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Riesz transforms associated to Schrödinger
operators with negative potentials

Joyce ASSAAD∗

Abstract

The goal of this paper is to study the Riesz transforms ∇A−1/2

where A is the Schrödinger operator −∆− V, V ≥ 0, under different
conditions on the potential V . We prove that if V is strongly sub-
critical, ∇A−1/2 is bounded on Lp(RN ) , N ≥ 3, for all p ∈ (p′0; 2]
where p′0 is the dual exponent of p0 where 2 < 2N

N−2 < p0 < ∞;

and we give a counterexample to the boundedness on Lp(RN ) for
p ∈ (1; p′0) ∪ (p0∗;∞) where p0∗ := p0N

N+p0
is the reverse Sobolev expo-

nent of p0. If the potential is strongly subcritical in the Kato subclass
K∞

N , then ∇A−1/2 is bounded on Lp(RN ) for all p ∈ (1; 2], more-
over if it is in LN/2(RN ) then ∇A−1/2 is bounded on Lp(RN ) for all
p ∈ (1;N). We prove also boundedness of V 1/2A−1/2 with the same
conditions on the same spaces. Finally we study these operators on
manifolds. We prove that our results hold on a class of Riemannian
manifolds.
keywords:Riesz transforms, Schrödinger operators, off-diagonal esti-
mates, singular operators, Riemannian manifolds.
Mathematics Subject Classification (2010): 42B20 . 35J10.

1 Introduction and definitions

Let A be a Schrödinger operator −∆ + V where −∆ is the nonnegative
Laplace operator and the potential V : R

N → R such that V = V + − V −

(where V + and V − are the positive and negative parts of V , respectively).
The operator is defined via the sesquilinear form method. We define

a(u, v) =

∫

RN

∇u(x)∇v(x)dx+
∫

RN

V +(x)u(x)v(x)dx−
∫

RN

V −(x)u(x)v(x)dx
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D(a) =

{

u ∈W 1,2(RN),

∫

RN

V +(x)u2(x)dx <∞
}

.

Here we assume V + ∈ L1
loc(R

N) and V − satisfies (for all u ∈ D(a)):

∫

RN

V −(x)u2(x)dx ≤

α

[
∫

RN

|∇u|2(x)dx+

∫

RN

V +(x)u2(x)dx

]

+ β

∫

RN

u2(x)dx (1)

where α ∈ (0, 1) and β ∈ R. By the well-known KLMN theorem (see for
example [21] Chapter VI), the form a is closed (and bounded from below).
Its associated operator is A. If in addition β ≤ 0, then A is nonnegative.

We can define the Riesz transforms associated to A by

∇A−1/2 :=
1

Γ(1
2
)

∫ ∞

0

√
t∇e−tAdt

t
.

The boundedness of Riesz transforms on Lp(RN) implies that the domain
of A1/2 is included in the Sobolev space W 1,p(RN). Thus the solution of the
corresponding evolution equation will be in the Sobolev space W 1,p(RN) for
initial data in Lp(RN).

It is our aim to study the boundedness on Lp(RN) of the Riesz transforms
∇A−1/2. We are also interested in the boundedness of the operator V 1/2A−1/2.
If ∇A−1/2 and V 1/2A−1/2 are bounded on Lp(RN), we obtain for some positive
constant C

‖∇u‖p + ‖V 1/2u‖p ≤ C‖(−∆ + V )1/2u‖p.

By a duality argument, we obtain

‖(−∆ + V )1/2u‖p′ ≤ C(‖∇u‖p′ + ‖V 1/2u‖p′)

where p′ is the dual exponent of p.
Riesz transforms associated to Schrödinger operators with nonnegative po-
tentials were studied by Ouhabaz [24], Shen [27], and Auscher and Ben Ali
[2]. Ouhabaz proved that Riesz transforms are bounded on Lp(RN ) for all
p ∈ (1; 2], for all potential V locally integrable. Shen and Auscher and
Ben Ali proved that if the potential V is in the reverse Hölder class Bq,
then the Riesz transforms are bounded on Lp(RN ) for all p ∈ (1, p1) where
2 < p1 ≤ ∞ depends on q. The result of Auscher and Ben Ali generalize that
of Shen because Shen has restrictions on the dimension N and on the class
Bq. Recently, Badr and Ben Ali [5] extend the result of Auscher and Ben Ali
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[2] to Riemannian manifolds of homogeneous type with polynomial volume
growth where Poincaré inequalities hold and Riesz transforms associated to
the Laplace-Beltrami operator are bounded. They also prove that a smaller
range is possible if the volume growth is not polynomial.

With negative potentials new difficulties appear. If we take V ∈ L∞(RN),
and apply the method in [24] to the operator A + ‖V ‖∞, we obtain bound-
edness of ∇(A + ‖V ‖∞)−1/2 on Lp(RN) for all p ∈ (1; 2]. This is weaker
than the boundedness of ∇A−1/2 on the same spaces. Guillarmou and Has-
sell [17] studied Riesz transforms ∇(A ◦ P+)−1/2 where A is the Schrödinger
operator with negative potential and P+ is the spectral projection on the
positive spectrum. They prove that, on asymptotically conic manifolds M
of dimension N ≥ 3, if V is smooth and satisfies decay conditions, and
the Schrödinger operator has no zero-modes nor zero-resonances, then Riesz
transforms ∇(A ◦ P+)−1/2 are bounded on Lp(M) for all p ∈ (1, N). They
also prove (see [18]) that when zero-modes are present, Riesz transforms
∇(A◦P+)−1/2 are bounded on Lp(M) for all p ∈ ( N

N−2
, N

3
), with bigger range

possible if the zero modes have extra decay at infinity.

In this paper we consider only negative potentials. From now on, we
denote by A the Schrödinger operator with negative potential,

A := −∆ − V, V ≥ 0.

Our purpose is, first, to find optimal conditions on V allowing the bounded-
ness of Riesz transforms ∇A−1/2 and that of V 1/2A−1/2 on Lp(RN) second,
to find the best possible range of p’s.
Let us take the following definition

Definition 1.1. We say that the potential V is strongly subcritical if for some
ε > 0, A ≥ εV . This means that for all u ∈W 1,2(RN)

∫

RN

V u2 ≤ 1

1 + ε

∫

RN

|∇u|2.

For more information on strongly subcritical potentials see [15] and [33].
With this condition, V satisfies assumption (1) where β = 0 and α = 1

1+ε
.

Thus A is well defined, nonnegative and −A generates an analytic contrac-
tion semigroup (e−tA)t≥0 on L2(RN).

Since −∆ − V ≥ εV we have (1 + ε)(−∆ − V ) ≥ ε(−∆). Therefore

||∇u||22 ≤ (1 +
1

ε
)||A1/2u||22. (2)
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Thus, ∇A−1/2 is bounded on L2(RN ). Conversely, it is clear that if ∇A−1/2

is bounded on L2(RN) then V is strongly subcritical.

We observe also that −∆ − V ≥ εV is equivalent to

||V 1/2u||22 ≤
1

ε
||A1/2u||22. (3)

Thus, V 1/2A−1/2 is bounded on L2(RN) if and only if V is strongly subcritical.

