt PDFs
which provide a non-zero net magnetic flux, thereby generating
an 〈rV 〉 profile. They are constructed by taking different mag-
netic damping parameters for the opposite polarities of the ran-
dom field.

Stretched exponentials for the magnetic field strength
derived from magneto-convection simulations by Stein &
Nordlund (2006) are considered in Sect. 3. These PDFs are
characterized by a single parameter, the stretching parameter k,
which takes values between 0 and 1. A decrease of the stretch-
ing parameter k enhances the contribution from strong fields and
thus induces an increase in the values of 〈rQ,U〉 (see Fig. 7). In
this case also we construct asymmetric PDFs by using different
values of the stretching parameter k for the opposite polarities of
the magnetic field.

In Sect. 4 we have examined an angular power law dis-
tribution proposed by Stenflo (1987). The only parameter for
this PDF is the power law index p. For p = 0, the distribu-
tion is isotropic. As p increases the random field becomes more
and more oriented in both the forward and backward directions.
Because of the axial symmetry, 〈rU〉 = 0 for this PDF.

For a complete description of the turbulent vector magnetic
field one needs PDFs which describe both the angular and the
strength distribution of the magnetic field vector. In Sect. 5 we
have constructed empirical PDFs of this kind by combining a
power law for the angular distribution with a Voigt function or a
stretched exponential for the field strength. The PDFs for the an-
gular and strength distributions are coupled by letting the power
law index explicitly depend on the field strength. We have intro-
duced a cut-off in the magnetic field strength below which the
random magnetic field is essentially isotropic and above which
it is dominantly vertical. Construction and application of these
composite PDFs represent the main result of the present paper.
They could be used to represent the conditions prevailing in the
solar photosphere. Finally, in Sect. 6, we show how to general-
ize the averaging technique to the case of anomalous Zeeman
splitting patterns.

Our paper highlights the need to consider fluctuations in
the field orientation besides the field strength. We have exper-
imented with a few composite PDF of this type. However, we
would like observations to provide us with empirical PDFs not
only for the field strength, but also for the angular distribution,
but unfortunately such empirical angular PDFs are not yet avail-
able. In fact the derivation of PDFs from observations is done us-
ing “spatially resolved observations” (and not from the subtle de-
formations of Stokes line profiles that are produced by spatially
unresolved distribution functions). It is also possible to observa-
tionally study how the PDFs depend on scale size of magnetic
elements. Such spatially resolved observations provide guid-
ance regarding the applicability of derived PDFs to the spatially

unresolved domain. Thus the underlying assumption is that the
PDFs derived observationally for the larger, resolved scales, can
also be used for the smaller, unresolved scales.

We compute the mean Stokes profiles for a given line of
sight using a PDF that is independent of depth. In reality the
mean Stokes profiles are the result of space and/or time aver-
ages. Further, we have not considered realistic temperature and
density stratifications, and we also ignore the velocity turbulence
(except for the micro-turbulent line broadening included in the
Doppler width). For these reasons our mean Stokes profiles are
not yet suited for model fitting of observed Stokes profiles.

Another aspect that we need to keep in mind is the relation
between the complete PDF used in our pure theoretical profiles,
and the sampling that occurs in an actual observation. In our
computations we use “complete” PDFs which cover the entire
range in field strength and orientation. In contrast, high spatial
resolution observations may only sample different fractions of
a PDF in terms of strength and orientation because magnetic
structures have finite sizes. A complete PDF would be obtained
(asymptotically) if we add samples of many resolution elements,
or if we deliberately perform a low spatial resolution measure-
ment. Thus the observed high spatial resolution Stokes profiles
represent fluctuations about a mean profile. These fluctuations
will in general be of the order of the dispersion around the
mean profile. The dispersion is zero in the limit of infinitely thin
magnetic structures and in this limit the sampling is necessarily
complete.

Stenflo & Holzreuter (2003a) suggest that the magnetic pat-
tern is fractal with a high degree of self-similarity over several
orders of magnitude. If this coexistence of weak and strong fields
continues far below the current spatial resolution limit, then the
PDF sampling will be more complete than in the non-fractal
case, and the sampling of the PDF may be substantial even for
very high spatial resolution observations.
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