Frank Nielsen

Paolo Piro

Michel Barlaud

Tailored Bregman Ball Trees for Effective Nearest Neighbors *

Nearest Neighbor (NN) search is a crucial tool that remains critical in many challenging applications of computational geometry (e.g., surface reconstruction, clustering) and computer vision (e.g., image and information retrieval, classification, data mining). We present an effective Bregman ball tree [5] (Bb-tree) construction algorithm that adapts locally its internal node degrees to the inner geometric characteristics of the data-sets. Since symmetric measures are usually preferred for applications in content-based information retrieval, we furthermore extend the Bb-tree to the case of symmetrized Bregman divergences. Exact and approximate NN search experiments using high-dimensional real-world data-sets illustrate that our method improves significantly over the state of the art [5], sometimes by an order of magnitude.

Introduction and prior work

Finding nearest neighbors (NNs) is a very common task occurring in many applications ranging from computer vision to machine learning and data mining. Let S = {p 1 , ..., p n } be a set of n d-dimensional points (with d typically ranging up to a few thousand dimensions). Given a query point q, the nearest neighbor NN(q) is defined to be the "closest" point of S with respect to a dissimilarity measure D: NN(q) = arg min i D(q, p i). Instead of considering the closest neighbor, queries can be enlarged to report the first k "closest" points (useful for k-NN classification rule in machine learning). It is usually enough to get a good neighbor [START_REF] Chazelle | Technical perspective: finding a good neighbor, near and fast[END_REF] by relaxing the exact search to get near and fast neighbors. Besides the theoretical puzzling questions related to the dreaded curse of dimensionality [START_REF] Chazelle | Technical perspective: finding a good neighbor, near and fast[END_REF], practitioners make every endeavor to speed up applications by designing tailored schemes for improving over the naïve linear-time O(dn) brute-force method. Among the flourishing literature of nearest neighbor techniques, we distinguish two main sets of methods: (1) those relying on tree-like space partitions with branch-and-bound * Financially supported by ANR-07-BLAN-0328-01 GAIA (Computational Information Geometry and Applications) and DIGITEO GAS 2008-16D (Geometric Algorithms & Statistics)

† École Polytechnique, LIX, Palaiseau, France, nielsen@lix.polytechnique.fr ‡ CNRS I3S, Sophia-Antipolis, France, {piro,barlaud}@i3s.unice.fr queries, such as kD-trees, metric ball and vantage point trees [START_REF] Cayton | Fast nearest neighbor retrieval for Bregman divergences[END_REF][START_REF] Kumar | What is a good nearest neighbors algorithm for finding similar patches in images[END_REF], and (2) those based on mapping techniques [START_REF] Athitsos | Nearest neighbor retrieval using distancebased hashing[END_REF] (e.g., locality-sensitive hashing, random projections). The former tree-based methods improve over the brute force algorithm by pruning sub-trees whenever traversing the trees with queries (exact NN) or stopping after visiting a given "budget" of leaves (approximate NN). The latter methods concentrate on reducing dimensions while preserving as much as possible distances and controlling geometrically collisions of hash functions (only work for approximate NN). Since the Euclidean distance is often inappropriate for meaningfully measuring the proximity of feature points arising from, say, image applications, a wide range of distortion measures has been proposed and NN data-structures have been first extended to arbitrary metrics (e.g., vantage point trees [START_REF] Kumar | What is a good nearest neighbors algorithm for finding similar patches in images[END_REF]). However, these NN search methods rely fundamentally on the triangle inequality property, which is not satisfied by informationtheoretic statistical distances such as the Kullback-Leibler divergence. Cayton [START_REF] Cayton | Fast nearest neighbor retrieval for Bregman divergences[END_REF] recently proposed the analogous of metric ball trees for the broad class of Bregman divergences. Bregman divergences D F on vector set X ⊂ R d are defined for a strictly convex and differentiable generator F (x) :