So we can conclude that

‖∇u‖2 + ‖V 1/2u‖2 ≤ C‖(−∆ − V )1/2u‖2

if and only if V is strongly subcritical. Then by duality argument we have

‖∇u‖2 + ‖V 1/2u‖2 ≈ ‖(−∆ − V )1/2u‖2

if and only if V is strongly subcritical.

To study Riesz transforms on Lp(RN) for 1 ≤ p ≤ ∞ with p 6= 2 we use
the results on the uniform boundedness of the semigroup on Lp(RN). Taking
central potentials which are equivalent to c/|x|2 as |x| tends to infinity where
0 < c < (N−2

2
)2, N ≥ 3, Davies and Simon [15] proved that for all t > 0 and

all p ∈ (p′0; p0),
‖e−tA‖p−p ≤ C

where 2 < 2N
N−2

< p0 < ∞ and p′0 its dual exponent. Next Liskevich, Sobol,

and Vogt [23] proved the uniform boundedness on Lp(RN) for all p ∈ (p′0; p0)
where 2 < 2N

N−2
< p0 = 2N

(N−2)
(

1−
√

1− 1
1+ε

) , for general strongly subcritical

potentials . They also proved that the range (p′0, p0) is optimal and the
semigroup does not even act on Lp(RN) for p /∈ (p′0, p0). Under additional
condition on V , Takeda [31] used stochastic methods to prove a Gaussian
estimate of the associated heat kernel. Thus the semigroup acts boundedly
on Lp(RN) for all p ∈ [1,∞].

In this paper we prove that when V is strongly subcritical and N ≥ 3,
Riesz transforms are bounded on Lp(RN) for all p ∈ (p′0; 2]. We also give
a counterexample to the boundedness of Riesz transforms on Lp(RN) when
p ∈ (1; p′0) ∪ (p0∗;∞) where 2 < p0∗ := p0N

N+p0
< p0 < ∞. If V is strongly

subcritical in the Kato subclass K∞
N , N ≥ 3 (see Section 4), then ∇A−1/2 is

bounded on Lp(RN) for all p ∈ (1, 2]. If, in addition, V ∈ LN/2(RN) then it
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is bounded on Lp(RN) for all p ∈ (1, N). With the same conditions, we prove
similar results for the operator V 1/2A−1/2. Hence if V is strongly subcritical
and V ∈ K∞

N ∩ LN/2(RN), N ≥ 3, then

‖∇u‖p + ‖V 1/2u‖p ≈ ‖(−∆ − V )1/2u‖p (4)

for all p ∈ (N ′;N).
In the last section, we extend our results to Riemannian manifolds. We
denote by −∆ the Laplace-Beltrami operator on a complete non-compact
Riemannian manifold M of dimension N ≥ 3. We prove that when V
is strongly subcritical on M , ∇(−∆ − V )−1/2 and V 1/2(−∆ − V )−1/2 are
bounded on Lp(M) for all p ∈ (p′0; 2] if M is of homogeneous type and
the Sobolev inequality holds on M . If in addidtion Poincaré inequalities
hold on M and V belongs to the Kato class K∞ then ∇(−∆ − V )−1/2 and
V 1/2(−∆−V )−1/2 are bounded on Lp(M) for all p ∈ (1; 2]. When V is in addi-
tion in LN/2(M) and the Riesz transforms associated to the Laplace-Beltrami
operator are bounded on Lr(M) for some r ∈ (2;N ], then ∇(−∆ − V )−1/2

and V 1/2(−∆ − V )−1/2 are bounded on Lp(M) for all p ∈ (1; r).

For the proof of the boundedness of Riesz transforms we use off-diagonal
estimates (for properties and more details see [4]). These estimates are a
generalization of the Gaussian estimates used by Coulhon and Duong in [13]
to study the Riesz transforms associated to the Laplace-Beltrami operator
on Riemannian manifolds, and by Duong, Ouhabaz and Yan in [16] to study
the magnetic Schrödinger operator on R

N . We also use the approach of
Blunck and Kunstmann in [8] and [9] to weak type (p, p)-estimates. In [1],
Auscher used these tools to divergence-form operators with complex coeffi-
cients. For p ∈ (2;N) we use a complex interpolation method (following an
idea in Auscher and Ben Ali [2]).
In contrast to [17] and [18], we do not assume decay nor smoothness condi-
tions on V .

In the following sections, we denote by Lp the Lebesgue space Lp(RN)
with the Lebesgue measure dx, ||.||p its usual norm, (., .) the inner product
of L2, ||.||p−q the norm of operators acting from Lp to Lq. We denote by p′

the dual exponent to p, p′ := p
p−1

. We denote by C, c the positive constants

even if their values change at each occurrence. Through this paper, ∇A−1/2

denotes one of the partial derivative ∂
∂xk

A−1/2 for any fixed k ∈ {1, ..., N}.
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2 Off-diagonal estimates

In this section, we show that (e−tA)t>0, (
√
t∇e−tA)t>0 and (

√
tV 1/2e−tA)t>0

satisfy Lp −L2 off-diagonal estimates provided that V is strongly subcritical.

Definition 2.1. Let (Tt)t>0 be a family of uniformly bounded operators on L2.
We say that (Tt)t>0 satisfies Lp − Lq off-diagonal estimates for p, q ∈ [1;∞]
with p ≤ q if there exist positive constants C and c such that for all closed
sets E and F of R

N and all h ∈ Lp(RN)∩L2(RN)with support in E, we have
for all t > 0:

‖Tth‖Lq(F ) ≤ Ct−γpqe−
cd(E,F )2

t ‖h‖p,

where d is the Euclidean distance and γpq := N
2

(

1
p
− 1

q

)

.

Proposition 2.1. Let A = −∆ − V where V ≥ 0 and V is strongly sub-
critical. Then (e−tA)t>0, (

√
t∇e−tA)t>0, and (

√
tV 1/2e−tA)t>0 satisfy L2 − L2

off-diagonal estimates, and we have for all t > 0 and all f ∈ L2 supported in
E:

(i) ||e−tAf ||L2(F ) ≤ e−d2(E,F )/4t||f ||2,

(ii) ||
√
t∇e−tAf ||L2(F ) ≤ Ce−d2(E,F )/16t||f ||2,

(iii) ||
√
tV 1/2e−tAf ||L2(F ) ≤ Ce−d2(E,F )/8t||f ||2.

Proof: The ideas are classical and rely on the well known Davies perturbation
technique. Let Aρ := eρφAe−ρφ where ρ > 0 and φ is a Lipschitz function
with |∇φ| ≤ 1 a.e.. Here Aρ is the associated operator to the sesquilinear
form aρ defined by

aρ(u, v) := a(e−ρφu, eρφv)

for all u, v ∈ D(a).
By the strong subcriticality property of V we have for all u ∈W 1,2

((Aρ + ρ2)u, u) = −
∫

ρ2|∇φ|2u2 +

∫

|∇u|2 −
∫

V u2 + ρ2||u||22
≥ ε‖V 1/2u‖2

2. (5)

Using (2), we obtain

((Aρ + ρ2)u, u) = −
∫

ρ2|∇φ|2u2 +

∫

|∇u|2 −
∫

V u2 + ρ2||u||22

≥ ε

ε+ 1
||∇u||22. (6)
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In particular (Aρ+ρ2) is a maximal accretive operator on L2, and this implies

||e−tAρu||2 ≤ etρ2 ||u||2. (7)

Now we want to estimate

‖(Aρ + 2ρ2)e−t(Aρ+2ρ2)‖2−2.

