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The goal of this paper is to study the Riesz transforms ∇A -1/2 where A is the Schrödinger operator -∆ -V, V ≥ 0, under different conditions on the potential V . We prove that if V is strongly subcritical, ∇A -1/2 is bounded on L p (R N ) , N ≥ 3, for all p ∈ (p ′ 0 ; 2] where p ′ 0 is the dual exponent of p 0 where 2 < 2N N -2 < p 0 < ∞; and we give a counterexample to the boundedness on L p (R N ) for p ∈ (1; p ′ 0 ) ∪ (p 0 * ; ∞) where p 0 * := p 0 N N +p 0 is the reverse Sobolev exponent of p 0 . If the potential is strongly subcritical in the Kato subclass K ∞ N , then ∇A -1/2 is bounded on L p (R N ) for all p ∈ (1; 2], moreover if it is in L N/2 (R N ) then ∇A -1/2 is bounded on L p (R N ) for all p ∈ (1; N ). We prove also boundedness of V 1/2 A -1/2 with the same conditions on the same spaces. Finally we study these operators on manifolds. We prove that our results hold on a class of Riemannian manifolds.

Introduction and definitions

Let A be a Schrödinger operator -∆ + V where -∆ is the nonnegative Laplace operator and the potential V : R N → R such that V = V + -V - (where V + and V -are the positive and negative parts of V , respectively). The operator is defined via the sesquilinear form method. We define
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D(a) = u ∈ W 1,2 (R N ), R N V + (x)u 2 (x)dx < ∞ .
Here we assume V + ∈ L 1 loc (R N ) and V -satisfies (for all u ∈ D(a)):

R N V -(x)u 2 (x)dx ≤ α R N |∇u| 2 (x)dx + R N V + (x)u 2 (x)dx + β R N u 2 (x)dx (1)
where α ∈ (0, 1) and β ∈ R. By the well-known KLMN theorem (see for example [START_REF] Kato | Perturbation theory for linear operators[END_REF] Chapter VI), the form a is closed (and bounded from below). Its associated operator is A. If in addition β ≤ 0, then A is nonnegative. We can define the Riesz transforms associated to A by

∇A -1/2 := 1 Γ( 1 2 ) ∞ 0 √ t∇e -tA dt t .
The boundedness of Riesz transforms on L p (R N ) implies that the domain of A 1/2 is included in the Sobolev space W 1,p (R N ). Thus the solution of the corresponding evolution equation will be in the Sobolev space W 1,p (R N ) for initial data in L p (R N ).

It is our aim to study the boundedness on L p (R N ) of the Riesz transforms ∇A -1/2 . We are also interested in the boundedness of the operator V 1/2 A -1/2 . If ∇A -1/2 and V 1/2 A -1/2 are bounded on L p (R N ), we obtain for some positive constant C

∇u p + V 1/2 u p ≤ C (-∆ + V ) 1/2 u p .
By a duality argument, we obtain

(-∆ + V ) 1/2 u p ′ ≤ C( ∇u p ′ + V 1/2 u p ′ )
where p ′ is the dual exponent of p.

Riesz transforms associated to Schrödinger operators with nonnegative potentials were studied by Ouhabaz [START_REF] Ouhabaz | Analysis of heat equations on domains[END_REF], Shen [START_REF] Shen | L p estimates for Schrödinger operators with certain potentials[END_REF], and Auscher and Ben Ali [START_REF] Auscher | Maximal inequalities and Riesz transform estimates on L p spaces for Schrödinger operators with nonnegative potentials[END_REF]. Ouhabaz proved that Riesz transforms are bounded on L p (R N ) for all p ∈ (1; 2], for all potential V locally integrable. Shen and Auscher and Ben Ali proved that if the potential V is in the reverse Hölder class B q , then the Riesz transforms are bounded on L p (R N ) for all p ∈ (1, p 1 ) where 2 < p 1 ≤ ∞ depends on q. The result of Auscher and Ben Ali generalize that of Shen because Shen has restrictions on the dimension N and on the class B q . Recently, Badr and Ben Ali [START_REF] Badr | L p -boundedness of Riesz transform related to Schrödinger operators on a manifold[END_REF] extend the result of Auscher and Ben Ali 2 [START_REF] Auscher | Maximal inequalities and Riesz transform estimates on L p spaces for Schrödinger operators with nonnegative potentials[END_REF] to Riemannian manifolds of homogeneous type with polynomial volume growth where Poincaré inequalities hold and Riesz transforms associated to the Laplace-Beltrami operator are bounded. They also prove that a smaller range is possible if the volume growth is not polynomial.

With negative potentials new difficulties appear. If we take V ∈ L ∞ (R N ), and apply the method in [START_REF] Ouhabaz | Analysis of heat equations on domains[END_REF] to the operator A + V ∞ , we obtain boundedness of ∇(A + V ∞ ) -1/2 on L p (R N ) for all p ∈ (1; 2]. This is weaker than the boundedness of ∇A -1/2 on the same spaces. Guillarmou and Hassell [START_REF] Guillarmou | Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds[END_REF] studied Riesz transforms ∇(A • P + ) -1/2 where A is the Schrödinger operator with negative potential and P + is the spectral projection on the positive spectrum. They prove that, on asymptotically conic manifolds M of dimension N ≥ 3, if V is smooth and satisfies decay conditions, and the Schrödinger operator has no zero-modes nor zero-resonances, then Riesz transforms ∇(A • P + ) -1/2 are bounded on L p (M) for all p ∈ (1, N). They also prove (see [START_REF] Guillarmou | Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds[END_REF]) that when zero-modes are present, Riesz transforms

∇(A • P + ) -1/2 are bounded on L p (M) for all p ∈ ( N N -2 , N 3 
), with bigger range possible if the zero modes have extra decay at infinity.

In this paper we consider only negative potentials. From now on, we denote by A the Schrödinger operator with negative potential,

A := -∆ -V, V ≥ 0.
Our purpose is, first, to find optimal conditions on V allowing the boundedness of Riesz transforms ∇A -1/2 and that of V 1/2 A -1/2 on L p (R N ) second, to find the best possible range of p's. Let us take the following definition Definition 1.1. We say that the potential V is strongly subcritical if for some ε > 0, A ≥ εV . This means that for all u ∈ W 1,2 (R N )

R N V u 2 ≤ 1 1 + ε R N |∇u| 2 .
For more information on strongly subcritical potentials see [START_REF] Davies | L p norms of non-critical Schrödinger semigroups[END_REF] and [START_REF] Zhao | Subcriticality and gaugeability of the Schrödinger operator[END_REF]. With this condition, V satisfies assumption [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R N and related estimates[END_REF] where β = 0 and α = 1 1+ε . Thus A is well defined, nonnegative and -A generates an analytic contraction semigroup (e -tA ) t≥0 on L 2 (R N ).

Since

-∆ -V ≥ εV we have (1 + ε)(-∆ -V ) ≥ ε(-∆). Therefore ||∇u|| 2 2 ≤ (1 + 1 ε )||A 1/2 u|| 2 2 .
(2)

Thus, ∇A -1/2 is bounded on L 2 (R N ). Conversely, it is clear that if ∇A -1/2 is bounded on L 2 (R N ) then V is strongly subcritical.
We observe also that -∆ -V ≥ εV is equivalent to

||V 1/2 u|| 2 2 ≤ 1 ε ||A 1/2 u|| 2 2 . ( 3 
) Thus, V 1/2 A -1/2 is bounded on L 2 (R N ) if and only if V is strongly subcritical.
So we can conclude that

∇u 2 + V 1/2 u 2 ≤ C (-∆ -V ) 1/2 u 2
if and only if V is strongly subcritical. Then by duality argument we have

∇u 2 + V 1/2 u 2 ≈ (-∆ -V ) 1/2 u 2
if and only if V is strongly subcritical.