X ⊂ R d → R as D F (p||q) = F (p) -F (q) -(p -q) T ∇F (q)
, where ∇F denotes the gradient of F . Those divergences (parameterized by a generator F) include all quadratic distances (also known as Mahalanobis squared distances, which are the only symmetric Bregman divergences and are obtained for F (x) = Σ -1 x, where Σ ≻ 0 is the positive-definite variance-covariance matrix) and the asymmetric KL divergence (F (x) = d j=1 x j log x j , the negative Shannon entropy), for which D F (p||q) = D F (q||p). Many fundamental algorithms (e.g., kmeans [START_REF] Banerjee | Clustering with Bregman divergences[END_REF], PCA) and data-structures (e.g., Voronoi diagrams [START_REF] Nielsen | On Bregman Voronoi diagrams[END_REF]) have been generalized to that class of divergences, thus offering meta-algorithms that can work for any Bregman divergence. For example, Banerjee et al. [START_REF] Banerjee | Clustering with Bregman divergences[END_REF] showed that the celebrated Lloyd k-means algorithm extends to (and only to) the class of Bregman divergences unifying various algorithms. Since Bregman divergences are typically non-metric asymmetric distortion measures, we consider both left/right-sided and symmetrized NN searches defined as follows: NN r F (q) = arg min i D F (p i ||q) (rightsided), NN l F (q) = arg min i D F (q||p i) (left-sided) and NN F (q) = arg min i (D F (p i ||q) + D F (q||p i))/2 (sym-metrized).

Bregman ball trees (Bb-trees)

Without loss of generality, we consider only rightsided NN queries, as left-sided NN queries can be handled similarly by considering the dual divergence D F * (∇F (q)||∇F (p)) = D F (p||q) arising from the Legendre-Fenchel conjugate F * of F (with ∇F * the functional inverse of ∇F -1). See [START_REF] Nielsen | On Bregman Voronoi diagrams[END_REF][START_REF] Cayton | Fast nearest neighbor retrieval for Bregman divergences[END_REF] for details. Bregman generators come by pairs (F, F *), e.g. the dual Legendre conjugates F (x) = x log x and F * (y) = exp y (with F ′ (x) = (F * ′ (y)) -1), see [START_REF] Nielsen | On Bregman Voronoi diagrams[END_REF].

Outline of Bregman ball trees (Bb-trees) [5]

Similar to metric ball trees, a Bb-tree is built in a topdown fashion by applying recursively a partitioning scheme. First, the root is created to handle the source data-set S. A 2-means (k-means [START_REF] Banerjee | Clustering with Bregman divergences[END_REF] with k = 2) is computed, splitting S according to the two centroid points, say c l and c r , with respect to D F . These two centroids defines a partition S = S l ∪ S r that can be covered geometrically with corresponding Bregman balls B(c l , R l) and B(c r , R r) (possibly overlapping). This hierarchical decomposition of S is carried out recursively on S l and S r until a stopping criterion is eventually met. Two such typical termination criteria are: (1) a predefined maximum number of points l 0 (stored at leaves), or (2) a prescribed maximum radius (r 0 , comes in handy for approximate NN). Note that the source points are stored only at leaves of the Bbtree, and the sub-sets S l and S r may be theoretically unbalanced. Internal nodes store only two left/right Bregman balls covering the point sets stored at their left/right sub-trees.