First, let us prove that Aρ + 2ρ2 is a sectorial operator.
For u complex-valued,

aρ(u, u) := a(u, u) + ρ

∫

u∇φ∇u− ρ

∫

u∇φ∇u− ρ2

∫

|∇φ|2|u|2.

Then

aρ(u, u) + 2ρ2‖u‖2
2 ≥ a(u, u) + ρ

∫

u∇φ∇u− ρ

∫

u∇φ∇u+ ρ2‖u‖2
2

= a(u, u) + 2iρIm

∫

u∇φ∇u+ ρ2‖u‖2
2.

This implies that

Re(aρ(u, u) + 2ρ2‖u‖2
2) ≥ a(u, u), (8)

and

Re(aρ(u, u) + 2ρ2‖u‖2
2) ≥ ρ2‖u‖2

2. (9)

On the other hand,

aρ(u, u) = a(u, u) + ρ

∫

u∇φ∇u− ρ

∫

u∇φ∇u− ρ2

∫

|∇φ|2|u|2

= a(u, u) + 2iρIm

∫

u∇φ∇u− ρ2

∫

|∇φ|2|u|2.

So

|Im(aρ(u, u) + 2ρ2‖u‖2
2)| = 2|ρ|

∫

|u||∇φ||∇u|

≤ 2|ρ|‖u‖2‖∇u‖2.

Using (2) we obtain that

|Im(aρ(u, u) + 2ρ2‖u‖2
2)| ≤ 2|ρ|‖u‖2cεa

1
2 (u, u)

≤ c2εa(u, u) + ρ2‖u‖2
2,
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where cε = (1 + 1
ε
)

1
2 . Now using estimates (8) and (9), we deduce that there

exists a constant C > 0 depending only on ε such that

|Im(aρ(u, u) + 2ρ2‖u‖2
2)| ≤ CRe(aρ(u, u) + 2ρ2‖u‖2

2).

We conclude that (see [21] or [24])

‖e−z(Aρ+2ρ2)‖2−2 ≤ 1

for all z in the open sector of angle arctan(1/C). Hence by the Cauchy
formula

‖(Aρ + 2ρ2)e−t(Aρ+2ρ2)‖2−2 ≤
C

t
. (10)

The constant C is independent of ρ.
By estimate (5) and (6) we have

((Aρ + 2ρ2)u, u) ≥ ((Aρ + ρ2)u, u) ≥ ε‖V 1/2u‖2
2,

and
((Aρ + 2ρ2)u, u) ≥ ((Aρ + ρ2)u, u) ≥ ε

ε+ 1
‖∇u‖2

2.

Setting u = e−t(Aρ+2ρ2)f and using (10) and (7)
we obtain

||
√
t∇e−tAρf ||2 ≤ Ce2tρ2 ||f ||2. (11)

and

||
√
tV 1/2e−tAρf ||2 ≤ Ce2tρ2 ||f ||2. (12)

Let E and F be two closed subsets of R
N , f ∈ L2(RN) supported in E, and

let φ(x) := d(x,E) where d is the Euclidean distance. Since eρφf = f , we
have the following relation

e−tAf = e−ρφe−tAρf.

Then
∇e−tAf = −ρ∇φe−ρφe−tAρf + e−ρφ∇e−tAρf,

and
V 1/2e−tAf = e−ρφV 1/2e−tAρf.
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Now taking the norm on L2(F ), we obtain from (7), (11) and (12)

||e−tAf ||L2(F ) ≤ e−ρd(E,F )eρ2t||f ||2, (13)

||∇e−tAf ||L2(F ) ≤ ρe−ρd(E,F )eρ2t||f ||2 +
C√
t
e−ρd(E,F )e2tρ2 ||f ||2, (14)

and

||V 1/2e−tAf ||L2(F ) ≤
C√
t
e−ρd(E,F )e2ρ2t||f ||2. (15)

We set ρ = d(E,F )/2t in (13) and ρ = d(E,F )/4t in (15), then we get the
L2 − L2 off-diagonal estimates (i) and (iii).
We set ρ = d(E,F )/4t in (14), we get

||∇e−tAf ||L2(F ) ≤
C√
t

(

1 +
d(E,F )

4
√
t

)

e−d2(E,F )/8t||f ||2.

This gives estimate (ii).

Now, we study the Lp−L2 boundedness of the semigroup, of its gradient,
and of (V 1/2e−tA)t>0.

Proposition 2.2. Suppose that A ≥ εV , then (e−tA)t>0, (
√
t∇e−tA)t>0 and

(
√
tV 1/2e−tA)t>0 are Lp − L2 bounded for all p ∈ (p′0; 2]. Here p′0 is the dual

exponent of p0 where p0 = 2N

(N−2)
(

1−
√

1− 1
1+ε

) , and the dimension N ≥ 3. More

precisely we have for all t > 0:

i) ‖e−tAf‖2 ≤ Ct−γp‖f‖p,

ii) ‖
√
t∇e−tAf‖2 ≤ Ct−γp‖f‖p,

iii) ‖
√
tV 1/2e−tAf‖2 ≤ Ct−γp‖f‖p,

where γp = N
2

(

1
p
− 1

2

)

.

Proof. i) We apply the Gagliardo-Nirenberg inequality

||u||22 ≤ Ca,b||∇u||2a
2 ||u||2b

p ,

where a + b = 1 and (1 + 2γp)a = 2γp, to u = e−tAf for all f ∈ L2 ∩ Lp, all
t > 0, and all p ∈ (p′0; 2]. We obtain

||e−tAf ||22 ≤ Ca,b||∇e−tAf ||2a
2 ||e−tAf ||2b

p .
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At present we use the boundedness of the semigroup on Lp for all p ∈ (p′0; 2]
proved in [23], and the fact that ||∇u||22 ≤ (1 + 1/ε)(Au, u) from the strong
subcriticality condition, then we obtain that

||e−tAf ||2/a
2 ≤ −Cψ′(t)||f ||2b/a

p

where ψ(t) = ||e−tAf ||22. This implies

||f ||−2b/a
p ≤ C(ψ(t)

a−1
a )′.

Since 2b
a

= 1
γp

and a−1
a

= − 1
2γp

, integration between 0 and t yields

t||f ||−1/γp
p ≤ C||e−tAf ||−1/γp

2 ,

which gives i).
We obtain ii) by using the following decomposition:

√
t∇e−tA =

√
t∇A−1/2A1/2e−tA/2e−tA/2,

the boundedness of ∇A−1/2 and of (
√
tA1/2e−tA)t>0 on L2, and the fact that

(e−tA)t>0 is Lp − L2 bounded for all p ∈ (p′0; 2] proved in i).
We prove iii) by using the following decomposition:

√
tV 1/2e−tA =

√
tV 1/2A−1/2A1/2e−tA/2e−tA/2,

the boundedness of V 1/2A−1/2 and of (
√
tA1/2e−tA)t>0 on L2, and the fact

that (e−tA)t>0 is Lp − L2 bounded for all p ∈ (p′0; 2] proved in i).