To study Riesz transforms on L p (R N ) for 1 ≤ p ≤ ∞ with p = 2 we use the results on the uniform boundedness of the semigroup on L p (R N ). Taking central potentials which are equivalent to c/|x| 2 as |x| tends to infinity where 0 < c < ( N -2

2 ) 2 , N ≥ 3, Davies and Simon [START_REF] Davies | L p norms of non-critical Schrödinger semigroups[END_REF] proved that for all t > 0 and all p ∈ (p ′ 0 ; p 0 ), e -tA p-p ≤ C where 2 < 2N N -2 < p 0 < ∞ and p ′ 0 its dual exponent. Next Liskevich, Sobol, and Vogt [START_REF] Liskevich | On the L p theory of C 0 -semigroups associated with second-order elliptic operators II[END_REF] proved the uniform boundedness on L p (R N ) for all p ∈ (p ′ 0 ; p 0 ) where 2

< 2N N -2 < p 0 = 2N (N -2) 1- √ 1-1 1+ε
, for general strongly subcritical potentials . They also proved that the range (p ′ 0 , p 0 ) is optimal and the semigroup does not even act on L p (R N ) for p / ∈ (p ′ 0 , p 0 ). Under additional condition on V , Takeda [START_REF] Takeda | Gaussian bounds of heat kernels for Schrödinger operators on Riemannian manifolds[END_REF] used stochastic methods to prove a Gaussian estimate of the associated heat kernel. Thus the semigroup acts boundedly on

L p (R N ) for all p ∈ [1, ∞].
In this paper we prove that when V is strongly subcritical and N ≥ 3, Riesz transforms are bounded on L p (R N ) for all p ∈ (p ′ 0 ; 2]. We also give a counterexample to the boundedness of Riesz transforms on

L p (R N ) when p ∈ (1; p ′ 0 ) ∪ (p 0 * ; ∞) where 2 < p 0 * := p 0 N N +p 0 < p 0 < ∞. If V is strongly subcritical in the Kato subclass K ∞ N , N ≥ 3 (see Section 4), then ∇A -1/2 is bounded on L p (R N ) for all p ∈ (1, 2]. If, in addition, V ∈ L N/2 (R N ) then it is bounded on L p (R N ) for all p ∈ (1, N).
With the same conditions, we prove similar results for the operator

V 1/2 A -1/2 . Hence if V is strongly subcritical and V ∈ K ∞ N ∩ L N/2 (R N ), N ≥ 3, then ∇u p + V 1/2 u p ≈ (-∆ -V ) 1/2 u p (4) 
for all p ∈ (N ′ ; N).

In the last section, we extend our results to Riemannian manifolds. We denote by -∆ the Laplace-Beltrami operator on a complete non-compact Riemannian manifold M of dimension N ≥ 3. We prove that when V is strongly subcritical on M, ∇(-∆ -V ) -1/2 and V 1/2 (-∆ -V ) -1/2 are bounded on L p (M) for all p ∈ (p ′ 0 ; 2] if M is of homogeneous type and the Sobolev inequality holds on M. If in addidtion Poincaré inequalities hold on M and V belongs to the Kato class K ∞ then ∇(-∆ -V ) -1/2 and V 1/2 (-∆-V ) -1/2 are bounded on L p (M) for all p ∈ (1; 2]. When V is in addition in L N/2 (M) and the Riesz transforms associated to the Laplace-Beltrami operator are bounded on L r (M) for some r ∈ (2; N], then ∇(-∆ -V ) -1/2 and V 1/2 (-∆ -V ) -1/2 are bounded on L p (M) for all p ∈ (1; r).

For the proof of the boundedness of Riesz transforms we use off-diagonal estimates (for properties and more details see [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators.Part II: Off-diagonal estimates on spaces of homogeneous type[END_REF]). These estimates are a generalization of the Gaussian estimates used by Coulhon and Duong in [START_REF] Coulhon | Riesz transforms for 1 ≤ p ≤ 2[END_REF] to study the Riesz transforms associated to the Laplace-Beltrami operator on Riemannian manifolds, and by Duong, Ouhabaz and Yan in [START_REF] Duong | Endpoint estimates for Riesz transforms of magnetic Schrödinger operators[END_REF] to study the magnetic Schrödinger operator on R N . We also use the approach of Blunck and Kunstmann in [START_REF] Blunck | Calderòn-Zygmund theory for non-integral operators and the H ∞ -functional calculus[END_REF] and [START_REF] Blunck | Weak type (p, p) estimates for Riesz transforms[END_REF] to weak type (p, p)-estimates. In [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R N and related estimates[END_REF], Auscher used these tools to divergence-form operators with complex coefficients. For p ∈ (2; N) we use a complex interpolation method (following an idea in Auscher and Ben Ali [START_REF] Auscher | Maximal inequalities and Riesz transform estimates on L p spaces for Schrödinger operators with nonnegative potentials[END_REF]). In contrast to [START_REF] Guillarmou | Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds[END_REF] and [START_REF] Guillarmou | Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds[END_REF], we do not assume decay nor smoothness conditions on V .

In the following sections, we denote by L p the Lebesgue space L p (R N ) with the Lebesgue measure dx, ||.|| p its usual norm, (., .) the inner product of L 2 , ||.|| p-q the norm of operators acting from L p to L q . We denote by p ′ the dual exponent to p, p ′ := p p-1 . We denote by C, c the positive constants even if their values change at each occurrence. Through this paper, ∇A -1/2 denotes one of the partial derivative ∂ ∂x k A -1/2 for any fixed k ∈ {1, ..., N}.

Off-diagonal estimates

In this section, we show that (e -tA ) t>0 , ( √ t∇e -tA ) t>0 and ( √ tV 1/2 e -tA ) t>0 satisfy L p -L 2 off-diagonal estimates provided that V is strongly subcritical. Definition 2.1. Let (T t ) t>0 be a family of uniformly bounded operators on L 2 . We say that (T t ) t>0 satisfies L p -L q off-diagonal estimates for p, q ∈ [1; ∞] with p ≤ q if there exist positive constants C and c such that for all closed sets E and F of R N and all h ∈ L p (R N ) ∩ L 2 (R N )with support in E, we have for all t > 0:

T t h L q (F ) ≤ Ct -γpq e -cd(E,F ) 2 t h p ,
where d is the Euclidean distance and γ pq := N 2 1 p -1 q . Proposition 2.1. Let A = -∆ -V where V ≥ 0 and V is strongly subcritical. Then (e -tA ) t>0 , ( √ t∇e -tA ) t>0 , and ( √ tV 1/2 e -tA ) t>0 satisfy L 2 -L 2 off-diagonal estimates, and we have for all t > 0 and all f ∈ L 2 supported in E:

(i) ||e -tA f || L 2 (F ) ≤ e -d 2 (E,F )/4t ||f || 2 , (ii) || √ t∇e -tA f || L 2 (F ) ≤ Ce -d 2 (E,F )/16t ||f || 2 , (iii) || √ tV 1/2 e -tA f || L 2 (F ) ≤ Ce -d 2 (E,F )/8t ||f || 2 .
Proof: The ideas are classical and rely on the well known Davies perturbation technique. Let A ρ := e ρφ Ae -ρφ where ρ > 0 and φ is a Lipschitz function with |∇φ| ≤ 1 a.e.. Here A ρ is the associated operator to the sesquilinear form a ρ defined by a ρ (u, v) := a(e -ρφ u, e ρφ v) for all u, v ∈ D(a).