In both exact and approximate NN queries, we perform a branch-and-bound search to answer queries. For a given query q, the tree is traversed in depthfirst-search order from the root to the leaves. At an internal node, we choose to branch first on the sub-tree whose corresponding ball is "closer" to the query q (the sibling is temporarily ignored). Once a leaf node is reached, the closest point to q among the points stored at the leaf is computed using the brute-force method. This first visited leaf yields the very first NN point candidate p ′ , thus giving an upper bound D F (p ′ ||q) to the NN distance. In exact search, the tree traversal goes on through all formerly ignored subtrees. To decide whether a subtree must be explored or not, we check whether D F (p ′ ||q) > min x∈B(c,R) D F (x||q), where p ′ is the current NN candidate. This test is performed by projecting q onto the Bregman ball B(c, R). The projection of a point q onto a Bregman ball B is the unique minimizer q B = arg min x∈B D F (x||q) [START_REF] Nielsen | On Bregman Voronoi diagrams[END_REF]. Instead of projecting exactly the query point onto the ball, we rather make

use of a Bregman annulus B(c, R, R ′) = {x | R ≤ D F (x||c) ≤ R ′ } that encloses the exact projection by construction: q B ∈ B(c, R, R ′). If D F (p ′ ||q) < R then the node can be pruned; If D F (p ′ ||q) > R ′
then the node must be explored. These lower/upper bounds are computed during the geodesic bisection search of the projection [START_REF] Cayton | Fast nearest neighbor retrieval for Bregman divergences[END_REF] (see Section 2.4). Overall, observe that the less the number of pairwise intersecting balls stored at nodes, the better the Bb-tree performance. Although exact NN retrieval on Bb-trees can often be achieved with much smaller computational cost than the brute-force search, the practical interest of Bb-trees is to get significant speed-up search when performing approximate NN queries. The approximate search allows one for large speed-up as it does not perform exhaustive branch-and-bound search. A common criterion to perform approximate search is to stop the branch-and-bound algorithm after exploring a prescribed number of leaves [START_REF] Cayton | Fast nearest neighbor retrieval for Bregman divergences[END_REF].

Speeding up construction time: Bb-tree++

In order to preprocess datasets efficiently by means of Bregman ball trees, instead of running the full regular Bregman k-means algorithm [START_REF] Banerjee | Clustering with Bregman divergences[END_REF], we just perform a careful light initialization of the two cluster centers (seeds). Initialization turns out to be the crucial stage of k-means. That is, k-means locally optimizes the potential P (C) = p∈S min c∈C D F (p||c), where C denotes the set of k centers. Each round assignment/cluster adjustment decreases this potential function so that monotonous convergence is guaranteed. It is striking to know that the worst-case running-time of k-means is theoretically exponential with the dimension although a recent smooth analysis yields polynomial amortized time [START_REF] Manthey | Improved Smoothed Analysis of the k-Means Method[END_REF]. A bad initialization may trap k-means into a local optimum. Initialization is thus all the more important, as k-means is called at each internal node of the Bb-tree to partition the data-sets into two sub-sets. Therefore, the idea is to replace the k-means local iterative algorithm by a well-chosen initialization that provides a guaranteed upper-bound on the optimal partition. This quantum leap for k-means was discovered by Arthur and Vassilvitskii [START_REF] Arthur | k-means++: the advantages of careful seeding[END_REF] and later extended to Bregman divergences by Nock et al. [START_REF] Nock | Mixed Bregman clustering with approximation guarantees[END_REF]. We describe the initialization procedure of Bregman 2-means++ for a set S. First, draw uniformly at random the seed c l (cluster "center") among the points of the data-set. Then compute the Bregman divergence of this point to all points of S, and draw the second seed c r according to the divergence distribution: π i = DF (pi||c l) p j ∈S DF (pj ||c l) . Thus c r can never be c l , since D F (c l ||c l) = 0 (the probability of drawing c l is zero). This careful initialization yields an extremely fast tree construction, which statistically provides nice splitting and tends to balance sub-sets stored at leaves. Arthur and Vassilvitskii [START_REF] Arthur | k-means++: the advantages of careful seeding[END_REF] proved that this initialization yields a k-means score P (C) at most 8(2+log k) of the optimal value. Similar bounds in O(log k) for generic Bregman divergences were later reported by Nock et al. [START_REF] Nock | Mixed Bregman clustering with approximation guarantees[END_REF]. Note that the two left/right Bregman balls stored at internal nodes tend to minimize the Bregman information [START_REF] Banerjee | Clustering with Bregman divergences[END_REF] (i.e., variance for the square potential F (x) = x 2 , mutual information for the negative Shannon entropy F (x) = x log x, etc). Next, we improve the partition at each internal node by learning its degree (number of siblings) from the local data-sets.