We invest the previous results to obtain :

Theorem 2.1. Assume that A ≥ εV then (e−tA)t>0, (
√
t∇e−tA)t>0 and

(
√
tV 1/2e−tA)t>0 satisfy Lp − L2 off-diagonal estimates for all p ∈ (p′0; 2].

Here p′0 is the dual exponent of p0 where p0 = 2N

(N−2)
(

1−
√

1− 1
1+ε

) , and the

dimension N ≥ 3. Then we have for all t > 0, all p ∈ (p′0; 2], all closed sets
E and F of R

N and all f ∈ L2 ∩ Lp with suppf ⊆ E

i)

‖e−tAf‖L2(F ) ≤ Ct−γpe−
cd2(E,F )

t ‖f‖p, (16)

ii)

‖
√
t∇e−tAf‖L2(F ) ≤ Ct−γpe−

cd2(E,F )
t ‖f‖p, (17)
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iii)

‖
√
tV 1/2e−tAf‖L2(F ) ≤ Ct−γpe−

cd2(E,F )
t ‖f‖p, (18)

where γp = N
2

(

1
p
− 1

2

)

and C, c are positive constants.

Remark: By duality, we deduce from (16) a L2−Lp off-diagonal estimate
of the norm of the semigroup for all p ∈ [2; p0), but we cannot deduce from
(17) and (18) the same estimate of the norm of

√
t∇e−tAf and of

√
tV 1/2e−tAf

because they are not selfadjoint. This affects the boundedness of Riesz trans-
forms and of V 1/2A−1/2 on Lp for p > 2.

Proof. i) In the previous proposition we have proved that

‖e−tAf‖2 ≤ Ct−γp‖f‖p

for all p ∈ (p′0; 2]. This implies that for all t > 0

‖χFe
−tAχEf‖2 ≤ Ct−γp‖f‖p

where χM is the characteristic function of M . The L2 − L2 off-diagonal
estimate proved in the Proposition 2.1 implies that

‖χF e
−tAχEf‖2 ≤ e−d2(E,F )/4t‖f‖2.

Hence we can apply the Riesz-Thorin interpolation theorem and we obtain
the off-diagonal estimate (16).
Assertions ii) and iii) are proved in a similar way. We use L2 − L2 off-
diagonal estimates of Proposition 2.1 and assertions ii) and iii) of Proposition
2.2.

3 Boundedness of ∇A−1/2 and V 1/2A−1/2 on Lp for p ∈
(p′0; 2]

This section is devoted to the study of the boundedness of V 1/2A−1/2 and
Riesz transforms associated to Schrödinger operators with negative and strongly
subcritical potentials. We prove that ∇A−1/2 and V 1/2A−1/2 are bounded on
Lp(RN ), N ≥ 3, for all p ∈ (p′0; 2], where p′0 is the exponent mentioned in
Theorem 2.1.
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Theorem 3.1. Assume that A ≥ εV , then ∇A−1/2 is bounded on Lp(RN) for

N ≥ 3, for all p ∈ (p′0; 2] where p′0 =
(

2N

(N−2)
(

1−
√

1− 1
1+ε

)

)′

.

To prove Theorem 3.1, we prove that ∇A−1/2 is of weak type (p, p) for
all p ∈ (p′0; 2) by using the following theorem of Blunck and Kunstmann
[8]. Then by the boundedness of ∇A−1/2 on L2, and the Marcinkiewicz
interpolation theorem, we obtain boundedness on Lp for all p ∈ (p′0; 2]. This
result can also be deduced from Theorem 2.1 together with Theorem 1.1 of
[9].

Theorem 3.2. Let p ∈ [1; 2). Suppose that T is sublinear operator of strong
type (2, 2), and let (Ar)r>0 be a family of linear operators acting on L2.

Assume that for j ≥ 2

(

1

|2j+1B|

∫

Cj(B)

|T (I − Ar(B))f |2
)1/2

≤ g(j)

(

1

|B|

∫

B

|f |p
)1/p

, (19)

and for j ≥ 1

(

1

|2j+1B|

∫

Cj(B)

|Ar(B)f |2
)1/2

≤ g(j)

(

1

|B|

∫

B

|f |p
)1/p

, (20)

for all ball B with radius r(B) and all f supported in B. If Σ :=
∑

g(j)2Nj <
∞, then T is of weak type (p, p), with a bound depending only on the strong
type (2, 2) bound of T , p, and Σ.
Here C1 = 4B and Cj(B) = 2j+1B r 2jB for j ≥ 2, where λB is the ball of
radius λr(B) with the same center as B, and |λB| its Lebesgue measure.

of Theorem 3.1. Let T = ∇A−1/2. We prove assumptions (19) and (20) with
Ar = I − (I − e−r2A)m for some m > N/4 − γp, using arguments similar to
Auscher [1] Theorem 4.2.
Let us prove (20). For f supported in a ball B (with radius r),

1

|2j+1B|1/2
‖Arf‖L2(Cj (B)) =

1

|2j+1B|1/2

∣

∣

∣

∣

∣

∣

m
∑

k=1

(

m

k

)

(−1)k+1e−kr2Af
∣

∣

∣

∣

∣

∣

L2(Cj(B))

≤ 1

|2j+1B|1/2

m
∑

k=1

(

m

k

)

C(kr2)−γpe
−cd2(B,Cj (B))

kr2 ‖f‖p.

12



for all p ∈ (p′0; 2) and all f ∈ L2∩Lp supported in B. Here we use the Lp−L2

off-diagonal estimates (16) for p ∈ (p′0; 2]. Since γp = N
2
(1

p
− 1

2
) we obtain

( 1

|2j+1B|

∫

Cj(B)

|Arf |2
)1/2

≤ Cr−2γp

|2j+1B|1/2
e

−cd2(B,Cj (B))

mr2 ‖f‖p

≤ C2−jN/2e
−cd2(B,Cj (B))

r2

( 1

|B|

∫

B

|f |p
)1/p

.

This yields, for j = 1,

( 1

|4B|

∫

4B

|Arf |2
)1/2

≤ C2−N/2
( 1

|B|

∫

B

|f |p
)1/p

,

and for j ≥ 2

( 1

|2j+1B|

∫

Cj(B)

|Arf |2
)1/2

≤ C2−jN/2e−c4j
( 1

|B|

∫

B

|f |p
)1/p

.

Thus assumption (20) of Theorem 3.2 holds with
∑

j≥1 g(j)2
jN <∞.