By the strong subcriticality property of V we have for all u ∈ W 1,2

((A ρ + ρ 2 )u, u) = -ρ 2 |∇φ| 2 u 2 + |∇u| 2 -V u 2 + ρ 2 ||u|| 2 2 ≥ ε V 1/2 u 2 2 . (5) 
Using (2), we obtain

((A ρ + ρ 2 )u, u) = -ρ 2 |∇φ| 2 u 2 + |∇u| 2 -V u 2 + ρ 2 ||u|| 2 2 ≥ ε ε + 1 ||∇u|| 2 2 . (6) 
In particular (A ρ +ρ 2 ) is a maximal accretive operator on L 2 , and this implies

||e -tAρ u|| 2 ≤ e tρ 2 ||u|| 2 . (7) 
Now we want to estimate

(A ρ + 2ρ 2 )e -t(Aρ+2ρ 2 ) 2-2 .
First, let us prove that A ρ + 2ρ 2 is a sectorial operator.

For u complex-valued,

a ρ (u, u) := a(u, u) + ρ u∇φ∇u -ρ u∇φ∇u -ρ 2 |∇φ| 2 |u| 2 .
Then

a ρ (u, u) + 2ρ 2 u 2 2 ≥ a(u, u) + ρ u∇φ∇u -ρ u∇φ∇u + ρ 2 u 2 2 = a(u, u) + 2iρIm u∇φ∇u + ρ 2 u 2 2 .

This implies that

Re(a ρ (u, u)

+ 2ρ 2 u 2 2 ) ≥ a(u, u), (8) 
and

Re(a ρ (u, u) + 2ρ 2 u 2 2 ) ≥ ρ 2 u 2 2 . (9) 
On the other hand,

a ρ (u, u) = a(u, u) + ρ u∇φ∇u -ρ u∇φ∇u -ρ 2 |∇φ| 2 |u| 2 = a(u, u) + 2iρIm u∇φ∇u -ρ 2 |∇φ| 2 |u| 2 . So |Im(a ρ (u, u) + 2ρ 2 u 2 2 )| = 2|ρ| |u||∇φ||∇u| ≤ 2|ρ| u 2 ∇u 2 .
Using (2) we obtain that

|Im(a ρ (u, u) + 2ρ 2 u 2 2 )| ≤ 2|ρ| u 2 c ε a 1 2 (u, u) ≤ c 2 ε a(u, u) + ρ 2 u 2 2 ,
where

c ε = (1 + 1 ε ) 1 2
. Now using estimates ( 8) and ( 9), we deduce that there exists a constant C > 0 depending only on ε such that

|Im(a ρ (u, u) + 2ρ 2 u 2 2 )| ≤ CRe(a ρ (u, u) + 2ρ 2 u 2 2 ).
We conclude that (see [START_REF] Kato | Perturbation theory for linear operators[END_REF] or [START_REF] Ouhabaz | Analysis of heat equations on domains[END_REF])

e -z(Aρ+2ρ 2 ) 2-2 ≤ 1
for all z in the open sector of angle arctan(1/C). Hence by the Cauchy formula

(A ρ + 2ρ 2 )e -t(Aρ+2ρ 2 ) 2-2 ≤ C t . (10) 
The constant C is independent of ρ.

By estimate ( 5) and ( 6) we have

((A ρ + 2ρ 2 )u, u) ≥ ((A ρ + ρ 2 )u, u) ≥ ε V 1/2 u 2 2 ,
and

((A ρ + 2ρ 2 )u, u) ≥ ((A ρ + ρ 2 )u, u) ≥ ε ε + 1 ∇u 2 2 .
Setting u = e -t(Aρ+2ρ 2 ) f and using ( 10) and ( 7) we obtain

|| √ t∇e -tAρ f || 2 ≤ Ce 2tρ 2 ||f || 2 . ( 11 
)
and

|| √ tV 1/2 e -tAρ f || 2 ≤ Ce 2tρ 2 ||f || 2 . (12) 
Let E and F be two closed subsets of Then ∇e -tA f = -ρ∇φe -ρφ e -tAρ f + e -ρφ ∇e -tAρ f,

R N , f ∈ L 2 (R N ) supported in E,
and V 1/2 e -tA f = e -ρφ V 1/2 e -tAρ f.
Now taking the norm on L 2 (F ), we obtain from ( 7), ( 11) and ( 12)

||e -tA f || L 2 (F ) ≤ e -ρd(E,F ) e ρ 2 t ||f || 2 , (13) 
||∇e -tA f || L 2 (F ) ≤ ρe -ρd(E,F ) e ρ 2 t ||f || 2 + C √ t e -ρd(E,F ) e 2tρ 2 ||f || 2 , (14) 
and

||V 1/2 e -tA f || L 2 (F ) ≤ C √ t e -ρd(E,F ) e 2ρ 2 t ||f || 2 . ( 15 
)
We set ρ = d(E, F )/2t in ( 13) and ρ = d(E, F )/4t in ( 15), then we get the L 2 -L 2 off-diagonal estimates (i) and (iii).

We set ρ = d(E, F )/4t in ( 14), we get

||∇e -tA f || L 2 (F ) ≤ C √ t 1 + d(E, F ) 4 √ t e -d 2 (E,F )/8t ||f || 2 .
This gives estimate (ii). Now, we study the L p -L 2 boundedness of the semigroup, of its gradient, and of (V 

= 2N (N -2) 1- √ 1-1 1+ε
, and the dimension N ≥ 3. More precisely we have for all t > 0:

i) e -tA f 2 ≤ Ct -γp f p , ii) √ t∇e -tA f 2 ≤ Ct -γp f p , iii) √ tV 1/2 e -tA f 2 ≤ Ct -γp f p ,
where

γ p = N 2 1 p -1 2 .
Proof. i) We apply the Gagliardo-Nirenberg inequality

||u|| 2 2 ≤ C a,b ||∇u|| 2a 2 ||u|| 2b p ,
where a + b = 1 and (1 + 2γ p )a = 2γ p , to u = e -tA f for all f ∈ L 2 ∩ L p , all t > 0, and all p ∈ (p ′ 0 ; 2]. We obtain

||e -tA f || 2 2 ≤ C a,b ||∇e -tA f || 2a 2 ||e -tA f || 2b p .
At present we use the boundedness of the semigroup on L p for all p ∈ (p ′ 0 ; 2] proved in [START_REF] Liskevich | On the L p theory of C 0 -semigroups associated with second-order elliptic operators II[END_REF], and the fact that ||∇u|| 2 2 ≤ (1 + 1/ε)(Au, u) from the strong subcriticality condition, then we obtain that

||e -tA f || 2/a 2 ≤ -Cψ ′ (t)||f || 2b/a p where ψ(t) = ||e -tA f || 2 2 . This implies ||f || -2b/a p ≤ C(ψ(t) a-1 a ) ′ .
Since 2b a = 1 γp and a-1 a = -1 2γp , integration between 0 and t yields

t||f || -1/γp p ≤ C||e -tA f || -1/γp 2
, which gives i). We obtain ii) by using the following decomposition:

√ t∇e -tA = √ t∇A -1/2 A 1/2 e -tA/2 e -tA/2 ,
the boundedness of ∇A -1/2 and of ( √ tA 1/2 e -tA ) t>0 on L 2 , and the fact that (e -tA ) t>0 is L p -L 2 bounded for all p ∈ (p ′ 0 ; 2] proved in i). We prove iii) by using the following decomposition: √ tV 1/2 e -tA = √ tV 1/2 A -1/2 A 1/2 e -tA/2 e -tA/2 , the boundedness of V 1/2 A -1/2 and of ( √ tA 1/2 e -tA ) t>0 on L 2 , and the fact that (e -tA ) t>0 is L p -L 2 bounded for all p ∈ (p ′ 0 ; 2] proved in i). We invest the previous results to obtain : Theorem 2.1. Assume that A ≥ εV then (e -tA ) t>0 , ( √ t∇e -tA ) t>0 and ( √ tV 1/2 e -tA ) t>0 satisfy L p -L 2 off-diagonal estimates for all p ∈ (p ′ 0 ; 2]. Here p ′ 0 is the dual exponent of p 0 where

p 0 = 2N (N -2) 1- √ 1-1 1+ε
, and the dimension N ≥ 3. Then we have for all t > 0, all p ∈ (p ′ 0 ; 2], all closed sets E and

F of R N and all f ∈ L 2 ∩ L p with suppf ⊆ E i) e -tA f L 2 (F ) ≤ Ct -γp e -cd 2 (E,F ) t f p , (16) 
ii)

√ t∇e -tA f L 2 (F ) ≤ Ct -γp e -cd 2 (E,F ) t f p , (17) 
iii)

√ tV 1/2 e -tA f L 2 (F ) ≤ Ct -γp e -cd 2 (E,F ) t f p , (18) 
where γ p = N Remark: By duality, we deduce from ( 16) a L 2 -L p off-diagonal estimate of the norm of the semigroup for all p ∈ [2; p 0 ), but we cannot deduce from ( 17) and ( 18) the same estimate of the norm of √ t∇e -tA f and of √ tV 1/2 e -tA f because they are not selfadjoint. This affects the boundedness of Riesz transforms and of V 1/2 A -1/2 on L p for p > 2.