Learning the tree branching factor

Answering queries may range from optimal logarithmic time (i.e., the shortest path to a leaf) up to linear time for a complete tree traversal. Therefore, it is important to partition the source data-sets into as many as possible non-overlapping Bregman balls. However, consider a data-set consisting of three separated Gaussian point samples. Forcing this set to be split into two will likely create overlapping balls. Thus we better learn the number of sub-sets when partitioning the data so that the induced Bregman balls better fit the intrinsic geometric characteristics of the set. 1 We adapt the branching factor bf i (up to a maximum branching factor BF) of each internal node of the Bbtree to the underlying distribution of the points by using the G-means strategy [START_REF] Hamerly | Learning the k in k-means[END_REF]. The underlying idea is to assume Gaussian distribution of each group of points (hence the name G-means). 2 Our use Gmeans [START_REF] Hamerly | Learning the k in k-means[END_REF] algorithm starts by setting k = 2 and then test for Gaussian distribution of the points using the Anderson-Darling statistical test. Given a confidence level α, if the Anderson-Darling normality test returns true, we keep the center, otherwise we split it into two. Between two rounds, we simply run Bregman k-means++ initialization on the data-set and get all the new centers that hopefully refine the partitioning. We enforce a maximum degree to each internal node in order to strike a balance between the average tree depth and the overall ball tree shape. The initialization to k clusters follows the same principle: Namely, we draw the l-th seed from the data-set uniformly according to the distribution π i = DF (pi||C l-1) p j ∈S DF (pj ||C l-1) , where C l-1 denotes the formerly chosen (l -1)-th seed and D F (p||S) = min x∈S D F (p||x).

When visiting the Bb-tree for answering nearest neighbor queries, we use a priority queue. To relax the exact NN to approximate NN queries, the criterion of stopping the search once a few leaves have been visited was proposed and successfully demonstrated by Cayton [START_REF] Cayton | Fast nearest neighbor retrieval for Bregman divergences[END_REF]. However, there was no guarantee to 1 Refer to Figure 1 of [START_REF] Hamerly | Learning the k in k-means[END_REF] for examples. 2 This is not restrictive as any smooth density function may be arbitrarily well approximated using a Gaussian mixture model.

get a good approximation to the exact NN because leaves containing sub-sets that are close to the exact NN are not necessarily close in the tree. We improve this point by a careful non-recursive implementation of the tree traversal, which allows us to order the nodes to be explored by their divergence to the query point (i.e., the divergence of the query to the ball centers). Using a priority queue guarantees that nearest nodes are always explored first when traversing back the tree, by jumping appropriately to the most likely not yet visited sub-tree.

Bregman projection onto balls

The geodesic Γ pq linking p to q is defined as Γ pq = {LERP(λ, p, q) | λ ∈ R}, with LERP(λ, p, q) = ∇F -1 ((1 -λ)∇F (p) + λ∇F (q)); see [START_REF] Nielsen | On Bregman Voronoi diagrams[END_REF][START_REF] Cayton | Fast nearest neighbor retrieval for Bregman divergences[END_REF][START_REF] Nielsen | Bregman sided and symmetrized centroids[END_REF]. To find the Bregman projection q B = arg min x∈B(c,R) D F (x||c) of a query point q onto a Bregman ball B(c, R), we first check whether q is outside the ball or not: D F (q||c) > R. If not, D F (q||c) ≤ R and the projection is simply the point itself: q B = q. Now consider the geodesic segment Γ cq , the projection point q B belongs necessarily to the geodesic Γ cq : q B = LERP(λ q , c, q) for some λ q ∈ [0, 1]. The value λ q is approximated by a bisection search as follows. Initially, let λ