It remains to check the assumption (19):
We know that

∇A−1/2f = C

∫ ∞

0

∇e−tAf
dt√
t

then, using the Newton binomial, we get

∇A−1/2(I − e−r2A)mf = C

∫ ∞

0

∇e−tA(I − e−r2A)mf
dt√
t

= C

∫ ∞

0

gr2(t)∇e−tAfdt

where

gr2(t) =

m
∑

k=0

(

m

k

)

(−1)kχ(t−kr2>0)√
t− kr2

.

Hence, using the Lp − L2 off-diagonal estimate (17), we obtain for all p ∈
(p′0; 2), all j ≥ 2, and all f ∈ L2 ∩ Lp supported in B

‖∇A−1/2(I − e−r2A)mf‖L2(Cj (B)) ≤ C

∫ ∞

0

|gr2(t)|t−γp−1/2e−c4jr2/tdt‖f‖p.

We observe that (see [1] p. 27)

|gr2(t)| ≤ C√
t− kr2

if kr2 < t ≤ (k + 1)r2 ≤ (m+ 1)r2

13



and
|gr2(t)| ≤ Cr2mt−m−1/2 if t > (m+ 1)r2.

This yields

‖∇A− 1
2 (I − e−r2A)mf‖L2(Cj(B)) ≤ C

m
∑

k=0

∫ (k+1)r2

kr2

t−γp−1/2

√
t− kr2

e−
c4jr2

t dt‖f‖p

+ C

∫ ∞

(m+1)r2

r2mt−γp−1−me−
c4jr2

t dt‖f‖p

≤ I1 + I2. (21)

We have

I2 := C

∫ ∞

(m+1)r2

r2mt−γp−1−me−
c4jr2

t dt‖f‖p ≤ Cr−2γp2−2j(m+γp)‖f‖p,

by the Laplace transform formula, and

I1 := C‖f‖p

m
∑

k=0

∫ (k+1)r2

kr2

t−γp−1/2

√
t− kr2

e−
c4jr2

t dt

= C‖f‖p

(

m
∑

k=1

∫ (k+1)r2

kr2

t−γp−1/2

√
t− kr2

e−
c4jr2

t dt+

∫ r2

0

t−γp−1e−
c4jr2

t dt
)

= J1 + J2.

In the preceding equation

J1 := C‖f‖p

m
∑

k=1

∫ (k+1)r2

kr2

t−γp−1/2

√
t− kr2

e−
c4jr2

t dt

≤ C‖f‖pe
− c4j

m+1

m
∑

k=1

(kr2)−γp−1/2

∫ (k+1)r2

kr2

(t− kr2)−1/2dt

≤ Cr−2γp2−2j(m+γp)‖f‖p,

and

J2 := C

∫ r2

0

t−γp−1e−
c4jr2

t dt‖f‖p

≤ C‖f‖pe
− c4j

2(m+1)

∫ r2

0

t−γp−1e−
c4jr2

2t dt

≤ C‖f‖p2
−2jm

∫ r2

0

t−1−γpC(2−2jr−2t)γpe−
c4jr2

4t dt

≤ C‖f‖p2
−2j(m+γp)r−2γp

∫ r2

0

t−1e−
c4jr2

4t dt

≤ Cr−2γp2−2j(m+γp)‖f‖p.

14



Here, for the last inequality, we use the fact that j ≥ 2 to obtain the conver-
gence of the integral without dependence on r nor on j.
We can therefore employ these estimates in (21) to conclude that

‖∇A−1/2(I − e−r2A)mf‖L2(Cj(B)) ≤ Cr−2γp2−2j(m+γp)‖f‖p,

which implies

( 1

|2j+1B|

∫

Cj(B)

|∇A− 1
2 (I − e−r2A)mf |2

)
1
2 ≤ C2−2j(m+γp+ N

4
)
( 1

|B|

∫

B

|f |p
)

1
p

where
∑

g(j)2jN <∞ because we set m > N/4 − γp.

Proposition 3.1. Assume that A ≥ εV , then V 1/2A−1/2 is bounded on Lp(RN)
for N ≥ 3, for all p ∈ (p′0; 2] where p′0 is the dual exponent of p0 with
p0 = 2N

(N−2)
(

1−
√

1− 1
1+ε

) .

Proof. We have seen in (3) that the operator V 1/2A−1/2 is bounded on L2. To
prove its boundedness on Lp for all p ∈ (p′0; 2] we prove that it is of weak type
(p, p) for all p ∈ (p′0; 2) by checking assumptions (19) and (20) of Theorem
3.2, where T = V 1/2A−1/2. Then, using the Marcinkiewicz interpolation
theorem, we deduce boundedness on Lp for all p ∈ (p′0; 2].
We check assumptions of Theorem 3.2 similarly as we did in the proof of
Theorem 3.1, using the Lp − L2 off-diagonal estimate (18) instead of (17).

Let us now move on, setting V = c|x|−2 where 0 < c < (N−2
2

)2, which
is strongly subcritical thanks to the Hardy inequality, we prove that the as-
sociated Riesz transforms are not bounded on Lp for p ∈ (1; p′0) neither for
p ∈ (p0∗;∞). Here p0∗ = p0N

N+p0
is the reverse Sobolev exponent of p0.

Proposition 3.2. Set V strongly subcritical and N ≥ 3. Assume that ∇A−1/2

is bounded on Lp for some p ∈ (1; p′0). Then there exists an exponent q1 ∈
[p; p′0) such that (e−tA)t>0 is bounded on Lr for all r ∈ (q1; 2).

Consider now V = c|x|−2 where 0 < c < (N−2
2

)2. It is proved in [23] that
the semigroup does not act on Lp for p /∈ (p′0; p0). Therefore we obtain from
this proposition that the Riesz transform ∇A−1/2 is not bounded on Lp for
p ∈ (1; p′0).
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Proof. Assume that ∇A−1/2 is bounded on Lp for some p ∈ (1; p′0). By the
boundedness on L2 and the Riesz-Thorin interpolation theorem, we get the
boundedness of ∇A−1/2 on Lq for all q ∈ [p; 2]. Now we apply the Sobolev
inequality

‖f‖q∗ ≤ C‖∇f‖q (22)

where q∗ = Nq
N−q

if q < N to f := A−1/2u, so we get

‖A−1/2u‖q∗ ≤ C‖∇A−1/2u‖q ≤ C‖u‖q

for all q ∈ [p; 2]. In particular, ‖A−1/2‖q1−q∗1
≤ C where p ≤ q1 < p′0 such

that q∗1 > p′0.
Decomposing the semigroup as follows

e−tA = A1/2e−tA/2e−tA/2A−1/2 (23)

where A−1/2 is Lq1 − Lq∗1 bounded , e−tA/2 has Lq∗1 − L2 norm bounded by
Ct

−γq∗1 (Proposition 2.2) and A1/2e−tA/2 is L2−L2 bounded by Ct−1/2 because
of the analyticity of the semigroup on L2. Therefore, we obtain

‖e−tA‖q1−2 ≤ Ct
−γq∗1

−1/2
= Ct−γq1 .