Proof. i) In the previous proposition we have proved that

e -tA f 2 ≤ Ct -γp f p for all p ∈ (p ′ 0 ; 2]. This implies that for all t > 0 χ F e -tA χ E f 2 ≤ Ct -γp f p
where χ M is the characteristic function of M. The L 2 -L 2 off-diagonal estimate proved in the Proposition 2.1 implies that

χ F e -tA χ E f 2 ≤ e -d 2 (E,F )/4t f 2 .
Hence we can apply the Riesz-Thorin interpolation theorem and we obtain the off-diagonal estimate [START_REF] Duong | Endpoint estimates for Riesz transforms of magnetic Schrödinger operators[END_REF].

Assertions ii) and iii) are proved in a similar way. We use L 2 -L 2 offdiagonal estimates of Proposition 2.1 and assertions ii) and iii) of Proposition 2.2.

3 Boundedness of ∇A -1/2 and V 1/2 A -1/2 on L p for p ∈ (p ′ 0 ; 2]
This section is devoted to the study of the boundedness of V 1/2 A -1/2 and Riesz transforms associated to Schrödinger operators with negative and strongly subcritical potentials. We prove that ∇A -1/2 and V 1/2 A -1/2 are bounded on L p (R N ), N ≥ 3, for all p ∈ (p ′ 0 ; 2], where p ′ 0 is the exponent mentioned in Theorem 2.1. Theorem 3.1. Assume that A ≥ εV , then ∇A -1/2 is bounded on L p (R N ) for

N ≥ 3, for all p ∈ (p ′ 0 ; 2] where p ′ 0 = 2N (N -2) 1- √ 1-1 1+ε ′ .
To prove Theorem 3.1, we prove that ∇A -1/2 is of weak type (p, p) for all p ∈ (p ′ 0 ; 2) by using the following theorem of Blunck and Kunstmann [START_REF] Blunck | Calderòn-Zygmund theory for non-integral operators and the H ∞ -functional calculus[END_REF]. Then by the boundedness of ∇A -1/2 on L 2 , and the Marcinkiewicz interpolation theorem, we obtain boundedness on L p for all p ∈ (p ′ 0 ; 2]. This result can also be deduced from Theorem 2.1 together with Theorem 1.1 of [START_REF] Blunck | Weak type (p, p) estimates for Riesz transforms[END_REF]. Theorem 3.2. Let p ∈ [1; 2). Suppose that T is sublinear operator of strong type (2, 2), and let (A r ) r>0 be a family of linear operators acting on L 2 .

Assume that for j ≥ 2

1 |2 j+1 B| C j (B) |T (I -A r(B) )f | 2 1/2 ≤ g(j) 1 |B| B |f | p 1/p , (19) 
and for j ≥ 1

1 |2 j+1 B| C j (B) |A r(B) f | 2 1/2 ≤ g(j) 1 |B| B |f | p 1/p , (20) 
for all ball B with radius r(B) and all f supported in B. If Σ := g(j)2 N j < ∞, then T is of weak type (p, p), with a bound depending only on the strong type (2, 2) bound of T , p, and Σ.

Here C 1 = 4B and C j (B) = 2 j+1 B 2 j B for j ≥ 2, where λB is the ball of radius λr(B) with the same center as B, and |λB| its Lebesgue measure.

of Theorem 3.1. Let T = ∇A -1/2 . We prove assumptions [START_REF] Hebey | Sobolev spaces on Riemannian manifolds[END_REF] and [START_REF] Ji | Riesz transform on locally symmetric spaces and Riemannian manifolds with a spectral gap[END_REF] with

A r = I -(I -e -r 2 A
) m for some m > N/4γ p , using arguments similar to Auscher [1] Theorem 4.2.

Let us prove [START_REF] Ji | Riesz transform on locally symmetric spaces and Riemannian manifolds with a spectral gap[END_REF]. For f supported in a ball B (with radius r),

1 |2 j+1 B| 1/2 A r f L 2 (C j (B)) = 1 |2 j+1 B| 1/2 m k=1 m k (-1) k+1 e -kr 2 A f L 2 (C j (B)) ≤ 1 |2 j+1 B| 1/2 m k=1 m k C(kr 2 ) -γp e -cd 2 (B,C j (B)) kr 2 f p .
for all p ∈ (p ′ 0 ; 2) and all f ∈ L 2 ∩L p supported in B. Here we use the L p -L 2 off-diagonal estimates [START_REF] Duong | Endpoint estimates for Riesz transforms of magnetic Schrödinger operators[END_REF] 

for p ∈ (p ′ 0 ; 2]. Since γ p = N 2 ( 1 p -1 2 ) we obtain 1 |2 j+1 B| C j (B) |A r f | 2 1/2 ≤ Cr -2γp |2 j+1 B| 1/2 e -cd 2 (B,C j (B)) mr 2 f p ≤ C2 -jN/2 e -cd 2 (B,C j (B)) r 2 1 |B| B |f | p 1/p .
This yields, for j = 1,

1 |4B| 4B |A r f | 2 1/2 ≤ C2 -N/2 1 |B| B |f | p 1/p ,
and for j ≥ 2 1 |2 j+1 B| C j (B) |A r f | 2 1/2 ≤ C2 -jN/2 e -c4 j 1 |B| B |f | p 1/p .
Thus assumption (20) of Theorem 3.2 holds with j≥1 g(j)2 jN < ∞.

It remains to check the assumption (19):

We know that

∇A -1/2 f = C ∞ 0
∇e -tA f dt √ t then, using the Newton binomial, we get

∇A -1/2 (I -e -r 2 A ) m f = C ∞ 0 ∇e -tA (I -e -r 2 A ) m f dt √ t = C ∞ 0 g r 2 (t)∇e -tA f dt where g r 2 (t) = m k=0 m k (-1) k χ (t-kr 2 >0) √ t -kr 2 .
Hence, using the L p -L 2 off-diagonal estimate [START_REF] Guillarmou | Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds[END_REF], we obtain for all p ∈ (p ′ 0 ; 2), all j ≥ 2, and all

f ∈ L 2 ∩ L p supported in B ∇A -1/2 (I -e -r 2 A ) m f L 2 (C j (B)) ≤ C ∞ 0 |g r 2 (t)|t -γp-1/2 e -c4 j r 2 /t dt f p .
We observe that (see [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R N and related estimates[END_REF] p. 27)

|g r 2 (t)| ≤ C √ t -kr 2 if kr 2 < t ≤ (k + 1)r 2 ≤ (m + 1)r 2 and |g r 2 (t)| ≤ Cr 2m t -m-1/2 if t > (m + 1)r 2 .
This yields

∇A -1 2 (I -e -r 2 A ) m f L 2 (C j (B)) ≤ C m k=0 (k+1)r 2 kr 2 t -γp-1/2 √ t -kr 2 e -c4 j r 2 t dt f p + C ∞ (m+1)r 2 r 2m t -γp-1-m e -c4 j r 2 t dt f p ≤ I 1 + I 2 . ( 21 
)
We have