M] = [λ (0) , λ (1)
M] and so on until the range size λ

(i) M -λ (i)
m goes below a threshold ǫ (typically ǫ ∈ [10 -10 , 10 -5]). This yields a fine approximation of q B ∼ LERP(λ (i) , c, q) by splitting the "λ" intervals a dozen of times. (Recall that the algorithm keeps a Bregman annulus, and refine the inner/outer radii to decide whether to prune or explore a sub-tree.)

Handling symmetrized Bregman divergences

Many content-based information retrieval systems (CBIRs) need symmetrical distortions measures.

Except for generalized quadratic distances (Mahalanobis), the symmetrized Bregman divergence is technically not a Bregman divergence [START_REF] Nielsen | On Bregman Voronoi diagrams[END_REF].

The symmetric KL divergence (SKL) goes by the name of Jensen-Shannon JS(p; q) = 1 2 KL(p|| p+q 2) + 1 2 KL(q|| p+q 2). It turns out that these symmetrized Bregman divergences [START_REF] Nielsen | Bregman sided and symmetrized centroids[END_REF] are all generalizations of the Jensen remainder obtained for convex generators F : JS F (p; q) = 1 2 (F (p) + F (q)) -F (p+q 2). (Besides the Jensen-Shannon divergence for F (x) = x log x, these so-called Burbea-Rao divergences also includes the important COSH distance used in speech/sound processing for the Burg entropy F (x) = -log x.) The symmetrized Bregman centroid can be explicitly computed following the geodesic-walk algorithm of [START_REF] Nielsen | Bregman sided and symmetrized centroids[END_REF].

Experiments

Table 1 compares different partitioning methods when building a Bb-tree on the SIFT dataset [START_REF] Lowe | Distinctive image features from scaleinvariant keypoints[END_REF] (10, 000 visual feature points extracted from images, encoded in dimension 1111). Bregman 2-means++ with iter = 0 means that only the initialization step is carried out. The speed-up is by comparison with the most computationally expensive k-means method. We used the maximum number of explored leaves as a parameter for stopping the branch-and-bound search. In each experiment of approximate search, we fixed a value of this parameter (from near-exact search to visiting only a single leaf), then we evaluated error rate and computational cost. Namely, the error rate is expressed as the number of closer points to the approximated NN (a quantity called Number Closer), while the speed-up is given by the ratio between the number of divergence computations in Bbtree over the brute-force search. Figure 1 displays a comparison of Cayton's Bb-tree with our Bb-tree++ in approximate search on SIFT dataset (log-log plot).

Figure 2 presents the results of approximate search queries on SIFT dataset wrt. SKL divergence (symmetrized Bregman). The marked point shows a speedup of 60.3 (10 1.78) when the Number Closer equals 14 (10 1.15), i.e. 0.14% of database points (log-log plot).

2 .

 2 midpoint m = LERP(λ (0) , c, q) obtained for λ (0) = λ If D F (m||c) > R then recurse on [λ

Figure 1 :

 1 Figure 1: BB-tree versus BB-tree++ (log-log plot scale). The axis denotes the error rate expressed as the number of closer points to the approximated NN.

Figure 2 :

 2 Figure 2: NN queries with respect to Jensen-Shannon divergence (symmetric Kullback-Leibler, SKL).

Table 1 :

 1 Construction time of Bregman ball trees.

		Bb-tree construction (bs = 50)	
	method	iter depth depthavg Leav. speed-up
	2-m.	10	53	28.57	594	1
	2-m.++	10	58.33	31.18	647	1.03
	2-m.++	0	20	10.76	362	19.71

Acknowledgments

We thank L. Cayton for sharing with us his code and SIFT high-dimensional datasets.