We now interpolate this norm with the L2 − L2 off-diagonal estimate of the
norm of e−tA, as we did in the proof of Theorem 2.1, so we get a Lr − L2

off-diagonal estimate for all r ∈ (q1; 2). Then Lemma 3.3 of [1] yields that
(e−tA)t>0 is bounded on Lr for all r ∈ (q1; 2) for q1 ∈ [p; p′0) such that q∗1 >
p′0.

Proposition 3.3. Set V strongly subcritical and N ≥ 3. Assume that ∇A−1/2

is bounded on Lp for some p ∈ (p0∗;∞). Then there exists an exponent
q2 > p0∗ such that the semigroup (e−tA)t>0 is bounded on Ls for all s ∈ (2; q∗2).
Here q∗2 > p0.

Consider now V = c|x|−2 where 0 < c < (N−2
2

)2. It is proved in [23] that
the semigroup does not act on Lp for p /∈ (p′0; p0). Therefore we obtain from
this proposition that the Riesz transforms ∇A−1/2 are not bounded on Lp

for p ∈ (p0∗;∞).

Proof. Assume that ∇A−1/2 is bounded on Lp for some p ∈ (p0∗;∞). Then
by interpolation we obtain the boundedness of ∇A−1/2 on Lq for all q ∈ [2; p].
In particular,

||∇A−1/2||q2−q2 ≤ C
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where p0∗ < q2 < p0, q2 ≤ p, q2 < N . Using the Sobolev inequality (22), we
obtain that A−1/2 is Lq2 − Lq∗2 bounded where q∗2 > p0.
Now we decompose the semigroup as follows

e−tA = A−1/2e−tA/2A1/2e−tA/2. (24)

Thus we remark that it is L2 − Lq∗2 bounded where q∗2 > p0.
Then, using similar arguments as in the previous proof, we conclude that
(e−tA)t>0 is bounded on Ls for all s ∈ (2; q∗2) for p0∗ < q2 < inf(p0, p, N).

4 Boundedness of ∇A−1/2 and V 1/2A−1/2 on Lp for all

p ∈ (1;N)

In this section we assume that V is strongly subcritical in the Kato subclass
K∞

N , N ≥ 3. Following Zhao [33], we define

K∞
N :=

{

V ∈ K loc
N ; lim

B↑∞

[

sup
x∈RN

∫

|y|≥B

|V (y)|
|y − x|N−2

dy

]

= 0

}

,

where K loc
N is the class of potentials that are locally in the Kato class KN .

For necessary background of the Kato class see [29] and references therein.

We use results proved by stochastic methods to deduce a L1 − L∞ off-
diagonal estimate of the norm of the semigroup which leads to the bounded-
ness of ∇A−1/2 and V 1/2A−1/2 on Lp for all p ∈ (1;N).

Theorem 4.1. Let A be the Schrödinger operator −∆ − V, V ≥ 0. Assume
that V is strongly subcritical in the class K∞

N , (N ≥ 3), then ∇A−1/2 and
V 1/2A−1/2 are of weak type (1, 1), they are bounded on Lp for all p ∈ (1; 2].
If in addition V ∈ LN/2, then ∇A−1/2 and V 1/2A−1/2 are bounded on Lp for
all p ∈ (1;N).

Proof. We assume that V is strongly subcritical in the class K∞
N . There-

fore V satisfies assumptions of Theorem 2 of [31] (The classes K∞ and S∞

mentioned in [31] are equivalent to the class K∞
N (see Chen [11] Theorem 2.1

and Section 3.1)). Thus the heat kernel associated to (e−tA)t>0 satisfies a
Gaussian estimate. Therefore (e−tA)t>0, (

√
t∇e−tA)t>0, and (

√
tV 1/2e−tA)t>0

satisfy L1 −L2 off-diagonal estimates. Arguing now as in the proof of Theo-
rem 3.1 (or using Theorem 5 of [28]) we conclude that ∇A−1/2 and V 1/2A−1/2

are of weak type (1, 1) and they are bounded on Lp for all p ∈ (1; 2].
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To prove the boundedness of ∇A−1/2 on Lp for higher p we use the Stein
complex interpolation theorem (see [30] Section V.4).
Let us first mention thatD := R(A)∩L1∩L∞ is dense in Lp for all p ∈ (1;∞)
provided that V is strongly subcritical in K∞

N , N ≥ 3. We prove the density
as in [2], where in our case we have the following estimate

|fk − f | ≤ k(c(−∆) + k)−1f (25)

where fk := A(A + k)−1f and c is a positive constant. This estimate holds
from the Gaussian estimate of the heat kernel associated to the semigroup
(e−tA)t>0.

Set F (z) :=< (−∆)zA−zf, g > where f ∈ D, g ∈ C∞
0 (RN) and z ∈ S :=

{x + iy such that x ∈ [0; 1] and y ∈ R
N}. F (z) is admissible. Indeed,

the function z 7−→ F (z) is continuous in S and analytic in its interior. In
addition

|F (z)| = | < A−zf, (−∆)zg > | ≤ ||A−zf ||2||(−∆)zg||2. (26)

For Rez ∈ (0; 1), D(−∆) ⊂ D((−∆)z), so

||(−∆)zg||2 ≤ C||g||W 2,2 (27)

for all z ∈ S.
When V is strongly subcritical, A is non-negative self-adjoint operator on
L2, hence ||Aiy||2−2 ≤ 1 for all y ∈ R. Therefore for all z = x + iy ∈ S and
f = Au ∈ R(A) we have

||A−zf ||2 ≤ ||A−iy||2−2||A1−xu||2
≤ C(||u||2 + ||Au||2). (28)

Here we use D(A) ⊂ D(A1−x) because (1 − x) ∈ (0; 1).
Now we employ (27) and (28) in (26) to deduce the admissibility of F (z) in
S. Thus we can apply the Stein complex interpolation theorem to F (z).
Since V is strongly subcritical and belongs to the class K∞

N , N ≥ 3, we obtain
a Gaussian estimate of the heat kernel of A. Thus A has a H∞-bounded
calculus on Lp for all p ∈ (1;∞) (see e.g. [8] Theorem 2.2). Hence

|F (iy)| ≤ ||A−iyf ||p0||(−∆)−iyg||p′0 ≤ Cγ,p0e
2γ|y|||f ||p0||g||p′0

for all γ > 0, all p0 ∈ (1;∞).
Let us now estimate ||V A−1||p1−p1. By Hölder’s inequality

||V A−1u||p1 ≤ ||V ||N/2||A−1u||q (29)
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where p1 < N and 1
p1

= 1
q

+ 2
N

. As mentioned above we have a Gaussian
upper bound for the heat kernel. In particular

||e−tA||1−∞ ≤ Ct−N/2

for all t > 0. Therefore A−1 extends to a bounded operator from Ls to Lq

such that s < N
2

and 1
s

= 1
q

+ 2
N

, and we have

||A−1u||q ≤ C||u||s.