I 2 := C ∞ (m+1)r 2 r 2m t -γp-1-m e -c4 j r 2 t dt f p ≤ Cr -2γp 2 -2j(m+γp) f p ,
by the Laplace transform formula, and

I 1 := C f p m k=0 (k+1)r 2 kr 2 t -γp-1/2 √ t -kr 2 e -c4 j r 2 t dt = C f p m k=1 (k+1)r 2 kr 2 t -γp-1/2 √ t -kr 2 e -c4 j r 2 t dt + r 2 0 t -γp-1 e -c4 j r 2 t dt = J 1 + J 2 .
In the preceding equation

J 1 := C f p m k=1 (k+1)r 2 kr 2 t -γp-1/2 √ t -kr 2 e -c4 j r 2 t dt ≤ C f p e -c4 j m+1 m k=1 (kr 2 ) -γp-1/2 (k+1)r 2 kr 2 (t -kr 2 ) -1/2 dt ≤ Cr -2γp 2 -2j(m+γp) f p , and 
J 2 := C r 2 0 t -γp-1 e -c4 j r 2 t dt f p ≤ C f p e -c4 j 2(m+1) r 2 0 t -γp-1 e -c4 j r 2 2t dt ≤ C f p 2 -2jm r 2 0 t -1-γp C(2 -2j r -2 t) γp e -c4 j r 2 4t dt ≤ C f p 2 -2j(m+γp) r -2γp r 2 0 t -1 e -c4 j r 2 4t dt ≤ Cr -2γp 2 -2j(m+γp) f p .
Here, for the last inequality, we use the fact that j ≥ 2 to obtain the convergence of the integral without dependence on r nor on j.

We can therefore employ these estimates in [START_REF] Kato | Perturbation theory for linear operators[END_REF] to conclude that

∇A -1/2 (I -e -r 2 A ) m f L 2 (C j (B)) ≤ Cr -2γp 2 -2j(m+γp) f p , which implies 1 |2 j+1 B| C j (B) |∇A -1 2 (I -e -r 2 A ) m f | 2 1 2 ≤ C2 -2j(m+γp+ N 4 ) 1 |B| B |f | p 1 p where g(j)2 jN < ∞ because we set m > N/4 -γ p . Proposition 3.1. Assume that A ≥ εV , then V 1/2 A -1/2 is bounded on L p (R N ) for N ≥ 3, for all p ∈ (p ′ 0 ; 2] where p ′ 0 is the dual exponent of p 0 with p 0 = 2N (N -2) 1- √ 1-1 1+ε .
Proof. We have seen in ( 3) that the operator V 1/2 A -1/2 is bounded on L 2 . To prove its boundedness on L p for all p ∈ (p ′ 0 ; 2] we prove that it is of weak type (p, p) for all p ∈ (p ′ 0 ; 2) by checking assumptions ( 19) and ( 20) of Theorem 3.2, where T = V 1/2 A -1/2 . Then, using the Marcinkiewicz interpolation theorem, we deduce boundedness on L p for all p ∈ (p ′ 0 ; 2]. We check assumptions of Theorem 3.2 similarly as we did in the proof of Theorem 3.1, using the L p -L 2 off-diagonal estimate (18) instead of [START_REF] Guillarmou | Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds[END_REF].

Let us now move on, setting V = c|x| -2 where 0 < c < ( N -2

2 ) 2 , which is strongly subcritical thanks to the Hardy inequality, we prove that the associated Riesz transforms are not bounded on L p for p ∈ (1; p ′ 0 ) neither for p ∈ (p 0 * ; ∞). Here p 0 * = p 0 N N +p 0 is the reverse Sobolev exponent of p 0 . Proposition 3.2. Set V strongly subcritical and N ≥ 3. Assume that ∇A -1/2 is bounded on L p for some p ∈ (1; p ′ 0 ). Then there exists an exponent q 1 ∈ [p; p ′ 0 ) such that (e -tA ) t>0 is bounded on L r for all r ∈ (q 1 ; 2).

Consider now V = c|x| -2 where 0 < c < ( N -2 2 ) 2 . It is proved in [START_REF] Liskevich | On the L p theory of C 0 -semigroups associated with second-order elliptic operators II[END_REF] that the semigroup does not act on L p for p / ∈ (p ′ 0 ; p 0 ). Therefore we obtain from this proposition that the Riesz transform ∇A -1/2 is not bounded on L p for p ∈ (1; p ′ 0 ).

Proof. Assume that ∇A -1/2 is bounded on L p for some p ∈ (1; p ′ 0 ). By the boundedness on L 2 and the Riesz-Thorin interpolation theorem, we get the boundedness of ∇A -1/2 on L q for all q ∈ [p; 2]. Now we apply the Sobolev inequality

f q * ≤ C ∇f q ( 22 
)
where q * = N q N -q if q < N to f := A -1/2 u, so we get

A -1/2 u q * ≤ C ∇A -1/2 u q ≤ C u q for all q ∈ [p; 2]. In particular, A -1/2 q 1 -q * 1 ≤ C where p ≤ q 1 < p ′ 0 such that q * 1 > p ′ 0 .
Decomposing the semigroup as follows e -tA = A 1/2 e -tA/2 e -tA/2 A -1/2 (23

)
where

A -1/2 is L q 1 -L q * 1 bounded , e -tA/2 has L q * 1 -L 2 norm bounded by Ct -γ q * 1 (Proposition 2.2) and A 1/2 e -tA/2 is L 2 -L 2 bounded by Ct -1/2
because of the analyticity of the semigroup on L 2 . Therefore, we obtain

e -tA q 1 -2 ≤ Ct -γ q * 1 -1/2 = Ct -γq 1 .
We now interpolate this norm with the L 2 -L 2 off-diagonal estimate of the norm of e -tA , as we did in the proof of Theorem 2.1, so we get a L r -L 2 off-diagonal estimate for all r ∈ (q 1 ; 2). Then Lemma 3.3 of [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R N and related estimates[END_REF] yields that (e -tA ) t>0 is bounded on L r for all r ∈ (q 1 ; 2) for q 1 ∈ [p; p ′ 0 ) such that q * 1 > p ′ 0 . Proposition 3.3. Set V strongly subcritical and N ≥ 3. Assume that ∇A -1/2 is bounded on L p for some p ∈ (p 0 * ; ∞). Then there exists an exponent q 2 > p 0 * such that the semigroup (e -tA ) t>0 is bounded on L s for all s ∈ (2; q * 2 ). Here q * 2 > p 0 . Consider now V = c|x| -2 where 0 < c < ( N -2

2 ) 2 . It is proved in [START_REF] Liskevich | On the L p theory of C 0 -semigroups associated with second-order elliptic operators II[END_REF] that the semigroup does not act on L p for p / ∈ (p ′ 0 ; p 0 ). Therefore we obtain from this proposition that the Riesz transforms ∇A -1/2 are not bounded on L p for p ∈ (p 0 * ; ∞).

Proof. Assume that ∇A -1/2 is bounded on L p for some p ∈ (p 0 * ; ∞). Then by interpolation we obtain the boundedness of ∇A -1/2 on L q for all q ∈ [2; p]. In particular,

||∇A -1/2 || q 2 -q 2 ≤ C
where p 0 * < q 2 < p 0 , q 2 ≤ p, q 2 < N. Using the Sobolev inequality [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF], we obtain that A -1/2 is L q 2 -L q * 2 bounded where q * 2 > p 0 . Now we decompose the semigroup as follows e -tA = A -1/2 e -tA/2 A 1/2 e -tA/2 .

(

) 24 
Thus we remark that it is L 2 -L q * 2 bounded where q * 2 > p 0 . Then, using similar arguments as in the previous proof, we conclude that (e -tA ) t>0 is bounded on L s for all s ∈ (2; q * 2 ) for p 0 * < q 2 < inf(p 0 , p, N).