(see Coulhon [12]). Thus s = p1, D(A) ⊆ D(V ) and (29) implies

||V A−1||p1−p1 ≤ C

where C depends on ||V ||N/2. Hence we can estimate

||(−∆)A−1u||p1 = ||(−∆ − V + V )A−1u||p1

≤ ||u||p1 + ||V A−1u||p1

≤ C||u||p1 (30)

where C depends on ||V ||N/2. We return to F (z),

|F (1 + iy)| ≤ ||(−∆)A−1A−iyf ||p1||(−∆)−iyg||p′1
≤ ||(−∆)A−1||p1−p1||A−iyf ||p1||(−∆)−iyg||p′1
≤ Cγ,p1,||V ||N/2

e2γ|y|||f ||p1||g||p′1
for all p1 ∈ (1;N/2) and all γ > 0.

From the Stein interpolation theorem it follows that for all t ∈ [0; 1] there
exists a constant Mt such that

|F (t)| ≤ Mt||f ||pt||g||p′t
where 1

pt
= 1−t

p0
+ t

p1
. Setting t = 1

2
and using a density argument we conclude

that ∇A−1/2 is bounded on Lp for all p ∈ (1;N).

To prove boundedness of V 1/2A−1/2 on Lp we use the following decompo-
sition

V 1/2A−1/2 = V 1/2(−∆)−1/2(−∆)1/2A−1/2.

Assuming V ∈ LN/2 we have by Hölder’s inequality

||V 1/2u||p ≤ ||V 1/2||N ||u||q
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where p < N and 1
p
− 1

q
= 1

N
. Then by Sobolev inequality and the bounded-

ness of Riesz transforms associated to the Laplace operator we obtain

||V 1/2u||p ≤ Cp,N,||V ||N/2
||∇u||p ≤ Cp,N,||V ||N/2

||(−∆)1/2u||p (31)

for all p ∈ (1;N). Thus if V ∈ LN/2 we have for all p ∈ (1;N)

||V 1/2(−∆)−1/2||p−p ≤ C.

Using the boundedness of Riesz transforms associated to the Schrödinger
operator A we have

||(−∆)1/2A−1/2u||p ≤ C||u||p

for all p ∈ (1;N).
Therefore V 1/2A−1/2 is bounded on Lp for all p ∈ (1;N) provided that V is
strongly subcritical in the class K∞

N ∩ LN/2, N ≥ 3.

Example: Set N ≥ 3, and let us take potentials V in the Kato subclass
KN ∩ LN/2 such that V ∼ c|x|−α when x tends to infinity, where α > 2.
Suppose that ||V ||N

2
is small enough. Let us prove that these potentials are

strongly subcritical, so we should prove that

||V 1/2u||22 ≤ C||∇u||22

where C < 1. This is (31) where p = 2, and C < 1 for ||V ||N
2

is small

enough. Hence these potentials are strongly subcritical. Z.Zhao [33] proved
that they are in the subclass K∞

N . Hence they satisfy the assumptions of
Theorem 4.1. Then ∇(−∆ − V )−1/2 and V 1/2(−∆ − V )−1/2 are bounded on
Lp for all p ∈ (1;N).

Remarks: 1) The proof of the previous theorem shows that

||V u||p1 ≤ C||Au||p1

and
||∆u||p1 ≤ C||Au||p1

for all p1 ∈ (1;N/2).
2) If we consider H = −∆+V a Schrödinger operator with non-negative po-
tential V ∈ LN/2, we obtain by the previous arguments the Lp1-boundedness
of V H−1 and ∆H−1 for all p1 ∈ (1;N/2), and the Lp-boundedness of V 1/2H−1/2

and ∇H−1/2 for all p ∈ (1;N).
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5 Schrödinger operators on Riemannian manifolds

LetM be a non-compact complete Riemannian manifold of dimension N ≥ 3.
Denote by dµ the Riemannian measure, ρ the geodesic distance on M and ∇
the Riemannian gradient. Denote by |.| the length in the tangent space, and
by ‖.‖p the norm in Lp(M, dµ). Let −∆ be the positive self-adjoint Laplace-
Beltrami operator on M . Take V a strongly subcritical positive potential on
M , which means that there exists an ε > 0 such that

∫

M

V u2dµ ≤ 1

1 + ε

∫

M

|∇u|2dµ. (32)

and set A := −∆ − V the associated Schrödinger operator on M . By the
sesquilinear form method A is well defined, non-negative, and −A generates
a bounded analytic semigroup (e−tA)t>0 on L2(M).

As in R
N , we have the L2(M)-boundedness of V 1/2A−1/2 and of the Riesz

transforms ∇A−1/2 if and only if V is strongly subcritical.

We remark that methods used in [23] hold in manifolds. The semigroup
(e−tA)t>0 can be extrapolated to Lp(M), and it is uniformly bounded for

p ∈
(

(

2

1−
√

1− 1
1+ε

)′
;
(

2

1−
√

1− 1
1+ε

)

)

. If in addition the Sobolev inequality

‖f‖
L

2N
N−2 (M)

≤ C‖|∇f |‖L2(M) (33)

for all f ∈ C∞
0 (M) holds on M , then we obtain for all t > 0

‖e−tA‖
Lp(M)−L

pN
N−2 (M)

≤ Ct−1/p

for all p ∈
(

(

2

1−
√

1− 1
1+ε

)′
;
(

2

1−
√

1− 1
1+ε

)

)

. Using the L2(M) − L2(M) off-

diagonal estimate we obtain as in [23] the fact that (e−tA)t>0 is bounded
on Lp(M) for all p ∈ (p′0; p0) where p0 := 2N

N−2
1

1−
√

1− 1
1+ε

.

For classes of manifolds satisfying (33) see [26]. Note that (33) is equivalent
to the following Gaussian upper bound of the heat kernel p(t, x, y) of the
Laplace-Beltrami operator (see [32] and [14])

p(t, x, y) ≤ Ct−N/2e−cρ2(x,y)/t ∀x, y ∈M, t > 0. (34)

We say that M is of homogeneous type if for all x ∈M and r > 0

µ(B(x, 2r)) ≤ Cµ(B(x, r)) (35)
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where B(x, r) := {y ∈M such that ρ(x, y) ≤ r}.
We say that the L2-Poincaré inequalities hold on M if there exists a positive
constant C such that

∫

B(x,r)

|f(y) − fr(x)|2dµ(y) ≤ Cr2

∫

B(x,r)

|∇f(y)|2dµ(y) (36)

for all f ∈ C∞
0 (M), x ∈M, r > 0, where fr(x) := 1

µ(B(x,r)

∫

B(x,r)
f(y)dµ(y).

Saloff-Coste [25] proved that (35) and (36) hold if and only if the heat kernel
p(t, x, y) satisfies the following Li-Yau estimate

Ce−cρ2(x,y)/t

µ(B(x,
√
t))

≤ p(t, x, y) ≤ C1e
−c1ρ2(x,y)/t

µ(B(x,
√
t))

. (37)

Arguing as in the Euclidean case we obtain the following theorem

Theorem 5.1. Let M be a non-compact complete Riemannian manifold of
dimension N ≥ 3. Assume (32) and (33). Then (e−tA)t>0, (

√
t∇e−tA)t>0

and (
√
tV 1/2e−tA)t>0 satisfy Lp(M)−L2(M) off-diagonal estimates for all

p ∈ (p′0; 2]. Here p′0 is the dual exponent of p0 where p0 = 2N

(N−2)
(

1−
√

1− 1
1+ε

) .