4 Boundedness of ∇A -1/2 and V 1/2 A -1/2 on L p for all p ∈ (1; N )

In this section we assume that V is strongly subcritical in the Kato subclass K ∞ N , N ≥ 3. Following Zhao [START_REF] Zhao | Subcriticality and gaugeability of the Schrödinger operator[END_REF], we define

K ∞ N := V ∈ K loc N ; lim B↑∞ sup x∈R N |y|≥B |V (y)| |y -x| N -2 dy = 0 ,
where K loc N is the class of potentials that are locally in the Kato class K N . For necessary background of the Kato class see [START_REF] Simon | Schrödinger semigroups[END_REF] and references therein.

We use results proved by stochastic methods to deduce a L 1 -L ∞ offdiagonal estimate of the norm of the semigroup which leads to the boundedness of ∇A -1/2 and V 1/2 A -1/2 on L p for all p ∈ (1; N). Theorem 4.1. Let A be the Schrödinger operator -∆ -V, V ≥ 0. Assume that V is strongly subcritical in the class K ∞ N , (N ≥ 3), then ∇A -1/2 and V 1/2 A -1/2 are of weak type (1, 1), they are bounded on L p for all p ∈ (1

; 2]. If in addition V ∈ L N/2 , then ∇A -1/2 and V 1/2 A -1/2 are bounded on L p for all p ∈ (1; N).
Proof. We assume that V is strongly subcritical in the class K ∞ N . Therefore V satisfies assumptions of Theorem 2 of [START_REF] Takeda | Gaussian bounds of heat kernels for Schrödinger operators on Riemannian manifolds[END_REF] (The classes K ∞ and S ∞ mentioned in [START_REF] Takeda | Gaussian bounds of heat kernels for Schrödinger operators on Riemannian manifolds[END_REF] are equivalent to the class K ∞ N (see Chen [START_REF]Gaugeability and conditional gaugeability[END_REF] Theorem 2.1 and Section 3.1)). Thus the heat kernel associated to (e -tA ) t>0 satisfies a Gaussian estimate. Therefore (e -tA ) t>0 , ( √ t∇e -tA ) t>0 , and ( √ tV 1/2 e -tA ) t>0 satisfy L 1 -L 2 off-diagonal estimates. Arguing now as in the proof of Theorem 3.1 (or using Theorem 5 of [START_REF] Sikora | Riesz transform, Gaussian bounds and the method of wave equation[END_REF]) we conclude that ∇A -1/2 and V 1/2 A -1/2 are of weak type (1, 1) and they are bounded on L p for all p ∈ (1; 2].

To prove the boundedness of ∇A -1/2 on L p for higher p we use the Stein complex interpolation theorem (see [START_REF] Stein | Introduction to Fourier analysis on euclidean spaces[END_REF] Section V.4). Let us first mention that

D := R(A)∩L 1 ∩L ∞ is dense in L p for all p ∈ (1; ∞) provided that V is strongly subcritical in K ∞ N , N ≥ 3.
We prove the density as in [START_REF] Auscher | Maximal inequalities and Riesz transform estimates on L p spaces for Schrödinger operators with nonnegative potentials[END_REF], where in our case we have the following estimate

|f k -f | ≤ k(c(-∆) + k) -1 f (25) 
where f k := A(A + k) -1 f and c is a positive constant. This estimate holds from the Gaussian estimate of the heat kernel associated to the semigroup (e -tA ) t>0 .

Set

F (z) :=< (-∆) z A -z f, g > where f ∈ D, g ∈ C ∞ 0 (R N
) and z ∈ S := {x + iy such that x ∈ [0; 1] and y ∈ R N }. F (z) is admissible. Indeed, the function z -→ F (z) is continuous in S and analytic in its interior. In addition

|F (z)| = | < A -z f, (-∆) z g > | ≤ ||A -z f || 2 ||(-∆) z g|| 2 . (26) 
For Rez ∈ (0; 1), D(-∆) ⊂ D((-∆) z ), so

||(-∆) z g|| 2 ≤ C||g|| W 2,2 (27) 
for all z ∈ S. When V is strongly subcritical, A is non-negative self-adjoint operator on L 2 , hence ||A iy || 2-2 ≤ 1 for all y ∈ R. Therefore for all z = x + iy ∈ S and f = Au ∈ R(A) we have

||A -z f || 2 ≤ ||A -iy || 2-2 ||A 1-x u|| 2 ≤ C(||u|| 2 + ||Au|| 2 ). (28) 
Here we use D(A) ⊂ D(A 1-x ) because (1x) ∈ (0; 1). Now we employ ( 27) and ( 28) in [START_REF] Saloff-Coste | Aspects of Sobolev-type inequalities[END_REF] to deduce the admissibility of F (z) in S. Thus we can apply the Stein complex interpolation theorem to F (z). Since V is strongly subcritical and belongs to the class K ∞ N , N ≥ 3, we obtain a Gaussian estimate of the heat kernel of A. Thus A has a H ∞ -bounded calculus on L p for all p ∈ (1; ∞) (see e.g. [START_REF] Blunck | Calderòn-Zygmund theory for non-integral operators and the H ∞ -functional calculus[END_REF] Theorem 2.2). Hence

|F (iy)| ≤ ||A -iy f || p 0 ||(-∆) -iy g|| p ′ 0 ≤ C γ,p 0 e 2γ|y| ||f || p 0 ||g|| p ′ 0 for all γ > 0, all p 0 ∈ (1; ∞). Let us now estimate ||V A -1 || p 1 -p 1 . By Hölder's inequality ||V A -1 u|| p 1 ≤ ||V || N/2 ||A -1 u|| q (29) 
where p 1 < N and 1 p 1 = 1 q + 2 N . As mentioned above we have a Gaussian upper bound for the heat kernel. In particular

||e -tA || 1-∞ ≤ Ct -N/2
for all t > 0. Therefore A -1 extends to a bounded operator from L s to L q such that s < N 2 and 1 s = 1 q + 2 N , and we have

||A -1 u|| q ≤ C||u|| s .
(see Coulhon [START_REF] Coulhon | Dimension a l'infini d'un semi-group analytique[END_REF]). Thus s = p 1 , D(A) ⊆ D(V ) and ( 29) implies

||V A -1 || p 1 -p 1 ≤ C
where C depends on ||V || N/2 . Hence we can estimate

||(-∆)A -1 u|| p 1 = ||(-∆ -V + V )A -1 u|| p 1 ≤ ||u|| p 1 + ||V A -1 u|| p 1 ≤ C||u|| p 1 (30) 
where C depends on ||V || N/2 . We return to F (z),

|F (1 + iy)| ≤ ||(-∆)A -1 A -iy f || p 1 ||(-∆) -iy g|| p ′ 1 ≤ ||(-∆)A -1 || p 1 -p 1 ||A -iy f || p 1 ||(-∆) -iy g|| p ′ 1 ≤ C γ,p 1 ,||V || N/2 e 2γ|y| ||f || p 1 ||g|| p ′ 1
for all p 1 ∈ (1; N/2) and all γ > 0.

From the Stein interpolation theorem it follows that for all t ∈ [0; 1] there exists a constant M t such that

|F (t)| ≤ M t ||f || pt ||g|| p ′ t where 1 pt = 1-t p 0 + t p 1 . Setting t = 1
2 and using a density argument we conclude that ∇A -1/2 is bounded on L p for all p ∈ (1; N).