Then we have for all t > 0, all p ∈ (p′0; 2], all closed sets E and F of M , and
all f ∈ L2(M) ∩ Lp(M) with suppf ⊆ E

i) ‖e−tAf‖L2(F ) ≤ Ct−γpe−
cρ2(E,F )

t ‖f‖p,

ii) ‖
√
t∇e−tAf‖L2(F ) ≤ Ct−γpe−

cρ2(E,F )
t ‖f‖p,

iii) ‖
√
tV 1/2e−tAf‖L2(F ) ≤ Ct−γpe−

cρ2(E,F )
t ‖f‖p,

where γp = N
2

(

1
p
− 1

2

)

and C, c are positive constants.

We invest these off-diagonal estimates as in the proof of Theorem 3.1 to
obtain the following result

Theorem 5.2. Let M be a non-compact complete Riemannian manifold of
dimension N ≥ 3. Assume (32), (33) and (35). Then V 1/2A−1/2 and ∇A−1/2

are bounded on Lp(M) for all p ∈ (p′0; 2] where p′0 =
(

2N

(N−2)
(

1−
√

1− 1
1+ε

)

)′

.

We say that the potential V is in the class K∞(M), if for any ε > 0 there
exists a compact set K ⊂M and δ > 0 such that

sup
x∈M

∫

Kc

G(x, y)|V (y)|dµ(y) ≤ ε
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where Kc := M rK, and for all measurable sets B ⊂ K with µ(b) < δ,

sup
x∈M

∫

B

G(x, y)|V (y)|dµ(y) ≤ ε.

Here G(x, y) :=
∫∞

0
p(t, x, y)dt is the Green function, and p(t, x, y) is the heat

kernel of the Laplace-Beltrami operator. This class is the generalization of
K∞

N to manifolds (see [11] Section 2).

Since (35) and (36) imply the Li-Yau estimate (37), we can use Theorem
2 of [31] and obtain a Gaussian upper bound of the heat kernel of −∆ − V .
Thus arguing as in the Euclidean case, we obtain the following result

Theorem 5.3. Let M be a non-compact complete Riemannian manifold of
dimension N ≥ 3, and let A be the Schrödinger operator −∆ − V, 0 ≤ V ∈
LN/2(M)∩K∞. Assume that for all ball B, µ(B(x, r)) ≥ CrN . Assume (32),
(35) and (36). Then ∆(−∆−V )−1 and V (−∆−V )−1 are bounded on Lp(M)
for all p ∈ (1;N/2).

Now using Theorem 2 of [31] and Theorem 5 of [28], then arguing as in
the Euclidean case we obtain the following

Theorem 5.4. Let M be a non-compact complete Riemannian manifold of
dimension N ≥ 3, and let A be the Schrödinger operator −∆ − V, 0 ≤ V ∈
K∞. Assume (32), (35) and (36). Then ∇A−1/2 and V 1/2A−1/2 are of weak
type (1, 1), thus they are bounded on Lp(M) for all p ∈ (1; 2].
If in addition we assume that for all ball B µ(B(x, r)) ≥ CrN , and for some
r ∈ (2;N ], the Riesz transforms ∇(−∆)−1/2 are bounded on Lr(M) then
∇A−1/2 and V 1/2A−1/2 are bounded on Lp(M) for all p ∈ (1; r) provided
that V ∈ LN/2(M).

Remark Let M be a non-compact complete Riemannian manifold of di-
mension N ≥ 3. Let H = −∆ + V be a Schrödinger operator with non-
negative potential V ∈ LN/2(M). Assume that for some r ∈ (2;N ], the Riesz
transforms ∇(−∆)−1/2 are bounded on Lp(M) for all p ∈ (2; r) or for p = r.
Assume also (33). Then the heat kernel associated to H satisfies (34). Hence
we obtain by the previous argument the Lp-boundedness of V 1/2H−1/2 and
∇H−1/2 for all p ∈ (1; r).

Note that (35) and (36) hold on manifolds with non-negative Ricci cur-
vature (see [22]) as well as the boundedness on Lp(M) for all p ∈ (1,∞) of
Riesz transforms associated to the Laplace-Beltrami operator (see [6]). The
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Sobolev inequality (33) is valid on manifolds with Ricci curvature bounded
from below satisfying

inf
x∈M

µ(B(x, 1)) > 0

(see [19] Theorem 3.14). Therefore manifolds with non-negative Ricci curva-
ture satisfying infx∈M µ(B(x, 1)) > 0 are a class of manifolds where Theorem
5.4 holds.

We mention that Carron, Coulhon and Hassell [10] proved that the Riesz
transforms ∇(−∆)−1/2 are bounded on Lp(M) for all p ∈ (2;N) on smooth
complete Riemannian manifolds of dimension N ≥ 3 which are the union
of a compact part and a finite number of Euclidean ends. Ji, Kunstmann
and Weber [20] proved that this boundedness holds for all p ∈ (1;∞), on the
complete connected Riemannian manifolds whose Ricci curvature is bounded
from below, if there is a constant a > 0 with σ(−∆) ⊂ {0} ∪ [a;∞). They
also give examples of manifolds that satisfy their conditions. Auscher, Coul-
hon, Duong and Hofmann [3] proved that on complete non-compact Rie-
mannian manifolds satisfying assumption (37), the uniform boundedness of
(
√
t∇e−t(−∆))t>0 on Lq for some q ∈ (2;∞] implies the boundedness on Lp(M)

of ∇(−∆)−1/2 for all p ∈ (2; q). And we have equivalence if (
√
t∇e−t(−∆))t>0

is u niformly bounded on Lr for all r ∈ (2; q).

Therefore we deduce the following propositions using our previous the-
orem and the criterion of [3]. We also use the fact that the semigroup
(e−t(−∆−V ))t>0 is bounded analytic on Lp(M) for all p ∈ (1;∞). This is
true on manifolds where assumptions (35) and (36) hold and when V ∈ K∞

satisfying (32) (see e.g. [7] Theorem 1.1).

Proposition 5.1. Let M be a non-compact complete Riemannian manifold of
dimension N ≥ 3. Assume that for all ball B µ(B(x, r)) ≥ CrN , assume
(32), (35) and (36), and assume that V ∈ K∞ ∩ LN/2(M). If for some
r ∈ (2;N ]

‖|∇e−t(−∆)|‖Lr(M)−Lr(M) ≤ C/
√
t

for all t > 0, then

‖|∇e−t(−∆−V )|‖Lp(M)−Lp(M) ≤ C/
√
t

for all t > 0, all p ∈ (1, r).

Proposition 5.2. Let M be a non-compact complete Riemannian manifold of
dimension N ≥ 3. Assume (33) and assume that V ∈ LN/2(M). If for some
r ∈ (2;N ]

‖|∇e−t(−∆)|‖Lr(M)−Lr(M) ≤ C/
√
t
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for all t > 0, then

‖|∇e−t(−∆+V )|‖Lp(M)−Lp(M) ≤ C/
√
t

for all t > 0, all p ∈ (1, r).
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