To prove boundedness of V 1/2 A -1/2 on L p we use the following decompo- sition V 1/2 A -1/2 = V 1/2 (-∆) -1/2 (-∆) 1/2 A -1/2 .
Assuming V ∈ L N/2 we have by Hölder's inequality

||V 1/2 u|| p ≤ ||V 1/2 || N ||u|| q
where p < N and 1 p -1 q = 1 N . Then by Sobolev inequality and the boundedness of Riesz transforms associated to the Laplace operator we obtain

||V 1/2 u|| p ≤ C p,N,||V || N/2 ||∇u|| p ≤ C p,N,||V || N/2 ||(-∆) 1/2 u|| p (31) 
for all p ∈ (1; N). Thus if V ∈ L N/2 we have for all p ∈ (1; N)

||V 1/2 (-∆) -1/2 || p-p ≤ C.
Using the boundedness of Riesz transforms associated to the Schrödinger operator A we have

||(-∆) 1/2 A -1/2 u|| p ≤ C||u|| p for all p ∈ (1; N). Therefore V 1/2 A -1/2 is bounded on L p for all p ∈ (1; N) provided that V is strongly subcritical in the class K ∞ N ∩ L N/2
, N ≥ 3. Example: Set N ≥ 3, and let us take potentials V in the Kato subclass K N ∩ L N/2 such that V ∼ c|x| -α when x tends to infinity, where α > 2. Suppose that ||V || N 2 is small enough. Let us prove that these potentials are strongly subcritical, so we should prove that

||V 1/2 u|| 2 2 ≤ C||∇u|| 2 2
where C < 1. This is [START_REF] Takeda | Gaussian bounds of heat kernels for Schrödinger operators on Riemannian manifolds[END_REF] where p = 2, and C < 1 for ||V || N 2 is small enough. Hence these potentials are strongly subcritical. Z.Zhao [START_REF] Zhao | Subcriticality and gaugeability of the Schrödinger operator[END_REF] proved that they are in the subclass K ∞ N . Hence they satisfy the assumptions of Theorem 4.1. Then ∇(-∆ -V ) -1/2 and V 1/2 (-∆ -V ) -1/2 are bounded on L p for all p ∈ (1; N).

Remarks: 1) The proof of the previous theorem shows that

||V u|| p 1 ≤ C||Au|| p 1 and ||∆u|| p 1 ≤ C||Au|| p 1
for all p 1 ∈ (1; N/2).

2) If we consider H = -∆ + V a Schrödinger operator with non-negative potential V ∈ L N/2 , we obtain by the previous arguments the L p 1 -boundedness of V H -1 and ∆H -1 for all p 1 ∈ (1; N/2), and the L p -boundedness of V 1/2 H -1/2 and ∇H -1/2 for all p ∈ (1; N).

Schrödinger operators on Riemannian manifolds

Let M be a non-compact complete Riemannian manifold of dimension N ≥ 3. Denote by dµ the Riemannian measure, ρ the geodesic distance on M and ∇ the Riemannian gradient. Denote by |.| the length in the tangent space, and by . p the norm in L p (M, dµ). Let -∆ be the positive self-adjoint Laplace-Beltrami operator on M. Take V a strongly subcritical positive potential on M, which means that there exists an ε > 0 such that

M V u 2 dµ ≤ 1 1 + ε M |∇u| 2 dµ. ( 32 
)
and set A := -∆ -V the associated Schrödinger operator on M. By the sesquilinear form method A is well defined, non-negative, and -A generates a bounded analytic semigroup (e -tA ) t>0 on L 2 (M).

As in R N , we have the L 2 (M)-boundedness of V 1/2 A -1/2 and of the Riesz transforms ∇A -1/2 if and only if V is strongly subcritical.

We remark that methods used in [START_REF] Liskevich | On the L p theory of C 0 -semigroups associated with second-order elliptic operators II[END_REF] hold in manifolds. The semigroup (e -tA ) t>0 can be extrapolated to L p (M), and it is uniformly bounded for p ∈

2 1- √ 1-1 1+ε ′ ; 2 1- √ 1-1 1+ε
. If in addition the Sobolev inequality

f L 2N N-2 (M ) ≤ C |∇f | L 2 (M ) (33) 
for all f ∈ C ∞ 0 (M) holds on M, then we obtain for all t > 0 e -tA

L p (M )-L pN N-2 (M ) ≤ Ct -1/p for all p ∈ 2 1- √ 1-1 1+ε ′ ; 2 1- √ 1-1 1+ε
. Using the L 2 (M) -L 2 (M) offdiagonal estimate we obtain as in [START_REF] Liskevich | On the L p theory of C 0 -semigroups associated with second-order elliptic operators II[END_REF] the fact that (e -tA ) t>0 is bounded on L p (M) for all p ∈ (p ′ 0 ; p 0 ) where p

0 := 2N N -2 1 1- √ 1-1 1+ε .
For classes of manifolds satisfying (33) see [START_REF] Saloff-Coste | Aspects of Sobolev-type inequalities[END_REF]. Note that (33) is equivalent to the following Gaussian upper bound of the heat kernel p(t, x, y) of the Laplace-Beltrami operator (see [START_REF] Varopoulos | Une généralisation du théorème de Hardy-Littlewood-Sobolev pour les espaces de Dirichlet[END_REF] and [START_REF] Davies | Heat kernels and spectral theory[END_REF]) p(t, x, y) ≤ Ct -N/2 e -cρ 2 (x,y)/t ∀x, y ∈ M, t > 0.

(34)

We say that M is of homogeneous type if for all x ∈ M and r > 0

µ(B(x, 2r)) ≤ Cµ(B(x, r)) (35) 
where B(x, r) := {y ∈ M such that ρ(x, y) ≤ r}.

We say that the L 2 -Poincaré inequalities hold on M if there exists a positive constant C such that

B(x,r) |f (y) -f r (x)| 2 dµ(y) ≤ Cr 2 B(x,r) |∇f (y)| 2 dµ(y) (36) 
for all f ∈ C ∞ 0 (M), x ∈ M, r > 0, where f r (x) := 1 µ(B(x,r) B(x,r) f (y)dµ(y). Saloff-Coste [START_REF] Saloff-Coste | A not on Poincaré, Sobolev, and Harnack inequalities[END_REF] proved that (35) and (36) hold if and only if the heat kernel p(t, x, y) satisfies the following Li-Yau estimate

Ce -cρ 2 (x,y)/t µ(B(x, √ t)) ≤ p(t, x, y) ≤ C 1 e -c 1 ρ 2 (x,y)/t µ(B(x, √ t)) . (37) 
Arguing as in the Euclidean case we obtain the following theorem Theorem 5.1. Let M be a non-compact complete Riemannian manifold of dimension N ≥ 3. Assume ( 32) and [START_REF] Zhao | Subcriticality and gaugeability of the Schrödinger operator[END_REF]. Then (e -tA ) t>0 , (

√ t∇e -tA ) t>0 and ( √ tV 1/2 e -tA ) t>0 satisfy L p (M) -L 2 (M) off-diagonal estimates for all p ∈ (p ′ 0 ; 2]. Here p ′ 0 is the dual exponent of p 0 where p 0 = 2N (N -2) 1- √ 1-1 1+ε .
Then we have for all t > 0, all p ∈ (p ′ 0 ; 2], all closed sets E and F of M, and

all f ∈ L 2 (M) ∩ L p (M) with suppf ⊆ E i) e -tA f L 2 (F ) ≤ Ct -γp e -cρ 2 (E,F ) t f p , ii) √ t∇e -tA f L 2 (F ) ≤ Ct -γp e -cρ 2 (E,F ) t f p , iii) √ tV 1/2 e -tA f L 2 (F ) ≤ Ct -γp e -cρ 2 (E,F ) t f p ,
where γ p = N 2 1 p -1 2 and C, c are positive constants. We invest these off-diagonal estimates as in the proof of Theorem 3.1 to obtain the following result Theorem 5.2. Let M be a non-compact complete Riemannian manifold of dimension N ≥ 3. Assume (32), ( 33) and (35). Then V 1/2 A -1/2 and ∇A -1/2 are bounded on L p (M) for all p ∈ (p ′ 0 ; 2] where p

′ 0 = 2N (N -2) 1- √ 1-1 1+ε ′ .
We say that the potential V is in the class K ∞ (M), if for any ε > 0 there exists a compact set K ⊂ M and δ > 0 such that sup Here G(x, y) := ∞ 0 p(t, x, y)dt is the Green function, and p(t, x, y) is the heat kernel of the Laplace-Beltrami operator. This class is the generalization of K ∞ N to manifolds (see [START_REF]Gaugeability and conditional gaugeability[END_REF] Section 2).

Since ( 35) and (36) imply the Li-Yau estimate (37), we can use Theorem 2 of [START_REF] Takeda | Gaussian bounds of heat kernels for Schrödinger operators on Riemannian manifolds[END_REF] and obtain a Gaussian upper bound of the heat kernel of -∆ -V . Thus arguing as in the Euclidean case, we obtain the following result Theorem 5.3. Let M be a non-compact complete Riemannian manifold of dimension N ≥ 3, and let A be the Schrödinger operator -∆ -V, 0 ≤ V ∈ L N/2 (M) ∩ K ∞ . Assume that for all ball B, µ(B(x, r)) ≥ Cr N . Assume (32), ( 35) and (36). Then ∆(-∆-V ) -1 and V (-∆-V ) -1 are bounded on L p (M) for all p ∈ (1; N/2). Now using Theorem 2 of [START_REF] Takeda | Gaussian bounds of heat kernels for Schrödinger operators on Riemannian manifolds[END_REF] and Theorem 5 of [START_REF] Sikora | Riesz transform, Gaussian bounds and the method of wave equation[END_REF], then arguing as in the Euclidean case we obtain the following Theorem 5.4. Let M be a non-compact complete Riemannian manifold of dimension N ≥ 3, and let A be the Schrödinger operator -∆ -V, 0 ≤ V ∈ K ∞ . Assume [START_REF] Varopoulos | Une généralisation du théorème de Hardy-Littlewood-Sobolev pour les espaces de Dirichlet[END_REF], (35) and (36). Then ∇A -1/2 and V 1/2 A -1/2 are of weak type (1, 1), thus they are bounded on L p (M) for all p ∈ (1; 2]. If in addition we assume that for all ball B µ(B(x, r)) ≥ Cr N , and for some r ∈ (2; N], the Riesz transforms ∇(-∆) -1/2 are bounded on L r (M) then ∇A -1/2 and V 1/2 A -1/2 are bounded on L p (M) for all p ∈ (1; r) provided that V ∈ L N/2 (M).

Remark Let M be a non-compact complete Riemannian manifold of dimension N ≥ 3. Let H = -∆ + V be a Schrödinger operator with nonnegative potential V ∈ L N/2 (M). Assume that for some r ∈ (2; N], the Riesz transforms ∇(-∆) -1/2 are bounded on L p (M) for all p ∈ (2; r) or for p = r. Assume also [START_REF] Zhao | Subcriticality and gaugeability of the Schrödinger operator[END_REF]. Then the heat kernel associated to H satisfies (34). Hence we obtain by the previous argument the L p -boundedness of V 1/2 H -1/2 and ∇H -1/2 for all p ∈ (1; r).

Note that (35) and (36) hold on manifolds with non-negative Ricci curvature (see [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF]) as well as the boundedness on L p (M) for all p ∈ (1, ∞) of Riesz transforms associated to the Laplace-Beltrami operator (see [START_REF] Bakry | Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée[END_REF]). The Sobolev inequality [START_REF] Zhao | Subcriticality and gaugeability of the Schrödinger operator[END_REF] is valid on manifolds with Ricci curvature bounded from below satisfying inf x∈M µ(B(x, 1)) > 0

(see [START_REF] Hebey | Sobolev spaces on Riemannian manifolds[END_REF] Theorem 3.14). Therefore manifolds with non-negative Ricci curvature satisfying inf x∈M µ(B(x, 1)) > 0 are a class of manifolds where Theorem 5.4 holds. We mention that Carron, Coulhon and Hassell [START_REF] Carron | Riesz transform and L p cohomology for manifolds with Euclidean ends[END_REF] proved that the Riesz transforms ∇(-∆) -1/2 are bounded on L p (M) for all p ∈ (2; N) on smooth complete Riemannian manifolds of dimension N ≥ 3 which are the union of a compact part and a finite number of Euclidean ends. Ji, Kunstmann and Weber [START_REF] Ji | Riesz transform on locally symmetric spaces and Riemannian manifolds with a spectral gap[END_REF] proved that this boundedness holds for all p ∈ (1; ∞), on the complete connected Riemannian manifolds whose Ricci curvature is bounded from below, if there is a constant a > 0 with σ(-∆) ⊂ {0} ∪ [a; ∞). They also give examples of manifolds that satisfy their conditions. Auscher, Coulhon, Duong and Hofmann [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF] proved that on complete non-compact Riemannian manifolds satisfying assumption (37), the uniform boundedness of ( √ t∇e -t(-∆) ) t>0 on L q for some q ∈ (2; ∞] implies the boundedness on L p (M) of ∇(-∆) -1/2 for all p ∈ (2; q). And we have equivalence if ( √ t∇e -t(-∆) ) t>0 is u niformly bounded on L r for all r ∈ (2; q). Therefore we deduce the following propositions using our previous theorem and the criterion of [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF]. We also use the fact that the semigroup (e -t(-∆-V ) ) t>0 is bounded analytic on L p (M) for all p ∈ (1; ∞). This is true on manifolds where assumptions (35) and (36) hold and when V ∈ K ∞ satisfying [START_REF] Varopoulos | Une généralisation du théorème de Hardy-Littlewood-Sobolev pour les espaces de Dirichlet[END_REF] (see e.g. [START_REF] Blunck | Weighted norm estimates and maximal regularity[END_REF] Theorem 1.1). Proposition 5.1. Let M be a non-compact complete Riemannian manifold of dimension N ≥ 3. Assume that for all ball B µ(B(x, r)) ≥ Cr N , assume [START_REF] Varopoulos | Une généralisation du théorème de Hardy-Littlewood-Sobolev pour les espaces de Dirichlet[END_REF], ( 35) and (36), and assume that V ∈ K ∞ ∩ L N/2 (M). If for some r ∈ (2; N] |∇e -t(-∆) | L r (M )-L r (M ) ≤ C/ √ t for all t > 0, then

|∇e -t(-∆-V ) | L p (M )-L p (M ) ≤ C/ √ t
for all t > 0, all p ∈ (1, r).

Proposition 5.2. Let M be a non-compact complete Riemannian manifold of dimension N ≥ 3. Assume [START_REF] Zhao | Subcriticality and gaugeability of the Schrödinger operator[END_REF] and assume that V ∈ L N/2 (M). If for some r ∈ (2; N] |∇e -t(-∆) | L r (M )-L r (M ) ≤ C/ √ t for all t > 0, then |∇e -t(-∆+V ) | L p (M )-L p (M ) ≤ C/ √ t for all t > 0, all p ∈ (1, r).

  and let φ(x) := d(x, E) where d is the Euclidean distance. Since e ρφ f = f , we have the following relation e -tA f = e -ρφ e -tAρ f.

2 1 p - 1 2

 21 and C, c are positive constants.

  x∈M K c G(x, y)|V (y)|dµ(y) ≤ ε where K c := M K, and for all measurable sets B ⊂ K with µ(b) < δ, sup x∈M B G(x, y)|V (y)|dµ(y) ≤ ε.

  1/2 e -tA ) t>0 .

Proposition 2.2. Suppose that A ≥ εV , then (e -tA ) t>0 , ( √ t∇e -tA ) t>0 and ( √ tV 1/2 e -tA ) t>0 are L p -L 2 bounded for all p ∈ (p ′ 0 ; 2]. Here p ′ 0 is the dual exponent of p 0 where p 0
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